

OpenModelica User's Guide

Generated on 2021-02-18 at 16:52

Version: v1.16.3-v1.16.3.2+g1d7205ea8f7 [https://github.com/OpenModelica/OpenModelica/commit/1d7205ea8f7eeef9f2306e99db949edb5b96939f] (diff [https://github.com/OpenModelica/OpenModelica/compare/v1.16.2...1d7205ea8f7eeef9f2306e99db949edb5b96939f], doc [https://github.com/OpenModelica/OpenModelica-doc/compare/v1.16.2...c544a60cd6037aaf8789e4236e69c1ea56d51672])

	Introduction
	System Overview

	Interactive Session with Examples

	Summary of Commands for the Interactive Session Handler

	Running the compiler from command line

	OMEdit – OpenModelica Connection Editor
	Starting OMEdit

	MainWindow & Browsers

	Perspectives

	File Menu

	Edit Menu

	View Menu

	Simulation Menu

	Debug Menu

	SSP Menu

	Sensitivity Optimization Menu

	Tools Menu

	Help Menu

	Modeling a Model

	Simulating a Model

	2D Plotting

	Re-simulating a Model

	3D Visualization

	Animation of Realtime FMUs

	Interactive Simulation

	How to Create User Defined Shapes – Icons

	Global head section in documentation

	Options

	__OpenModelica_commandLineOptions Annotation

	__OpenModelica_simulationFlags Annotation

	Debugger

	Editing Modelica Standard Library

	State Machines

	Using OMEdit as Text Editor

	Temporary Directory, Log Files and Working Directory

	2D Plotting
	Example

	Plot Command Interface

	Solving Modelica Models
	Integration Methods

	DAE Mode Simulation

	Initialization

	Debugging
	The Equation-based Debugger

	The Algorithmic Debugger

	Generating Graph Representations for Models

	FMI and TLM-Based Simulation and Co-simulation of External Models
	Functional Mock-up Interface - FMI

	Transmission Line Modeling (TLM) Based Co-Simulation

	Composite Model Editing of External Models

	OMSimulator
	Introduction

	OMSimulator

	OMSimulatorLib

	OMSimulatorLua

	OMSimulatorPython

	OpenModelicaScripting

	Graphical Modelling

	SSP Support

	System Identification
	Examples

	Python and C API

	OpenModelica Encryption
	Encrypting the Library

	Loading an Encrypted Library

	Notes

	OMNotebook with DrModelica and DrControl
	Interactive Notebooks with Literate Programming

	DrModelica Tutoring System – an Application of OMNotebook

	DrControl Tutorial for Teaching Control Theory

	OpenModelica Notebook Commands

	References

	Optimization with OpenModelica
	Builtin Dynamic Optimization with OpenModelica and IpOpt

	Compiling the Modelica code

	An Example

	Different Options for the Optimizer IPOPT

	Dynamic Optimization with OpenModelica and CasADi

	Parameter Sweep Optimization using OMOptim

	Parameter Sensitivities with OpenModelica
	Single Parameter sensitivities with IDA/Sundials

	Single and Multi-parameter sensitivities with OMSens

	PDEModelica1
	PDEModelica1 language elements

	Limitations

	Viewing results

	MDT – The OpenModelica Development Tooling Eclipse Plugin
	Introduction

	Installation

	Getting Started

	MDT Debugger for Algorithmic Modelica
	The Eclipse-based Debugger for Algorithmic Modelica

	Modelica Performance Analyzer
	Profiling information for ProfilingTest

	Genenerated JSON for the Example

	Using the Profiler from OMEdit

	Simulation in Web Browser

	Interoperability – C and Python
	Calling External C functions

	Calling external Python Code from a Modelica model

	Calling OpenModelica from Python Code

	OpenModelica Python Interface and PySimulator
	OMPython – OpenModelica Python Interface

	Enhanced OMPython Features

	PySimulator

	OMMatlab – OpenModelica Matlab Interface
	Features of OMMatlab

	Test Commands

	WorkDirectory

	BuildModel

	Standard get methods

	Usage of getMethods

	Standard set methods

	Usage of setMethods

	Advanced Simulation

	Linearization

	Usage of Linearization methods

	OMJulia – OpenModelica Julia Scripting
	Features of OMJulia

	Test Commands

	WorkDirectory

	BuildModel

	Standard get methods

	Usage of getMethods

	Standard set methods

	Usage of setMethods

	Advanced Simulation

	Linearization

	Usage of Linearization methods

	Sensitivity Analysis

	Usage

	Jupyter-OpenModelica

	Scripting API
	OpenModelica Scripting Commands

	Simulation Parameter Sweep

	Examples

	Package manager
	Installing packages

	How the package index works

	OpenModelica Compiler Flags
	Options

	Debug flags

	Flags for Optimization Modules

	Small Overview of Simulation Flags
	OpenModelica (C-runtime) Simulation Flags

	Technical Details
	The MATv4 Result File Format

	DataReconciliation
	Defining DataReconciliation Problem in OpenModelica

	DataReconcilation Support with Scripting Interface

	DataReconciliation Support in OMEdit

	DataReconcilation Results

	Frequently Asked Questions (FAQ)
	OpenModelica General

	OMNotebook

	OMDev - OpenModelica Development Environment

	Major OpenModelica Releases

	Contributors to OpenModelica

Indices and tables

	Index

	Search Page

Copyright

Open Source Modelica Consortium

Copyright © 1998-CurrentYear, Open Source Modelica Consortium
(OSMC), c/o Linköpings universitet, Department of Computer and
Information Science, SE-58183 Linköping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 LICENSE OR
THIS OSMC PUBLIC LICENSE (OSMC-PL). ANY USE, REPRODUCTION OR
DISTRIBUTION OF THIS PROGRAM CONSTITUTES RECIPIENT'S ACCEPTANCE OF THE
OSMC PUBLIC LICENSE OR THE GPL VERSION 3, ACCORDING TO RECIPIENTS
CHOICE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium)
Public License (OSMC-PL) are obtained from OSMC, either from the above
address, from the URLs: https://www.openmodelica.org or
http://www.ida.liu.se/projects/OpenModelica, and in the OpenModelica
distribution. GNU version 3 is obtained from:
http://www.gnu.org/copyleft/gpl.html.

This program is distributed WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE,
EXCEPT AS EXPRESSLY SET FORTH IN THE BY RECIPIENT SELECTED SUBSIDIARY
LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: https://www.openmodelica.org

Contact: OpenModelica@ida.liu.se

Modelica® is a registered trademark of the Modelica
Association, https://www.Modelica.org

Mathematica® is a registered trademark of Wolfram Research Inc,
http://www.wolfram.com

This users guide provides documentation and examples on how to use the
OpenModelica system, both for the Modelica beginners and advanced users.

Introduction

The [image: OpenModelica logotype] [https://openmodelica.org] system described in this document has both short-term
and long-term goals:

	The short-term goal is to develop an efficient interactive
computational environment for the Modelica language, as well as a
rather complete implementation of the language. It turns out that
with support of appropriate tools and libraries, Modelica is very
well suited as a computational language for development and
execution of both low level and high level numerical algorithms,
e.g. for control system design, solving nonlinear equation
systems, or to develop optimization algorithms that are applied
to complex applications.

	The long-term goal is to have a complete reference implementation
of the Modelica language, including simulation of equation based
models and additional facilities in the programming environment,
as well as convenient facilities for research and experimentation
in language design or other research activities. However, our
goal is not to reach the level of performance and quality
provided by current commercial Modelica environments that can
handle large models requiring advanced analysis and optimization
by the Modelica compiler.

The long-term research related goals and issues of the OpenModelica
open source implementation of a Modelica environment include but are not
limited to the following:

	Development of a complete formal specification of Modelica,
including both static and dynamic semantics. Such a specification
can be used to assist current and future Modelica implementers by
providing a semantic reference, as a kind of reference
implementation.

	Language design, e.g. to further extend the scope of the
language, e.g. for use in diagnosis, structural analysis, system
identification, etc., as well as modeling problems that require
extensions such as partial differential equations, enlarged scope
for discrete modeling and simulation, etc.

	Language design to improve abstract properties such as
expressiveness, orthogonality, declarativity, reuse,
configurability, architectural properties, etc.

	Improved implementation techniques, e.g. to enhance the performance
of compiled Modelica code by generating code for parallel
hardware.

	Improved debugging support for equation based languages such as
Modelica, to make them even easier to use.

	Easy-to-use specialized high-level (graphical) user interfaces
for certain application domains.

	Visualization and animation techniques for interpretation and
presentation of results.

	Application usage and model library development by researchers in
various application areas.

The OpenModelica environment provides a test bench for language design
ideas that, if successful, can be submitted to the Modelica Association
for consideration regarding possible inclusion in the official Modelica
standard.

The current version of the OpenModelica environment allows most of the
expression, algorithm, and function parts of Modelica to be executed
interactively, as well as equation models and Modelica functions to be
compiled into efficient C code. The generated C code is combined with a
library of utility functions, a run-time library, and a numerical DAE
solver.

System Overview

The OpenModelica environment consists of several interconnected
subsystems, as depicted in Figure 1.

[image: _images/systemoverview.svg]Figure 1 The architecture of the OpenModelica environment.
Arrows denote data and control flow.
The interactive session handler receives commands and shows results from evaluating commands and expressions that are translated and executed.
Several subsystems provide different forms of browsing and textual editing of Modelica code.
The debugger currently provides debugging of an extended algorithmic subset of Modelica.

The following subsystems are currently integrated in the OpenModelica
environment:

	An interactive session handler, that parses and interprets commands
and Modelica expressions for evaluation, simulation, plotting,
etc. The session handler also contains simple history facilities,
and completion of file names and certain identifiers in commands.

	A Modelica compiler subsystem, translating Modelica to C code, with
a symbol table containing definitions of classes, functions, and
variables. Such definitions can be predefined, user-defined, or
obtained from libraries. The compiler also includes a Modelica
interpreter for interactive usage and constant expression
evaluation. The subsystem also includes facilities for building
simulation executables linked with selected numerical ODE or DAE
solvers.

	An execution and run-time module. This module currently executes
compiled binary code from translated expressions and functions,
as well as simulation code from equation based models, linked
with numerical solvers. In the near future event handling
facilities will be included for the discrete and hybrid parts of
the Modelica language.

	Eclipse plugin editor/browser. The Eclipse plugin called MDT
(Modelica Development Tooling) provides file and class hierarchy
browsing and text editing capabilities, rather analogous to
previously described Emacs editor/browser. Some syntax
highlighting facilities are also included. The Eclipse framework
has the advantage of making it easier to add future extensions
such as refactoring and cross referencing support.

	OMNotebook DrModelica model editor. This subsystem provides a
lightweight notebook editor, compared to the more advanced
Mathematica notebooks available in MathModelica. This basic
functionality still allows essentially the whole DrModelica
tutorial to be handled. Hierarchical text documents with chapters
and sections can be represented and edited, including basic
formatting. Cells can contain ordinary text or Modelica models
and expressions, which can be evaluated and simulated. However,
no mathematical typesetting facilities are yet available in the
cells of this notebook editor.

	Graphical model editor/browser OMEdit. This is a graphical
connection editor, for component based model design by connecting
instances of Modelica classes, and browsing Modelica model
libraries for reading and picking component models. The graphical
model editor also includes a textual editor for editing model
class definitions, and a window for interactive Modelica command
evaluation.

	Optimization subsystem OMOptim. This is an optimization subsystem
for OpenModelica, currently for design optimization choosing an
optimal set of design parameters for a model. The current version
has a graphical user interface, provides genetic optimization
algorithms and Pareto front optimization, works integrated with
the simulators and automatically accesses variables and design
parameters from the Modelica model.

	Dynamic Optimization subsystem. This is dynamic optimization using
collocation methods, for Modelica models extended with
optimization specifications with goal functions and additional
constraints. This subsystem is integrated with in the
OpenModelica compiler.

	Modelica equation model debugger. The equation model debugger shows
the location of an error in the model equation source code. It
keeps track of the symbolic transformations done by the compiler
on the way from equations to low-level generated C code, and also
explains which transformations have been done.

	Modelica algorithmic code debugger. The algorithmic code Modelica
debugger provides debugging for an extended algorithmic subset of
Modelica, excluding equation-based models and some other
features, but including some meta-programming and model
transformation extensions to Modelica. This is a conventional
full-feature debugger, using Eclipse for displaying the source
code during stepping, setting breakpoints, etc. Various
back-trace and inspection commands are available. The debugger
also includes a data-view browser for browsing hierarchical data
such as tree- or list structures in extended Modelica.

Interactive Session with Examples

The following is an interactive session using the interactive session
handler in the OpenModelica environment, called OMShell – the
OpenModelica Shell). Most of these examples are also available in the
OMNotebook with DrModelica and DrControl UsersGuideExamples.onb as well as the testmodels in:

>>> getInstallationDirectoryPath() + "/share/doc/omc/testmodels/"
"«OPENMODELICAHOME»/share/doc/omc/testmodels/"

The following commands were run using OpenModelica version:

>>> getVersion()
"OMCompiler v1.16.3-v1.16.3.2+g1d7205ea8f7"

Starting the Interactive Session

The Windows version which at installation is made available in the start
menu as OpenModelica->OpenModelica Shell which responds with an
interaction window:

We enter an assignment of a vector expression, created by the range
construction expression 1:12, to be stored in the variable x. The value
of the expression is returned.

>>> x := 1:12
{1,2,3,4,5,6,7,8,9,10,11,12}

Using the Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one
can make load classes and execute commands.
Here we give a few example sessions.

Example Session 1

>>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type
{A}
>>> instantiateModel(A)
""
"[<interactive>:1:9-1:23:writable] Error: Type mismatch in binding t = 1.5, expected subtype of Integer, got type Real.
Error: Error occurred while flattening model A
"

Example Session 2

If you do not see the error-message when running the example, use the command getErrorString().

model C
 Integer a;
 Real b;
equation
 der(a) = b; // der(a) is illegal since a is not a Real number
 der(b) = 12.0;
end C;

>>> instantiateModel(C)
""

Error

[<interactive>:5:3-5:13:writable] Error: Argument 'a' to der has illegal type Integer, must be a subtype of Real.

Error: Error occurred while flattening model C

Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu
File->Load Model, or by explicitly giving the command:

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/bubblesort.mo")
true

The function bubblesort is called below to sort the vector x in
descending order. The sorted result is returned together with its type.
Note that the result vector is of type Real[:], instantiated as
Real[12], since this is the declared type of the function result. The
input Integer vector was automatically converted to a Real vector
according to the Modelica type coercion rules. The function is
automatically compiled when called if this has not been done before.

>>> bubblesort(x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

>>> bubblesort({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

Trying the system and cd Commands

It is also possible to give operating system commands via the system
utility function. A command is provided as a string argument. The
example below shows the system utility applied to the UNIX command cat,
which here outputs the contents of the file bubblesort.mo to the output
stream when running omc from the command-line.

>>> system("cat '"+getInstallationDirectoryPath()+"/share/doc/omc/testmodels/bubblesort.mo' > bubblesort.mo")
0

function bubblesort
 input Real[:] x;
 output Real[size(x,1)] y;
protected
 Real t;
algorithm
 y := x;
 for i in 1:size(x,1) loop
 for j in 1:size(x,1) loop
 if y[i] > y[j] then
 t := y[i];
 y[i] := y[j];
 y[j] := t;
 end if;
 end for;
 end for;
end bubblesort;

Note: The output emitted into stdout by system commands is put into
log-files when running the CORBA-based clients, not into the visible GUI
windows. Thus the text emitted by the above cat command would not be
returned, which is why it is redirected to another file.

A better way to read the content of files would be the readFile command:

>>> readFile("bubblesort.mo")
function bubblesort
 input Real[:] x;
 output Real[size(x,1)] y;
protected
 Real t;
algorithm
 y := x;
 for i in 1:size(x,1) loop
 for j in 1:size(x,1) loop
 if y[i] > y[j] then
 t := y[i];
 y[i] := y[j];
 y[j] := t;
 end if;
 end for;
 end for;
end bubblesort;

The system command only returns a success code (0 = success).

>>> system("dir")
0
>>> system("Non-existing command")
127

Another built-in command is cd, the change current directory command.
The resulting current directory is returned as a string.

>>> dir:=cd()
"«DOCHOME»"
>>> cd("source")
"«DOCHOME»/source"
>>> cd(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/")
"/var/lib/jenkins/ws/OpenModelica_maintenance_v1.16/build/share/doc/omc/testmodels"
>>> cd(dir)
"«DOCHOME»"

Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also
can be done through the File->Load Modelica Library menu item:

>>> loadModel(Modelica)
true

We also load a file containing the dcmotor model:

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/dcmotor.mo")
true

Note

Notification: dcmotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states that it is fully compatible without conversion script needed.

It is simulated:

>>> simulate(dcmotor, startTime=0.0, stopTime=10.0)
record SimulationResult
 resultFile = "«DOCHOME»/dcmotor_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'dcmotor', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "LOG_SUCCESS | info | The initialization finished successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.
",
 timeFrontend = 0.3217799099999999,
 timeBackend = 0.012575689,
 timeSimCode = 0.003239702,
 timeTemplates = 0.003521879,
 timeCompile = 0.5212351350000001,
 timeSimulation = 0.021374682,
 timeTotal = 0.883870968
end SimulationResult;

Note

Notification: dcmotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states that it is fully compatible without conversion script needed.

We list the source code of the model:

>>> list(dcmotor)
model dcmotor
 import Modelica.Electrical.Analog.Basic;
 Basic.Resistor resistor1(R = 10);
 Basic.Inductor inductor1(L = 0.2, i.fixed = true);
 Basic.Ground ground1;
 Modelica.Mechanics.Rotational.Components.Inertia load(J = 1, phi.fixed = true, w.fixed = true);
 Basic.EMF emf1(k = 1.0);
 Modelica.Blocks.Sources.Step step1;
 Modelica.Electrical.Analog.Sources.SignalVoltage signalVoltage1;
equation
 connect(step1.y, signalVoltage1.v);
 connect(signalVoltage1.p, resistor1.p);
 connect(resistor1.n, inductor1.p);
 connect(inductor1.n, emf1.p);
 connect(emf1.flange, load.flange_a);
 connect(signalVoltage1.n, ground1.p);
 connect(ground1.p, emf1.n);
 annotation(
 uses(Modelica(version = "3.2.2")));
end dcmotor;

We test code instantiation of the model to flat code:

>>> instantiateModel(dcmotor)
class dcmotor
 Real resistor1.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of the two pins (= p.v - n.v)";
 Real resistor1.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from pin p to pin n";
 Real resistor1.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real resistor1.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real resistor1.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real resistor1.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 parameter Boolean resistor1.useHeatPort = false "=true, if heatPort is enabled";
 parameter Real resistor1.T(quantity = "ThermodynamicTemperature", unit = "K", displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = resistor1.T_ref "Fixed device temperature if useHeatPort = false";
 Real resistor1.LossPower(quantity = "Power", unit = "W") "Loss power leaving component via heatPort";
 Real resistor1.T_heatPort(quantity = "ThermodynamicTemperature", unit = "K", displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) "Temperature of heatPort";
 parameter Real resistor1.R(quantity = "Resistance", unit = "Ohm", start = 1.0) = 10.0 "Resistance at temperature T_ref";
 parameter Real resistor1.T_ref(quantity = "ThermodynamicTemperature", unit = "K", displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = 300.15 "Reference temperature";
 parameter Real resistor1.alpha(quantity = "LinearTemperatureCoefficient", unit = "1/K") = 0.0 "Temperature coefficient of resistance (R_actual = R*(1 + alpha*(T_heatPort - T_ref))";
 Real resistor1.R_actual(quantity = "Resistance", unit = "Ohm") "Actual resistance = R*(1 + alpha*(T_heatPort - T_ref))";
 Real inductor1.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of the two pins (= p.v - n.v)";
 Real inductor1.i(quantity = "ElectricCurrent", unit = "A", start = 0.0, fixed = true) "Current flowing from pin p to pin n";
 Real inductor1.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real inductor1.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real inductor1.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real inductor1.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 parameter Real inductor1.L(quantity = "Inductance", unit = "H", start = 1.0) = 0.2 "Inductance";
 Real ground1.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real ground1.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real load.flange_a.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "Absolute rotation angle of flange";
 Real load.flange_a.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange";
 Real load.flange_b.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "Absolute rotation angle of flange";
 Real load.flange_b.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange";
 parameter Real load.J(quantity = "MomentOfInertia", unit = "kg.m2", min = 0.0, start = 1.0) = 1.0 "Moment of inertia";
 parameter enumeration(never, avoid, default, prefer, always) load.stateSelect = StateSelect.default "Priority to use phi and w as states";
 Real load.phi(quantity = "Angle", unit = "rad", displayUnit = "deg", fixed = true, stateSelect = StateSelect.default) "Absolute rotation angle of component";
 Real load.w(quantity = "AngularVelocity", unit = "rad/s", fixed = true, stateSelect = StateSelect.default) "Absolute angular velocity of component (= der(phi))";
 Real load.a(quantity = "AngularAcceleration", unit = "rad/s2") "Absolute angular acceleration of component (= der(w))";
 parameter Boolean emf1.useSupport = false "= true, if support flange enabled, otherwise implicitly grounded";
 parameter Real emf1.k(quantity = "ElectricalTorqueConstant", unit = "N.m/A", start = 1.0) = 1.0 "Transformation coefficient";
 Real emf1.v(quantity = "ElectricPotential", unit = "V") "Voltage drop between the two pins";
 Real emf1.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from positive to negative pin";
 Real emf1.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "Angle of shaft flange with respect to support (= flange.phi - support.phi)";
 Real emf1.w(quantity = "AngularVelocity", unit = "rad/s") "Angular velocity of flange relative to support";
 Real emf1.tau(quantity = "Torque", unit = "N.m") "Torque of flange";
 Real emf1.tauElectrical(quantity = "Torque", unit = "N.m") "Electrical torque";
 Real emf1.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real emf1.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real emf1.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real emf1.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real emf1.flange.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "Absolute rotation angle of flange";
 Real emf1.flange.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange";
 protected Real emf1.internalSupport.tau(quantity = "Torque", unit = "N.m") = -emf1.tau "External support torque (must be computed via torque balance in model where InternalSupport is used; = flange.tau)";
 protected Real emf1.internalSupport.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "External support angle (= flange.phi)";
 protected Real emf1.internalSupport.flange.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "Absolute rotation angle of flange";
 protected Real emf1.internalSupport.flange.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange";
 protected parameter Real emf1.fixed.phi0(quantity = "Angle", unit = "rad", displayUnit = "deg") = 0.0 "Fixed offset angle of housing";
 protected Real emf1.fixed.flange.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "Absolute rotation angle of flange";
 protected Real emf1.fixed.flange.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange";
 Real step1.y "Connector of Real output signal";
 parameter Real step1.offset = 0.0 "Offset of output signal y";
 parameter Real step1.startTime(quantity = "Time", unit = "s") = 0.0 "Output y = offset for time < startTime";
 parameter Real step1.height = 1.0 "Height of step";
 Real signalVoltage1.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real signalVoltage1.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real signalVoltage1.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real signalVoltage1.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
 Real signalVoltage1.v(unit = "V") "Voltage between pin p and n (= p.v - n.v) as input signal";
 Real signalVoltage1.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from pin p to pin n";
equation
 assert(1.0 + resistor1.alpha * (resistor1.T_heatPort - resistor1.T_ref) >= 1e-15, "Temperature outside scope of model!");
 resistor1.R_actual = resistor1.R * (1.0 + resistor1.alpha * (resistor1.T_heatPort - resistor1.T_ref));
 resistor1.v = resistor1.R_actual * resistor1.i;
 resistor1.LossPower = resistor1.v * resistor1.i;
 resistor1.v = resistor1.p.v - resistor1.n.v;
 0.0 = resistor1.p.i + resistor1.n.i;
 resistor1.i = resistor1.p.i;
 resistor1.T_heatPort = resistor1.T;
 inductor1.L * der(inductor1.i) = inductor1.v;
 inductor1.v = inductor1.p.v - inductor1.n.v;
 0.0 = inductor1.p.i + inductor1.n.i;
 inductor1.i = inductor1.p.i;
 ground1.p.v = 0.0;
 load.phi = load.flange_a.phi;
 load.phi = load.flange_b.phi;
 load.w = der(load.phi);
 load.a = der(load.w);
 load.J * load.a = load.flange_a.tau + load.flange_b.tau;
 emf1.internalSupport.flange.tau = emf1.internalSupport.tau;
 emf1.internalSupport.flange.phi = emf1.internalSupport.phi;
 emf1.fixed.flange.phi = emf1.fixed.phi0;
 emf1.v = emf1.p.v - emf1.n.v;
 0.0 = emf1.p.i + emf1.n.i;
 emf1.i = emf1.p.i;
 emf1.phi = emf1.flange.phi - emf1.internalSupport.phi;
 emf1.w = der(emf1.phi);
 emf1.k * emf1.w = emf1.v;
 emf1.tau = (-emf1.k) * emf1.i;
 emf1.tauElectrical = -emf1.tau;
 emf1.tau = emf1.flange.tau;
 step1.y = step1.offset + (if time < step1.startTime then 0.0 else step1.height);
 signalVoltage1.v = signalVoltage1.p.v - signalVoltage1.n.v;
 0.0 = signalVoltage1.p.i + signalVoltage1.n.i;
 signalVoltage1.i = signalVoltage1.p.i;
 resistor1.p.i + signalVoltage1.p.i = 0.0;
 resistor1.n.i + inductor1.p.i = 0.0;
 inductor1.n.i + emf1.p.i = 0.0;
 ground1.p.i + emf1.n.i + signalVoltage1.n.i = 0.0;
 load.flange_a.tau + emf1.flange.tau = 0.0;
 load.flange_b.tau = 0.0;
 emf1.fixed.flange.tau + emf1.internalSupport.flange.tau = 0.0;
 emf1.fixed.flange.phi = emf1.internalSupport.flange.phi;
 signalVoltage1.v = step1.y;
 resistor1.p.v = signalVoltage1.p.v;
 inductor1.p.v = resistor1.n.v;
 emf1.p.v = inductor1.n.v;
 emf1.flange.phi = load.flange_a.phi;
 emf1.n.v = ground1.p.v;
 emf1.n.v = signalVoltage1.n.v;
end dcmotor;

Note

Notification: dcmotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states that it is fully compatible without conversion script needed.

We plot part of the simulated result:

[image: _images/dcmotor.svg]Figure 2 Rotation and rotational velocity of the DC motor

The val() function

The val(variableName,time) scription function can be used to
retrieve the interpolated value of a simulation result variable at a
certain point in the simulation time, see usage in the BouncingBall
simulation below.

BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations
and if-expressions (the Modelica keywords have been bold-faced by hand
for better readability):

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/BouncingBall.mo")
true

>>> list(BouncingBall)
model BouncingBall
 parameter Real e = 0.7 "coefficient of restitution";
 parameter Real g = 9.81 "gravity acceleration";
 Real h(fixed = true, start = 1) "height of ball";
 Real v(fixed = true) "velocity of ball";
 Boolean flying(fixed = true, start = true) "true, if ball is flying";
 Boolean impact;
 Real v_new(fixed = true);
 Integer foo;
equation
 impact = h <= 0.0;
 foo = if impact then 1 else 2;
 der(v) = if flying then -g else 0;
 der(h) = v;
 when {h <= 0.0 and v <= 0.0, impact} then
 v_new = if edge(impact) then -e * pre(v) else 0;
 flying = v_new > 0;
 reinit(v, v_new);
 end when;
end BouncingBall;

Instead of just giving a simulate and plot command, we perform a
runScript command on a .mos (Modelica script) file sim_BouncingBall.mos
that contains these commands:

>>> writeFile("sim_BouncingBall.mos", "
 loadFile(getInstallationDirectoryPath() + \"/share/doc/omc/testmodels/BouncingBall.mo\");
 simulate(BouncingBall, stopTime=3.0);
 /* plot({h,flying}); */
")
true
>>> runScript("sim_BouncingBall.mos")
"true
record SimulationResult
 resultFile = \"«DOCHOME»/BouncingBall_res.mat\",
 simulationOptions = \"startTime = 0.0, stopTime = 3.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'BouncingBall', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''\",
 messages = \"LOG_SUCCESS | info | The initialization finished successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.
\",
 timeFrontend = 0.004776218,
 timeBackend = 0.003539438,
 timeSimCode = 0.001012719,
 timeTemplates = 0.00386504,
 timeCompile = 0.5057503240000001,
 timeSimulation = 0.025985716,
 timeTotal = 0.5450271370000001
end SimulationResult;
"

model Switch
 Real v;
 Real i;
 Real i1;
 Real itot;
 Boolean open;
equation
 itot = i + i1;
 if open then
 v = 0;
 else
 i = 0;
 end if;
 1 - i1 = 0;
 1 - v - i = 0;
 open = time >= 0.5;
end Switch;

>>> simulate(Switch, startTime=0, stopTime=1)
record SimulationResult
 resultFile = "«DOCHOME»/Switch_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'Switch', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "LOG_SUCCESS | info | The initialization finished successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.
",
 timeFrontend = 0.005770122000000001,
 timeBackend = 0.006543444000000001,
 timeSimCode = 0.001192501,
 timeTemplates = 0.003583346,
 timeCompile = 0.4934625509999999,
 timeSimulation = 0.020800616,
 timeTotal = 0.531477937
end SimulationResult;

Retrieve the value of itot at time=0 using the
val(variableName, time) function:

>>> val(itot,0)
1.0

Plot itot and open:

[image: _images/switch.svg]Figure 3 Plot when the switch opens

We note that the variable open switches from false (0) to true (1),
causing itot to increase from 1.0 to 2.0.

Clear All Models

Now, first clear all loaded libraries and models:

>>> clear()
true

List the loaded models – nothing left:

>>> list()
""

VanDerPol Model and Parametric Plot

We load another model, the VanDerPol model (or via the menu File->Load
Model):

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/VanDerPol.mo")
true

It is simulated:

>>> simulate(VanDerPol, stopTime=80)
record SimulationResult
 resultFile = "«DOCHOME»/VanDerPol_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 80.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'VanDerPol', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "LOG_SUCCESS | info | The initialization finished successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.
",
 timeFrontend = 0.004128193,
 timeBackend = 0.001784017,
 timeSimCode = 0.000514109,
 timeTemplates = 0.002734394,
 timeCompile = 0.482658081,
 timeSimulation = 0.021839315,
 timeTotal = 0.513781301
end SimulationResult;

It is plotted:

>>> plotParametric("x","y")

[image: _images/VanDerPol.svg]Figure 4 VanDerPol plotParametric(x,y)

Perform code instantiation to flat form of the VanDerPol model:

>>> instantiateModel(VanDerPol)
class VanDerPol "Van der Pol oscillator model"
 Real x(start = 1.0, fixed = true);
 Real y(start = 1.0, fixed = true);
 parameter Real lambda = 0.3;
equation
 der(x) = y;
 der(y) = lambda * (1.0 - x ^ 2.0) * y - x;
end VanDerPol;

Using Japanese or Chinese Characters

Japenese, Chinese, and other kinds of UniCode characters can be used
within quoted (single quote) identifiers, see for example the variable
name to the right in the plot below:

[image: _images/bb-japanese.png]

Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation
at each line into OMShell requires copy-paste as one operation from
another document):

>>> k := 0;
>>> for i in 1:1000 loop
 k := k + i;
end for;
>>> k
500500

A nested loop summing reals and integers:

>>> g := 0.0;
>>> h := 5;
>>> for i in {23.0,77.12,88.23} loop
 for j in i:0.5:(i+1) loop
 g := g + j;
 g := g + h / 2;
 end for;
 h := h + g;
end for;

By putting two (or more) variables or assignment statements separated by
semicolon(s), ending with a variable, one can observe more than one
variable value:

>>> h; g
1997.45
1479.09

A for-loop with vector traversal and concatenation of string elements:

>>> i:="";
>>> lst := {"Here ", "are ","some ","strings."};
>>> s := "";
>>> for i in lst loop
 s := s + i;
end for;
>>> s
"Here are some strings."

Normal while-loop with concatenation of 10 "abc " strings:

>>> s:="";
>>> i:=1;
>>> while i<=10 loop
 s:="abc "+s;
 i:=i+1;
end while;
>>> s
"abc abc abc abc abc abc abc abc abc abc "

A simple if-statement. By putting the variable last, after the
semicolon, its value is returned after evaluation:

>>> if 5>2 then a := 77; end if; a
77

An if-then-else statement with elseif:

>>> if false then
 a := 5;
elseif a > 50 then
 b:= "test"; a:= 100;
else
 a:=34;
end if;

Take a look at the variables a and b:

>>> a;b
100
"test"

Variables, Functions, and Types of Variables

Assign a vector to a variable:

>>> a:=1:5
{1,2,3,4,5}

Type in a function:

function mySqr
 input Real x;
 output Real y;
algorithm
 y:=x*x;
end mySqr;

Call the function:

>>> b:=mySqr(2)
4.0

Look at the value of variable a:

>>> a
{1,2,3,4,5}

Look at the type of a:

>>> typeOf(a)
"Integer[5]"

Retrieve the type of b:

>>> typeOf(b)
"Real"

What is the type of mySqr? Cannot currently be handled.

>>> typeOf(mySqr)

List the available variables:

>>> listVariables()
{b,a,s,lst,i,h,g,k,currentSimulationResult}

Clear again:

>>> clear()
true

Getting Information about Error Cause

Call the function getErrorString() in order to get more information
about the error cause after a simulation failure:

>>> getErrorString()
""

Alternative Simulation Output Formats

There are several output format possibilities, with mat being the
default. plt and mat are the only formats that allow you to use the
val() or plot() functions after a simulation. Compared to the speed of
plt, mat is roughly 5 times for small files, and scales better for
larger files due to being a binary format. The csv format is roughly
twice as fast as plt on data-heavy simulations. The plt format allocates
all output data in RAM during simulation, which means that simulations
may fail due applications only being able to address 4GB of memory on
32-bit platforms. Empty does no output at all and should be by far the
fastest. The csv and plt formats are suitable when using an external
scripts or tools like gnuplot to generate plots or process data. The mat
format can be post-processed in MATLAB [http://www.mathworks.com/products/matlab]
or Octave [http://www.gnu.org/software/octave/].

>>> simulate(... , outputFormat="mat")
>>> simulate(... , outputFormat="csv")
>>> simulate(... , outputFormat="plt")
>>> simulate(... , outputFormat="empty")

It is also possible to specify which variables should be present in the
result-file. This is done by using POSIX Extended Regular Expressions [http://en.wikipedia.org/wiki/Regular_expression].
The given expression must match the full variable name
(^ and $ symbols are automatically added to the given regular
expression).

// Default, match everything

>>> simulate(... , variableFilter=".*")

// match indices of variable myVar that only contain the numbers using
combinations

// of the letters 1 through 3

>>> simulate(... , variableFilter="myVar\\\[[1-3]*\\\]")

// match x or y or z

>>> simulate(... , variableFilter="x|y|z")

Using External Functions

See Chapter Interoperability – C and Python for more information about calling functions in other
programming languages.

Using Parallel Simulation via OpenMP Multi-Core Support

Faster simulations on multi-core computers can be obtained by using a
new OpenModelica feature that automatically partitions the system of
equations and schedules the parts for execution on different cores using
shared-memory OpenMP based execution. The speedup obtained is dependent
on the model structure, whether the system of equations can be
partitioned well. This version in the current OpenModelica release is an
experimental version without load balancing. The following command, not
yet available from the OpenModelica GUI, will run a parallel simulation
on a model:

>>> omc -d=openmp model.mo

Loading Specific Library Version

There exist many different versiosn of Modelica libraries which are not
compatible. It is possible to keep multiple versions of the same library
stored in the directory given by calling getModelicaPath(). By calling
loadModel(Modelica,{"3.2"}), OpenModelica will search for a directory
called "Modelica 3.2" or a file called "Modelica 3.2.mo". It is possible
to give several library versions to search for, giving preference for a
pre-release version of a library if it is installed. If the searched
version is "default", the priority is: no version name (Modelica), main
release version (Modelica 3.1), pre-release version (Modelica 3.1Beta 1)
and unordered versions (Modelica Special Release).

The loadModel command will also look at the uses annotation of the
top-level class after it has been loaded. Given the following package,
Complex 1.0 and ModelicaServices 1.1 will also be loaded into the AST
automatically.

package Modelica
 annotation(uses(Complex(version="1.0"),
 ModelicaServices(version="1.1")));
end Modelica;

>>> clear()
true

Packages will also be loaded if a model has a uses-annotation:

model M
 annotation(uses(Modelica(version="3.2.1")));
end M;

>>> instantiateModel(M)
class M
end M;

Note

Notification: Automatically loaded package Modelica 3.2.1 due to uses annotation.

Notification: Automatically loaded package Complex 3.2.1 due to uses annotation.

Notification: Automatically loaded package ModelicaServices 3.2.1 due to uses annotation.

Packages will also be loaded by looking at the first identifier in the path:

>>> instantiateModel(Modelica.Electrical.Analog.Basic.Ground)
class Modelica.Electrical.Analog.Basic.Ground "Ground node"
 Real p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
 Real p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
equation
 p.v = 0.0;
 p.i = 0.0;
end Modelica.Electrical.Analog.Basic.Ground;

Note

Notification: Automatically loaded package Complex 3.2.3 due to uses annotation.

Notification: Automatically loaded package ModelicaServices 3.2.3 due to uses annotation.

Notification: Automatically loaded package Modelica default due to uses annotation.

Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application
programming interface) is described which returns information about
models and/or allows manipulation of models. Calls to these functions
can be done interactively as below, but more typically by program
clients to the OpenModelica Compiler (OMC) server. Current examples of
such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the
OMEdit graphic model editor, etc. This API is untyped for performance
reasons, i.e., no type checking and minimal error checking is done on
the calls. The results of a call is returned as a text string in
Modelica syntax form, which the client has to parse. An example parser
in C++ is available in the OMNotebook source code, whereas another
example parser in Java is available in the MDT Eclipse plugin.

Below we show a few calls on the previously simulated BouncingBall
model. The full documentation on this API is available in the system
documentation. First we load and list the model again to show its
structure:

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/BouncingBall.mo");
>>> list(BouncingBall)
model BouncingBall
 parameter Real e = 0.7 "coefficient of restitution";
 parameter Real g = 9.81 "gravity acceleration";
 Real h(fixed = true, start = 1) "height of ball";
 Real v(fixed = true) "velocity of ball";
 Boolean flying(fixed = true, start = true) "true, if ball is flying";
 Boolean impact;
 Real v_new(fixed = true);
 Integer foo;
equation
 impact = h <= 0.0;
 foo = if impact then 1 else 2;
 der(v) = if flying then -g else 0;
 der(h) = v;
 when {h <= 0.0 and v <= 0.0, impact} then
 v_new = if edge(impact) then -e * pre(v) else 0;
 flying = v_new > 0;
 reinit(v, v_new);
 end when;
end BouncingBall;

Different kinds of calls with returned results:

>>> getClassRestriction(BouncingBall)
"model"
>>> getClassInformation(BouncingBall)
("model","",false,false,false,"/var/lib/jenkins/ws/OpenModelica_maintenance_v1.16/build/share/doc/omc/testmodels/BouncingBall.mo",false,1,1,23,17,{},false,false,"","",false,"")
>>> isFunction(BouncingBall)
false
>>> existClass(BouncingBall)
true
>>> getComponents(BouncingBall)
{{Real,e,"coefficient of restitution", "public", false, false, false, false, "parameter", "none", "unspecified",{}},{Real,g,"gravity acceleration", "public", false, false, false, false, "parameter", "none", "unspecified",{}},{Real,h,"height of ball", "public", false, false, false, false, "unspecified", "none", "unspecified",{}},{Real,v,"velocity of ball", "public", false, false, false, false, "unspecified", "none", "unspecified",{}},{Boolean,flying,"true, if ball is flying", "public", false, false, false, false, "unspecified", "none", "unspecified",{}},{Boolean,impact,"", "public", false, false, false, false, "unspecified", "none", "unspecified",{}},{Real,v_new,"", "public", false, false, false, false, "unspecified", "none", "unspecified",{}},{Integer,foo,"", "public", false, false, false, false, "unspecified", "none", "unspecified",{}}}
>>> getConnectionCount(BouncingBall)
0
>>> getInheritanceCount(BouncingBall)
0
>>> getComponentModifierValue(BouncingBall,e)
"0.7"
>>> getComponentModifierNames(BouncingBall,"e")
{}
>>> getClassRestriction(BouncingBall)
"model"
>>> getVersion() // Version of the currently running OMC
"OMCompiler v1.16.3-v1.16.3.2+g1d7205ea8f7"

Quit OpenModelica

Leave and quit OpenModelica:

>>> quit()

Dump XML Representation

The command dumpXMLDAE dumps an XML representation of a model, according
to several optional parameters.

dumpXMLDAE(modelname[,asInSimulationCode=<Boolean>]
[,filePrefix=<String>] [,storeInTemp=<Boolean>] [,addMathMLCode
=<Boolean>])

This command dumps the mathematical representation of a model using an
XML representation, with optional parameters. In particular,
asInSimulationCode defines where to stop in the translation process
(before dumping the model), the other options are relative to the file
storage: filePrefix for specifying a different name and storeInTemp to
use the temporary directory. The optional parameter addMathMLCode gives
the possibility to don't print the MathML code within the xml file, to
make it more readable. Usage is trivial, just:
addMathMLCode=true/false (default value is false).

Dump Matlab Representation

The command export dumps an XML representation of a model, according to
several optional parameters.

exportDAEtoMatlab(modelname);

This command dumps the mathematical representation of a model using a
Matlab representation. Example:

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/BouncingBall.mo")
true
>>> exportDAEtoMatlab(BouncingBall)
"The equation system was dumped to Matlab file:BouncingBall_imatrix.m"

% Adjacency Matrix
% ====================================
% number of rows: 6
IM={{3,6},{1,{'if', 'true','==' {3},{},}},{{'if', 'true','==' {4},{},}},{5},{2,{'if', 'edge(impact)' {3},{5},}},{4,2}};
VL = {'foo','v_new','impact','flying','v','h'};

EqStr = {'impact = h <= 0.0;','foo = if impact then 1 else 2;','der(v) = if flying then -g else 0.0;','der(h) = v;','when {h <= 0.0 and v <= 0.0, impact} then v_new = if edge(impact) then (-e) * pre(v) else 0.0; end when;','when {h <= 0.0 and v <= 0.0, impact} then flying = v_new > 0.0; end when;'};

OldEqStr={'class BouncingBall',' parameter Real e = 0.7 "coefficient of restitution";',' parameter Real g = 9.81 "gravity acceleration";',' Real h(start = 1.0, fixed = true) "height of ball";',' Real v(fixed = true) "velocity of ball";',' Boolean flying(start = true, fixed = true) "true, if ball is flying";',' Boolean impact;',' Real v_new(fixed = true);',' Integer foo;','equation',' impact = h <= 0.0;',' foo = if impact then 1 else 2;',' der(v) = if flying then -g else 0.0;',' der(h) = v;',' when {h <= 0.0 and v <= 0.0, impact} then',' v_new = if edge(impact) then (-e) * pre(v) else 0.0;',' flying = v_new > 0.0;',' reinit(v, v_new);',' end when;','end BouncingBall;',''};

Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in
the interactive session hander.

simulate(modelname) Translate a model named modelname and simulate
it.

simulate(modelname[,startTime=<Real>][,stopTime=<Real>][,numberOfIntervals

=<Integer>][,outputInterval=<Real>][,method=<String>]

[,tolerance=<Real>][,fixedStepSize=<Real>]

[,outputFormat=<String>]) Translate and simulate a model, with
optional start time, stop time, and optional number of simulation
intervals or steps for which the simulation results will be computed.
More intervals will give higher time resolution, but occupy more space
and take longer to compute. The default number of intervals is 500. It
is possible to choose solving method, default is “dassl”, “euler” and
“rungekutta” are also available. Output format “mat” is default. “plt”
and “mat” (MATLAB) are the only ones that work with the val() command,
“csv” (comma separated values) and “empty” (no output) are also
available (see section Alternative Simulation Output Formats).

plot(vars) Plot the variables given as a vector or a scalar, e.g.
plot({x1,x2}) or plot(x1).

plotParametric(var1, var2) Plot var2 relative to var1 from the
most recently simulated model, e.g. plotParametric(x,y).

cd() Return the current directory.

cd(dir) Change directory to the directory given as string.

clear() Clear all loaded definitions.

clearVariables() Clear all defined variables.

dumpXMLDAE(modelname, ...) Dumps an XML representation of a model,
according to several optional parameters.

exportDAEtoMatlab(name) Dumps a Matlab representation of a model.

instantiateModel(modelname)Performs code instantiation of a
model/class and return a string containing the flat class definition.

list() Return a string containing all loaded class definitions.

list(modelname) Return a string containing the class definition of
the named class.

listVariables() Return a vector of the names of the currently defined
variables.

loadModel(classname) Load model or package of name classname from
the path indicated by the environment variable OPENMODELICALIBRARY.

loadFile(str) Load Modelica file (.mo) with name given as string
argument str.

readFile(str) Load file given as string str and return a string
containing the file content.

runScript(str) Execute script file with file name given as string
argument str.

system(str) Execute str as a system(shell) command in the
operating system; return integer success value. Output into stdout from
a shell command is put into the console window.

timing(expr) Evaluate expression expr and return the number of
seconds (elapsed time) the evaluation took.

typeOf(variable) Return the type of the variable as a string.

saveModel(str,modelname) Save the model/class with name
modelname in the file given by the string argument str.

val(variable,timePoint) Return the (interpolated) value of the
variable at time timePoint.

help() Print this helptext (returned as a string).

quit() Leave and quit the OpenModelica environment

Running the compiler from command line

The OpenModelica compiler can also be used from command line, in Windows cmd.exe or a Unix shell.
The following examples assume omc is on the PATH; if it is not, you can run C:\OpenModelica 1.16.0\build\bin\omc.exe or similar (depending on where you installed OpenModelica).

Example Session 1 – obtaining information about command line parameters

$ omc --help
OpenModelica Compiler OMCompiler v1.16.3-v1.16.3.2+g1d7205ea8f7
Copyright © 2019 Open Source Modelica Consortium (OSMC)
Distributed under OMSC-PL and GPL, see www.openmodelica.org

Usage: omc [Options] (Model.mo | Script.mos) [Libraries | .mo-files]
* Libraries: Fully qualified names of libraries to load before processing Model or Script.
...
Documentation is available in the built-in package OpenModelica.Scripting or
online <https://build.openmodelica.org/Documentation/OpenModelica.Scripting.html>.

Example Session 2 – create an TestModel.mo file and run omc on it

model TestModel
 parameter Real x = 1;
end TestModel;

$ omc TestModel.mo
class TestModel
 parameter Real x = 1.0;
end TestModel;

Example Session 3 – create a mos-script and run omc on it

loadModel(Modelica);
getErrorString();
simulate(Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum);
getErrorString();

$ omc TestScript.mos
true
""
record SimulationResult
 resultFile = "/var/lib/jenkins/ws/OpenModelica_maintenance_v1.16/doc/UsersGuide/source/Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum_res.mat",
 simulationOptions = "startTime = 0.0, stopTime = 5.0, numberOfIntervals = 500, tolerance = 1e-06, method = 'dassl', fileNamePrefix = 'Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum', options = '', outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",
 messages = "LOG_SUCCESS | info | The initialization finished successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.
",
 timeFrontend = 0.757971622,
 timeBackend = 0.314547409,
 timeSimCode = 0.037773885,
 timeTemplates = 0.142839696,
 timeCompile = 0.7035999879999999,
 timeSimulation = 0.051106519,
 timeTotal = 2.007998509
end SimulationResult;
""

In order to obtain more information from the compiler one can use the
command line options --showErrorMessages -d=failtrace when running
the compiler:

$ omc --showErrorMessages -d=failtrace TestScript.mos
InstFunction.getRecordConstructorFunction failed for OpenModelica.Scripting.loadModel
- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE()>].<Prefix.NOPRE()>.Modelica env: <global scope>
- Static.elabCref failed: Modelica in env: <global scope>
- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE()>].<Prefix.NOPRE()>.Modelica env: <global scope>
...
[/var/lib/jenkins/ws/OpenModelica_maintenance_v1.16/OMCompiler/Compiler/BackEnd/ExpressionSolve.mo:216:9-216:210:writable] Error: Internal error Failed to solve \"world.z_label.cylinders[3].r[1] = world.z_label.cylinders[2].r[1]\" w.r.t. \"world.z_label.R_lines[2,1]\"
[/var/lib/jenkins/ws/OpenModelica_maintenance_v1.16/OMCompiler/Compiler/BackEnd/ExpressionSolve.mo:216:9-216:210:writable] Error: Internal error Failed to solve \"world.z_label.cylinders[3].r[2] = world.z_label.cylinders[2].r[2]\" w.r.t. \"world.z_label.R_lines[2,2]\"
[/var/lib/jenkins/ws/OpenModelica_maintenance_v1.16/OMCompiler/Compiler/BackEnd/ExpressionSolve.mo:216:9-216:210:writable] Error: Internal error Failed to solve \"world.z_label.cylinders[3].r[3] = world.z_label.cylinders[2].r[3]\" w.r.t. \"world.z_label.R_lines[2,3]\"
"

OMEdit – OpenModelica Connection Editor

OMEdit – OpenModelica Connection Editor is the new Graphical User
Interface for graphical model editing in OpenModelica. It is implemented
in C++ using the Qt graphical user interface library and supports
the Modelica Standard Library that is included in the latest
OpenModelica installation. This chapter gives a brief introduction to
OMEdit and also demonstrates how to create a DCMotor model using the
editor.

OMEdit provides several user friendly features for creating, browsing,
editing, and simulating models:

	Modeling – Easy model creation for Modelica models.

	Pre-defined models – Browsing the Modelica Standard library to
access the provided models.

	User defined models – Users can create their own models for
immediate usage and later reuse.

	Component interfaces – Smart connection editing for drawing and
editing connections between model interfaces.

	Simulation – Subsystem for running simulations and specifying
simulation parameters start and stop time, etc.

	Plotting – Interface to plot variables from simulated models.

Starting OMEdit

A splash screen similar to the one shown in Figure 5 will
appear indicating that it is starting OMEdit.
The executable is found in different places depending on the platform
(see below).

[image: _images/omedit_splashscreen.png]
Figure 5 OMEdit Splash Screen.

Microsoft Windows

OMEdit can be launched using the executable placed in
OpenModelicaInstallationDirectory/bin/OMEdit/OMEdit.exe. Alternately,
choose OpenModelica > OpenModelica Connection Editor from the start menu
in Windows.

Linux

Start OMEdit by either selecting the corresponding menu application item
or typing “OMEdit” at the shell or command prompt.

Mac OS X

The default installation is /Application/MacPorts/OMEdit.app.

MainWindow & Browsers

The MainWindow contains several dockable browsers,

	Libraries Browser

	Documentation Browser

	Variables Browser

	Messages Browser

Figure 57 shows the MainWindow and browsers.

[image: _images/omedit-mainwindow-browsers.png]
Figure 6 OMEdit MainWindow and Browsers.

The default location of the browsers are shown in Figure 57.
All browsers except for Message Browser can be docked into left or right
column. The Messages Browser can be docked into top or bottom
areas. If you want OMEdit to remember the new docked position of the
browsers then you must enable Preserve User's GUI Customizations option,
see section General.

Filter Classes

To filter a class click Edit > Filter Classes or press keyboard
shortcut Ctrl+Shift+F. The loaded Modelica classes can be filtered by
typing any part of the class name.

Libraries Browser

To view the Libraries Browser click View > Windows > Libraries Browser.
Shows the list of loaded Modelica classes. Each item of the Libraries
Browser has right click menu for easy manipulation and usage of the
class. The classes are shown in a tree structure with name and icon. The
protected classes are not shown by default. If you want to see the
protected classes then you must enable the Show Protected Classes
option, see section General.

Documentation Browser

Displays the HTML documentation of Modelica classes. It contains the
navigation buttons for moving forward and backward. It also contains
a WYSIWYG editor which allows writing class documentation in HTML format.
To view the Documentation Browser click View > Windows > Documentation Browser.

[image: _images/omedit-documentation-browser.png]
Figure 7 Documentation Browser.

Variables Browser

The class variables are structured in the form of the tree and are
displayed in the Variables Browser. Each variable has a checkbox.
Ticking the checkbox will plot the variable values. There is a find box
on the top for filtering the variable in the tree. The filtering can be
done using Regular Expression, Wildcard and Fixed String. The complete
Variables Browser can be collapsed and expanded using the Collapse All
and Expand All buttons.

The browser allows manipulation of changeable parameters for
Re-simulating a Model. It also displays the unit and
description of the variable.

The browser also contains the slider and animation buttons. These controls
are used for variable graphics and schematic animation of models i.e.,
DynamicSelect annotation. They are also used for debugging of state machines.
Open the Diagram Window for animation. It is only possible
to animate one model at a time. This is achieved by marking the result
file active in the Variables Browser. The animation only read the values
from the active result file. It is possible to simulate several models.
In that case, the user will see a list of result files in the Variables Browser.
The user can switch between different result files by right clicking
on the result file and selecting Set Active in the context menu.

[image: _images/omedit-variables-browser.png]
Figure 8 Variables Browser.

Messages Browser

Shows the list of errors. Following kinds of error can occur,

	Syntax

	Grammar

	Translation

	Symbolic

	Simulation

	Scripting

See section Messages for Messages Browser options.

Perspectives

The perspective tabs are loacted at the bottom right of the MainWindow:

	Welcome Perspective

	Modeling Perspective

	Plotting Perspective

	Debugging Perspective

Welcome Perspective

[image: _images/omedit-welcome.png]
Figure 9 OMEdit Welcome Perspective.

The Welcome Perspective shows the list of recent files and the list of
latest news from https://www.openmodelica.org.
See Figure 9. The orientation of recent files and latest news can be
horizontal or vertical. User is allowed to show/hide the latest news.
See section General.

Modeling Perspective

The Modeling Perpective provides the interface where user can create and
design their models. See Figure 10.

[image: _images/omedit-modeling-perspective.png]
Figure 10 OMEdit Modeling Perspective.

The Modeling Perspective interface can be viewed in two different modes,
the tabbed view and subwindow view, see section General.

Plotting Perspective

The Plotting Perspective shows the simulation results of the models.
Plotting Perspective will automatically become active when the
simulation of the model is finished successfully. It will also become
active when user opens any of the OpenModelica’s supported result file.
Similar to Modeling Perspective this perspective can also be viewed in
two different modes, the tabbed view and subwindow view, see section
General.

[image: _images/omedit-plotting-perspective.png]
Figure 11 OMEdit Plotting Perspective.

Debugging Perspective

The application automatically switches to Debugging Perpective
when user simulates the class with algorithmic debugger.
The prespective shows the list of stack frames, breakpoints and variables.

[image: _images/omedit-debugging-perspective.png]
Figure 12 OMEdit Debugging Perspective.

File Menu

	New Modelica Class - Creates a new Modelica class.

	Open Model/Library File(s) - Opens the Modelica file or a library.

	Open/Convert Modelica File(s) With Encoding - Opens the Modelica file or
a library with a specific encoding. It is also possible to convert to UTF-8.

	Load Library - Loads a Modelica library. Allows the user to select the
library path assuming that the path contains a package.mo file.

	Load Encrypted Library - Loads an encrypted library. see OpenModelica Encryption

	Open Result File(s) - Opens a result file.

	Open Transformations File - Opens a transformational debugger file.

	New Composite Model - Creates a new composite model.

	Open Composite Model(s) - Loads an existing composite model.

	Load External Model(s) - Loads the external models that can be used within
composite model.

	Open Directory - Loads the files of a directory recursively. The files
are loaded as text files.

	Save - Saves the class.

	Save As - Save as the class.

	Save Total - Saves the class and all the classes it uses in a single file. The class and its dependencies can only be loaded later by using the loadFile() API function in a script. Allows third parties to reproduce an issue with a class without worrying about library dependencies.

	Import

	FMU - Imports the FMU.

	FMU Model Description - Imports the FMU model description.

	From OMNotbook - Imports the Modelica models from OMNotebook.

	Ngspice netlist - Imports the ngspice netlist to Modelica code.

	"Export"

	To Clipboard - Exports the current model to clipboard.

	Image - Exports the current model to image.

	FMU - Exports the current model to FMU.

	Read-only Package - Exports a zipped Modelica library with file extension .mol

	Encrypted Package - Exports an encrypted package. see OpenModelica Encryption

	XML - Exports the current model to a xml file.

	Figaro - Exports the current model to Figaro.

	To OMNotebook - Exports the current model to a OMNotebook file.

	System Libraries - Contains a list of system libraries.

	Recent Files - Contains a list of recent files.

	Clear Recent Files - Clears the list of recent files.

	Print - Prints the current model.

	Quit - Quit the OpenModelica Connection Editor.

Edit Menu

	Undo - Undoes the last change.

	Redo - Redoes the last undone change.

	Filter Classes - Filters the classes in Libraries Browser. see Filter Classes

View Menu

	Toolbars - Toggle visibility of toolbars.

	Windows - Toggle visibility of windows.

	Close Window - Closes the current model window.

	Close All Windows - Closes all the model windows.

	Close All Windows But This - Closes all the model windows except the current.

	Cascade Windows - Arranges all the child windows in a cascade pattern.

	Tile Windows Horizontally - Arranges all child windows in a horizontally tiled pattern.

	Tile Windows Vertically - Arranges all child windows in a vertically tiled pattern.

	Toggle Tab/Sub-window View - Switches between tab and subwindow view.

	Grid Lines - Toggle grid lines of the current model.

	Reset Zoom - Resets the zoom of the current model.

	Zoom In - Zoom in the current model.

	Zoom Out - Zoom out the current model.

Simulation Menu

	Check Model - Checks the current model.

	Check All Models - Checks all the models of a library.

	Instantiate Model - Instantiates the current model.

	Simulation Setup - Opens the simulation setup window.

	Instantiate SSP Model - Instantiates the current SSP model.

	Simulate - Simulates the current model.

	Simulate with Transformational Debugger - Simulates the current model and
opens the transformational debugger.

	Simulate with Algorithmic Debugger - Simulates the current model and
opens the algorithmic debugger.

	Simulate with Animation - Simulates the current model and open the animation.

Debug Menu

	Debug Configurations - Opens the debug configurations window.

	Attach to Running Process - Attaches the algorithmic debugger to a running process.

SSP Menu

	New SSP Model - Creates a new SSP model.

	Open SSP Model(s) - Opens the SSP model(s).

	Add System - Adds the system to a model.

	Add/Edit Icon - Add/Edit the system/submodel icon.

	Delete Icon - Deletes the system/submodel icon.

	Add Connector - Adds a connector to a system/submodel.

	Add Bus - Adds a bus to a system/submodel.

	Add TLM Bus - Adds a TLM bus to a system/submodel.

	Add SubModel - Adds a submodel to a system.

Sensitivity Optimization Menu

	Run Sensitivity Analysis and Optimization - Runs the sensitivity analysis and optimization.

Tools Menu

	OpenModelica Compiler CLI - Opens the OpenModelica Compiler command line
interface window.

	OpenModelica Command Prompt - Opens the OpenModelica Command Prompt (Only
available on Windows).

	Open Working Directory - Opens the current working directory.

	Open Terminal - Runs the terminal command set in General.

	Options - Opens the options window.

Help Menu

	OpenModelica Users Guide - Opens the OpenModelica Users Guide.

	OpenModelica Users Guide (PDF) - Opens the OpenModelica Users Guide (PDF).

	OpenModelica System Documentation - Opens the OpenModelica System Documentation.

	OpenModelica Scripting Documentation - Opens the OpenModelica Scripting Documentation.

	Modelica Documentation - Opens the Modelica Documentation.

	OMSimulator Users Guide - Opens the OMSimulator Users Guide.

	OpenModelica TLM Simulator Documentation - Opens the OpenModelica TLM Simulator Documentation.

	About OMEdit - Shows the information about OpenModelica Connection Editor.

Modeling a Model

Creating a New Modelica Class

Creating a new Modelica class in OMEdit is rather straightforward.
Choose any of the following methods,

	Select File > New Modelica Class from the menu.

	Click on New Modelica Class toolbar button.

	Click on the Create New Modelica Class button available at the left
bottom of Welcome Perspective.

	Press Ctrl+N.

Opening a Modelica File

Choose any of the following methods to open a Modelica file,

	Select File > Open Model/Library File(s) from the menu.

	Click on Open Model/Library File(s) toolbar button.

	Click on the Open Model/Library File(s) button available at the right
bottom of Welcome Perspective.

	Press Ctrl+O.

(Note, for editing Modelica system files like MSL (not recommended), see Editing Modelica Standard Library)

Opening a Modelica File with Encoding

Select File > Open/Convert Modelica File(s) With Encoding from the menu.
It is also possible to convert files to UTF-8.

Model Widget

For each Modelica class one Model Widget is created. It has a statusbar
and a view area. The statusbar contains buttons for navigation between
the views and labels for information. The view area is used to display
the icon, diagram and text layers of Modelica class. See Figure 13.

[image: _images/omedit-model-widget.png]
Figure 13 Model Widget showing the Diagram View.

Adding Component Models

Drag the models from the Libraries Browser and drop them on either
Diagram or Icon View of Model Widget.

Making Connections

In order to connect one component model to another the user first needs
to enable the connect mode ([image: OMEdit connect mode icon]) from the toolbar.

Move the mouse over the connector. The mouse cursor will change from arrow cursor to cross cursor.
To start the connection press left button and move while keeping the button pressed. Now release the left button.
Move towards the end connector and click when cursor changes to cross cursor.

Simulating a Model

The simulation process in OMEdit is split into three main phases:

	The Modelica model is translated into C/C++ code. The model is first instantiated by the
frontend, which turns it into a flat set of variables, parameters, equations,
algorithms, and functions. The backend then analyzes the mathematical structure
of the flat model, applies symbolic simplifications and determines how the equations can be solved efficiently.
Finally, based on this information, model-specific C/C++ code is generated. This part of
the process can be influenced by setting Translation Flags (a.k.a. Command Line Options),
e.g. deciding which kind of structural simplifications should be performed during the translation phase.

	The C/C++ code is compiled and linked into an executable simulation code. Additional C/C++ compiler flags
can be given to influence this part of the process, e.g. by setting compiler optimizations
such as -O3. Since multiple C/C++ source code files are generated for a given model, they
are compiled in parallel by OMEdit, exploiting the power of multi-core CPUs.

	The simulation executable is started and produces the simulation results in a .mat or
.csv file. The runtime behaviour can be influenced by Simulation Flags, e.g. by choosing
specific solvers, or changing the output file name. Note that it it possible to re-simulate a model
multiple times, changing parameter values from the Variables Browser and/or changing some
Simulation Flags. In this case, only Phase 3. is repeated, skipping Phases 1. and 2., which
enables much faster iterations.

The simulation options for each model are stored inside the OMEdit data structure.
They are set according to the following sequence,

	Each model has its own translation and simulation options.

	If the model is opened for the first time then the translation and simulation options
are set to defaults, that can be customized in Tools | Options | Simulation.

	experiment, __OpenModelica_commandLineOptions and __OpenModelica_simulationFlags
annotations are applied if the model contains them.

	After that all the changes done via Simulation Setup window for a certain model are
preserved for the whole session. If you want to use the same settings in
future sessions then you should store them inside experiment, __OpenModelica_commandLineOptions, and __OpenModelica_simulationFlags
annotations.

The OMEdit Simulation Setup can be launched by,

	Selecting Simulation > Simulation Setup from the menu. (requires a
model to be active in ModelWidget)

	Clicking on the Simulation Setup toolbar button. (requires a model to
be active in ModelWidget)

	Right clicking the model from the Libraries Browser and choosing
Simulation Setup.

General

	Simulation Interval

	Start Time – the simulation start time.

	Stop Time – the simulation stop time.

	Number of Intervals – the simulation number of intervals.

	Interval – the length of one interval (i.e., stepsize)

	Integration

	Method – the simulation solver. See section Integration Methods for solver details.

	Tolerance – the simulation tolerance.

	Jacobian - the jacobian method to use.

	DASSL/IDA Options

	Root Finding - Activates the internal root finding procedure of dassl.

	Restart After Event - Activates the restart of dassl after an event is performed.

	Initial Step Size

	Maximum Step Size

	Maximum Integration Order

	C/C++ Compiler Flags (Optional) – the optional C/C++ compiler flags.

	Number of Processors – the number of processors used to build the simulation.

	Build Only – only builds the class.

	Launch Transformational Debugger – launches the transformational debugger.

	Launch Algorithmic Debugger – launches the algorithmic debugger.

	Launch Animation – launches the 3d animation window.

Interactive Simulation

	Simulate with steps (makes the interactive simulation synchronous; plots nicer curves at the expense of performance)

	Simulation server port

Translation Flags

Simulation Flags

	Model Setup File (Optional) – specifies a new setup XML file to the generated simulation code.

	Initialization Method (Optional) – specifies the initialization method.

	Equation System Initialization File (Optional) – specifies an
external file for the initialization of the model.

	Equation System Initialization Time (Optional) – specifies a time
for the initialization of the model.

	Clock (Optional) – the type of clock to use.

	Linear Solver (Optional) – specifies the linear solver method.

	Non Linear Solver (Optional) – specifies the nonlinear solver.

	Linearization Time (Optional) – specifies a time where the
linearization of the model should be performed.

	Output Variables (Optional) – outputs the variables a, b and c at
the end of the simulation to the standard output.

	Profiling – creates a profiling HTML file.

	CPU Time – dumps the cpu-time into the result file.

	Enable All Warnings – outputs all warnings.

	Logging (Optional)

	stdout - standard output stream. This stream is always active, can be disabled with -lv=-stdout

	assert - This stream is always active, can be disabled with -lv=-assert

	LOG_DASSL - additional information about dassl solver.

	LOG_DASSL_STATES - outputs the states at every dassl call.

	LOG_DEBUG - additional debug information.

	LOG_DSS - outputs information about dynamic state selection.

	LOG_DSS_JAC - outputs jacobian of the dynamic state selection.

	LOG_DT - additional information about dynamic tearing.

	LOG_DT_CONS - additional information about dynamic tearing (local and global constraints).

	LOG_EVENTS - additional information during event iteration.

	LOG_EVENTS_V - verbose logging of event system.

	LOG_INIT - additional information during initialization.

	LOG_IPOPT - information from Ipopt.

	LOG_IPOPT_FULL - more information from Ipopt.

	LOG_IPOPT_JAC - check jacobian matrix with Ipopt.

	LOG_IPOPT_HESSE - check hessian matrix with Ipopt.

	LOG_IPOPT_ERROR - print max error in the optimization.

	LOG_JAC - outputs the jacobian matrix used by dassl.

	LOG_LS - logging for linear systems.

	LOG_LS_V - verbose logging of linear systems.

	LOG_NLS - logging for nonlinear systems.

	LOG_NLS_V - verbose logging of nonlinear systems.

	LOG_NLS_HOMOTOPY - logging of homotopy solver for nonlinear systems.

	LOG_NLS_JAC - outputs the jacobian of nonlinear systems.

	LOG_NLS_JAC_TEST - tests the analytical jacobian of nonlinear systems.

	LOG_NLS_RES - outputs every evaluation of the residual function.

	LOG_NLS_EXTRAPOLATE - outputs debug information about extrapolate process.

	LOG_RES_INIT - outputs residuals of the initialization.

	LOG_RT - additional information regarding real-time processes.

	LOG_SIMULATION - additional information about simulation process.

	LOG_SOLVER - additional information about solver process.

	LOG_SOLVER_V - verbose information about the integration process.

	LOG_SOLVER_CONTEXT - context information during the solver process.

	LOG_SOTI - final solution of the initialization.

	LOG_STATS - additional statistics about timer/events/solver.

	LOG_STATS_V - additional statistics for LOG_STATS.

	LOG_SUCCESS - This stream is always active, can be disabled with -lv=-LOG_SUCCESS.

	LOG_UTIL.

	LOG_ZEROCROSSINGS - additional information about the zerocrossings.

	Additional Simulation Flags (Optional) – specify any other simulation flag.

Output

	Output Format – the simulation result file output format.

	Single Precision - Output results in single precision (only for mat output format).

	File Name Prefix (Optional) – the name is used as a prefix for the output files.

	Result File (Optional) - the simulation result file name.

	Variable Filter (Optional)

	Protected Variables – adds the protected variables in result file.

	Equidistant Time Grid – output the internal steps given by dassl instead of interpolating results into an equidistant time grid as given by stepSize or numberOfIntervals

	Store Variables at Events – adds the variables at time events.

	Show Generated File – displays the generated files in a dialog box.

Archived Simulations

Shows the list of simulations already finished or running.
Double clicking on any of them opens the simulation output window.

2D Plotting

Successful simulation of model produces the result file which contains
the instance variables that are candidate for plotting. Variables
Browser will show the list of such instance variables. Each variable has
a checkbox, checking it will plot the variable. See Figure 11.
To get several plot windows tiled horizontally or vertically use the
menu items Tile Windows Horizontally or Tile Windows Vertically under View Menu.

Types of Plotting

The plotting type depends on the active Plot Window. By default the
plotting type is Time Plot.

Time Plot

Plots the variable over the simulation time. You can have multiple Time
Plot windows by clicking on New Plot Window toolbar button ([image: OMEdit New Plot Window Icon]).

Plot Parametric

Draws a two-dimensional parametric diagram, between variables x and y,
with y as a function of x. You can have multiple Plot Parametric
windows by clicking on the New Plot Parametric toolbar button ([image: OMEdit New Parametric Plot Window Icon]).

Array Plot

Plots an array variable so that the array elements' indexes are on the x-axis and corresponding
elements' values are on the y-axis. The time is controlled by the slider above the variable tree.
When an array is present in the model, it has a principal array node in the variable tree.
To plot this array as an Array Plot, match the principal node. The principal node may be expanded
into particular array elements. To plot a single element in the Time Plot, match the element.
A new Array Plot window is opened using the New Array Plot Window toolbar button ([image: OMEdit New Array Plot Window Icon]).

Array Parametric Plot

Plots the first array elements' values on the x-axis versus the s