Skip to content

Failed

openmodelica_dataReconciliation.TSP_Pipe.mos (from (result.xml))

Failing for the past 157 builds (Since #3553 )
Took 23 sec.

Stacktrace

Output mismatch (see stdout for details)

Standard Output

 + TSP_Pipe                                                                          ... equation mismatch [time: 22]

==== Log C:\Windows\TEMP/omc-rtest-OpenModelica/openmodelica/dataReconciliation/TSP_Pipe.mos_temp7795/log-TSP_Pipe.mos
true
""
true
"Notification: Automatically loaded package Modelica 3.2.3 due to uses annotation from NewDataReconciliationSimpleTests.
Notification: Automatically loaded package Complex 3.2.3 due to uses annotation from Modelica.
Notification: Automatically loaded package ModelicaServices 3.2.3 due to uses annotation from Modelica.
Notification: Automatically loaded package ThermoSysPro 3.2 due to uses annotation from NewDataReconciliationSimpleTests.
"

ModelInfo: NewDataReconciliationSimpleTests.TSP_Pipe
==========================================================================


OrderedVariables (102)
========================================
1: singularPressureLoss2.pro_pT.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
2: singularPressureLoss2.pro_pT.duTp:VARIABLE(unit = "J/(kg.K)" )  "Derivative of the inner energy wrt. temperature at constant pressure" type: Real
3: singularPressureLoss2.pro_pT.dupT:VARIABLE(unit = "J.m.s2/kg" )  "Derivative of the inner energy wrt. pressure at constant temperature" type: Real
4: singularPressureLoss2.pro_pT.ddpT:VARIABLE(unit = "s2/m2" )  "Derivative of the density wrt. presure at constant temperature" type: Real
5: singularPressureLoss2.pro_pT.ddTp:VARIABLE(unit = "kg/(m3.K)" )  "Derivative of the density wrt. temperature at constant pressure" type: Real
6: singularPressureLoss2.pro_pT.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
7: singularPressureLoss2.pro_pT.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
8: singularPressureLoss2.pro_pT.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
9: singularPressureLoss2.pro_pT.h:VARIABLE(min = -1e6 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific enthalpy" type: Real
10: singularPressureLoss2.pro_pT.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
11: singularPressureLoss2.pro_ph.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
12: singularPressureLoss2.pro_ph.duhp:VARIABLE(unit = "1" )  "Derivative of specific inner energy wrt. specific enthalpy at constant pressure" type: Real
13: singularPressureLoss2.pro_ph.duph:VARIABLE(unit = "m3/kg" )  "Derivative of specific inner energy wrt. pressure at constant specific enthalpy" type: Real
14: singularPressureLoss2.pro_ph.ddph:VARIABLE(unit = "s2/m2" )  "Derivative of density wrt. pressure at constant specific enthalpy" type: Real
15: singularPressureLoss2.pro_ph.ddhp:VARIABLE(unit = "kg.s2/m5" )  "Derivative of density wrt. specific enthalpy at constant pressure" type: Real
16: singularPressureLoss2.pro_ph.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
17: singularPressureLoss2.pro_ph.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
18: singularPressureLoss2.pro_ph.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
19: singularPressureLoss2.pro_ph.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
20: singularPressureLoss2.pro_ph.T:VARIABLE(min = 200.0 max = 6000.0 start = 288.15 unit = "K" nominal = 320.0 )  "Temperature" type: Real
21: singularPressureLoss2.C2.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
22: singularPressureLoss2.C2.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
23: singularPressureLoss2.C2.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
24: singularPressureLoss2.C2.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
25: singularPressureLoss2.C2.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
26: singularPressureLoss2.C2.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
27: singularPressureLoss2.C1.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
28: singularPressureLoss2.C1.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
29: singularPressureLoss2.C1.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
30: singularPressureLoss2.C1.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
31: singularPressureLoss2.C1.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
32: singularPressureLoss2.C1.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
33: singularPressureLoss2.h:VARIABLE(start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy" type: Real
34: singularPressureLoss2.Pm:VARIABLE(min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Average fluid pressure" type: Real
35: singularPressureLoss2.T:VARIABLE(min = 0.0 start = 290.0 unit = "K" nominal = 300.0 )  "Fluid temperature" type: Real
36: singularPressureLoss2.rho:VARIABLE(min = 0.0 start = 998.0 unit = "kg/m3" )  "Fluid density" type: Real
37: singularPressureLoss2.Q:VARIABLE(start = 100.0 unit = "kg/s" uncertain=Uncertainty.refine)  "Mass flow rate" type: Real
38: singularPressureLoss2.deltaP:VARIABLE(min = -1e9 max = 1e9 start = 1e5 unit = "Pa" nominal = 1e5 )  "Singular pressure loss" type: Real
39: singularPressureLoss1.pro_pT.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
40: singularPressureLoss1.pro_pT.duTp:VARIABLE(unit = "J/(kg.K)" )  "Derivative of the inner energy wrt. temperature at constant pressure" type: Real
41: singularPressureLoss1.pro_pT.dupT:VARIABLE(unit = "J.m.s2/kg" )  "Derivative of the inner energy wrt. pressure at constant temperature" type: Real
42: singularPressureLoss1.pro_pT.ddpT:VARIABLE(unit = "s2/m2" )  "Derivative of the density wrt. presure at constant temperature" type: Real
43: singularPressureLoss1.pro_pT.ddTp:VARIABLE(unit = "kg/(m3.K)" )  "Derivative of the density wrt. temperature at constant pressure" type: Real
44: singularPressureLoss1.pro_pT.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
45: singularPressureLoss1.pro_pT.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
46: singularPressureLoss1.pro_pT.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
47: singularPressureLoss1.pro_pT.h:VARIABLE(min = -1e6 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific enthalpy" type: Real
48: singularPressureLoss1.pro_pT.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
49: singularPressureLoss1.pro_ph.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
50: singularPressureLoss1.pro_ph.duhp:VARIABLE(unit = "1" )  "Derivative of specific inner energy wrt. specific enthalpy at constant pressure" type: Real
51: singularPressureLoss1.pro_ph.duph:VARIABLE(unit = "m3/kg" )  "Derivative of specific inner energy wrt. pressure at constant specific enthalpy" type: Real
52: singularPressureLoss1.pro_ph.ddph:VARIABLE(unit = "s2/m2" )  "Derivative of density wrt. pressure at constant specific enthalpy" type: Real
53: singularPressureLoss1.pro_ph.ddhp:VARIABLE(unit = "kg.s2/m5" )  "Derivative of density wrt. specific enthalpy at constant pressure" type: Real
54: singularPressureLoss1.pro_ph.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
55: singularPressureLoss1.pro_ph.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
56: singularPressureLoss1.pro_ph.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
57: singularPressureLoss1.pro_ph.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
58: singularPressureLoss1.pro_ph.T:VARIABLE(min = 200.0 max = 6000.0 start = 288.15 unit = "K" nominal = 320.0 )  "Temperature" type: Real
59: singularPressureLoss1.C2.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
60: singularPressureLoss1.C2.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
61: singularPressureLoss1.C2.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
62: singularPressureLoss1.C2.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
63: singularPressureLoss1.C2.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
64: singularPressureLoss1.C2.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
65: singularPressureLoss1.C1.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
66: singularPressureLoss1.C1.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
67: singularPressureLoss1.C1.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
68: singularPressureLoss1.C1.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
69: singularPressureLoss1.C1.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
70: singularPressureLoss1.C1.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
71: singularPressureLoss1.h:VARIABLE(start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy" type: Real
72: singularPressureLoss1.Pm:VARIABLE(min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Average fluid pressure" type: Real
73: singularPressureLoss1.T:VARIABLE(min = 0.0 start = 290.0 unit = "K" nominal = 300.0 )  "Fluid temperature" type: Real
74: singularPressureLoss1.rho:VARIABLE(min = 0.0 start = 998.0 unit = "kg/m3" )  "Fluid density" type: Real
75: singularPressureLoss1.Q:VARIABLE(start = 100.0 unit = "kg/s" uncertain=Uncertainty.refine)  "Mass flow rate" type: Real
76: singularPressureLoss1.deltaP:VARIABLE(min = -1e9 max = 1e9 start = 1e5 unit = "Pa" nominal = 1e5 )  "Singular pressure loss" type: Real
77: sink1.C.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
78: sink1.C.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
79: sink1.C.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
80: sink1.C.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
81: sink1.C.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
82: sink1.C.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
83: sink1.ISpecificEnthalpy.signal:VARIABLE(flow=false )  type: Real
84: sink1.h:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy" type: Real
85: sink1.Q:VARIABLE(unit = "kg/s" )  "Mass flow rate" type: Real
86: sink1.P:VARIABLE(min = 0.0 unit = "Pa" nominal = 1e5 )  "Fluid pressure" type: Real
87: sourcePQ1.C.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
88: sourcePQ1.C.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
89: sourcePQ1.C.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
90: sourcePQ1.C.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
91: sourcePQ1.C.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
92: sourcePQ1.C.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
93: sourcePQ1.ISpecificEnthalpy.signal:VARIABLE(flow=false )  type: Real
94: sourcePQ1.IPressure.signal:VARIABLE(flow=false )  type: Real
95: sourcePQ1.IMassFlow.signal:VARIABLE(flow=false )  type: Real
96: sourcePQ1.h:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy" type: Real
97: sourcePQ1.Q:VARIABLE(unit = "kg/s" )  "Mass flow rate" type: Real
98: sourcePQ1.P:VARIABLE(min = 0.0 unit = "Pa" nominal = 1e5 )  "Fluid pressure" type: Real
99: sourcePQ1.P0:VARIABLE(min = 0.0 unit = "Pa" nominal = 1e5 )  "Fluid pressure (active if IPressure connector is not connected)" type: Real
100: sourcePQ1.Q0:VARIABLE(unit = "kg/s" )  "Mass flow (active if IMassFlow connector is not connected)" type: Real
101: sourcePQ1.h0:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy (active if IEnthalpy connector is not connected)" type: Real
102: sink1.h0:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy (active if IEnthalpy connector is not connected)" type: Real


OrderedEquation (84, 102)
========================================
1/1 (1): sourcePQ1.P0 = 3e5   [binding |0|0|0|0|]
2/2 (1): sourcePQ1.Q0 = 100.0   [binding |0|0|0|0|]
3/3 (1): sourcePQ1.h0 = 1e5   [binding |0|0|0|0|]
4/4 (1): sink1.h0 = 1e5   [binding |0|0|0|0|]
5/5 (1): singularPressureLoss2.C2.P = sink1.C.P   [dynamic |0|0|0|0|]
6/6 (1): singularPressureLoss2.C2.Q = sink1.C.Q   [dynamic |0|0|0|0|]
7/7 (1): singularPressureLoss2.C2.a = sink1.C.a   [dynamic |0|0|0|0|]
8/8 (1): singularPressureLoss2.C2.b = sink1.C.b   [dynamic |0|0|0|0|]
9/9 (1): singularPressureLoss2.C2.h = sink1.C.h   [dynamic |0|0|0|0|]
10/10 (1): singularPressureLoss2.C2.h_vol = sink1.C.h_vol   [dynamic |0|0|0|0|]
11/11 (1): singularPressureLoss1.C2.P = singularPressureLoss2.C1.P   [dynamic |0|0|0|0|]
12/12 (1): singularPressureLoss1.C2.Q = singularPressureLoss2.C1.Q   [dynamic |0|0|0|0|]
13/13 (1): singularPressureLoss1.C2.a = singularPressureLoss2.C1.a   [dynamic |0|0|0|0|]
14/14 (1): singularPressureLoss1.C2.b = singularPressureLoss2.C1.b   [dynamic |0|0|0|0|]
15/15 (1): singularPressureLoss1.C2.h = singularPressureLoss2.C1.h   [dynamic |0|0|0|0|]
16/16 (1): singularPressureLoss1.C2.h_vol = singularPressureLoss2.C1.h_vol   [dynamic |0|0|0|0|]
17/17 (1): sourcePQ1.C.P = singularPressureLoss1.C1.P   [dynamic |0|0|0|0|]
18/18 (1): sourcePQ1.C.Q = singularPressureLoss1.C1.Q   [dynamic |0|0|0|0|]
19/19 (1): sourcePQ1.C.a = singularPressureLoss1.C1.a   [dynamic |0|0|0|0|]
20/20 (1): sourcePQ1.C.b = singularPressureLoss1.C1.b   [dynamic |0|0|0|0|]
21/21 (1): sourcePQ1.C.h = singularPressureLoss1.C1.h   [dynamic |0|0|0|0|]
22/22 (1): sourcePQ1.C.h_vol = singularPressureLoss1.C1.h_vol   [dynamic |0|0|0|0|]
23/23 (1): sourcePQ1.C.P = sourcePQ1.P   [dynamic |0|0|0|0|]
24/24 (1): sourcePQ1.C.Q = sourcePQ1.Q   [dynamic |0|0|0|0|]
25/25 (1): sourcePQ1.C.h_vol = sourcePQ1.h   [dynamic |0|0|0|0|]
26/26 (1): sourcePQ1.IMassFlow.signal = sourcePQ1.Q0   [dynamic |0|0|0|0|]
27/27 (1): sourcePQ1.Q = sourcePQ1.IMassFlow.signal   [dynamic |0|0|0|0|]
28/28 (1): sourcePQ1.IPressure.signal = sourcePQ1.P0   [dynamic |0|0|0|0|]
29/29 (1): sourcePQ1.P = sourcePQ1.IPressure.signal   [dynamic |0|0|0|0|]
30/30 (1): sourcePQ1.ISpecificEnthalpy.signal = sourcePQ1.h0   [dynamic |0|0|0|0|]
31/31 (1): sourcePQ1.h = sourcePQ1.ISpecificEnthalpy.signal   [dynamic |0|0|0|0|]
32/32 (1): sink1.C.P = sink1.P   [dynamic |0|0|0|0|]
33/33 (1): sink1.C.Q = sink1.Q   [dynamic |0|0|0|0|]
34/34 (1): sink1.C.h_vol = sink1.h   [dynamic |0|0|0|0|]
35/35 (1): sink1.ISpecificEnthalpy.signal = sink1.h0   [dynamic |0|0|0|0|]
36/36 (1): sink1.h = sink1.ISpecificEnthalpy.signal   [dynamic |0|0|0|0|]
37/37 (1): singularPressureLoss1.C1.P - singularPressureLoss1.C2.P = singularPressureLoss1.deltaP   [dynamic |0|0|0|0|]
38/38 (1): singularPressureLoss1.C2.Q = singularPressureLoss1.C1.Q   [dynamic |0|0|0|0|]
39/39 (1): singularPressureLoss1.C2.h = singularPressureLoss1.C1.h   [dynamic |0|0|0|0|]
40/40 (1): singularPressureLoss1.h = singularPressureLoss1.C1.h   [dynamic |0|0|0|0|]
41/41 (1): singularPressureLoss1.Q = singularPressureLoss1.C1.Q   [dynamic |0|0|0|0|]
42/42 (1): singularPressureLoss1.h = ThermoSysPro.Functions.SmoothCond(singularPressureLoss1.Q, singularPressureLoss1.C1.h_vol, singularPressureLoss1.C2.h_vol, 1.0)   [dynamic |0|0|0|0|]
43/43 (1): singularPressureLoss1.deltaP = singularPressureLoss1.K * singularPressureLoss1.Q * abs(singularPressureLoss1.Q) / singularPressureLoss1.rho   [dynamic |0|0|0|0|]
44/44 (1): singularPressureLoss1.Pm = 0.5 * (singularPressureLoss1.C1.P + singularPressureLoss1.C2.P)   [dynamic |0|0|0|0|]
45/45 (10): singularPressureLoss1.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss1.Pm, singularPressureLoss1.h, singularPressureLoss1.mode, singularPressureLoss1.fluid)   [dynamic |0|0|0|0|]
46/55 (1): singularPressureLoss1.T = singularPressureLoss1.pro_ph.T   [dynamic |0|0|0|0|]
47/56 (1): singularPressureLoss1.rho = singularPressureLoss1.pro_ph.d   [dynamic |0|0|0|0|]
48/57 (1): singularPressureLoss1.pro_pT.d = 0.0   [dynamic |0|0|0|0|]
49/58 (1): singularPressureLoss1.pro_pT.h = 0.0   [dynamic |0|0|0|0|]
50/59 (1): singularPressureLoss1.pro_pT.u = 0.0   [dynamic |0|0|0|0|]
51/60 (1): singularPressureLoss1.pro_pT.s = 0.0   [dynamic |0|0|0|0|]
52/61 (1): singularPressureLoss1.pro_pT.cp = 0.0   [dynamic |0|0|0|0|]
53/62 (1): singularPressureLoss1.pro_pT.ddTp = 0.0   [dynamic |0|0|0|0|]
54/63 (1): singularPressureLoss1.pro_pT.ddpT = 0.0   [dynamic |0|0|0|0|]
55/64 (1): singularPressureLoss1.pro_pT.dupT = 0.0   [dynamic |0|0|0|0|]
56/65 (1): singularPressureLoss1.pro_pT.duTp = 0.0   [dynamic |0|0|0|0|]
57/66 (1): singularPressureLoss1.pro_pT.x = 0.0   [dynamic |0|0|0|0|]
58/67 (1): singularPressureLoss2.C1.P - singularPressureLoss2.C2.P = singularPressureLoss2.deltaP   [dynamic |0|0|0|0|]
59/68 (1): singularPressureLoss2.C2.Q = singularPressureLoss2.C1.Q   [dynamic |0|0|0|0|]
60/69 (1): singularPressureLoss2.C2.h = singularPressureLoss2.C1.h   [dynamic |0|0|0|0|]
61/70 (1): singularPressureLoss2.h = singularPressureLoss2.C1.h   [dynamic |0|0|0|0|]
62/71 (1): singularPressureLoss2.Q = singularPressureLoss2.C1.Q   [dynamic |0|0|0|0|]
63/72 (1): singularPressureLoss2.h = ThermoSysPro.Functions.SmoothCond(singularPressureLoss2.Q, singularPressureLoss2.C1.h_vol, singularPressureLoss2.C2.h_vol, 1.0)   [dynamic |0|0|0|0|]
64/73 (1): singularPressureLoss2.deltaP = singularPressureLoss2.K * singularPressureLoss2.Q * abs(singularPressureLoss2.Q) / singularPressureLoss2.rho   [dynamic |0|0|0|0|]
65/74 (1): singularPressureLoss2.Pm = 0.5 * (singularPressureLoss2.C1.P + singularPressureLoss2.C2.P)   [dynamic |0|0|0|0|]
66/75 (10): singularPressureLoss2.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss2.Pm, singularPressureLoss2.h, singularPressureLoss2.mode, singularPressureLoss2.fluid)   [dynamic |0|0|0|0|]
67/85 (1): singularPressureLoss2.T = singularPressureLoss2.pro_ph.T   [dynamic |0|0|0|0|]
68/86 (1): singularPressureLoss2.rho = singularPressureLoss2.pro_ph.d   [dynamic |0|0|0|0|]
69/87 (1): singularPressureLoss2.pro_pT.d = 0.0   [dynamic |0|0|0|0|]
70/88 (1): singularPressureLoss2.pro_pT.h = 0.0   [dynamic |0|0|0|0|]
71/89 (1): singularPressureLoss2.pro_pT.u = 0.0   [dynamic |0|0|0|0|]
72/90 (1): singularPressureLoss2.pro_pT.s = 0.0   [dynamic |0|0|0|0|]
73/91 (1): singularPressureLoss2.pro_pT.cp = 0.0   [dynamic |0|0|0|0|]
74/92 (1): singularPressureLoss2.pro_pT.ddTp = 0.0   [dynamic |0|0|0|0|]
75/93 (1): singularPressureLoss2.pro_pT.ddpT = 0.0   [dynamic |0|0|0|0|]
76/94 (1): singularPressureLoss2.pro_pT.dupT = 0.0   [dynamic |0|0|0|0|]
77/95 (1): singularPressureLoss2.pro_pT.duTp = 0.0   [dynamic |0|0|0|0|]
78/96 (1): singularPressureLoss2.pro_pT.x = 0.0   [dynamic |0|0|0|0|]
79/97 (1): sourcePQ1.C.b = true   [binding |0|0|0|0|]
80/98 (1): sink1.C.a = true   [binding |0|0|0|0|]
81/99 (1): singularPressureLoss1.C1.a = true   [binding |0|0|0|0|]
82/100 (1): singularPressureLoss1.C2.b = true   [binding |0|0|0|0|]
83/101 (1): singularPressureLoss2.C1.a = true   [binding |0|0|0|0|]
84/102 (1): singularPressureLoss2.C2.b = true   [binding |0|0|0|0|]

Matching
========================================
102 variables and equations
var 1 is solved in eqn 96
var 2 is solved in eqn 95
var 3 is solved in eqn 94
var 4 is solved in eqn 93
var 5 is solved in eqn 92
var 6 is solved in eqn 91
var 7 is solved in eqn 90
var 8 is solved in eqn 89
var 9 is solved in eqn 88
var 10 is solved in eqn 87
var 11 is solved in eqn 84
var 12 is solved in eqn 83
var 13 is solved in eqn 82
var 14 is solved in eqn 81
var 15 is solved in eqn 80
var 16 is solved in eqn 79
var 17 is solved in eqn 78
var 18 is solved in eqn 77
var 19 is solved in eqn 76
var 20 is solved in eqn 75
var 21 is solved in eqn 102
var 22 is solved in eqn 7
var 23 is solved in eqn 69
var 24 is solved in eqn 68
var 25 is solved in eqn 10
var 26 is solved in eqn 67
var 27 is solved in eqn 14
var 28 is solved in eqn 101
var 29 is solved in eqn 15
var 30 is solved in eqn 12
var 31 is solved in eqn 72
var 32 is solved in eqn 11
var 33 is solved in eqn 70
var 34 is solved in eqn 74
var 35 is solved in eqn 85
var 36 is solved in eqn 86
var 37 is solved in eqn 71
var 38 is solved in eqn 73
var 39 is solved in eqn 66
var 40 is solved in eqn 65
var 41 is solved in eqn 64
var 42 is solved in eqn 63
var 43 is solved in eqn 62
var 44 is solved in eqn 61
var 45 is solved in eqn 60
var 46 is solved in eqn 59
var 47 is solved in eqn 58
var 48 is solved in eqn 57
var 49 is solved in eqn 54
var 50 is solved in eqn 53
var 51 is solved in eqn 52
var 52 is solved in eqn 51
var 53 is solved in eqn 50
var 54 is solved in eqn 49
var 55 is solved in eqn 48
var 56 is solved in eqn 47
var 57 is solved in eqn 46
var 58 is solved in eqn 45
var 59 is solved in eqn 100
var 60 is solved in eqn 13
var 61 is solved in eqn 39
var 62 is solved in eqn 38
var 63 is solved in eqn 16
var 64 is solved in eqn 37
var 65 is solved in eqn 20
var 66 is solved in eqn 99
var 67 is solved in eqn 40
var 68 is solved in eqn 18
var 69 is solved in eqn 22
var 70 is solved in eqn 17
var 71 is solved in eqn 42
var 72 is solved in eqn 44
var 73 is solved in eqn 55
var 74 is solved in eqn 56
var 75 is solved in eqn 41
var 76 is solved in eqn 43
var 77 is solved in eqn 8
var 78 is solved in eqn 98
var 79 is solved in eqn 9
var 80 is solved in eqn 6
var 81 is solved in eqn 34
var 82 is solved in eqn 5
var 83 is solved in eqn 35
var 84 is solved in eqn 36
var 85 is solved in eqn 33
var 86 is solved in eqn 32
var 87 is solved in eqn 97
var 88 is solved in eqn 19
var 89 is solved in eqn 21
var 90 is solved in eqn 24
var 91 is solved in eqn 25
var 92 is solved in eqn 23
var 93 is solved in eqn 30
var 94 is solved in eqn 28
var 95 is solved in eqn 26
var 96 is solved in eqn 31
var 97 is solved in eqn 27
var 98 is solved in eqn 29
var 99 is solved in eqn 1
var 100 is solved in eqn 2
var 101 is solved in eqn 3
var 102 is solved in eqn 4

Standard BLT of the original model:(102)
============================================================

102: sink1.h0: (4/4): (1): sink1.h0 = 1e5
101: sourcePQ1.h0: (3/3): (1): sourcePQ1.h0 = 1e5
100: sourcePQ1.Q0: (2/2): (1): sourcePQ1.Q0 = 100.0
99: sourcePQ1.P0: (1/1): (1): sourcePQ1.P0 = 3e5
98: sourcePQ1.P: (29/29): (1): sourcePQ1.P = sourcePQ1.IPressure.signal
97: sourcePQ1.Q: (27/27): (1): sourcePQ1.Q = sourcePQ1.IMassFlow.signal
96: sourcePQ1.h: (31/31): (1): sourcePQ1.h = sourcePQ1.ISpecificEnthalpy.signal
95: sourcePQ1.IMassFlow.signal: (26/26): (1): sourcePQ1.IMassFlow.signal = sourcePQ1.Q0
94: sourcePQ1.IPressure.signal: (28/28): (1): sourcePQ1.IPressure.signal = sourcePQ1.P0
93: sourcePQ1.ISpecificEnthalpy.signal: (30/30): (1): sourcePQ1.ISpecificEnthalpy.signal = sourcePQ1.h0
92: sourcePQ1.C.P: (23/23): (1): sourcePQ1.C.P = sourcePQ1.P
91: sourcePQ1.C.h_vol: (25/25): (1): sourcePQ1.C.h_vol = sourcePQ1.h
90: sourcePQ1.C.Q: (24/24): (1): sourcePQ1.C.Q = sourcePQ1.Q
89: sourcePQ1.C.h: (21/21): (1): sourcePQ1.C.h = singularPressureLoss1.C1.h
88: sourcePQ1.C.a: (19/19): (1): sourcePQ1.C.a = singularPressureLoss1.C1.a
87: sourcePQ1.C.b: (79/97): (1): sourcePQ1.C.b = true
86: sink1.P: (32/32): (1): sink1.C.P = sink1.P
85: sink1.Q: (33/33): (1): sink1.C.Q = sink1.Q
84: sink1.h: (36/36): (1): sink1.h = sink1.ISpecificEnthalpy.signal
83: sink1.ISpecificEnthalpy.signal: (35/35): (1): sink1.ISpecificEnthalpy.signal = sink1.h0
82: sink1.C.P: (5/5): (1): singularPressureLoss2.C2.P = sink1.C.P
81: sink1.C.h_vol: (34/34): (1): sink1.C.h_vol = sink1.h
80: sink1.C.Q: (6/6): (1): singularPressureLoss2.C2.Q = sink1.C.Q
79: sink1.C.h: (9/9): (1): singularPressureLoss2.C2.h = sink1.C.h
78: sink1.C.a: (80/98): (1): sink1.C.a = true
77: sink1.C.b: (8/8): (1): singularPressureLoss2.C2.b = sink1.C.b
76: singularPressureLoss1.deltaP: (43/43): (1): singularPressureLoss1.deltaP = singularPressureLoss1.K * singularPressureLoss1.Q * abs(singularPressureLoss1.Q) / singularPressureLoss1.rho
75: singularPressureLoss1.Q: (41/41): (1): singularPressureLoss1.Q = singularPressureLoss1.C1.Q
74: singularPressureLoss1.rho: (47/56): (1): singularPressureLoss1.rho = singularPressureLoss1.pro_ph.d
73: singularPressureLoss1.T: (46/55): (1): singularPressureLoss1.T = singularPressureLoss1.pro_ph.T
72: singularPressureLoss1.Pm: (44/44): (1): singularPressureLoss1.Pm = 0.5 * (singularPressureLoss1.C1.P + singularPressureLoss1.C2.P)
71: singularPressureLoss1.h: (42/42): (1): singularPressureLoss1.h = ThermoSysPro.Functions.SmoothCond(singularPressureLoss1.Q, singularPressureLoss1.C1.h_vol, singularPressureLoss1.C2.h_vol, 1.0)
70: singularPressureLoss1.C1.P: (17/17): (1): sourcePQ1.C.P = singularPressureLoss1.C1.P
69: singularPressureLoss1.C1.h_vol: (22/22): (1): sourcePQ1.C.h_vol = singularPressureLoss1.C1.h_vol
68: singularPressureLoss1.C1.Q: (18/18): (1): sourcePQ1.C.Q = singularPressureLoss1.C1.Q
67: singularPressureLoss1.C1.h: (40/40): (1): singularPressureLoss1.h = singularPressureLoss1.C1.h
66: singularPressureLoss1.C1.a: (81/99): (1): singularPressureLoss1.C1.a = true
65: singularPressureLoss1.C1.b: (20/20): (1): sourcePQ1.C.b = singularPressureLoss1.C1.b
64: singularPressureLoss1.C2.P: (37/37): (1): singularPressureLoss1.C1.P - singularPressureLoss1.C2.P = singularPressureLoss1.deltaP
63: singularPressureLoss1.C2.h_vol: (16/16): (1): singularPressureLoss1.C2.h_vol = singularPressureLoss2.C1.h_vol
62: singularPressureLoss1.C2.Q: (38/38): (1): singularPressureLoss1.C2.Q = singularPressureLoss1.C1.Q
61: singularPressureLoss1.C2.h: (39/39): (1): singularPressureLoss1.C2.h = singularPressureLoss1.C1.h
60: singularPressureLoss1.C2.a: (13/13): (1): singularPressureLoss1.C2.a = singularPressureLoss2.C1.a
59: singularPressureLoss1.C2.b: (82/100): (1): singularPressureLoss1.C2.b = true
58: singularPressureLoss1.pro_ph.T: (45/45): (10): singularPressureLoss1.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss1.Pm, singularPressureLoss1.h, singularPressureLoss1.mode, singularPressureLoss1.fluid)
57: singularPressureLoss1.pro_ph.d: (45/46): (10): singularPressureLoss1.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss1.Pm, singularPressureLoss1.h, singularPressureLoss1.mode, singularPressureLoss1.fluid)
56: singularPressureLoss1.pro_ph.u: (45/47): (10): singularPressureLoss1.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss1.Pm, singularPressureLoss1.h, singularPressureLoss1.mode, singularPressureLoss1.fluid)
55: singularPressureLoss1.pro_ph.s: (45/48): (10): singularPressureLoss1.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss1.Pm, singularPressureLoss1.h, singularPressureLoss1.mode, singularPressureLoss1.fluid)
54: singularPressureLoss1.pro_ph.cp: (45/49): (10): singularPressureLoss1.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss1.Pm, singularPressureLoss1.h, singularPressureLoss1.mode, singularPressureLoss1.fluid)
53: singularPressureLoss1.pro_ph.ddhp: (45/50): (10): singularPressureLoss1.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss1.Pm, singularPressureLoss1.h, singularPressureLoss1.mode, singularPressureLoss1.fluid)
52: singularPressureLoss1.pro_ph.ddph: (45/51): (10): singularPressureLoss1.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss1.Pm, singularPressureLoss1.h, singularPressureLoss1.mode, singularPressureLoss1.fluid)
51: singularPressureLoss1.pro_ph.duph: (45/52): (10): singularPressureLoss1.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss1.Pm, singularPressureLoss1.h, singularPressureLoss1.mode, singularPressureLoss1.fluid)
50: singularPressureLoss1.pro_ph.duhp: (45/53): (10): singularPressureLoss1.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss1.Pm, singularPressureLoss1.h, singularPressureLoss1.mode, singularPressureLoss1.fluid)
49: singularPressureLoss1.pro_ph.x: (45/54): (10): singularPressureLoss1.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss1.Pm, singularPressureLoss1.h, singularPressureLoss1.mode, singularPressureLoss1.fluid)
48: singularPressureLoss1.pro_pT.d: (48/57): (1): singularPressureLoss1.pro_pT.d = 0.0
47: singularPressureLoss1.pro_pT.h: (49/58): (1): singularPressureLoss1.pro_pT.h = 0.0
46: singularPressureLoss1.pro_pT.u: (50/59): (1): singularPressureLoss1.pro_pT.u = 0.0
45: singularPressureLoss1.pro_pT.s: (51/60): (1): singularPressureLoss1.pro_pT.s = 0.0
44: singularPressureLoss1.pro_pT.cp: (52/61): (1): singularPressureLoss1.pro_pT.cp = 0.0
43: singularPressureLoss1.pro_pT.ddTp: (53/62): (1): singularPressureLoss1.pro_pT.ddTp = 0.0
42: singularPressureLoss1.pro_pT.ddpT: (54/63): (1): singularPressureLoss1.pro_pT.ddpT = 0.0
41: singularPressureLoss1.pro_pT.dupT: (55/64): (1): singularPressureLoss1.pro_pT.dupT = 0.0
40: singularPressureLoss1.pro_pT.duTp: (56/65): (1): singularPressureLoss1.pro_pT.duTp = 0.0
39: singularPressureLoss1.pro_pT.x: (57/66): (1): singularPressureLoss1.pro_pT.x = 0.0
38: singularPressureLoss2.deltaP: (64/73): (1): singularPressureLoss2.deltaP = singularPressureLoss2.K * singularPressureLoss2.Q * abs(singularPressureLoss2.Q) / singularPressureLoss2.rho
37: singularPressureLoss2.Q: (62/71): (1): singularPressureLoss2.Q = singularPressureLoss2.C1.Q
36: singularPressureLoss2.rho: (68/86): (1): singularPressureLoss2.rho = singularPressureLoss2.pro_ph.d
35: singularPressureLoss2.T: (67/85): (1): singularPressureLoss2.T = singularPressureLoss2.pro_ph.T
34: singularPressureLoss2.Pm: (65/74): (1): singularPressureLoss2.Pm = 0.5 * (singularPressureLoss2.C1.P + singularPressureLoss2.C2.P)
33: singularPressureLoss2.h: (61/70): (1): singularPressureLoss2.h = singularPressureLoss2.C1.h
32: singularPressureLoss2.C1.P: (11/11): (1): singularPressureLoss1.C2.P = singularPressureLoss2.C1.P
31: singularPressureLoss2.C1.h_vol: (63/72): (1): singularPressureLoss2.h = ThermoSysPro.Functions.SmoothCond(singularPressureLoss2.Q, singularPressureLoss2.C1.h_vol, singularPressureLoss2.C2.h_vol, 1.0)
30: singularPressureLoss2.C1.Q: (12/12): (1): singularPressureLoss1.C2.Q = singularPressureLoss2.C1.Q
29: singularPressureLoss2.C1.h: (15/15): (1): singularPressureLoss1.C2.h = singularPressureLoss2.C1.h
28: singularPressureLoss2.C1.a: (83/101): (1): singularPressureLoss2.C1.a = true
27: singularPressureLoss2.C1.b: (14/14): (1): singularPressureLoss1.C2.b = singularPressureLoss2.C1.b
26: singularPressureLoss2.C2.P: (58/67): (1): singularPressureLoss2.C1.P - singularPressureLoss2.C2.P = singularPressureLoss2.deltaP
25: singularPressureLoss2.C2.h_vol: (10/10): (1): singularPressureLoss2.C2.h_vol = sink1.C.h_vol
24: singularPressureLoss2.C2.Q: (59/68): (1): singularPressureLoss2.C2.Q = singularPressureLoss2.C1.Q
23: singularPressureLoss2.C2.h: (60/69): (1): singularPressureLoss2.C2.h = singularPressureLoss2.C1.h
22: singularPressureLoss2.C2.a: (7/7): (1): singularPressureLoss2.C2.a = sink1.C.a
21: singularPressureLoss2.C2.b: (84/102): (1): singularPressureLoss2.C2.b = true
20: singularPressureLoss2.pro_ph.T: (66/75): (10): singularPressureLoss2.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss2.Pm, singularPressureLoss2.h, singularPressureLoss2.mode, singularPressureLoss2.fluid)
19: singularPressureLoss2.pro_ph.d: (66/76): (10): singularPressureLoss2.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss2.Pm, singularPressureLoss2.h, singularPressureLoss2.mode, singularPressureLoss2.fluid)
18: singularPressureLoss2.pro_ph.u: (66/77): (10): singularPressureLoss2.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss2.Pm, singularPressureLoss2.h, singularPressureLoss2.mode, singularPressureLoss2.fluid)
17: singularPressureLoss2.pro_ph.s: (66/78): (10): singularPressureLoss2.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss2.Pm, singularPressureLoss2.h, singularPressureLoss2.mode, singularPressureLoss2.fluid)
16: singularPressureLoss2.pro_ph.cp: (66/79): (10): singularPressureLoss2.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss2.Pm, singularPressureLoss2.h, singularPressureLoss2.mode, singularPressureLoss2.fluid)
15: singularPressureLoss2.pro_ph.ddhp: (66/80): (10): singularPressureLoss2.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss2.Pm, singularPressureLoss2.h, singularPressureLoss2.mode, singularPressureLoss2.fluid)
14: singularPressureLoss2.pro_ph.ddph: (66/81): (10): singularPressureLoss2.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss2.Pm, singularPressureLoss2.h, singularPressureLoss2.mode, singularPressureLoss2.fluid)
13: singularPressureLoss2.pro_ph.duph: (66/82): (10): singularPressureLoss2.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss2.Pm, singularPressureLoss2.h, singularPressureLoss2.mode, singularPressureLoss2.fluid)
12: singularPressureLoss2.pro_ph.duhp: (66/83): (10): singularPressureLoss2.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss2.Pm, singularPressureLoss2.h, singularPressureLoss2.mode, singularPressureLoss2.fluid)
11: singularPressureLoss2.pro_ph.x: (66/84): (10): singularPressureLoss2.pro_ph = ThermoSysPro.Properties.Fluid.Ph(singularPressureLoss2.Pm, singularPressureLoss2.h, singularPressureLoss2.mode, singularPressureLoss2.fluid)
10: singularPressureLoss2.pro_pT.d: (69/87): (1): singularPressureLoss2.pro_pT.d = 0.0
9: singularPressureLoss2.pro_pT.h: (70/88): (1): singularPressureLoss2.pro_pT.h = 0.0
8: singularPressureLoss2.pro_pT.u: (71/89): (1): singularPressureLoss2.pro_pT.u = 0.0
7: singularPressureLoss2.pro_pT.s: (72/90): (1): singularPressureLoss2.pro_pT.s = 0.0
6: singularPressureLoss2.pro_pT.cp: (73/91): (1): singularPressureLoss2.pro_pT.cp = 0.0
5: singularPressureLoss2.pro_pT.ddTp: (74/92): (1): singularPressureLoss2.pro_pT.ddTp = 0.0
4: singularPressureLoss2.pro_pT.ddpT: (75/93): (1): singularPressureLoss2.pro_pT.ddpT = 0.0
3: singularPressureLoss2.pro_pT.dupT: (76/94): (1): singularPressureLoss2.pro_pT.dupT = 0.0
2: singularPressureLoss2.pro_pT.duTp: (77/95): (1): singularPressureLoss2.pro_pT.duTp = 0.0
1: singularPressureLoss2.pro_pT.x: (78/96): (1): singularPressureLoss2.pro_pT.x = 0.0


Variables of interest (2)
========================================
1: singularPressureLoss2.Q:VARIABLE(start = 100.0 unit = "kg/s" uncertain=Uncertainty.refine)  "Mass flow rate" type: Real
2: singularPressureLoss1.Q:VARIABLE(start = 100.0 unit = "kg/s" uncertain=Uncertainty.refine)  "Mass flow rate" type: Real


Boundary conditions (4)
========================================
1: sourcePQ1.P0:VARIABLE(min = 0.0 unit = "Pa" nominal = 1e5 )  "Fluid pressure (active if IPressure connector is not connected)" type: Real
2: sourcePQ1.Q0:VARIABLE(unit = "kg/s" )  "Mass flow (active if IMassFlow connector is not connected)" type: Real
3: sourcePQ1.h0:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy (active if IEnthalpy connector is not connected)" type: Real
4: sink1.h0:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy (active if IEnthalpy connector is not connected)" type: Real


Binding equations:(10)
============================================================

21: singularPressureLoss2.C2.b: (84/102): (1): singularPressureLoss2.C2.b = true
28: singularPressureLoss2.C1.a: (83/101): (1): singularPressureLoss2.C1.a = true
59: singularPressureLoss1.C2.b: (82/100): (1): singularPressureLoss1.C2.b = true
66: singularPressureLoss1.C1.a: (81/99): (1): singularPressureLoss1.C1.a = true
78: sink1.C.a: (80/98): (1): sink1.C.a = true
87: sourcePQ1.C.b: (79/97): (1): sourcePQ1.C.b = true
102: sink1.h0: (4/4): (1): sink1.h0 = 1e5
101: sourcePQ1.h0: (3/3): (1): sourcePQ1.h0 = 1e5
100: sourcePQ1.Q0: (2/2): (1): sourcePQ1.Q0 = 100.0
99: sourcePQ1.P0: (1/1): (1): sourcePQ1.P0 = 3e5


E-BLT: equations that compute the variables of interest:(2)
============================================================

37: singularPressureLoss2.Q: (62/71): (1): singularPressureLoss2.Q = singularPressureLoss2.C1.Q
75: singularPressureLoss1.Q: (41/41): (1): singularPressureLoss1.Q = singularPressureLoss1.C1.Q


Extracting SET-C and SET-S from E-BLT
Procedure is applied on each equation in the E-BLT
==========================================================================
>>>37: singularPressureLoss2.Q: (62/71): (1): singularPressureLoss2.Q = singularPressureLoss2.C1.Q
30: singularPressureLoss2.C1.Q: (12/12): (1): singularPressureLoss1.C2.Q = singularPressureLoss2.C1.Q
62: singularPressureLoss1.C2.Q: (38/38): (1): singularPressureLoss1.C2.Q = singularPressureLoss1.C1.Q
68: singularPressureLoss1.C1.Q: (18/18): (1): sourcePQ1.C.Q = singularPressureLoss1.C1.Q
90: sourcePQ1.C.Q: (24/24): (1): sourcePQ1.C.Q = sourcePQ1.Q
97: sourcePQ1.Q: (27/27): (1): sourcePQ1.Q = sourcePQ1.IMassFlow.signal
95: sourcePQ1.IMassFlow.signal: (26/26): (1): sourcePQ1.IMassFlow.signal = sourcePQ1.Q0
sourcePQ1.Q0 is a boundary condition ---> exit procedure
Procedure failed

>>>75: singularPressureLoss1.Q: (41/41): (1): singularPressureLoss1.Q = singularPressureLoss1.C1.Q
68: singularPressureLoss1.C1.Q: (18/18): (1): sourcePQ1.C.Q = singularPressureLoss1.C1.Q
90: sourcePQ1.C.Q: (24/24): (1): sourcePQ1.C.Q = sourcePQ1.Q
97: sourcePQ1.Q: (27/27): (1): sourcePQ1.Q = sourcePQ1.IMassFlow.signal
95: sourcePQ1.IMassFlow.signal: (26/26): (1): sourcePQ1.IMassFlow.signal = sourcePQ1.Q0
sourcePQ1.Q0 is a boundary condition ---> exit procedure
Procedure failed

Extraction procedure failed for iteration count: 1, re-running with modified model
==========================================================================

OrderedVariables (102)
========================================
1: singularPressureLoss2.pro_pT.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
2: singularPressureLoss2.pro_pT.duTp:VARIABLE(unit = "J/(kg.K)" )  "Derivative of the inner energy wrt. temperature at constant pressure" type: Real
3: singularPressureLoss2.pro_pT.dupT:VARIABLE(unit = "J.m.s2/kg" )  "Derivative of the inner energy wrt. pressure at constant temperature" type: Real
4: singularPressureLoss2.pro_pT.ddpT:VARIABLE(unit = "s2/m2" )  "Derivative of the density wrt. presure at constant temperature" type: Real
5: singularPressureLoss2.pro_pT.ddTp:VARIABLE(unit = "kg/(m3.K)" )  "Derivative of the density wrt. temperature at constant pressure" type: Real
6: singularPressureLoss2.pro_pT.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
7: singularPressureLoss2.pro_pT.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
8: singularPressureLoss2.pro_pT.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
9: singularPressureLoss2.pro_pT.h:VARIABLE(min = -1e6 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific enthalpy" type: Real
10: singularPressureLoss2.pro_pT.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
11: singularPressureLoss2.pro_ph.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
12: singularPressureLoss2.pro_ph.duhp:VARIABLE(unit = "1" )  "Derivative of specific inner energy wrt. specific enthalpy at constant pressure" type: Real
13: singularPressureLoss2.pro_ph.duph:VARIABLE(unit = "m3/kg" )  "Derivative of specific inner energy wrt. pressure at constant specific enthalpy" type: Real
14: singularPressureLoss2.pro_ph.ddph:VARIABLE(unit = "s2/m2" )  "Derivative of density wrt. pressure at constant specific enthalpy" type: Real
15: singularPressureLoss2.pro_ph.ddhp:VARIABLE(unit = "kg.s2/m5" )  "Derivative of density wrt. specific enthalpy at constant pressure" type: Real
16: singularPressureLoss2.pro_ph.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
17: singularPressureLoss2.pro_ph.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
18: singularPressureLoss2.pro_ph.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
19: singularPressureLoss2.pro_ph.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
20: singularPressureLoss2.pro_ph.T:VARIABLE(min = 200.0 max = 6000.0 start = 288.15 unit = "K" nominal = 320.0 )  "Temperature" type: Real
21: singularPressureLoss2.C2.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
22: singularPressureLoss2.C2.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
23: singularPressureLoss2.C2.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
24: singularPressureLoss2.C2.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
25: singularPressureLoss2.C2.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
26: singularPressureLoss2.C2.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
27: singularPressureLoss2.C1.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
28: singularPressureLoss2.C1.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
29: singularPressureLoss2.C1.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
30: singularPressureLoss2.C1.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
31: singularPressureLoss2.C1.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
32: singularPressureLoss2.C1.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
33: singularPressureLoss2.h:VARIABLE(start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy" type: Real
34: singularPressureLoss2.Pm:VARIABLE(min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Average fluid pressure" type: Real
35: singularPressureLoss2.T:VARIABLE(min = 0.0 start = 290.0 unit = "K" nominal = 300.0 )  "Fluid temperature" type: Real
36: singularPressureLoss2.rho:VARIABLE(min = 0.0 start = 998.0 unit = "kg/m3" )  "Fluid density" type: Real
37: singularPressureLoss2.Q:VARIABLE(start = 100.0 unit = "kg/s" uncertain=Uncertainty.refine)  "Mass flow rate" type: Real
38: singularPressureLoss2.deltaP:VARIABLE(min = -1e9 max = 1e9 start = 1e5 unit = "Pa" nominal = 1e5 )  "Singular pressure loss" type: Real
39: singularPressureLoss1.pro_pT.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
40: singularPressureLoss1.pro_pT.duTp:VARIABLE(unit = "J/(kg.K)" )  "Derivative of the inner energy wrt. temperature at constant pressure" type: Real
41: singularPressureLoss1.pro_pT.dupT:VARIABLE(unit = "J.m.s2/kg" )  "Derivative of the inner energy wrt. pressure at constant temperature" type: Real
42: singularPressureLoss1.pro_pT.ddpT:VARIABLE(unit = "s2/m2" )  "Derivative of the density wrt. presure at constant temperature" type: Real
43: singularPressureLoss1.pro_pT.ddTp:VARIABLE(unit = "kg/(m3.K)" )  "Derivative of the density wrt. temperature at constant pressure" type: Real
44: singularPressureLoss1.pro_pT.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
45: singularPressureLoss1.pro_pT.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
46: singularPressureLoss1.pro_pT.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
47: singularPressureLoss1.pro_pT.h:VARIABLE(min = -1e6 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific enthalpy" type: Real
48: singularPressureLoss1.pro_pT.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
49: singularPressureLoss1.pro_ph.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
50: singularPressureLoss1.pro_ph.duhp:VARIABLE(unit = "1" )  "Derivative of specific inner energy wrt. specific enthalpy at constant pressure" type: Real
51: singularPressureLoss1.pro_ph.duph:VARIABLE(unit = "m3/kg" )  "Derivative of specific inner energy wrt. pressure at constant specific enthalpy" type: Real
52: singularPressureLoss1.pro_ph.ddph:VARIABLE(unit = "s2/m2" )  "Derivative of density wrt. pressure at constant specific enthalpy" type: Real
53: singularPressureLoss1.pro_ph.ddhp:VARIABLE(unit = "kg.s2/m5" )  "Derivative of density wrt. specific enthalpy at constant pressure" type: Real
54: singularPressureLoss1.pro_ph.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
55: singularPressureLoss1.pro_ph.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
56: singularPressureLoss1.pro_ph.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
57: singularPressureLoss1.pro_ph.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
58: singularPressureLoss1.pro_ph.T:VARIABLE(min = 200.0 max = 6000.0 start = 288.15 unit = "K" nominal = 320.0 )  "Temperature" type: Real
59: singularPressureLoss1.C2.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
60: singularPressureLoss1.C2.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
61: singularPressureLoss1.C2.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
62: singularPressureLoss1.C2.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
63: singularPressureLoss1.C2.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
64: singularPressureLoss1.C2.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
65: singularPressureLoss1.C1.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
66: singularPressureLoss1.C1.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
67: singularPressureLoss1.C1.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
68: singularPressureLoss1.C1.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
69: singularPressureLoss1.C1.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
70: singularPressureLoss1.C1.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
71: singularPressureLoss1.h:VARIABLE(start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy" type: Real
72: singularPressureLoss1.Pm:VARIABLE(min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Average fluid pressure" type: Real
73: singularPressureLoss1.T:VARIABLE(min = 0.0 start = 290.0 unit = "K" nominal = 300.0 )  "Fluid temperature" type: Real
74: singularPressureLoss1.rho:VARIABLE(mi
...[truncated 35497 chars]...
 "J/(kg.K)" )  "Derivative of the inner energy wrt. temperature at constant pressure" type: Real
 3: singularPressureLoss2.pro_pT.dupT:VARIABLE(unit = "J.m.s2/kg" )  "Derivative of the inner energy wrt. pressure at constant temperature" type: Real
 4: singularPressureLoss2.pro_pT.ddpT:VARIABLE(unit = "s2/m2" )  "Derivative of the density wrt. presure at constant temperature" type: Real
 5: singularPressureLoss2.pro_pT.ddTp:VARIABLE(unit = "kg/(m3.K)" )  "Derivative of the density wrt. temperature at constant pressure" type: Real
-6: singularPressureLoss2.pro_pT.cp:VARIABLE(min = 1e-09 max = 9.999999999999999e+59 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
-7: singularPressureLoss2.pro_pT.s:VARIABLE(min = -1000000.0 max = 1000000.0 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
-8: singularPressureLoss2.pro_pT.u:VARIABLE(min = -100000000.0 max = 100000000.0 unit = "J/kg" nominal = 1000000.0 )  "Specific inner energy" type: Real
-9: singularPressureLoss2.pro_pT.h:VARIABLE(min = -1000000.0 max = 100000000.0 unit = "J/kg" nominal = 1000000.0 )  "Specific enthalpy" type: Real
-10: singularPressureLoss2.pro_pT.d:VARIABLE(min = 1e-09 max = 100000.0 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
+6: singularPressureLoss2.pro_pT.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
+7: singularPressureLoss2.pro_pT.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
+8: singularPressureLoss2.pro_pT.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
+9: singularPressureLoss2.pro_pT.h:VARIABLE(min = -1e6 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific enthalpy" type: Real
+10: singularPressureLoss2.pro_pT.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
 11: singularPressureLoss2.pro_ph.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
 12: singularPressureLoss2.pro_ph.duhp:VARIABLE(unit = "1" )  "Derivative of specific inner energy wrt. specific enthalpy at constant pressure" type: Real
 13: singularPressureLoss2.pro_ph.duph:VARIABLE(unit = "m3/kg" )  "Derivative of specific inner energy wrt. pressure at constant specific enthalpy" type: Real
 14: singularPressureLoss2.pro_ph.ddph:VARIABLE(unit = "s2/m2" )  "Derivative of density wrt. pressure at constant specific enthalpy" type: Real
 15: singularPressureLoss2.pro_ph.ddhp:VARIABLE(unit = "kg.s2/m5" )  "Derivative of density wrt. specific enthalpy at constant pressure" type: Real
-16: singularPressureLoss2.pro_ph.cp:VARIABLE(min = 1e-09 max = 9.999999999999999e+59 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
-17: singularPressureLoss2.pro_ph.s:VARIABLE(min = -1000000.0 max = 1000000.0 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
-18: singularPressureLoss2.pro_ph.u:VARIABLE(min = -100000000.0 max = 100000000.0 unit = "J/kg" nominal = 1000000.0 )  "Specific inner energy" type: Real
-19: singularPressureLoss2.pro_ph.d:VARIABLE(min = 1e-09 max = 100000.0 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
+16: singularPressureLoss2.pro_ph.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
+17: singularPressureLoss2.pro_ph.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
+18: singularPressureLoss2.pro_ph.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
+19: singularPressureLoss2.pro_ph.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
 20: singularPressureLoss2.pro_ph.T:VARIABLE(min = 200.0 max = 6000.0 start = 288.15 unit = "K" nominal = 320.0 )  "Temperature" type: Real
 21: singularPressureLoss2.C2.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
 22: singularPressureLoss2.C2.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
-23: singularPressureLoss2.C2.h:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
+23: singularPressureLoss2.C2.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
 24: singularPressureLoss2.C2.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
-25: singularPressureLoss2.C2.h_vol:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
-26: singularPressureLoss2.C2.P:VARIABLE(flow=false min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure in the control volume" type: Real
+25: singularPressureLoss2.C2.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
+26: singularPressureLoss2.C2.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
 27: singularPressureLoss2.C1.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
 28: singularPressureLoss2.C1.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
-29: singularPressureLoss2.C1.h:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
+29: singularPressureLoss2.C1.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
 30: singularPressureLoss2.C1.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
-31: singularPressureLoss2.C1.h_vol:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
-32: singularPressureLoss2.C1.P:VARIABLE(flow=false min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure in the control volume" type: Real
-33: singularPressureLoss2.h:VARIABLE(start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy" type: Real
-34: singularPressureLoss2.Pm:VARIABLE(min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Average fluid pressure" type: Real
+31: singularPressureLoss2.C1.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
+32: singularPressureLoss2.C1.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
+33: singularPressureLoss2.h:VARIABLE(start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy" type: Real
+34: singularPressureLoss2.Pm:VARIABLE(min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Average fluid pressure" type: Real
 35: singularPressureLoss2.T:VARIABLE(min = 0.0 start = 290.0 unit = "K" nominal = 300.0 )  "Fluid temperature" type: Real
 36: singularPressureLoss2.rho:VARIABLE(min = 0.0 start = 998.0 unit = "kg/m3" )  "Fluid density" type: Real
 37: singularPressureLoss2.Q:VARIABLE(start = 100.0 unit = "kg/s" uncertain=Uncertainty.refine)  "Mass flow rate" type: Real
-38: singularPressureLoss2.deltaP:VARIABLE(min = -1000000000.0 max = 1000000000.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Singular pressure loss" type: Real
+38: singularPressureLoss2.deltaP:VARIABLE(min = -1e9 max = 1e9 start = 1e5 unit = "Pa" nominal = 1e5 )  "Singular pressure loss" type: Real
 39: singularPressureLoss1.pro_pT.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
 40: singularPressureLoss1.pro_pT.duTp:VARIABLE(unit = "J/(kg.K)" )  "Derivative of the inner energy wrt. temperature at constant pressure" type: Real
 41: singularPressureLoss1.pro_pT.dupT:VARIABLE(unit = "J.m.s2/kg" )  "Derivative of the inner energy wrt. pressure at constant temperature" type: Real
 42: singularPressureLoss1.pro_pT.ddpT:VARIABLE(unit = "s2/m2" )  "Derivative of the density wrt. presure at constant temperature" type: Real
 43: singularPressureLoss1.pro_pT.ddTp:VARIABLE(unit = "kg/(m3.K)" )  "Derivative of the density wrt. temperature at constant pressure" type: Real
-44: singularPressureLoss1.pro_pT.cp:VARIABLE(min = 1e-09 max = 9.999999999999999e+59 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
-45: singularPressureLoss1.pro_pT.s:VARIABLE(min = -1000000.0 max = 1000000.0 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
-46: singularPressureLoss1.pro_pT.u:VARIABLE(min = -100000000.0 max = 100000000.0 unit = "J/kg" nominal = 1000000.0 )  "Specific inner energy" type: Real
-47: singularPressureLoss1.pro_pT.h:VARIABLE(min = -1000000.0 max = 100000000.0 unit = "J/kg" nominal = 1000000.0 )  "Specific enthalpy" type: Real
-48: singularPressureLoss1.pro_pT.d:VARIABLE(min = 1e-09 max = 100000.0 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
+44: singularPressureLoss1.pro_pT.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
+45: singularPressureLoss1.pro_pT.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
+46: singularPressureLoss1.pro_pT.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
+47: singularPressureLoss1.pro_pT.h:VARIABLE(min = -1e6 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific enthalpy" type: Real
+48: singularPressureLoss1.pro_pT.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
 49: singularPressureLoss1.pro_ph.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
 50: singularPressureLoss1.pro_ph.duhp:VARIABLE(unit = "1" )  "Derivative of specific inner energy wrt. specific enthalpy at constant pressure" type: Real
 51: singularPressureLoss1.pro_ph.duph:VARIABLE(unit = "m3/kg" )  "Derivative of specific inner energy wrt. pressure at constant specific enthalpy" type: Real
 52: singularPressureLoss1.pro_ph.ddph:VARIABLE(unit = "s2/m2" )  "Derivative of density wrt. pressure at constant specific enthalpy" type: Real
 53: singularPressureLoss1.pro_ph.ddhp:VARIABLE(unit = "kg.s2/m5" )  "Derivative of density wrt. specific enthalpy at constant pressure" type: Real
-54: singularPressureLoss1.pro_ph.cp:VARIABLE(min = 1e-09 max = 9.999999999999999e+59 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
-55: singularPressureLoss1.pro_ph.s:VARIABLE(min = -1000000.0 max = 1000000.0 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
-56: singularPressureLoss1.pro_ph.u:VARIABLE(min = -100000000.0 max = 100000000.0 unit = "J/kg" nominal = 1000000.0 )  "Specific inner energy" type: Real
-57: singularPressureLoss1.pro_ph.d:VARIABLE(min = 1e-09 max = 100000.0 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
+54: singularPressureLoss1.pro_ph.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
+55: singularPressureLoss1.pro_ph.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
+56: singularPressureLoss1.pro_ph.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
+57: singularPressureLoss1.pro_ph.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
 58: singularPressureLoss1.pro_ph.T:VARIABLE(min = 200.0 max = 6000.0 start = 288.15 unit = "K" nominal = 320.0 )  "Temperature" type: Real
 59: singularPressureLoss1.C2.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
 60: singularPressureLoss1.C2.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
-61: singularPressureLoss1.C2.h:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
+61: singularPressureLoss1.C2.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
 62: singularPressureLoss1.C2.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
-63: singularPressureLoss1.C2.h_vol:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
-64: singularPressureLoss1.C2.P:VARIABLE(flow=false min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure in the control volume" type: Real
+63: singularPressureLoss1.C2.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
+64: singularPressureLoss1.C2.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
 65: singularPressureLoss1.C1.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
 66: singularPressureLoss1.C1.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
-67: singularPressureLoss1.C1.h:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
+67: singularPressureLoss1.C1.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
 68: singularPressureLoss1.C1.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
-69: singularPressureLoss1.C1.h_vol:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
-70: singularPressureLoss1.C1.P:VARIABLE(flow=false min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure in the control volume" type: Real
-71: singularPressureLoss1.h:VARIABLE(start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy" type: Real
-72: singularPressureLoss1.Pm:VARIABLE(min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Average fluid pressure" type: Real
+69: singularPressureLoss1.C1.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
+70: singularPressureLoss1.C1.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
+71: singularPressureLoss1.h:VARIABLE(start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy" type: Real
+72: singularPressureLoss1.Pm:VARIABLE(min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Average fluid pressure" type: Real
 73: singularPressureLoss1.T:VARIABLE(min = 0.0 start = 290.0 unit = "K" nominal = 300.0 )  "Fluid temperature" type: Real
 74: singularPressureLoss1.rho:VARIABLE(min = 0.0 start = 998.0 unit = "kg/m3" )  "Fluid density" type: Real
 75: singularPressureLoss1.Q:VARIABLE(start = 100.0 unit = "kg/s" uncertain=Uncertainty.refine)  "Mass flow rate" type: Real
-76: singularPressureLoss1.deltaP:VARIABLE(min = -1000000000.0 max = 1000000000.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Singular pressure loss" type: Real
+76: singularPressureLoss1.deltaP:VARIABLE(min = -1e9 max = 1e9 start = 1e5 unit = "Pa" nominal = 1e5 )  "Singular pressure loss" type: Real
 77: sink1.C.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
 78: sink1.C.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
-79: sink1.C.h:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
+79: sink1.C.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
 80: sink1.C.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
-81: sink1.C.h_vol:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
-82: sink1.C.P:VARIABLE(flow=false min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure in the control volume" type: Real
+81: sink1.C.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
+82: sink1.C.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
 83: sink1.ISpecificEnthalpy.signal:VARIABLE(flow=false )  type: Real
 84: sink1.h:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy" type: Real
 85: sink1.Q:VARIABLE(unit = "kg/s" )  "Mass flow rate" type: Real
-86: sink1.P:VARIABLE(min = 0.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure" type: Real
+86: sink1.P:VARIABLE(min = 0.0 unit = "Pa" nominal = 1e5 )  "Fluid pressure" type: Real
 87: sourcePQ1.C.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
 88: sourcePQ1.C.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
-89: sourcePQ1.C.h:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
+89: sourcePQ1.C.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
 90: sourcePQ1.C.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
-91: sourcePQ1.C.h_vol:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
-92: sourcePQ1.C.P:VARIABLE(flow=false min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure in the control volume" type: Real
+91: sourcePQ1.C.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
+92: sourcePQ1.C.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
 93: sourcePQ1.ISpecificEnthalpy.signal:VARIABLE(flow=false )  type: Real
 94: sourcePQ1.IPressure.signal:VARIABLE(flow=false )  type: Real
 95: sourcePQ1.IMassFlow.signal:VARIABLE(flow=false )  type: Real
 96: sourcePQ1.h:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy" type: Real
 97: sourcePQ1.Q:VARIABLE(unit = "kg/s" )  "Mass flow rate" type: Real
-98: sourcePQ1.P:VARIABLE(min = 0.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure" type: Real
-99: sourcePQ1.P0:VARIABLE(min = 0.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure (active if IPressure connector is not connected)" type: Real
+98: sourcePQ1.P:VARIABLE(min = 0.0 unit = "Pa" nominal = 1e5 )  "Fluid pressure" type: Real
+99: sourcePQ1.P0:VARIABLE(min = 0.0 unit = "Pa" nominal = 1e5 )  "Fluid pressure (active if IPressure connector is not connected)" type: Real
 100: sourcePQ1.Q0:VARIABLE(unit = "kg/s" )  "Mass flow (active if IMassFlow connector is not connected)" type: Real
 101: sourcePQ1.h0:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy (active if IEnthalpy connector is not connected)" type: Real
 102: sink1.h0:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy (active if IEnthalpy connector is not connected)" type: Real
 
 
 OrderedEquation (84, 102)
 ========================================
-1/1 (1): sourcePQ1.P0 = 300000.0   [binding |0|0|0|0|]
+1/1 (1): sourcePQ1.P0 = 3e5   [binding |0|0|0|0|]
 2/2 (1): sourcePQ1.Q0 = 100.0   [binding |0|0|0|0|]
-3/3 (1): sourcePQ1.h0 = 100000.0   [binding |0|0|0|0|]
-4/4 (1): sink1.h0 = 100000.0   [binding |0|0|0|0|]
+3/3 (1): sourcePQ1.h0 = 1e5   [binding |0|0|0|0|]
+4/4 (1): sink1.h0 = 1e5   [binding |0|0|0|0|]
 5/5 (1): singularPressureLoss2.C2.P = sink1.C.P   [dynamic |0|0|0|0|]
 6/6 (1): singularPressureLoss2.C2.Q = sink1.C.Q   [dynamic |0|0|0|0|]
 7/7 (1): singularPressureLoss2.C2.a = sink1.C.a   [dynamic |0|0|0|0|]
 8/8 (1): singularPressureLoss2.C2.b = sink1.C.b   [dynamic |0|0|0|0|]
 9/9 (1): singularPressureLoss2.C2.h = sink1.C.h   [dynamic |0|0|0|0|]
@@ -311,14 +311,14 @@
 var 102 is solved in eqn 4
 
 Standard BLT of the original model:(102)
 ============================================================
 
-102: sink1.h0: (4/4): (1): sink1.h0 = 100000.0
-101: sourcePQ1.h0: (3/3): (1): sourcePQ1.h0 = 100000.0
+102: sink1.h0: (4/4): (1): sink1.h0 = 1e5
+101: sourcePQ1.h0: (3/3): (1): sourcePQ1.h0 = 1e5
 100: sourcePQ1.Q0: (2/2): (1): sourcePQ1.Q0 = 100.0
-99: sourcePQ1.P0: (1/1): (1): sourcePQ1.P0 = 300000.0
+99: sourcePQ1.P0: (1/1): (1): sourcePQ1.P0 = 3e5
 98: sourcePQ1.P: (29/29): (1): sourcePQ1.P = sourcePQ1.IPressure.signal
 97: sourcePQ1.Q: (27/27): (1): sourcePQ1.Q = sourcePQ1.IMassFlow.signal
 96: sourcePQ1.h: (31/31): (1): sourcePQ1.h = sourcePQ1.ISpecificEnthalpy.signal
 95: sourcePQ1.IMassFlow.signal: (26/26): (1): sourcePQ1.IMassFlow.signal = sourcePQ1.Q0
 94: sourcePQ1.IPressure.signal: (28/28): (1): sourcePQ1.IPressure.signal = sourcePQ1.P0
@@ -423,11 +423,11 @@
 2: singularPressureLoss1.Q:VARIABLE(start = 100.0 unit = "kg/s" uncertain=Uncertainty.refine)  "Mass flow rate" type: Real
 
 
 Boundary conditions (4)
 ========================================
-1: sourcePQ1.P0:VARIABLE(min = 0.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure (active if IPressure connector is not connected)" type: Real
+1: sourcePQ1.P0:VARIABLE(min = 0.0 unit = "Pa" nominal = 1e5 )  "Fluid pressure (active if IPressure connector is not connected)" type: Real
 2: sourcePQ1.Q0:VARIABLE(unit = "kg/s" )  "Mass flow (active if IMassFlow connector is not connected)" type: Real
 3: sourcePQ1.h0:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy (active if IEnthalpy connector is not connected)" type: Real
 4: sink1.h0:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy (active if IEnthalpy connector is not connected)" type: Real
 
 
@@ -438,14 +438,14 @@
 28: singularPressureLoss2.C1.a: (83/101): (1): singularPressureLoss2.C1.a = true
 59: singularPressureLoss1.C2.b: (82/100): (1): singularPressureLoss1.C2.b = true
 66: singularPressureLoss1.C1.a: (81/99): (1): singularPressureLoss1.C1.a = true
 78: sink1.C.a: (80/98): (1): sink1.C.a = true
 87: sourcePQ1.C.b: (79/97): (1): sourcePQ1.C.b = true
-102: sink1.h0: (4/4): (1): sink1.h0 = 100000.0
-101: sourcePQ1.h0: (3/3): (1): sourcePQ1.h0 = 100000.0
+102: sink1.h0: (4/4): (1): sink1.h0 = 1e5
+101: sourcePQ1.h0: (3/3): (1): sourcePQ1.h0 = 1e5
 100: sourcePQ1.Q0: (2/2): (1): sourcePQ1.Q0 = 100.0
-99: sourcePQ1.P0: (1/1): (1): sourcePQ1.P0 = 300000.0
+99: sourcePQ1.P0: (1/1): (1): sourcePQ1.P0 = 3e5
 
 
 E-BLT: equations that compute the variables of interest:(2)
 ============================================================
 
@@ -482,116 +482,116 @@
 1: singularPressureLoss2.pro_pT.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
 2: singularPressureLoss2.pro_pT.duTp:VARIABLE(unit = "J/(kg.K)" )  "Derivative of the inner energy wrt. temperature at constant pressure" type: Real
 3: singularPressureLoss2.pro_pT.dupT:VARIABLE(unit = "J.m.s2/kg" )  "Derivative of the inner energy wrt. pressure at constant temperature" type: Real
 4: singularPressureLoss2.pro_pT.ddpT:VARIABLE(unit = "s2/m2" )  "Derivative of the density wrt. presure at constant temperature" type: Real
 5: singularPressureLoss2.pro_pT.ddTp:VARIABLE(unit = "kg/(m3.K)" )  "Derivative of the density wrt. temperature at constant pressure" type: Real
-6: singularPressureLoss2.pro_pT.cp:VARIABLE(min = 1e-09 max = 9.999999999999999e+59 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
-7: singularPressureLoss2.pro_pT.s:VARIABLE(min = -1000000.0 max = 1000000.0 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
-8: singularPressureLoss2.pro_pT.u:VARIABLE(min = -100000000.0 max = 100000000.0 unit = "J/kg" nominal = 1000000.0 )  "Specific inner energy" type: Real
-9: singularPressureLoss2.pro_pT.h:VARIABLE(min = -1000000.0 max = 100000000.0 unit = "J/kg" nominal = 1000000.0 )  "Specific enthalpy" type: Real
-10: singularPressureLoss2.pro_pT.d:VARIABLE(min = 1e-09 max = 100000.0 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
+6: singularPressureLoss2.pro_pT.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
+7: singularPressureLoss2.pro_pT.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
+8: singularPressureLoss2.pro_pT.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
+9: singularPressureLoss2.pro_pT.h:VARIABLE(min = -1e6 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific enthalpy" type: Real
+10: singularPressureLoss2.pro_pT.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
 11: singularPressureLoss2.pro_ph.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
 12: singularPressureLoss2.pro_ph.duhp:VARIABLE(unit = "1" )  "Derivative of specific inner energy wrt. specific enthalpy at constant pressure" type: Real
 13: singularPressureLoss2.pro_ph.duph:VARIABLE(unit = "m3/kg" )  "Derivative of specific inner energy wrt. pressure at constant specific enthalpy" type: Real
 14: singularPressureLoss2.pro_ph.ddph:VARIABLE(unit = "s2/m2" )  "Derivative of density wrt. pressure at constant specific enthalpy" type: Real
 15: singularPressureLoss2.pro_ph.ddhp:VARIABLE(unit = "kg.s2/m5" )  "Derivative of density wrt. specific enthalpy at constant pressure" type: Real
-16: singularPressureLoss2.pro_ph.cp:VARIABLE(min = 1e-09 max = 9.999999999999999e+59 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
-17: singularPressureLoss2.pro_ph.s:VARIABLE(min = -1000000.0 max = 1000000.0 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
-18: singularPressureLoss2.pro_ph.u:VARIABLE(min = -100000000.0 max = 100000000.0 unit = "J/kg" nominal = 1000000.0 )  "Specific inner energy" type: Real
-19: singularPressureLoss2.pro_ph.d:VARIABLE(min = 1e-09 max = 100000.0 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
+16: singularPressureLoss2.pro_ph.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
+17: singularPressureLoss2.pro_ph.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
+18: singularPressureLoss2.pro_ph.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
+19: singularPressureLoss2.pro_ph.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
 20: singularPressureLoss2.pro_ph.T:VARIABLE(min = 200.0 max = 6000.0 start = 288.15 unit = "K" nominal = 320.0 )  "Temperature" type: Real
 21: singularPressureLoss2.C2.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
 22: singularPressureLoss2.C2.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
-23: singularPressureLoss2.C2.h:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
+23: singularPressureLoss2.C2.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
 24: singularPressureLoss2.C2.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
-25: singularPressureLoss2.C2.h_vol:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
-26: singularPressureLoss2.C2.P:VARIABLE(flow=false min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure in the control volume" type: Real
+25: singularPressureLoss2.C2.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
+26: singularPressureLoss2.C2.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
 27: singularPressureLoss2.C1.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
 28: singularPressureLoss2.C1.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
-29: singularPressureLoss2.C1.h:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
+29: singularPressureLoss2.C1.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
 30: singularPressureLoss2.C1.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
-31: singularPressureLoss2.C1.h_vol:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
-32: singularPressureLoss2.C1.P:VARIABLE(flow=false min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure in the control volume" type: Real
-33: singularPressureLoss2.h:VARIABLE(start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy" type: Real
-34: singularPressureLoss2.Pm:VARIABLE(min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Average fluid pressure" type: Real
+31: singularPressureLoss2.C1.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
+32: singularPressureLoss2.C1.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
+33: singularPressureLoss2.h:VARIABLE(start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy" type: Real
+34: singularPressureLoss2.Pm:VARIABLE(min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Average fluid pressure" type: Real
 35: singularPressureLoss2.T:VARIABLE(min = 0.0 start = 290.0 unit = "K" nominal = 300.0 )  "Fluid temperature" type: Real
 36: singularPressureLoss2.rho:VARIABLE(min = 0.0 start = 998.0 unit = "kg/m3" )  "Fluid density" type: Real
 37: singularPressureLoss2.Q:VARIABLE(start = 100.0 unit = "kg/s" uncertain=Uncertainty.refine)  "Mass flow rate" type: Real
-38: singularPressureLoss2.deltaP:VARIABLE(min = -1000000000.0 max = 1000000000.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Singular pressure loss" type: Real
+38: singularPressureLoss2.deltaP:VARIABLE(min = -1e9 max = 1e9 start = 1e5 unit = "Pa" nominal = 1e5 )  "Singular pressure loss" type: Real
 39: singularPressureLoss1.pro_pT.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
 40: singularPressureLoss1.pro_pT.duTp:VARIABLE(unit = "J/(kg.K)" )  "Derivative of the inner energy wrt. temperature at constant pressure" type: Real
 41: singularPressureLoss1.pro_pT.dupT:VARIABLE(unit = "J.m.s2/kg" )  "Derivative of the inner energy wrt. pressure at constant temperature" type: Real
 42: singularPressureLoss1.pro_pT.ddpT:VARIABLE(unit = "s2/m2" )  "Derivative of the density wrt. presure at constant temperature" type: Real
 43: singularPressureLoss1.pro_pT.ddTp:VARIABLE(unit = "kg/(m3.K)" )  "Derivative of the density wrt. temperature at constant pressure" type: Real
-44: singularPressureLoss1.pro_pT.cp:VARIABLE(min = 1e-09 max = 9.999999999999999e+59 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
-45: singularPressureLoss1.pro_pT.s:VARIABLE(min = -1000000.0 max = 1000000.0 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
-46: singularPressureLoss1.pro_pT.u:VARIABLE(min = -100000000.0 max = 100000000.0 unit = "J/kg" nominal = 1000000.0 )  "Specific inner energy" type: Real
-47: singularPressureLoss1.pro_pT.h:VARIABLE(min = -1000000.0 max = 100000000.0 unit = "J/kg" nominal = 1000000.0 )  "Specific enthalpy" type: Real
-48: singularPressureLoss1.pro_pT.d:VARIABLE(min = 1e-09 max = 100000.0 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
+44: singularPressureLoss1.pro_pT.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
+45: singularPressureLoss1.pro_pT.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
+46: singularPressureLoss1.pro_pT.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
+47: singularPressureLoss1.pro_pT.h:VARIABLE(min = -1e6 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific enthalpy" type: Real
+48: singularPressureLoss1.pro_pT.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
 49: singularPressureLoss1.pro_ph.x:VARIABLE(unit = "1" )  "Vapor mass fraction" type: Real
 50: singularPressureLoss1.pro_ph.duhp:VARIABLE(unit = "1" )  "Derivative of specific inner energy wrt. specific enthalpy at constant pressure" type: Real
 51: singularPressureLoss1.pro_ph.duph:VARIABLE(unit = "m3/kg" )  "Derivative of specific inner energy wrt. pressure at constant specific enthalpy" type: Real
 52: singularPressureLoss1.pro_ph.ddph:VARIABLE(unit = "s2/m2" )  "Derivative of density wrt. pressure at constant specific enthalpy" type: Real
 53: singularPressureLoss1.pro_ph.ddhp:VARIABLE(unit = "kg.s2/m5" )  "Derivative of density wrt. specific enthalpy at constant pressure" type: Real
-54: singularPressureLoss1.pro_ph.cp:VARIABLE(min = 1e-09 max = 9.999999999999999e+59 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
-55: singularPressureLoss1.pro_ph.s:VARIABLE(min = -1000000.0 max = 1000000.0 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
-56: singularPressureLoss1.pro_ph.u:VARIABLE(min = -100000000.0 max = 100000000.0 unit = "J/kg" nominal = 1000000.0 )  "Specific inner energy" type: Real
-57: singularPressureLoss1.pro_ph.d:VARIABLE(min = 1e-09 max = 100000.0 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
+54: singularPressureLoss1.pro_ph.cp:VARIABLE(min = 1e-9 max = 1e60 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific heat capacity at constant presure" type: Real
+55: singularPressureLoss1.pro_ph.s:VARIABLE(min = -1e6 max = 1e6 unit = "J/(kg.K)" nominal = 1000.0 )  "Specific entropy" type: Real
+56: singularPressureLoss1.pro_ph.u:VARIABLE(min = -1e8 max = 1e8 unit = "J/kg" nominal = 1e6 )  "Specific inner energy" type: Real
+57: singularPressureLoss1.pro_ph.d:VARIABLE(min = 1e-9 max = 1e5 unit = "kg/m3" nominal = 998.0 )  "Density" type: Real
 58: singularPressureLoss1.pro_ph.T:VARIABLE(min = 200.0 max = 6000.0 start = 288.15 unit = "K" nominal = 320.0 )  "Temperature" type: Real
 59: singularPressureLoss1.C2.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
 60: singularPressureLoss1.C2.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
-61: singularPressureLoss1.C2.h:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
+61: singularPressureLoss1.C2.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
 62: singularPressureLoss1.C2.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
-63: singularPressureLoss1.C2.h_vol:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
-64: singularPressureLoss1.C2.P:VARIABLE(flow=false min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure in the control volume" type: Real
+63: singularPressureLoss1.C2.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
+64: singularPressureLoss1.C2.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
 65: singularPressureLoss1.C1.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
 66: singularPressureLoss1.C1.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
-67: singularPressureLoss1.C1.h:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
+67: singularPressureLoss1.C1.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
 68: singularPressureLoss1.C1.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
-69: singularPressureLoss1.C1.h_vol:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
-70: singularPressureLoss1.C1.P:VARIABLE(flow=false min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure in the control volume" type: Real
-71: singularPressureLoss1.h:VARIABLE(start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy" type: Real
-72: singularPressureLoss1.Pm:VARIABLE(min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Average fluid pressure" type: Real
+69: singularPressureLoss1.C1.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
+70: singularPressureLoss1.C1.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
+71: singularPressureLoss1.h:VARIABLE(start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy" type: Real
+72: singularPressureLoss1.Pm:VARIABLE(min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Average fluid pressure" type: Real
 73: singularPressureLoss1.T:VARIABLE(min = 0.0 start = 290.0 unit = "K" nominal = 300.0 )  "Fluid temperature" type: Real
 74: singularPressureLoss1.rho:VARIABLE(min = 0.0 start = 998.0 unit = "kg/m3" )  "Fluid density" type: Real
 75: singularPressureLoss1.Q:VARIABLE(start = 100.0 unit = "kg/s" uncertain=Uncertainty.refine)  "Mass flow rate" type: Real
-76: singularPressureLoss1.deltaP:VARIABLE(min = -1000000000.0 max = 1000000000.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Singular pressure loss" type: Real
+76: singularPressureLoss1.deltaP:VARIABLE(min = -1e9 max = 1e9 start = 1e5 unit = "Pa" nominal = 1e5 )  "Singular pressure loss" type: Real
 77: sink1.C.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
 78: sink1.C.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
-79: sink1.C.h:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
+79: sink1.C.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
 80: sink1.C.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
-81: sink1.C.h_vol:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
-82: sink1.C.P:VARIABLE(flow=false min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure in the control volume" type: Real
+81: sink1.C.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
+82: sink1.C.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
 83: sink1.ISpecificEnthalpy.signal:VARIABLE(flow=false )  type: Real
 84: sink1.h:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy" type: Real
 85: sink1.Q:VARIABLE(unit = "kg/s" )  "Mass flow rate" type: Real
-86: sink1.P:VARIABLE(min = 0.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure" type: Real
+86: sink1.P:VARIABLE(min = 0.0 unit = "Pa" nominal = 1e5 )  "Fluid pressure" type: Real
 87: sourcePQ1.C.b:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
 88: sourcePQ1.C.a:DISCRETE(flow=false )  "Pseudo-variable for the verification of the connection orientation" type: Boolean
-89: sourcePQ1.C.h:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
+89: sourcePQ1.C.h:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Specific enthalpy of the fluid crossing the boundary of the control volume" type: Real
 90: sourcePQ1.C.Q:VARIABLE(flow=false start = 500.0 unit = "kg/s" )  "Mass flow rate of the fluid crossing the boundary of the control volume" type: Real
-91: sourcePQ1.C.h_vol:VARIABLE(flow=false start = 100000.0 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
-92: sourcePQ1.C.P:VARIABLE(flow=false min = 0.0 start = 100000.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure in the control volume" type: Real
+91: sourcePQ1.C.h_vol:VARIABLE(flow=false start = 1e5 unit = "J/kg" )  "Fluid specific enthalpy in the control volume" type: Real
+92: sourcePQ1.C.P:VARIABLE(flow=false min = 0.0 start = 1e5 unit = "Pa" nominal = 1e5 )  "Fluid pressure in the control volume" type: Real
 93: sourcePQ1.ISpecificEnthalpy.signal:VARIABLE(flow=false )  type: Real
 94: sourcePQ1.IPressure.signal:VARIABLE(flow=false )  type: Real
 95: sourcePQ1.IMassFlow.signal:VARIABLE(flow=false )  type: Real
 96: sourcePQ1.h:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy" type: Real
 97: sourcePQ1.Q:VARIABLE(unit = "kg/s" )  "Mass flow rate" type: Real
-98: sourcePQ1.P:VARIABLE(min = 0.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure" type: Real
-99: sourcePQ1.P0:VARIABLE(min = 0.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure (active if IPressure connector is not connected)" type: Real
+98: sourcePQ1.P:VARIABLE(min = 0.0 unit = "Pa" nominal = 1e5 )  "Fluid pressure" type: Real
+99: sourcePQ1.P0:VARIABLE(min = 0.0 unit = "Pa" nominal = 1e5 )  "Fluid pressure (active if IPressure connector is not connected)" type: Real
 100: sourcePQ1.Q0:VARIABLE(unit = "kg/s" )  "Mass flow (active if IMassFlow connector is not connected)" type: Real
 101: sourcePQ1.h0:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy (active if IEnthalpy connector is not connected)" type: Real
 102: sink1.h0:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy (active if IEnthalpy connector is not connected)" type: Real
 
 
 OrderedEquation (84, 102)
 ========================================
 1/1 (1): singularPressureLoss2.Q = 0.0   [binding |0|0|0|0|]
-2/2 (1): sourcePQ1.P0 = 300000.0   [binding |0|0|0|0|]
+2/2 (1): sourcePQ1.P0 = 3e5   [binding |0|0|0|0|]
 3/3 (1): sourcePQ1.Q0 = 100.0   [binding |0|0|0|0|]
-4/4 (1): sourcePQ1.h0 = 100000.0   [binding |0|0|0|0|]
-5/5 (1): sink1.h0 = 100000.0   [binding |0|0|0|0|]
+4/4 (1): sourcePQ1.h0 = 1e5   [binding |0|0|0|0|]
+5/5 (1): sink1.h0 = 1e5   [binding |0|0|0|0|]
 6/6 (1): singularPressureLoss2.C2.P = sink1.C.P   [dynamic |0|0|0|0|]
 7/7 (1): singularPressureLoss2.C2.Q = sink1.C.Q   [dynamic |0|0|0|0|]
 8/8 (1): singularPressureLoss2.C2.a = sink1.C.a   [dynamic |0|0|0|0|]
 9/9 (1): singularPressureLoss2.C2.b = sink1.C.b   [dynamic |0|0|0|0|]
 10/10 (1): singularPressureLoss2.C2.h = sink1.C.h   [dynamic |0|0|0|0|]
@@ -777,14 +777,14 @@
 var 102 is solved in eqn 5
 
 Standard BLT of the original model:(102)
 ============================================================
 
-102: sink1.h0: (5/5): (1): sink1.h0 = 100000.0
-101: sourcePQ1.h0: (4/4): (1): sourcePQ1.h0 = 100000.0
+102: sink1.h0: (5/5): (1): sink1.h0 = 1e5
+101: sourcePQ1.h0: (4/4): (1): sourcePQ1.h0 = 1e5
 100: sourcePQ1.Q0: (3/3): (1): sourcePQ1.Q0 = 100.0
-99: sourcePQ1.P0: (2/2): (1): sourcePQ1.P0 = 300000.0
+99: sourcePQ1.P0: (2/2): (1): sourcePQ1.P0 = 3e5
 98: sourcePQ1.P: (29/29): (1): sourcePQ1.P = sourcePQ1.IPressure.signal
 97: sourcePQ1.Q: (25/25): (1): sourcePQ1.C.Q = sourcePQ1.Q
 96: sourcePQ1.h: (31/31): (1): sourcePQ1.h = sourcePQ1.ISpecificEnthalpy.signal
 95: sourcePQ1.IMassFlow.signal: (27/27): (1): sourcePQ1.Q = sourcePQ1.IMassFlow.signal
 94: sourcePQ1.IPressure.signal: (28/28): (1): sourcePQ1.IPressure.signal = sourcePQ1.P0
@@ -889,11 +889,11 @@
 2: singularPressureLoss1.Q:VARIABLE(start = 100.0 unit = "kg/s" uncertain=Uncertainty.refine)  "Mass flow rate" type: Real
 
 
 Boundary conditions (4)
 ========================================
-1: sourcePQ1.P0:VARIABLE(min = 0.0 unit = "Pa" nominal = 100000.0 )  "Fluid pressure (active if IPressure connector is not connected)" type: Real
+1: sourcePQ1.P0:VARIABLE(min = 0.0 unit = "Pa" nominal = 1e5 )  "Fluid pressure (active if IPressure connector is not connected)" type: Real
 2: sourcePQ1.Q0:VARIABLE(unit = "kg/s" )  "Mass flow (active if IMassFlow connector is not connected)" type: Real
 3: sourcePQ1.h0:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy (active if IEnthalpy connector is not connected)" type: Real
 4: sink1.h0:VARIABLE(unit = "J/kg" )  "Fluid specific enthalpy (active if IEnthalpy connector is not connected)" type: Real
 
 
@@ -904,14 +904,14 @@
 28: singularPressureLoss2.C1.a: (83/101): (1): singularPressureLoss2.C1.a = true
 59: singularPressureLoss1.C2.b: (82/100): (1): singularPressureLoss1.C2.b = true
 66: singularPressureLoss1.C1.a: (81/99): (1): singularPressureLoss1.C1.a = true
 78: sink1.C.a: (80/98): (1): sink1.C.a = true
 87: sourcePQ1.C.b: (79/97): (1): sourcePQ1.C.b = true
-102: sink1.h0: (5/5): (1): sink1.h0 = 100000.0
-101: sourcePQ1.h0: (4/4): (1): sourcePQ1.h0 = 100000.0
+102: sink1.h0: (5/5): (1): sink1.h0 = 1e5
+101: sourcePQ1.h0: (4/4): (1): sourcePQ1.h0 = 1e5
 100: sourcePQ1.Q0: (3/3): (1): sourcePQ1.Q0 = 100.0
-99: sourcePQ1.P0: (2/2): (1): sourcePQ1.P0 = 300000.0
+99: sourcePQ1.P0: (2/2): (1): sourcePQ1.P0 = 3e5
 37: singularPressureLoss2.Q: (1/1): (1): singularPressureLoss2.Q = 0.0
 
 
 E-BLT: equations that compute the variables of interest:(1)
 ============================================================
@@ -1009,17 +1009,18 @@
 ==========================================================================
 -Passed
 Set_S has 3 equations and 3 variables
 
 record SimulationResult
-resultFile = "econcile",
-simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'NewDataReconciliationSimpleTests.TSP_Pipe', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = '-reconcile -sx=./NewDataReconciliationSimpleTests/resources/DataReconciliationSimpleTests.TSP_Pipe_Inputs.csv -eps=0.0023 -lv=LOG_JAC'",
-messages = "LOG_SUCCESS       | info    | The initialization finished successfully without homotopy method.
+resultFile = "",
+simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOfIntervals = 500, tolerance = 1e-6, method = 'dassl', fileNamePrefix = 'NewDataReconciliationSimpleTests.TSP_Pipe', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = '-reconcile -sx=./NewDataReconciliationSimpleTests/resources/DataReconciliationSimpleTests.TSP_Pipe_Inputs.csv -eps=0.0023 -lv=LOG_JAC'",
+messages = "Simulation execution failed for model: NewDataReconciliationSimpleTests.TSP_Pipe
+LOG_SUCCESS | info    | The initialization finished successfully without homotopy method.
 LOG_SUCCESS       | info    | The simulation finished successfully.
 LOG_STDOUT        | info    | DataReconciliation Starting!
 LOG_STDOUT        | info    | NewDataReconciliationSimpleTests.TSP_Pipe
-LOG_STDOUT        | info    | DataReconciliation Completed!
+LOG_STDOUT | error   | Measurement input file path not found ./NewDataReconciliationSimpleTests/resources/DataReconciliationSimpleTests.TSP_Pipe_Inputs.csv.
 "
 end SimulationResult;
 "[openmodelica/dataReconciliation/NewDataReconciliationSimpleTests/SourcePQ.mo:29:3-30:52:writable] Warning: Connector C is not balanced: The number of potential variables (4) is not equal to the number of flow variables (0).
 [openmodelica/dataReconciliation/NewDataReconciliationSimpleTests/Sink.mo:17:3-19:16:writable] Warning: Connector C is not balanced: The number of potential variables (4) is not equal to the number of flow variables (0).
 [openmodelica/dataReconciliation/NewDataReconciliationSimpleTests/SingularPressureLoss.mo:20:3-22:16:writable] Warning: Connector C1 is not balanced: The number of potential variables (4) is not equal to the number of flow variables (0).
'' 
Equation mismatch: omc-diff says: 
--------Failed 'e' '"'
Line 1014: Text differs:
expected: resultFile = "econcile",
got:      resultFile = "",

== 1 out of 1 tests failed [openmodelica/dataReconciliation/TSP_Pipe.mos_temp7795, time: 23]