OpenModelica User’s Guide
Release v1.17.0-dev.beta1-4-g4f5f96201be

Open Source Modelica Consortium

Feb 25, 2021

1 Introduction

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
221
222
2.23
2.24
2.25
2.26
227
2.28
2.29

3.1
3.2

4.1
4.2

System Overview
Interactive Session with Examples
Summary of Commands for the Interactive Session Handler
Running the compiler from command line

OMEdit — OpenModelica Connection Editor

Starting OMEdit
MainWindow & Browsers
Perspectives oL
FileMenu.
EditMenu
ViewMenu,
SimulationMenu
DebugMenu
SSPMenu
Sensitivity Optimization Menu
ToolsMenu
HelpMenu

Modeling a Model
Simulating a Model

2DPlotting oo
Re-simulating a Model
3D Visualization
Animation of Realtime FMUs
Interactive Simulation
How to Create User Defined Shapes — Icons
Global head section in documentation
Options i
__OpenModelica_commandLineOptions Annotation
__OpenModelica_simulationFlags Annotation
Debugger L.
Editing Modelica Standard Library
State Machines
Using OMEdit as Text Editor
Temporary Directory, Log Files and Working Directory

2D Plotting
Example,
Plot Command Interface

Solving Modelica Models
Integration Methods
DAE Mode Simulation

CONTENTS

10

11

12

13

14

15

4.3 Initialization o e e e e e e e e e e

4.4 Algebraic SOIVers L e e e e e e e e
Debugging

5.1 The Equation-based Debugger
5.2 The Algorithmic Debugger e e e e e

Generating Graph Representations for Models

FMI and TLM-Based Simulation and Co-simulation of External Models

7.1 Functional Mock-up Interface -FMI
7.2 Transmission Line Modeling (TLM) Based Co-Simulation
7.3 Composite Model Editing of External Models

OMSimulator

8.1 Introduction e e e e
8.2 OMSIMUIAtor e e e e e e e e e e e e e
8.3 OMSimulatorLib L e e e e e e e
84 OMSimulatorLua. o e e e e e e e
8.5 OMSimulatorPython e
8.6 OpenModelicaScripting ot i e e e e e
8.7 Graphical Modelling e e e e e e e e e e
8.8 SSP Supporto e e e e e e

System Identification
0.1 Examples e e e e e e e e e e e
9.2 Pythonand CAPL e e e

OpenModelica Encryption

10.1 Encrypting the Library o . e e e e e e e
10.2 Loading an Encrypted Library
103 NOES . . v v o o e e e e e e e e e e

OMNotebook with DrModelica and DrControl

11.1 Interactive Notebooks with Literate Programming
11.2 DrModelica Tutoring System — an Application of OMNotebook
11.3 DrControl Tutorial for Teaching Control Theory
11.4 OpenModelica Notebook Commands
I1.5 References e

Optimization with OpenModelica

12.1 Builtin Dynamic Optimization with OpenModelica and IpOpt
12.2 Compiling the Modelicacode i e
123 AnExample L e e e e
12.4 Different Options for the Optimizer IPOPT
12.5 Dynamic Optimization with OpenModelica and CasADi
12.6 Parameter Sweep Optimization using OMOptim

Parameter Sensitivities with OpenModelica
13.1 Single Parameter sensitivities with IDA/Sundials
13.2 Single and Multi-parameter sensitivities withOMSens

PDEModelical

14.1 PDEModelical languageelements L e
142 Limitations o o v e e e e e e e e e e e e e e e e e
143 Viewingresults o o o e e e e e e e e e e e

MDT - The OpenModelica Development Tooling Eclipse Plugin
I5.1 Introduction v i i e e e e e e e e e e e e e e e e e
15.2 Installation o o i e e e e e e e e e e e e e e

81
81
84

89

91
91
95
95

111
111
111
113
129
146
163
181
185

193
193
195

203
203
203
203

205
205
206
212
222
227

229
229
229
230
232
232
237

245
245
247

261
261
262
262

16

17

18

19

20

21

22

15.3 Getting Started

MDT Debugger for Algorithmic Modelica

16.1 The Eclipse-based Debugger for Algorithmic Modelica

Modelica Performance Analyzer
17.1 Profiling information for ProfilingTest
17.2 Genenerated JSON for the Example
17.3 Using the Profiler from OMEdit

Simulation in Web Browser

Interoperability — C and Python
19.1 Calling External C functions

19.2 Calling external Python Code from a Modelica model

19.3 Calling OpenModelica from Python Code

OpenModelica Python Interface and PySimulator
20.1 OMPython — OpenModelica Python Interface

20.2 Enhanced OMPython Features
20.3 PySimulator

OMMatlab — OpenModelica Matlab Interface
21.1 Features of OMMatlab
21.2 Test Commands
21.3 WorkDirectory

21.4 BuildModel
21.5 Standard get methods
21.6 Usage of getMethods
21.7 Standard set methods
21.8 UsageofsetMethods
21.9 Advanced Simulation
21.10 Linearization
21.11 Usage of Linearization methods

OM Julia — OpenModelica Julia Scripting
22.1 Features of OMJulia
22.2 Test Commands
22.3 WorkDirectory

22.4 BuildModel
22.5 Standard get methods
22.6 Usage of getMethods
22.7 Standard set methods
22.8 Usage of setMethods
22.9 Advanced Simulation
22.10 Linearization
22.11 Usage of Linearization methods
22.12 Sensitivity Analysis
22.13 Usage

23 Jupyter-OpenModelica

24

25

Scripting API
24.1 OpenModelica Scripting Commands
24.2 Simulation Parameter Sweep
24.3 Examples

Package manager
25.1 Installing packages
25.2 How the package index works

279
279

287
288
290
291

293

295
295
296
298

301
301
304
308

309
309
309
311
311
311
311
313
314
314
315
315

317
317
317
319
319
319
319
321
321
321
322
322
322
323

325

26

27

28

29

30

31

32

OpenModelica Compiler Flags

26.1
26.2
26.3

OPLONS . . v v v e
Debug flags o L e e e e e e
Flags for Optimization Modules

Small Overview of Simulation Flags

27.1

OpenModelica (C-runtime) Simulation Flags

Technical Details

28.1

The MATv4 Result File Format e e e e e e

DataReconciliation

29.1
29.2
29.3
29.4

Defining DataReconciliation Problem in OpenModelica
DataReconcilation Support with Scripting Interface 0.
DataReconciliation Supportin OMEdit
DataReconcilation Results

Frequently Asked Questions (FAQ)

30.1
30.2
30.3

OpenModelicaGeneral e
OMNotebook o o e e e e
OMDev - OpenModelica Development Environment

Major OpenModelica Releases

31.1
31.2
31.3
31.4
31.5
31.6
31.7
31.8
31.9

Release Notes for OpenModelica 1.17.0 (Draft)
Release Notes for OpenModelica 1.16.4
Release Notes for OpenModelica 1.16.0
Release Notes for OpenModelica 1.15.0 o o o
Release Notes for OpenModelica 1.14.0
Release Notes for OpenModelica 1.13.0
Release Notes for OpenModelica 1.12.0 oo
Release Notes for OpenModelica 1.11.0 i i e e
Release Notes for OpenModelica 1.10.0 o i

31.10 Release Notes for OpenModelica 1.9.4 o
31.11 Release Notes for OpenModelica 1.9.3
31.12 Release Notes for OpenModelica 1.9.2
31.13 Release Notes for OpenModelica 1.9.1 i
31.14 Release Notes for OpenModelica 1.9.0 i
31.15 Release Notes for OpenModelica 1.8.1
31.16 OpenModelica 1.8.0, November 2011 o s
31.17 OpenModelica 1.7.0, April 2011 o . e
31.18 OpenModelica 1.6.0, November 2010 i e
31.19 OpenModelica 1.5.0, July 2010 o e e e
31.20 OpenModelica 1.4.5, January 2009 e e e
31.21 OpenModelica 1.4.4, Feb 2008 e
31.22 OpenModelica 1.4.3,June 2007 o 0 i e e e e e
31.23 OpenModelica 1.4.2, October 2006 i it e
31.24 OpenModelica 1.4.1,June 2006 o 0 i i e e e e e e e e
31.25 OpenModelica 1.4.0, May 2006 0 i i e e e e e e e e
31.26 OpenModelica 1.3.1, November 2005 e

Contributors to OpenModelica

32.1
322
323
324
325
32.6
32.7
32.8

OpenModelica Contributors 2015 e e
OpenModelica Contributors 2014 e
OpenModelica Contributors 2013 L e
OpenModelica Contributors 2012 e
OpenModelica Contributors 2011 e e e
OpenModelica Contributors 2010 e e
OpenModelica Contributors 2009 e
OpenModelica Contributors 2008 e

32.9 OpenModelica Contributors 2007 e 499

32.10 OpenModelica Contributors 2000 o 0 it e e e e e e 500
32.11 OpenModelica Contributors 2005 o o e e e e 500
32.12 OpenModelica Contributors 2004 e 501
32.13 OpenModelica Contributors 2003 501
32.14 OpenModelica Contributors 2002 o e e 502
32.15 OpenModelica Contributors 2001 o e e e e 502
32.16 OpenModelica Contributors 2000 o 0 it e e e e e e 502
32.17 OpenModelica Contributors 1999 502
32.18 OpenModelica Contributors 1998 Lo 503
Bibliography 505
Index 507

Vi

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

Generated on 2021-02-25 at 12:03
Open Source Modelica Consortium

Copyright © 1998-CurrentYear, Open Source Modelica Consortium (OSMC), c/o Linkdpings universitet, Depart-
ment of Computer and Information Science, SE-58183 Link&ping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 LICENSE OR THIS OSMC
PUBLIC LICENSE (OSMC-PL). ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS PROGRAM
CONSTITUTES RECIPIENT'S ACCEPTANCE OF THE OSMC PUBLIC LICENSE OR THE GPL VERSION
3, ACCORDING TO RECIPIENTS CHOICE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium) Public License (OSMC-PL)
are obtained from OSMC, either from the above address, from the URLs: https://www.openmodelica.org or http:
/lwww.ida.liu.se/projects/OpenModelica, and in the OpenModelica distribution. GNU version 3 is obtained from:
http://www.gnu.org/copyleft/gpl.html.

This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET FORTH
IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: https://www.openmodelica.org
Contact: OpenModelica@ida.liu.se

Modelica® is a registered trademark of the Modelica Association, https://www.Modelica.org
Mathematica® is a registered trademark of Wolfram Research Inc, http://www.wolfram.com

This users guide provides documentation and examples on how to use the OpenModelica system, both for the
Modelica beginners and advanced users.

CONTENTS 1

https://www.openmodelica.org
http://www.ida.liu.se/projects/OpenModelica
http://www.ida.liu.se/projects/OpenModelica
http://www.gnu.org/copyleft/gpl.html
https://www.openmodelica.org
mailto:OpenModelica@ida.liu.se
https://www.Modelica.org
http://www.wolfram.com

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g415f96201be

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The 0penM°de"cq system described in this document has both short-term and long-term goals:

The short-term goal is to develop an efficient interactive computational environment for the Modelica lan-
guage, as well as a rather complete implementation of the language. It turns out that with support of
appropriate tools and libraries, Modelica is very well suited as a computational language for development
and execution of both low level and high level numerical algorithms, e.g. for control system design, solving
nonlinear equation systems, or to develop optimization algorithms that are applied to complex applications.

The long-term goal is to have a complete reference implementation of the Modelica language, including
simulation of equation based models and additional facilities in the programming environment, as well
as convenient facilities for research and experimentation in language design or other research activities.
However, our goal is not to reach the level of performance and quality provided by current commercial
Modelica environments that can handle large models requiring advanced analysis and optimization by the
Modelica compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a Modelica
environment include but are not limited to the following:

Development of a complete formal specification of Modelica, including both static and dynamic semantics.
Such a specification can be used to assist current and future Modelica implementers by providing a semantic
reference, as a kind of reference implementation.

Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as modeling problems that require extensions such as partial
differential equations, enlarged scope for discrete modeling and simulation, etc.

Language design to improve abstract properties such as expressiveness, orthogonality, declarativity, reuse,
configurability, architectural properties, etc.

Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by gen-
erating code for parallel hardware.

Improved debugging support for equation based languages such as Modelica, to make them even easier to
use.

Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.
Visualization and animation techniques for interpretation and presentation of results.

Application usage and model library development by researchers in various application areas.

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be submit-
ted to the Modelica Association for consideration regarding possible inclusion in the official Modelica standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and function
parts of Modelica to be executed interactively, as well as equation models and Modelica functions to be compiled
into efficient C code. The generated C code is combined with a library of utility functions, a run-time library, and
a numerical DAE solver.

https://openmodelica.org

OpenModelica User’s Guide, Release v1.17.0-dev.betal-4-g4f5f96201be

1.1 System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1.1.

MDT Eclipse Plugir

Editor/Browser

GraphicalModel
Editor/Browser

3
OMODfi Interactive t
ptim sessionhandler
Optimization —— Mo-gee)l(téglitor
Subsystem
OMNotebook _
DrModelica Execution Model_lca
Model Editor Compiler
Modelica
Debugger

Figure 1.1: The architecture of the OpenModelica environment. Arrows denote data and control flow. The inter-
active session handler receives commands and shows results from evaluating commands and expressions that are
translated and executed. Several subsystems provide different forms of browsing and textual editing of Modelica
code. The debugger currently provides debugging of an extended algorithmic subset of Modelica.

The following subsystems are currently integrated in the OpenModelica environment:

* An interactive session handler, that parses and interprets commands and Modelica expressions for evalua-
tion, simulation, plotting, etc. The session handler also contains simple history facilities, and completion of
file names and certain identifiers in commands.

A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing definitions
of classes, functions, and variables. Such definitions can be predefined, user-defined, or obtained from
libraries. The compiler also includes a Modelica interpreter for interactive usage and constant expression
evaluation. The subsystem also includes facilities for building simulation executables linked with selected
numerical ODE or DAE solvers.

An execution and run-time module. This module currently executes compiled binary code from translated
expressions and functions, as well as simulation code from equation based models, linked with numerical
solvers. In the near future event handling facilities will be included for the discrete and hybrid parts of the
Modelica language.

Eclipse plugin editor/browser. The Eclipse plugin called MDT (Modelica Development Tooling) provides
file and class hierarchy browsing and text editing capabilities, rather analogous to previously described
Emacs editor/browser. Some syntax highlighting facilities are also included. The Eclipse framework has
the advantage of making it easier to add future extensions such as refactoring and cross referencing support.

OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor, compared
to the more advanced Mathematica notebooks available in MathModelica. This basic functionality still
allows essentially the whole DrModelica tutorial to be handled. Hierarchical text documents with chapters
and sections can be represented and edited, including basic formatting. Cells can contain ordinary text
or Modelica models and expressions, which can be evaluated and simulated. However, no mathematical
typesetting facilities are yet available in the cells of this notebook editor.

Graphical model editor/browser OMEdit. This is a graphical connection editor, for component based model
design by connecting instances of Modelica classes, and browsing Modelica model libraries for reading and
picking component models. The graphical model editor also includes a textual editor for editing model class
definitions, and a window for interactive Modelica command evaluation.

Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

* Optimization subsystem OMOptim. This is an optimization subsystem for OpenModelica, currently for
design optimization choosing an optimal set of design parameters for a model. The current version has a
graphical user interface, provides genetic optimization algorithms and Pareto front optimization, works in-
tegrated with the simulators and automatically accesses variables and design parameters from the Modelica
model.

* Dynamic Optimization subsystem. This is dynamic optimization using collocation methods, for Model-
ica models extended with optimization specifications with goal functions and additional constraints. This
subsystem is integrated with in the OpenModelica compiler.

* Modelica equation model debugger. The equation model debugger shows the location of an error in the
model equation source code. It keeps track of the symbolic transformations done by the compiler on the
way from equations to low-level generated C code, and also explains which transformations have been done.

* Modelica algorithmic code debugger. The algorithmic code Modelica debugger provides debugging for an
extended algorithmic subset of Modelica, excluding equation-based models and some other features, but in-
cluding some meta-programming and model transformation extensions to Modelica. This is a conventional
full-feature debugger, using Eclipse for displaying the source code during stepping, setting breakpoints, etc.
Various back-trace and inspection commands are available. The debugger also includes a data-view browser
for browsing hierarchical data such as tree- or list structures in extended Modelica.

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenModelica environment,
called OMShell — the OpenModelica Shell). Most of these examples are also available in the OMNotebook with
DrModelica and DrControl UsersGuideExamples.onb as well as the testmodels in:

>>> getInstallationDirectoryPath() + "/share/doc/omc/testmodels/"
"«OPENMODELICAHOME»/share/doc/omc/testmodels/"

The following commands were run using OpenModelica version:

>>> getVersion ()
"OMCompiler v1.17.0-dev.betal.4+g4f5£96201be"

1.2.1 Starting the Interactive Session

The Windows version which at installation is made available in the start menu as OpenModelica->OpenModelica
Shell which responds with an interaction window:

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be stored in
the variable x. The value of the expression is returned.

>>> x = 1:12
{1,2,3,4,5,6,7,8,9,10,11,12}

1.2.2 Using the Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one can make load classes and execute
commands. Here we give a few example sessions.

1.2. Interactive Session with Examples 5

OpenModelica User’s Guide, Release v1.17.0-dev.betal-4-g4f5f96201be

Example Session 1

>>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type
{A}
>>> instantiateModel (&)

nn

"[<interactive>:1:9-1:23:writable] Error: Type mismatch in binding t = 1.5

[

—expected subtype of Integer, got type Real.

n

Example Session 2

If you do not see the error-message when running the example, use the command getErrorString ().

model C
Integer a;
Real b;
equation
der(a) = b; // der(a) is illegal since a 1is not a Real number
der (b) 12.0;
end C;

>>> instantiateModel (C)
"class C
Integer a;

Real Db;

equation
der (/*Realx/(a)) = b;
der (b) = 12.0;

end C;

n

1.2.3 Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly giving the
command:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—bubblesort.mo")
true

The function bubblesort is called below to sort the vector x in descending order. The sorted result is returned to-
gether with its type. Note that the result vector is of type Real[:], instantiated as Real[12], since this is the declared
type of the function result. The input Integer vector was automatically converted to a Real vector according to
the Modelica type coercion rules. The function is automatically compiled when called if this has not been done
before.

>>> bubblesort (x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

>>> bubblesort ({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

6 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

1.2.4 Trying the system and cd Commands

It is also possible to give operating system commands via the system utility function. A command is provided as
a string argument. The example below shows the system utility applied to the UNIX command cat, which here
outputs the contents of the file bubblesort.mo to the output stream when running omc from the command-line.

>>> gystem("cat '"+getInstallationDirectoryPath()+"/share/doc/omc/testmodels/
—bubblesort.mo' > bubblesort.mo")
0

function bubblesort

input Real[:] x;

output Real[size(x,1)] y;
protected

Real t;
algorithm

Yy T X

for i in l:size(x,1l) loop

for j in 1l:size(x,1) loop
if y[i] > yI[J] then

t o= ylil;
y[i] = y[31;
yI[3l = t;
end if;
end for;
end for;

end bubblesort;

Note: The output emitted into stdout by system commands is put into log-files when running the CORBA-based
clients, not into the visible GUI windows. Thus the text emitted by the above cat command would not be returned,
which is why it is redirected to another file.

A better way to read the content of files would be the readFile command:

>>> readFile ("bubblesort.mo")
function bubblesort

input Real[:] x;

output Real[size(x,1)] vy;
protected

Real t;
algorithm

y 1= X

for i in 1l:size(x,1) loop

for j in 1l:size(x,1) loop
if y[i] > y[Jj] then

t o= ylil;
yl[il = y[3];
yI[3l = t;
end if;
end for;
end for;

end bubblesort;

The system command only returns a success code (0 = success).

>>> sgystem("dir")

0

>>> system("Non-existing command")
127

Another built-in command is cd, the change current directory command. The resulting current directory is returned
as a string.

1.2. Interactive Session with Examples 7

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

>>> dir:=cd ()

"«DOCHOME»"

>>> cd("source")

"«DOCHOME»/source"

>>> cd(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/")
"/var/lib/jenkins/ws/OpenModelica_maintenance_vl.17/build/share/doc/omc/testmodels"
>>> cd(dir)

"«DOCHOME»"

1.2.5 Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also can be done through the File->Load
Modelica Library menu item:

>>> loadModel (Modelica)
true

We also load a file containing the decmotor model:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/dcmotor.mo
<y ")

true

Note:

Notification: demotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

It is simulated:

>>> gimulate (dcmotor, startTime=0.0, stopTime=10.0)
record SimulationResult

resultFile = "«DOCHOME»/dcmotor_ res.mat",

simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500,
— tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'dcmotor', options = '', |
—outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.399961022,
timeBackend = 0.008399071000000001,
timeSimCode .002379929,
timeTemplates = 0.004106551,
timeCompile = 0.425718495,
timeSimulation = 0.0227980069999999,
timeTotal = 0.863482148

end SimulationResult;

0
0

Note:

Notification: demotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

‘We list the source code of the model:

>>> list (dcmotor)
model dcmotor

(continues on next page)

8 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

(continued from previous page)

import Modelica.Electrical.Analog.Basic;

Basic.Resistor resistorl (R = 10);

Basic.Inductor inductorl(L = 0.2, i.fixed = true);

Basic.Ground groundl;

Modelica.Mechanics.Rotational.Components.Inertia load(J = 1, phi.fixed = true, w.
—~fixed = true);

Basic.EMF emfl(k = 1.0);

Modelica.Blocks.Sources.Step stepl;

Modelica.Electrical.Analog.Sources.SignalVoltage signalVoltagel;

equation

connect (stepl.y, signalVoltagel.v);
connect (signalVoltagel.p, resistorl.p);
connect (resistorl.n, inductorl.p);
connect (inductorl.n, emfl.p);
connect (emfl.flange, load.flange_a);
connect (signalVoltagel.n, groundl.p);
connect (groundl.p, emfl.n);
annotation (

uses (Modelica (version = "3.2.2")));

end dcmotor;

‘We test code instantiation of the model to flat code:

>>> instantiateModel (dcmotor)
class dcmotor

parameter Real resistorl.R(quantity = "Resistance", unit = "Ohm", start = 1.0) =
—10.0 "Resistance at temperature T_ref";

parameter Real resistorl.T_ref (quantity = "ThermodynamicTemperature", unit = "K",
— displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = 300.15
—"Reference temperature";

parameter Real resistorl.alpha(quantity = "LinearTemperatureCoefficient", unit =
—"1/K") = 0.0 "Temperature coefficient of resistance (R_actual = Rx (1 + alphax (T_
—heatPort - T_ref))";

Real resistorl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of |
—the two pins (= p.v - n.v)";

Real resistorl.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from_
—pin p to pin n";

Real resistorl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real resistorl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing
—into the pin";

Real resistorl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real resistorl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing,
—into the pin";

final parameter Boolean resistorl.useHeatPort = false "=true, if heatPort is_
—~enabled";

parameter Real resistorl.T(quantity = "ThermodynamicTemperature", unit = "K",
—~displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = resistorl.T_
—ref "Fixed device temperature if useHeatPort = false";

Real resistorl.LossPower (quantity = "Power", unit = "W") "Loss power leaving,
—component via heatPort";

Real resistorl.T_heatPort (quantity = "ThermodynamicTemperature", unit = "K", |
—displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) "Temperature
—~of heatPort";

Real resistorl.R_actual (quantity = "Resistance", unit = "Ohm") "Actual_
—resistance = Rx (1l + alphax (T_heatPort - T_ref))";

Real inductorl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of_
—the two pins (= p.v - n.v)";

Real inductorl.i(quantity = "ElectricCurrent", unit = "A", start = 0.0, fixed =

—true) "Current flowing from pin p to pin n";

(continues on next page)

1.2. Interactive Session with Examples 9

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

(continued from previous page)

Real inductorl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real inductorl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing_
—into the pin";

Real inductorl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real inductorl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing
—into the pin";

parameter Real inductorl.L(quantity = "Inductance", unit = "H", start = 1.0) = 0.
—2 "Inductance";

Real groundl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real groundl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into,
—the pin";

Real load.flange_a.phi (quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real load.flange_a.tau(gquantity = "Torque", unit = "N.m") "Cut torque in the_
—flange";

Real load.flange_b.phi(quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real load.flange_b.tau(quantity = "Torque", unit = "N.m") "Cut torque in the_
—flange";

parameter Real load.J(quantity = "MomentOfInertia", unit = "kg.m2", min = 0.0,
—start = 1.0) = 1.0 "Moment of inertia";

final parameter enumeration (never, avoid, default, prefer, always) load.
—stateSelect = StateSelect.default "Priority to use phi and w as states";

Real load.phi(quantity = "Angle", unit = "rad", displayUnit = "deg", fixed =
—true, stateSelect = StateSelect.default) "Absolute rotation angle of component";

Real load.w(quantity = "AngularVelocity", unit = "rad/s", fixed = true,
—stateSelect = StateSelect.default) "Absolute angular velocity of component (=
—der (phi))";

Real load.a(quantity = "AngularAcceleration", unit = "rad/s2") "Absolute angular,
—acceleration of component (= der(w))";

final parameter Boolean emfl.useSupport = false "= true, if support flange_
—enabled, otherwise implicitly grounded";

parameter Real emfl.k(quantity = "ElectricalTorqueConstant", unit = "N.m/A",
—~start = 1.0) = 1.0 "Transformation coefficient";

Real emfl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop between_
—the two pins";

Real emfl.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from,
—positive to negative pin";

Real emfl.phi (quantity = "Angle", unit = "rad", displayUnit = "deg") "Angle of |
—shaft flange with respect to support (= flange.phi - support.phi)";

Real emfl.w(quantity = "AngularVelocity", unit = "rad/s") "Angular velocity of
—flange relative to support";

Real emfl.tau(quantity = "Torque", unit = "N.m") "Torque of flange";

Real emfl.tauElectrical (quantity = "Torque", unit = "N.m") "Electrical torque";

Real emfl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";

Real emfl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into
—the pin";

Real emfl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";

Real emfl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into
—the pin";

Real emfl.flange.phi(quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real emfl.flange.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange
=";

protected parameter Real emfl.fixed.phiO (quantity = "Angle", unit = "rad",_
—displayUnit = "deg") = 0.0 "Fixed offset angle of housing";

protected Real emfl.fixed.flange.phi (quantity = "Angle", unit = "rad",
—displayUnit = "deg") "Absolute rotation angle of flange";

(continues on next page)

10 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

(continued from previous page)

protected Real emfl.fixed.flange.tau(quantity = "Torque", unit = "N.m") "Cut_
—torque in the flange";

protected Real emfl.internalSupport.tau(quantity = "Torque", unit = "N.m") = -
—emfl.tau "External support torque (must be computed via torque balance in model_
—where InternalSupport is used; = flange.tau)";

protected Real emfl.internalSupport.phi(quantity = "Angle", unit = "rad",
—displayUnit = "deg") "External support angle (= flange.phi)";

protected Real emfl.internalSupport.flange.phi (quantity = "Angle", unit = "rad",
—displayUnit = "deg") "Absolute rotation angle of flange";

protected Real emfl.internalSupport.flange.tau(quantity = "Torque", unit = "N.m
—") "Cut torque in the flange";

parameter Real stepl.height = 1.0 "Height of step";
Real stepl.y "Connector of Real output signal";
parameter Real stepl.offset = 0.0 "Offset of output signal y";

parameter Real stepl.startTime (quantity = "Time", unit = "s") = 0.0 "Output y =,
—~offset for time < startTime";

Real signalVoltagel.p.v(quantity = "ElectricPotential", unit = "V") "Potential,
—at the pin";

Real signalVoltagel.p.i(quantity = "ElectricCurrent"”, unit = "A") "Current,_

—flowing into the pin";

Real signalVoltagel.n.v(quantity = "ElectricPotential", unit = "V") "Potential
—at the pin";

Real signalVoltagel.n.i(quantity = "ElectricCurrent"”, unit = "A") "Current
—~flowing into the pin";

Real signalVoltagel.v(unit = "V") "Voltage between pin p and n (= p.v — n.v) as,
—input signal";

Real signalVoltagel.i(quantity = "ElectricCurrent", unit = "A") "Current flowing_

—from pin p to pin n";
equation
emfl.internalSupport.flange.phi = emfl.fixed.flange.phi;
stepl.y = signalVoltagel.v;
signalVoltagel.p.v = resistorl.p.v;
resistorl.n.v = inductorl.p.v;
inductorl.n.v = emfl.p.v;
emfl.flange.phi = load.flange_a.phi;
groundl.p.v = emfl.n.v;
groundl.p.v = signalVoltagel.n.v;
inductorl.p.i + resistorl.n.i = 0.0;
emfl.p.i + inductorl.n.i = 0.0;
load.flange_b.tau = 0.0;
emfl.flange.tau + load.flange_a.tau = 0.0;
emfl.internalSupport.flange.tau + emfl.fixed.flange.tau = 0.0;
signalVoltagel.p.1i + resistorl.p.i = 0.0;
signalVoltagel.n.i + emfl.n.i + groundl.p.i = 0.0;
assert (1.0 + resistorl.alpha * (resistorl.T_heatPort - resistorl.T_ref) >= le-15,
— "Temperature outside scope of model!");
resistorl.R_actual = resistorl.R % (1.0 + resistorl.alpha * (resistorl.T_
—heatPort - resistorl.T_ref));
resistorl.v = resistorl.R_actual *» resistorl.i;
resistorl.LossPower = resistorl.v * resistorl.i;
resistorl.T_heatPort = resistorl.T;
resistorl.v = resistorl.p.v - resistorl.n.v;
0.0 = resistorl.p.i + resistorl.n.i;
resistorl.i = resistorl.p.i;
inductorl.L % der (inductorl.i) = inductorl.v;
inductorl.v = inductorl.p.v - inductorl.n.v;
0.0 = inductorl.p.i + inductorl.n.i;
inductorl.i = inductorl.p.i;
groundl.p.v = 0.0;
load.phi = load.flange_a.phi;
load.phi = load.flange_b.phi;

(continues on next page)

1.2. Interactive Session with Examples 11

OpenModelica User’s Guide, Release v1.17.0-dev.betal-4-g4f5f96201be

(continued from previous page)

load.w = der(load.phi);

load.a = der(load.w);

load.J % load.a = load.flange_a.tau + load.flange_b.tau;
emfl.fixed.flange.phi = emfl.fixed.phiO;
emfl.internalSupport.flange.tau = emfl.internalSupport.tau;
emfl.internalSupport.flange.phi = emfl.internalSupport.phi;
emfl.v = emfl.p.v — emfl.n.v;

0.0 = emfl.p.i + emfl.n.i;

emfl.i = emfl.p.1i;

emfl.phi = emfl.flange.phi - emfl.internalSupport.phi;
emfl.w = der (emfl.phi);

emfl.k » emfl.w = emfl.v;
emfl.tau = -emfl.k » emfl.i;
emfl.tauElectrical = -emfl.tau;

emfl.tau = emfl.flange.tau;
stepl.y = stepl.offset + (if time < stepl.startTime then 0.0 else stepl.height);
signalVoltagel.v = signalVoltagel.p.v - signalVoltagel.n.v;
0.0 = signalvVoltagel.p.i + signalVoltagel.n.i;
signalVoltagel.i = signalVoltagel.p.i;
end dcmotor;

Note:

Notification: dcmotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

We plot part of the simulated result:

T
load.w
load.phi

15 1

0.5]

Figure 1.2: Rotation and rotational velocity of the DC motor

12 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

1.2.6 The val() function

The val(variableName,time) scription function can be used to retrieve the interpolated value of a simulation result
variable at a certain point in the simulation time, see usage in the BouncingBall simulation below.

1.2.7 BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica
keywords have been bold-faced by hand for better readability):

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")
true

>>> list (BouncingBall)
model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";
Real v (fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";
Boolean impact;
Real v_new(fixed = true);
Integer foo;
equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der (v) = if flying then -g else 0;
der (h) = v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new = if edge (impact) then -e » pre(v) else 0;
flying = v_new > 0O;
reinit (v, v_new);
end when;
end BouncingBall;

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos (Modelica script)
file sim_BouncingBall.mos that contains these commands:

>>> writeFile("sim_BouncingBall.mos", "

loadFile (getInstallationDirectoryPath() + \"/share/doc/omc/testmodels/
—BouncingBall.mo\");

simulate (BouncingBall, stopTime=3.0);

/* plot ({h, flying}); =/
")
true
>>> runScript ("sim_BouncingBall.mos")
"true
record SimulationResult

resultFile = \"«DOCHOME»/BouncingBall_res.mat\",

simulationOptions = \"startTime = 0.0, stopTime = 3.0, numberOfIntervals = 500,
— tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'BouncingBall', options =
—''", outputFormat = 'mat', variableFilter = '.%', cflags = '', simflags = ''\",

messages = \"LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.
\"I

timeFrontend = 0.0006570640000000001,

timeBackend = 0.003309454,

timeSimCode = 0.00102819,

timeTemplates = 0.004248407,

(continues on next page)

1.2. Interactive Session with Examples 13

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

(continued from previous page)

timeCompile = 0.408605774,
timeSimulation = 0.020933887,
timeTotal = 0.438890568

end SimulationResult;

"

model Switch
Real v;
Real i;
Real i1l;
Real itot;
Boolean open;
equation
itot = 1i + 1i1;
if open then
v = 0;
else
i = 0;
end if;
1 - 11 = 0;
1 - v -1 = 0;
open = time >= 0.5;
end Switch;

>>> simulate (Switch, startTime=0, stopTime=1)
record SimulationResult

resultFile = "«DOCHOME»/Switch_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOflIntervals = 500,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'Switch', options = "',
—outputFormat = 'mat', variableFilter '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.000549331,

timeBackend = 0.0055864,
timeSimCode = 0.0009715640000000001,
timeTemplates = 0.003721167,

timeCompile = 0.391136902,
timeSimulation = 0.022884991,
timeTotal = 0.424946967

end SimulationResult;

Retrieve the value of itot at time=0 using the val(variableName, time) function:

>>> val (itot, 0)
1.0

Plot itot and open:

We note that the variable open switches from false (0) to true (1), causing itot to increase from 1.0 to 2.0.

14 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

2 T T T T .
itot
open
15 F b
1
0.5 i
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Figure 1.3: Plot when the switch opens
1.2.8 Clear All Models
Now, first clear all loaded libraries and models:
>>> clear ()
true
List the loaded models — nothing left:
>>> list ()
nmnn
1.2.9 VanDerPol Model and Parametric Plot
We load another model, the VanDerPol model (or via the menu File->Load Model):
>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/VanDerPol.
—mo")
true
It is simulated:
>>> simulate (VanDerPol, stopTime=80)
record SimulationResult
resultFile = "«DOCHOME»/VanDerPol_res.mat",
simulationOptions = "startTime = 0.0, stopTime = 80.0, numberOfIntervals = 500,
— tolerance = le-06, method = 'dassl', fileNamePrefix = 'VanDerPol', options = "'
— outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",
messages = "LOG_SUCCESS | info | The initialization finished
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
4

timeFrontend = 0.0004921940000000001,
timeBackend = 0.001914645,
timeSimCode .0005192850000000001,
timeTemplates = 0.003119738,
timeCompile = 0.419567816,

0
0

(continues on next page)

1.2. Interactive Session with Examples 15

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

(continued from previous page)

timeSimulation = 0.021618643,
timeTotal = 0.447331578
end SimulationResult;

It is plotted:

>>> plotParametric("x","y")

2.5 T T T T T T T T T

2 b -
15 1

1k -
0.5 1

> 0Fr .

-0.5
1k i
-1.5

2k i

2.5 ! ! ! ! ! ! ! ! !
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Figure 1.4: VanDerPol plotParametric(x,y)

Perform code instantiation to flat form of the VanDerPol model:

>>> instantiateModel (VanDerPol)
class VanDerPol "Van der Pol oscillator model"
Real x(start = 1.0, fixed = true);

Real y(start = 1.0, fixed = true);
parameter Real lambda = 0.3;
equation
der (x) = y;
der(y) = (-x) + lambda * (1.0 — x % x) * y;

end VanDerPol;

1.2.10 Using Japanese or Chinese Characters

Japenese, Chinese, and other kinds of UniCode characters can be used within quoted (single quote) identifiers, see
for example the variable name to the right in the plot below:

16 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

File Edit Special

Plot by OpenModelica
1.0f i i 1 &= =

g.8r }

0.6 }

0.0

0,0 0.3 1.0 1.2 2.0 2.2

1.2.11 Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation at each line into OMShell requires
copy-paste as one operation from another document):

>>> k := 0;

>>> for 1 in 1:1000 loop
k := k + 1i;

end for;

>>> k

500500

A nested loop summing reals and integers:

>>> g := 0.0;
>>> h := 5;
>>> for i in {23.0,77.12,88.23} loop
for j in 1i:0.5:(i+1l) loop
g =g+ 3J;
g := g+ h / 2;
end for;
h :=h + g;
end for;

By putting two (or more) variables or assignment statements separated by semicolon(s), ending with a variable,
one can observe more than one variable value:

>>> h; g
1997.45
1479.09

A for-loop with vector traversal and concatenation of string elements:

>>> j.="";
>>> 1lst := {"Here ", "are ","some ","strings."};
>>> g = "";

>>> for i in lst loop

(continues on next page)

1.2. Interactive Session with Examples 17

OpenModelica User’s Guide, Release v1.17.0-dev.betal-4-g4f5f96201be

(continued from previous page)

s := s + 1ij
end for;
>>> 5

"Here are some strings."

Normal while-loop with concatenation of 10 "abc " strings:

>>> g:="";
>>> i:=1;
>>> while i<=10 loop
s:="abc "+s;
i:=1i+1;
end while;
>>> 3
"abc abc abc abc abc abc abc abc abc abc "

A simple if-statement. By putting the variable last, after the semicolon, its value is returned after evaluation:

>>> if 5>2 then a := 77; end if; a
77

An if-then-else statement with elseif"

>>> if false then

a := 5;
elseif a > 50 then
b:= "test"; a:= 100;
else
a:=34;
end if;

Take a look at the variables a and b:

>>> a;b
100
"test"

1.2.12 Variables, Functions, and Types of Variables

Assign a vector to a variable:

>>> ga:=1:5
{1,2,3,4,5}

Type in a function:

function mySqr
input Real x;
output Real y;

algorithm
ViI=X*X;

end mySqr;

Call the function:

>>> b:i=mySqr (2)
4.0

Look at the value of variable a:

18 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

>>> a
{1,2,3,4,5}

Look at the type of a:

>>> typeOf (a)
"Integer[5]"

Retrieve the type of b:

>>> typeOf (b)
"Real "

What is the type of mySqr? Cannot currently be handled.

>>> typeOf (mySqgr)

List the available variables:

>>> listVariables ()
{b,a,s,1lst,i,h,g,k,currentSimulationResult}

Clear again:

>>> clear ()
true

1.2.13 Getting Information about Error Cause

Call the function getErrorString() in order to get more information about the error cause after a simulation failure:

>>> getErrorString()

1.2.14 Alternative Simulation Output Formats

There are several output format possibilities, with mat being the default. plt and mat are the only formats that
allow you to use the val() or plot() functions after a simulation. Compared to the speed of plt, mat is roughly 5
times for small files, and scales better for larger files due to being a binary format. The csv format is roughly twice
as fast as plt on data-heavy simulations. The plt format allocates all output data in RAM during simulation, which
means that simulations may fail due applications only being able to address 4GB of memory on 32-bit platforms.
Empty does no output at all and should be by far the fastest. The csv and plt formats are suitable when using an
external scripts or tools like gnuplot to generate plots or process data. The mat format can be post-processed in
MATLAB or Octave.

>>> simulate (...
>>> simulate (...

(
(
(
(

outputFormat="mat")
outputFormat="csv")
outputFormat="plt")
outputFormat="empty")

>>> simulate (...
>>> simulate (...

~ S~ S~ 0~

It is also possible to specify which variables should be present in the result-file. This is done by using POSIX
Extended Regular Expressions. The given expression must match the full variable name (* and $ symbols are
automatically added to the given regular expression).

/l Default, match everything

>>> simulate (... , variableFilter=".x")

1.2. Interactive Session with Examples 19

http://www.mathworks.com/products/matlab
http://www.gnu.org/software/octave/
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

OpenModelica User’s Guide, Release v1.17.0-dev.betal-4-g4f5f96201be

/I match indices of variable myVar that only contain the numbers using combinations

/1 of the letters 1 through 3

’>>> simulate (... , variableFilter="myVar\\\[[1-3]7*\\\1")

// match x or y or z

’>>> simulate (... , variableFilter="x|y|z")

1.2.15 Using External Functions

See Chapter Interoperability — C and Python for more information about calling functions in other programming
languages.

1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support

Faster simulations on multi-core computers can be obtained by using a new OpenModelica feature that auto-
matically partitions the system of equations and schedules the parts for execution on different cores using shared-
memory OpenMP based execution. The speedup obtained is dependent on the model structure, whether the system
of equations can be partitioned well. This version in the current OpenModelica release is an experimental ver-
sion without load balancing. The following command, not yet available from the OpenModelica GUI, will run a
parallel simulation on a model:

>>> omc —d=openmp model.mo

1.2.17 Loading Specific Library Version

There exist many different versiosn of Modelica libraries which are not compatible. It is possible to keep mul-
tiple versions of the same library stored in the directory given by calling getModelicaPath(). By calling load-
Model(Modelica,{"3.2"}), OpenModelica will search for a directory called "Modelica 3.2" or a file called "Mod-
elica 3.2.mo". Itis possible to give several library versions to search for, giving preference for a pre-release version
of a library if it is installed. If the searched version is "default", the priority is: no version name (Modelica), main
release version (Modelica 3.1), pre-release version (Modelica 3.1Beta 1) and unordered versions (Modelica Spe-
cial Release).

The loadModel command will also look at the uses annotation of the top-level class after it has been loaded. Given
the following package, Complex 1.0 and ModelicaServices 1.1 will also be loaded into the AST automatically.

package Modelica
annotation (uses (Complex (version="1.0"),
ModelicaServices (version="1.1")));

end Modelica;

>>> clear ()
true

Packages will also be loaded if a model has a uses-annotation:

model M
annotation (uses (Modelica (version="3.2.1")));
end M;

>>> instantiateModel (M)
class M
end M;

20 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

Note:
Notification: Automatically loaded package Modelica 3.2.1 due to uses annotation.
Notification: Automatically loaded package Complex 3.2.1 due to uses annotation.

Notification: Automatically loaded package ModelicaServices 3.2.1 due to uses annotation.

Packages will also be loaded by looking at the first identifier in the path:

>>> instantiateModel (Modelica.Electrical.Analog.Basic.Ground)
class Modelica.Electrical.Analog.Basic.Ground "Ground node"

Real p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
Real p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin
=";
equation
p.i = 0.0;
p.v = 0.0;

end Modelica.Electrical.Analog.Basic.Ground;

Note:
Notification: Automatically loaded package Complex 3.2.3 due to uses annotation.
Notification: Automatically loaded package ModelicaServices 3.2.3 due to uses annotation.

Notification: Automatically loaded package Modelica default due to uses annotation.

1.2.18 Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application programming interface) is described
which returns information about models and/or allows manipulation of models. Calls to these functions can be
done interactively as below, but more typically by program clients to the OpenModelica Compiler (OMC) server.
Current examples of such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the OMEdit graphic
model editor, etc. This API is untyped for performance reasons, i.e., no type checking and minimal error checking
is done on the calls. The results of a call is returned as a text string in Modelica syntax form, which the client has
to parse. An example parser in C++ is available in the OMNotebook source code, whereas another example parser
in Java is available in the MDT Eclipse plugin.

Below we show a few calls on the previously simulated BouncingBall model. The full documentation on this API
is available in the system documentation. First we load and list the model again to show its structure:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo");
>>> list (BouncingBall)
model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";
Real v (fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";
Boolean impact;
Real v_new(fixed = true);
Integer foo;

equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der(v) = if flying then -g else 0;
der (h) = v;

when {h <= 0.0 and v <= 0.0, impact} then

(continues on next page)

1.2. Interactive Session with Examples 21

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

(continued from previous page)

v_new = if edge (impact) then -e * pre(v) else 0;
flying = v_new > 0;
reinit (v, v_new);
end when;
end BouncingBall;

Different kinds of calls with returned results:

>>> getClassRestriction (BouncingBall)
"model"

>>> getClassInformation (BouncingBall)
("model","", false, false, false, "/var/lib/jenkins/ws/OpenModelica_maintenance_v1.17/

—build/share/doc/omc/testmodels/BouncingBall .mo", false,1,1,23,17,{}, false, false,"
_’", n ", false, n ")

>>> isFunction (BouncingBall)

false

>>> existClass (BouncingBall)

true

>>> getComponents (BouncingBall)

{{Real,e,"coefficient of restitution", "public", false, false, false, false,
—"parameter", "none", "unspecified",{}},{Real,qg,"gravity acceleration", "public",
—false, false, false, false, "parameter", "none", "unspecified",{}}, {Real,h,
—"height of ball", "public", false, false, false, false, "unspecified", "none",
—"unspecified", {}}, {Real,v,"velocity of ball", "public", false, false, false,
—false, "unspecified", "none", "unspecified", {}}, {Boolean,flying,"true, if ball
—~is flying", "public", false, false, false, false, "unspecified", "none",
—"unspecified", {}}, {Boolean, impact,"", "public", false, false, false, false,
—"unspecified", "none", "unspecified", {}}, {Real,v_new,"", "public", false, false,
—~false, false, "unspecified", "none", "unspecified",{}}, {Integer, foo,"",
— false, false, false, false, "unspecified", "none", "unspecified",{}}}
>>> getConnectionCount (BouncingBall)

0

>>> getInheritanceCount (BouncingBall)
0

>>> getComponentModifierValue (BouncingBall,e)
IIO.7II

>>> getComponentModifierNames (BouncingBall, "e")

{}

>>> getClassRestriction (BouncingBall)

"model"

>>> getVersion() // Version of the currently running OMC
"OMCompiler v1.17.0-dev.betal.4+g4f5f£96201be"

"public",

1.2.19 Quit OpenModelica

Leave and quit OpenModelica:

>>> quit ()

22 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

1.2.20 Dump XML Representation

The command dumpXMLDAE dumps an XML representation of a model, according to several optional parame-
ters.

dumpXMLDAE(modelnamel ,asInSimulationCode=<Boolean>] [filePrefix=<String>] [,storeln-
Temp=<Boolean>] [,addMathMLCode =<Boolean>])

This command dumps the mathematical representation of a model using an XML representation, with optional
parameters. In particular, asInSimulationCode defines where to stop in the translation process (before dumping the
model), the other options are relative to the file storage: filePrefix for specifying a different name and storeInTemp
to use the temporary directory. The optional parameter addMathMLCode gives the possibility to don't print the
MathML code within the xml file, to make it more readable. Usage is trivial, just: addMathMLCode=true/false
(default value is false).

1.2.21 Dump Matlab Representation

The command export dumps an XML representation of a model, according to several optional parameters.
exportDAEtoMatlab(modelname);

This command dumps the mathematical representation of a model using a Matlab representation. Example:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> exportDAEtoMatlab (BouncingBall)

"The equation system was dumped to Matlab file:BouncingBall_imatrix.m"

% Adjacency Matrix

o)

% number of rows: 6

IM={{3,6},{1,{"if", "true','=='" {3}, {},}},{{"1f", 'true','==" {4},{},}}, {5}, {2, {"1if
—', 'edge (impact)"' {3}, {5},}},{4,2}};

VL = {'foo','v_new', "impact', 'flying','v', 'h'};

EgStr = {'impact = h <= 0.0;"',"'"foo = if impact then 1 else 2;','der(v) = if flying,
—then -g else 0.0;','der(h) = v;','when {h <= 0.0 and v <= 0.0, impact} then v_
—new = 1f edge (impact) then (-e) * pre(v) else 0.0; end when;', 'when {h <= 0.0,
—and v <= 0.0, impact} then flying = v_new > 0.0; end when;'};

OldEgStr={'class BouncingBall',' parameter Real e = 0.7 "coefficient of

—restitution";',' parameter Real g = 9.81 "gravity acceleration";',' Real
—h(start = 1.0, fixed = true) "height of ball";',' Real v (fixed = true)
—"velocity of ball";',' Boolean flying(start = true, fixed = true) "true, if
—ball is flying";',' Boolean impact;',' Real v_new(fixed = true);"',"' Integer,,
—~foo; ', 'equation', ' impact = h <= 0.0;"'," foo = if impact then 1 else 2;','
—der(v) = if flying then -g else 0.0;"'," der(h) = v;',"' when {h <= 0.0 and v <=_
—0.0, impact} then',' v_new = if edge (impact) then -e x pre(v) else 0.0;',"' .
—~flying = v_new > 0.0;"'," reinit (v, v_new);',' end when;','end BouncingBall; "',

=ty

1.2. Interactive Session with Examples 23

OpenModelica User’s Guide, Release v1.17.0-dev.betal-4-g4f5f96201be

1.3 Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in the interactive session hander.

simulate(modelname) Translate a model named modelname and simulate it.

simulate(modelnamel startTime=<Real>][,stopTime=<Real>][,numberOflntervals
=<Integer>][,outputlnterval=<Real>][,method=<String>]
[,tolerance=<Real>][,fixedStepSize=<Real>]

[,outputFormat=<String>]) Translate and simulate a model, with optional start time, stop time, and optional
number of simulation intervals or steps for which the simulation results will be computed. More intervals will
give higher time resolution, but occupy more space and take longer to compute. The default number of intervals
is 500. It is possible to choose solving method, default is “dassl”, “euler” and “rungekutta” are also available.
Output format “mat” is default. “plt” and “mat” (MATLAB) are the only ones that work with the val() command,
“csv” (comma separated values) and “empty” (no output) are also available (see section Alternative Simulation
Output Formats).

plot(vars) Plot the variables given as a vector or a scalar, e.g. plot({x1,x2}) or plot(x1).

plotParametric(var!, var2) Plot var2 relative to varl from the most recently simulated model, e.g. plotParamet-
ric(x,y).

cd() Return the current directory.

cd(dir) Change directory to the directory given as string.

clear() Clear all loaded definitions.

clearVariables() Clear all defined variables.

dumpXMLDAE(modelname, ...) Dumps an XML representation of a model, according to several optional param-
eters.

exportDAEtoMatlab(name) Dumps a Matlab representation of a model.

instantiateModel(modelname)Performs code instantiation of a model/class and return a string containing the flat
class definition.

list() Return a string containing all loaded class definitions.
list(modelname) Return a string containing the class definition of the named class.
listVariables() Return a vector of the names of the currently defined variables.

loadModel(classname) Load model or package of name classname from the path indicated by the environment
variable OPENMODELICALIBRARY.

loadFile(str) Load Modelica file (.mo) with name given as string argument str.
readFile(str) Load file given as string str and return a string containing the file content.
runScript(str) Execute script file with file name given as string argument str.

system(str) Execute str as a system(shell) command in the operating system; return integer success value. Output
into stdout from a shell command is put into the console window.

timing(expr) Evaluate expression expr and return the number of seconds (elapsed time) the evaluation took.
typeOf(variable) Return the type of the variable as a string.

saveModel(str,modelname) Save the model/class with name modelname in the file given by the string argument
str.

val(variable,timePoint) Return the (interpolated) value of the variable at time timePoint.
help() Print this helptext (returned as a string).

quit() Leave and quit the OpenModelica environment

24 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.17.0-dev.beta1-4-g4f5f96201be

1.4 Running the compiler from command line

The OpenModelica compiler can also be used from command line, in Windows cmd.exe or a Unix shell. The fol-
lowing examples assume omc is on the PATH; if it is not, you can run C: \OpenModelica 1.16.0\build\
bin\omc.exe or similar (depending on where you installed OpenModelica).

1.4.1 Example Session 1 — obtaining information about command line parame-
ters

$ omc —--help

OpenModelica Compiler OMCompiler v1.17.0-dev.betal.4+g4f5£96201be
Copyright © 2019 Open Source Modelica Consortium (OSMC)
Distributed under OMSC-PL and GPL, see www.openmodelica.org

Usage: omc [Options] (Model.mo | Script.mos) [Libraries | .mo-files]
* Libraries: Fully qualified names of libraries to load before processing Model or
—~Script.

Documentation is available in the built-in package OpenModelica.Scripting or
online <https://build.openmodelica.org/Documentation/OpenModelica.Scripting.html>.

1.4.2 Example Session 2 — create an TestModel.mo file and run omc on it

model TestModel
parameter Real x = 1;
end TestModel;

$ omc TestModel.mo

class TestModel
parameter Real x = 1.0;

end TestModel;

1.4.3 Example Session 3 — create a mos-script and run omc on it

loadModel (Modelica) ;

getErrorString();

simulate (Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum);
getErrorString();

$ omc TestScript.mos
true
nn
record SimulationResult

resultFile = "/var/lib/jenkins/ws/OpenModelica_maintenance_vl.17/doc/
—UsersGuide/source/Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum_res.
—mat",

simulationOptions = "startTime = 0.0, stopTime = 5.0, numberOfIntervals = 500,
—~tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'Modelica.Mechanics.
—MultiBody.Examples.Elementary.Pendulum', options = '', outputFormat = 'mat',
—variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished
—successfully without homotopy method.

LOG_SUCCESS | info | The simulation finished successfully.

"
’

timeFrontend = 0.2973888259999999,

(continues on next page)

1.4. Running the compiler from command line 25

OpenModelica User’s Guide, Release v1.17.0-dev.betal-4-g4f5f96201be

(continued from previous page)

timeBackend = 0.249283871,
timeSimCode = 0.033262195,
timeTemplates = 0.028878264,

timeCompile = 0.5724502279999999,
timeSimulation = 0.049393625,
timeTotal = 1.23080211

end SimulationResult;

In order to obtain more information from the compiler one can use the command line options --
showErrorMessages -d=failtrace when running the compiler:

$ omc —--showErrorMessages —-d=failtrace TestScript.mos
InstFunction.getRecordConstructorFunction failed for OpenModelica.Scripting.
—loadModel

- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE ()>].<Prefix.NOPRE ()>.Modelica,,
—env: <global scope>

— Static.elabCref failed: Modelica in env: <global scope>

- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE ()>].<Prefix.NOPRE ()>.Modelica_,
—env: <global scope>

[/var/lib/jenkinsl/ws/OpenModelica_maintenance_v1.17/OMCompiler/Compiler/BackEnd/
—ExpressionSolve.mo:186:9-186:210:writable] Error: Internal error Failed to solve,
—~\"world.z_label.cylinders[3].r[1l] = world.z_label.cylinders([2].r[1]\" w.r.t. \
—"world.z_label.R_lines[2,1]\"
[/var/lib/jenkinsl/ws/OpenModelica_maintenance_v1.17/OMCompiler/Compiler/BackEnd/
—ExpressionSolve.mo:186:9-186:210:writable] Error: Internal error Failed to solve,
—\"world.z_label.cylinders[3].r[2] = world.z_label.cylinders([2].r[2]\" w.r.t. \
—"world.z_label.R_lines[2,2]\"
[/var/lib/jenkinsl/ws/OpenModelica_maintenance_v1.17/OMCompiler/Compiler/BackEnd/
—ExpressionSolve.mo:186:9-186:210:writable] Error: Internal error Failed to solve,,
—\"world.z_label.cylinders([3].r[3] = world.z_label.cylinders[2].r[3]\" w.r.t. \
—"world.z_label.R _lines([2,3]\"

n

26 Chapter 1. Introduction

CHAPTER
TWO

OMEDIT — OPENMODELICA CONNECTION EDITOR

OMEdit — OpenModelica Connection Editor is the new Graphical User Interface for graphical model editing in
OpenModelica. It is implemented in C++ using the Qt graphical user interface library and supports the Modelica
Standard Library that is included in the latest OpenModelica installation. This chapter gives a brief introduction
to OMEdit and also demonstrates how to create a DCMotor model using the editor.

OMEdit provides several user friendly features for creating, browsing, editing, and simulating models:
* Modeling — Easy model creation for Modelica models.
* Pre-defined models — Browsing the Modelica Standard library to access the provided models.
 User defined models — Users can create their own models for immediate usage and later reuse.

* Component interfaces — Smart connection editing for drawing and editing connections between model in-
terfaces.

* Simulation — Subsystem for running simulations and specifying simulation parameters start and stop time,
etc.

* Plotting — Interface to plot variables from simulated models.

2.1 Starting OMEdit

A splash screen similar to the one shown in Figure 2.1 will appear indicating that it is starting OMEdit. The
executable is found in different places depending on the platform (see below).

2.1.1 Microsoft Windows
OMEdit can be launched wusing the executable placed in OpenModelicalnstallationDirec-

tory/bin/OMEdit/OMEdit.exe. Alternately, choose OpenModelica > OpenModelica Connection Editor