OpenModelica User’s Guide
Release v1.24.0-dev-53-g021ea6db67

Open Source Modelica Consortium

2024

1 Introduction

2

1.1
1.2
1.3
1.4

System Overview
Interactive Session with Examples
Summary of Commands for the Interactive Session Handler
Running the compiler from command line

Package Management

2.1
2.2
2.3

OMEdit - OpenModelica Connection Editor

Starting OMEdit
MainWindow & Browsers
Perspectives o oo
FileMenu.
EditMenu
ViewMenu
SSPMenu,
SimulationMenu

3.1

32

33

34

35

3.6

3.7

3.8

39

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32

Overview of Basic Modelica Package Management Concepts
The Package Manager
How the package index works

Data Reconciliation

Sensitivity Optimization Menu
DebugMenu
ToolsMenu
HelpMenu

Modeling a Model
Simulating a Model

2DPlotting
Re-simulating a Model
3D Visualization
Animation of Realtime FMUs
Interactive Simulation
How to Create User Defined Shapes - Icons
Global head section in documentation
Options i
__OpenModelica_commandLineOptions Annotation
__OpenModelica_simulationFlags Annotation
Global and Local Flags
Debugger
Editing Modelica Standard Library
Install Library
Convert Libraries using Conversion Scripts
State Machines
Using OMEdit as Text Editor

CONTENTS

......................... 61

10

11

12

13

3.33 Temporary Directory, Log Files and Working Directory
3.34 High DPISettings o o v i e e e e e e e e e e e e e e e

2D Plotting
4.1 Example e e e e
4.2 Plot Command Interface e e

OpenModelica Compiler

5.1 Frontend Modules e e
5.2 Backend Modules e e
5.3 Code @eneration i e e e e e e e e e e e e e e e
5.4 Simulation Runtimes e e e e e e e

Solving Modelica Models

6.1 Integration Methods e
6.2 DAE Mode Simulation Lo e e
6.3 Initialization e e
6.4 Algebraic SOIVErS o e e e e e e e e e e

Debugging
7.1 The Equation-based Debugger L
7.2 The Algorithmic Debugger. e e e e

Flattening models to BaseModelica

8.1 BaseModelica e e
8.2 Converting Modelica models in BaseModelica with OpenModelica
8.3 Array-preserving BaseModelicaoutput L L L e

Porting Modelica libraries to OpenModelica

9.1 Mapping of the library on the file system
9.2 Modifiers for arrays e e e e e e e e e
9.3 Access to conditional components LL Lo
9.4 Access to classes defined in partial packages o o o L.
9.5 Equality operator in algorithms Lo
9.6 Public non-input non-output variables in functions L oL
9.7 Subscripting of expressions L L e e e e e e
9.8 Incomplete specification of initial conditions oo
9.9 Modelica_LinearSystems2 Library L 0

Generating Graph Representations for Models

FMI and TLM-Based Simulation and Co-simulation of External Models

11.1 Functional Mock-up Interface -FMI o
11.2 Transmission Line Modeling (TLM) Based Co-Simulation
11.3 Composite Model Editing of External Models

OMSimulator

12.1 Introduction
122 OMSImulator o o o e e e e e e e e
12.3 OMSimulatorLib o o
124 C-APL. . . .
125 OMSimulatorLua o e
12.6 OMSimulatorPython e
12.7 OpenModelicaScripting e e e e
12.8 Graphical Modelling e e
12.9 SSPSUpport e e e e

System Identification
13.1 Examples o o e e e
13.2 Pythonand CAPL e

83
83
84

87
87
87
89
&9

91
91
94
94
100

101
101
104

109
109
109
110

111
111
112
112
113
114
114
115
115
116

117

119
119
125
125

139
139
139
141
141
161
180
201
215
220

14

15

16

17

18

19

20

21

22

23

24

25

OpenModelica Encryption

14.1 Encryptingthe Library e
14.2 Loading an Encrypted Library e
143 NOES . . . v o ot e e e e e e e e e e e

OMNotebook with DrModelica and DrControl

15.1 Interactive Notebooks with Literate Programming
15.2 DrModelica Tutoring System - an Application of OMNotebook
15.3 DrControl Tutorial for Teaching Control Theory
15.4 OpenModelica Notebook Commands it
15.5 References

Optimization with OpenModelica

16.1 Built-in Dynamic Optimization using Annotations
16.2 Built-in Dynamic Optimization using Optimica language extensions
16.3 Dynamic Optimization with OpenModelicaand CasADi
16.4 Parameter Sweep Optimization using OMOptim

Parameter Sensitivities with OpenModelica
17.1 Single Parameter sensitivities with IDA/Sundials
17.2 Single and Multi-parameter sensitivities withOMSens

PDEModelical

18.1 PDEModelical language elements
182 Limitations L e e
183 ViewingresultS o L e e e e

MDT - The OpenModelica Development Tooling Eclipse Plugin

19.1 Introduction o L e e e e e e e
19.2 Installation o L e e e e e e
19.3 Getting Started L e e e e e e e e e e e e e

MDT Debugger for Algorithmic Modelica
20.1 The Eclipse-based Debugger for Algorithmic Modelica

Modelica Performance Analyzer

21.1 Profiling information for ProfilingTest
21.2 Genenerated JSON for the Example
21.3 Using the Profiler from OMEdit e

Simulation in Web Browser

Interoperability - C and Python

23.1 Calling External C functions e
23.2 Calling external Python Code from a Modelicamodel
23.3 Calling OpenModelica from PythonCode

OpenModelica Python Interface and PySimulator

24.1 OMPython - OpenModelica Python Interface
24.2 Enhanced OMPython Features et
24.3 PySimulator L. e e e e e e e e e

OMMatlab - OpenModelica Matlab Interface

25.1 Featuresof OMMatlab e e e e
252 TestCommands i it e e e e e e e e e e e e e e e e
25.3 WOorkDirectory o o . e e e e e e e e e
254 BuildModel L e e
25.5 Standard getmethods L L L e
25.6 Usageof getMethods o i i e e e e e e e e e
25.7 Standard setmethods

237
237
237
237

239
239
240
244
256
261

263
263
274
276
282

289
289
291

305
305
306
306

307
307
307
308

321
321

329
330
333
334

337

339
339
341
346

349
349
352
356

362

26

27

28

29

30

31

32

33

34

35

25.8 UsageofsetMethods e 362

25.9 Advanced Simulation. e 362
25.10 Linearization e e e e e e e e e e e 363
25.11 Usage of Linearizationmethods L 363
OM Julia - OpenModelica Julia Scripting 365
Jupyter-OpenModelica 367
Scripting API 369
28.1 OpenModelica Scripting Commands L o o 369
28.2 Simulation Parameter Sweep L 454
283 EXamples o e e e e e e e e e e e e e e 454
OpenModelica Compiler Flags 459
20.1 OPHONS . . . o vt e e e 459
29.2 Debugflags e e e e e e e e e e 4717
29.3 Flags for Optimization Modules e 486
Simulation Runtime Flags 487
30.1 CRuntime Simulation Flags e e e 487
Technical Details 501
31.1 The MATv4 Result File Format 501
Data Reconciliation 503
32.1 Objective of Data Reconciliation L 503
32.2 Defining the Data Reconciliation Problem in OpenModelica 503
32.3 Data Reconciliation Support in OMEdit 507
32.4 Computing the Boundary Conditions from the Reconciled Values 513
325 Contacts e e e e e e e e e e e e e e 515
32.6 References e e 515
Frequently Asked Questions (FAQ) 517
33.1 OpenModelica General e e 517
33.2 OMNotebook L e e 517
33.3 OMDeyv - OpenModelica Development Environment 518
Major OpenModelica Releases 519
34.1 Release Notes for OpenModelica 1.22.3 o o 519
34.2 Release Notes for OpenModelica 1.22.2 i i e i e e 519
34.3 Release Notes for OpenModelica 1.22.1 it e et e 519
34.4 Release Notes for OpenModelica 1.22.0 Lo 520
34.5 Release Notes for OpenModelica 1.21.0 o oo 521
34.6 Release Notes for OpenModelica 1.20.0 523
347 Release Notes for OpenModelica 1.19.2 i 524
34.8 Release Notes for OpenModelica 1.19.0 i i 524
34.9 Release Notes for OpenModelica 1.18.0 526
34.10 Release Notes for OpenModelica 1.17.0 o 528
34.11 Release Notes for OpenModelica 1.16.5 i 530
34.12 Release Notes for OpenModelica 1.16.4 o 530
34.13 Release Notes for OpenModelica 1.16.2 it i e et 530
34.14 Release Notes for OpenModelica 1.16.1 531
34.15 Release Notes for OpenModelica 1.16.0 531
34.16 Release Notes for OpenModelica 1.14.2 o ittt 532
34.17 Release Notes for OpenModelica 1.14.0 o o i 533
Contributors to OpenModelica 559
35.1 OpenModelica Contributors 2015 559
35.2 OpenModelica Contributors 2014 e 561

35.3 OpenModelica Contributors 2013 L e 562

35.4 OpenModelica Contributors 2012 e e e 564
35.5 OpenModelica Contributors 2011 o e e 566
35.6 OpenModelica Contributors 2010 L e 568
35.7 OpenModelica Contributors 2009 Lo 570
35.8 OpenModelica Contributors 2008 e 571
35.9 OpenModelica Contributors 2007 o v i e e e e e e 572
35.10 OpenModelica Contributors 2006 i i e e e e 573
35.11 OpenModelica Contributors 2005 e 573
35.12 OpenModelica Contributors 2004 L 574
35.13 OpenModelica Contributors 2003 L. e 574
35.14 OpenModelica Contributors 2002 o e 575
35.15 OpenModelica Contributors 2001 o e e e e 575
35.16 OpenModelica Contributors 2000 o e 575
35.17 OpenModelica Contributors 1999 Lo 575
35.18 OpenModelica Contributors 1998 576
Bibliography 577
Index 579

vi

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

Generated on 2024-04-27 at 02:30

Copyright © 1998-2024 Open Source Modelica Consortium (OSMC)
c/o LinkOpings universitet, Department of Computer and Information Science
SE-58183 Linkoping, Sweden

(0. @

This work is licensed under a Creative Commons Attribution 4.0 International License.

This document is part of OpenModelica: https://www.openmodelica.org Contact: OpenModelica@ida.liu.se
Modelica® is a registered trademark of the Modelica Association, https://www.Modelica.org
Mathematica® is a registered trademark of Wolfram Research Inc, http://www.wolfram.com

This users guide provides documentation and examples on how to use the OpenModelica system, both for the
Modelica beginners and advanced users.

CONTENTS 1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.openmodelica.org
mailto:OpenModelica@ida.liu.se
https://www.Modelica.org
http://www.wolfram.com

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The OpenModelica system described in this document has both short-term and long-term goals:

* The short-term goal is to develop an efficient interactive computational environment for the Modelica lan-
guage, as well as a rather complete implementation of the language. It turns out that with support of ap-
propriate tools and libraries, Modelica is very well suited as a computational language for development and
execution of both low level and high level numerical algorithms, e.g. for control system design, solving
nonlinear equation systems, or to develop optimization algorithms that are applied to complex applications.

* The long-term goal is to have a complete reference implementation of the Modelica language, including
simulation of equation based models and additional facilities in the programming environment, as well as
convenient facilities for research and experimentation in language design or other research activities. How-
ever, our goal is not to reach the level of performance and quality provided by current commercial Modelica
environments that can handle large models requiring advanced analysis and optimization by the Modelica
compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a Modelica
environment include but are not limited to the following:

* Development of a complete formal specification of Modelica, including both static and dynamic semantics.
Such a specification can be used to assist current and future Modelica implementers by providing a semantic
reference, as a kind of reference implementation.

* Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as modeling problems that require extensions such as partial
differential equations, enlarged scope for discrete modeling and simulation, etc.

* Language design to improve abstract properties such as expressiveness, orthogonality, declarativity, reuse,
configurability, architectural properties, etc.

» Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by gen-
erating code for parallel hardware.

» Improved debugging support for equation based languages such as Modelica, to make them even easier to
use.

» Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.
* Visualization and animation techniques for interpretation and presentation of results.
 Application usage and model library development by researchers in various application areas.

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be submitted
to the Modelica Association for consideration regarding possible inclusion in the official Modelica standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and function parts
of Modelica to be executed interactively, as well as equation models and Modelica functions to be compiled into
efficient C code. The generated C code is combined with a library of utility functions, a run-time library, and a
numerical DAE solver.

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

1.1 System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1.1.

MDT Eclipse Plugir GraphicalModel
Editor/Browser Editor/Browser
F
OMOptim Interactive t
sessionhandler
Optimization — MoL%)TtILElgli or
Subsystem
OMNotebook .
DrModelica Execution , Model_lca
Model Editor Compiler
Modelica
Debugger

Figure 1.1: The architecture of the OpenModelica environment. Arrows denote data and control flow. The inter-
active session handler receives commands and shows results from evaluating commands and expressions that are
translated and executed. Several subsystems provide different forms of browsing and textual editing of Modelica
code. The debugger currently provides debugging of an extended algorithmic subset of Modelica.

The following subsystems are currently integrated in the OpenModelica environment:

* Aninteractive session handler, that parses and interprets commands and Modelica expressions for evaluation,
simulation, plotting, etc. The session handler also contains simple history facilities, and completion of file
names and certain identifiers in commands.

* A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing definitions
of classes, functions, and variables. Such definitions can be predefined, user-defined, or obtained from
libraries. The compiler also includes a Modelica interpreter for interactive usage and constant expression
evaluation. The subsystem also includes facilities for building simulation executables linked with selected
numerical ODE or DAE solvers.

* An execution and run-time module. This module currently executes compiled binary code from translated
expressions and functions, as well as simulation code from equation based models, linked with numerical
solvers. In the near future event handling facilities will be included for the discrete and hybrid parts of the
Modelica language.

* Eclipse plugin editor/browser. The Eclipse plugin called MDT (Modelica Development Tooling) provides
file and class hierarchy browsing and text editing capabilities, rather analogous to previously described Emacs
editor/browser. Some syntax highlighting facilities are also included. The Eclipse framework has the advan-
tage of making it easier to add future extensions such as refactoring and cross referencing support.

* OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor, compared
to the more advanced Mathematica notebooks available in MathModelica. This basic functionality still
allows essentially the whole DrModelica tutorial to be handled. Hierarchical text documents with chapters
and sections can be represented and edited, including basic formatting. Cells can contain ordinary text
or Modelica models and expressions, which can be evaluated and simulated. However, no mathematical
typesetting facilities are yet available in the cells of this notebook editor.

* Graphical model editor/browser OMEdit. This is a graphical connection editor, for component based model
design by connecting instances of Modelica classes, and browsing Modelica model libraries for reading and
picking component models. The graphical model editor also includes a textual editor for editing model class
definitions, and a window for interactive Modelica command evaluation.

4 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

* Optimization subsystem OMOptim. This is an optimization subsystem for OpenModelica, currently for de-
sign optimization choosing an optimal set of design parameters for a model. The current version has a
graphical user interface, provides genetic optimization algorithms and Pareto front optimization, works in-
tegrated with the simulators and automatically accesses variables and design parameters from the Modelica
model.

* Dynamic Optimization subsystem. This is dynamic optimization using collocation methods, for Modelica
models extended with optimization specifications with goal functions and additional constraints. This sub-
system is integrated with in the OpenModelica compiler.

* Modelica equation model debugger. The equation model debugger shows the location of an error in the
model equation source code. It keeps track of the symbolic transformations done by the compiler on the way
from equations to low-level generated C code, and also explains which transformations have been done.

* Modelica algorithmic code debugger. The algorithmic code Modelica debugger provides debugging for
an extended algorithmic subset of Modelica, excluding equation-based models and some other features, but
including some meta-programming and model transformation extensions to Modelica. This is a conventional
full-feature debugger, using Eclipse for displaying the source code during stepping, setting breakpoints, etc.
Various back-trace and inspection commands are available. The debugger also includes a data-view browser
for browsing hierarchical data such as tree- or list structures in extended Modelica.

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenModelica environment,
called OMShell - the OpenModelica Shell. Most of these examples are also available in the OMNotebook with
DrModelica and DrControl UsersGuideExamples.onb as well as the testmodels in:

>>> getInstallationDirectoryPath() + "/share/doc/omc/testmodels/"
" «OPENMODELICAHOME»/share/doc/omc/testmodels/"

The following commands were run using OpenModelica version:

>>> getVersion()
"OMCompiler v1.24.0-dev.53+gc9e78be®33"

1.2.1 Starting the Interactive Session

Under Windows, go to the Start Menu and run OpenModelica->OpenModelica Shell which responds with an
interaction window.

Under Linux, run OMShell-terminal to start the interactive session at the prompt.

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be stored in
the variable x. The value of the expression is returned.

>>> x = 1:12
{1,2,3,4,5,6,7,8,9,10,11,12}

1.2. Interactive Session with Examples 5

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

1.2.2 Using the Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one can make load classes and execute
commands. Here we give a few example sessions.

Example Session 1

>>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type

{A}

>>> instantiateModel (A)

"[<interactive>:1:9-1:23:writable] Error: Type mismatch in binding t = 1.5, expected.
—subtype of Integer, got type Real.

Example Session 2

If you do not see the error-message when running the example, use the command getErrorString().

model C
Integer a;
Real b;
equation
der(a) b; // der(a) is illegal since a is not a Real number
der(b) = 12.0;
end C;

>>> instantiateModel (C)

Error:

[<interactive>:5:3-5:13:writable] Error: Argument 'a' of der is not differentiable.

1.2.3 Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly giving the
command:

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/bubblesort.mo
-
true

The function bubblesort is called below to sort the vector x in descending order. The sorted result is returned
together with its type. Note that the result vector is of type Real[:], instantiated as Real[12], since this is the declared
type of the function result. The input Integer vector was automatically converted to a Real vector according to the
Modelica type coercion rules. The function is automatically compiled when called if this has not been done before.

>>> bubblesort(x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

6 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

>>> bubblesort({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

1.2.4 Trying the system and cd Commands

It is also possible to give operating system commands via the system utility function. A command is provided as
a string argument. The example below shows the system utility applied to the UNIX command cat, which here
outputs the contents of the file bubblesort.mo to the output stream when running omc from the command-line.

>>> system("cat '"+getInstallationDirectoryPath()+"/share/doc/omc/testmodels/
—bubblesort.mo' > bubblesort.mo")
0

function bubblesort

input Real[:] x;

output Real[size(x,1)] vy;
protected

Real t;
algorithm

y = X;

for i in 1:size(x,1) loop

for j in 1:size(x,1) loop
if y[i] > y[j] then

t = yl[il;
y[il := y[3il;
y[il = t;
end if;
end for;
end for;

end bubblesort;

Note: The output emitted into stdout by system commands is put into log-files when running the CORBA-based
clients, not into the visible GUI windows. Thus the text emitted by the above cat command would not be returned,
which is why it is redirected to another file.

A better way to read the content of files would be the readFile command:

>>> readFile("bubblesort.mo")
function bubblesort

input Real[:] x;

output Real[size(x,1)] vy;
protected

Real t;
algorithm

y o= x;

for i in 1:size(x,1) loop

for j in 1:size(x,1) loop
if y[i] > y[j] then

t = y[il;
y[il := y[jl;
y[3il := t;
end if;
end for;
end for;

end bubblesort;

The system command only returns a success code (0 = success).

1.2. Interactive Session with Examples 7

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

>>> system("dir")

0

>>> system("Non-existing command")
127

Another built-in command is cd, the change current directory command. The resulting current directory is returned
as a string.

>>> dir:=cd()

"«DOCHOME» "

>>> cd("source")

" «DOCHOME» /source"

>>> cd(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/™)
"/var/lib/jenkins/ws/OpenModelica_PR-9383/build/share/doc/omc/testmodels"”
>>> cd(dir)

"«DOCHOME» "

1.2.5 Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also can be done through the File->L.oad Mod-
elica Library menu item:

>>> loadModel (Modelica, {"3.2.3"1})
true

We also load a file containing the dcmotor model:

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/dcmotor.mo") J
true

Note:

Notification: dcmotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

It is simulated:

>>> simulate(dcmotor, startTime=0.0, stopTime=10.0)
record SimulationResult
resultFile = "«DOCHOME»/dcmotor_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500,.
—tolerance = le-6, method = 'dassl', fileNamePrefix = 'dcmotor', options = '',,
—outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = '"'",

messages = "LOG_SUCCESS | info | The initialization finished..
—successfully without homotopy method.

LOG_SUCCESS | info | The simulation finished successfully.

timeFrontend = 0.096037492,

timeBackend = 0.014666670000000001,
timeSimCode = 0.0037872830000000002,
timeTemplates = 0.004651150000000001,
timeCompile = 0.7040257710000001,

timeSimulation = 0.017655667,
timeTotal = 0.840972096
end SimulationResult;

8 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

Note:

Notification: dcmotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

‘We list the source code of the model:

>>> list(dcmotor)
model dcmotor
import Modelica.Electrical.Analog.Basic;
Basic.Resistor resistorl(R = 10);
Basic.Inductor inductorl(L = 0.2, i.fixed = true);
Basic.Ground groundl;
Modelica.Mechanics.Rotational.Components.Inertia load(J = 1, phi.fixed = true, w.
—fixed = true);
Basic.EMF emfl(k = 1.0);
Modelica.Blocks.Sources.Step stepl;
Modelica.Electrical.Analog.Sources.SignalVoltage signalVoltagel;
equation
connect(stepl.y, signalVoltagel.v);
connect(signalVoltagel.p, resistorl.p);
connect(resistorl.n, inductorl.p);
connect(inductorl.n, emfl.p);
connect(emfl.flange, load.flange_a);
connect(signalVoltagel.n, groundl.p);
connect(groundl.p, emfl.n);
annotation(
uses(Modelica(version = "3.2.2")));
end dcmotor;

We test code instantiation of the model to flat code:

>>> instantiateModel (dcmotor)
class dcmotor

parameter Real resistorl.R(quantity = "Resistance", unit = "Ohm", start = 1.0) = 10.
-0 "Resistance at temperature T_ref";
parameter Real resistorl.T_ref(quantity = "ThermodynamicTemperature", unit = "K",_

—.displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = 300.15
—"Reference temperature";

parameter Real resistorl.alpha(quantity = "LinearTemperatureCoefficient", unit = "1/
~K") = 0.0 "Temperature coefficient of resistance (R_actual = R*(1 + alpha*(T_
—heatPort - T_ref))";

Real resistorl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of the.
—two pins (= p.v - n.v)";

Real resistorl.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from.
—pin p to pin n";

Real resistorl.p.v(quantity = "ElectricPotential"”, unit = "V") "Potential at the pin

Real resistorl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into.
—the pin";

Real resistorl.n.v(quantity = "ElectricPotential"”, unit = "V") "Potential at the pin

Real resistorl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into.
—the pin";

final parameter Boolean resistorl.useHeatPort = false "=true, if heatPort is enabled

N " ;
parameter Real resistorl.T(quantity = "ThermodynamicTemperature", unit = "K",.
(continues on next page)

1.2. Interactive Session with Examples 9

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

(continued from previous page)

—.displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = resistorl.T_ref
—"Fixed device temperature if useHeatPort = false";

Real resistorl.LossPower(quantity = "Power", unit = "W") "Loss power leaving.
—,component via heatPort";
Real resistorl.T_heatPort(quantity = "ThermodynamicTemperature", unit = "K",_

—displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) "Temperature of.
—heatPort";

Real resistorl.R_actual(quantity = "Resistance", unit = "Ohm") "Actual resistance =.
<R*(1 + alpha*(T_heatPort - T_ref))";

Real inductorl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of the.
—two pins (= p.v - n.v)";

Real inductorl.i(quantity = "ElectricCurrent"”, unit = "A", start = 0.0, fixed =.

—true) "Current flowing from pin p to pin n";
Real inductorl.p.v(quantity = "ElectricPotential"”, unit = "V") "Potential at the pin
Real inductorl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into..
—the pin";
Real inductorl.n.v(quantity

"ElectricPotential™, unit = "V") "Potential at the pin

",
—

Real inductorl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into.
—the pin";
parameter Real inductorl.L(quantity = "Inductance", unit = "H", start = 1.0) = 0.2

—"Inductance";

Real groundl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";

Real groundl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into..
—the pin";

Real load.flange_a.phi(quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real load.flange_a.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange

Real load.flange_b.phi(quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real load.flange_b.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange

parameter Real load.J(quantity = "MomentOfInertia", unit = "kg.m2", min = 0.0,.
—start = 1.0) = 1.0 "Moment of inertia";

final parameter enumeration(never, avoid, default, prefer, always) load.stateSelect.
= StateSelect.default "Priority to use phi and w as states";

Real load.phi(quantity = "Angle", unit = "rad", displayUnit = "deg", fixed = true,.
—»stateSelect = StateSelect.default) "Absolute rotation angle of component";

Real load.w(quantity = "AngularVelocity", unit = "rad/s", fixed = true, stateSelect.
= StateSelect.default) "Absolute angular velocity of component (= der(phi))";

Real load.a(quantity = "AngularAcceleration", unit = "rad/s2") "Absolute angular.,
—sacceleration of component (= der(w))";

final parameter Boolean emfl.useSupport = false "= true, if support flange enabled,.
—otherwise implicitly grounded";

parameter Real emfl.k(quantity = "ElectricalTorqueConstant", unit = "N.m/A", start.

—=1.0) = 1.0 "Transformation coefficient";

Real emfl.v(quantity = "ElectricPotential"”, unit = "V") "Voltage drop between the.,
—two pins";

Real emfl.i(quantity = "ElectricCurrent"”, unit = "A") "Current flowing from.,
—positive to negative pin";

Real emfl.phi(quantity = "Angle", unit = "rad", displayUnit = "deg") "Angle of.
—»shaft flange with respect to support (= flange.phi - support.phi)";

Real emfl.w(quantity = "AngularVelocity", unit = "rad/s") "Angular velocity of.
—.flange relative to support";

(continues on next page)

10 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

(continued from previous page)

Real emfl.tau(quantity = "Torque", unit = "N.m") "Torque of flange";

Real emfl.tauElectrical(quantity = "Torque", unit = "N.m") "Electrical torque";

Real emfl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";

Real emfl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the.
<pin";

Real emfl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";

Real emfl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the.
—pin";

Real emfl.flange.phi(quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real emfl.flange.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange";

protected parameter Real emfl.fixed.phi®(quantity = "Angle", unit = "rad",.
—displayUnit = "deg") = 0.0 "Fixed offset angle of housing";

protected Real emfl.fixed.flange.phi(quantity = "Angle", unit = "rad", displayUnit.
—= "deg") "Absolute rotation angle of flange";

protected Real emfl.fixed.flange.tau(quantity = "Torque", unit = "N.m") "Cut torque.
—in the flange";

protected Real emfl.internalSupport.tau(quantity = "Torque", unit = "N.m") = -emfl.
—tau "External support torque (must be computed via torque balance in model where..
—InternalSupport is used; = flange.tau)";

protected Real emfl.internalSupport.phi(quantity = "Angle", unit = "rad",.
—displayUnit = "deg") "External support angle (= flange.phi)";

protected Real emfl.internalSupport.flange.phi(quantity = "Angle", unit = "rad",.
—»displayUnit = "deg") "Absolute rotation angle of flange";

protected Real emfl.internalSupport.flange.tau(quantity = "Torque", unit = "N.m")
—"Cut torque in the flange";

parameter Real stepl.height = 1.0 "Height of step";

Real stepl.y "Connector of Real output signal";

parameter Real stepl.offset = 0.0 "Offset of output signal y";

parameter Real stepl.startTime(quantity = "Time", unit = "s") = 0.0 "Output y =_
—offset for time < startTime";

Real signalVoltagel.p.v(quantity = "ElectricPotential"”, unit = "V") "Potential at.
—the pin";

Real signalVoltagel.p.i(quantity = "ElectricCurrent”, unit = "A") "Current flowing.
—into the pin";

Real signalVoltagel.n.v(quantity = "ElectricPotential"”, unit = "V") "Potential at.
—the pin";

Real signalVoltagel.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing.
—into the pin";

Real signalVoltagel.v(unit = "V") "Voltage between pin p and n (= p.v - n.v) as.
—input signal";

Real signalVoltagel.i(quantity = "ElectricCurrent", unit = "A") "Current flowing.
—from pin p to pin n";
equation

emfl.internalSupport.flange.phi = emfl.fixed.flange.phi;

stepl.y = signalVoltagel.v;

signalVoltagel.p.v = resistorl.p.v;

resistorl.n.v = inductorl.p.v;

inductorl.n.v = emfl.p.v;

emfl. flange.phi = load.flange_a.phi;

groundl.p.v = emfl.n.v;

groundl.p.v = signalVoltagel.n.v;

inductorl.p.i + resistorl.n.i = 0.0;

emfl.p.i + inductorl.n.i = 0.0;

load. flange_b.tau = 0.0;

emfl. flange.tau + load.flange_a.tau = 0.0;

(continues on next page)

1.2. Interactive Session with Examples 11

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

(continued from previous page)

emfl.internalSupport. flange.tau + emfl.fixed.flange.tau = 0.0;

signalVoltagel.p.i + resistorl.p.i = 0.0;

signalVoltagel.n.i + emfl.n.i + groundl.p.i = 0.0;

assert(1.0 + resistorl.alpha * (resistorl.T_heatPort - resistorl.T_ref) >= le-15,
—"Temperature outside scope of model!");

resistorl.R_actual = resistorl.R * (1.0 + resistorl.alpha * (resistorl.T_heatPort -.
—resistorl.T_ref));

resistorl.v = resistorl.R_actual * resistorl.i;

resistorl.LossPower = resistorl.v * resistorl.i;

resistorl.T_heatPort = resistorl.T;

resistorl.v = resistorl.p.v - resistorl.n.v;

0.0 = resistorl.p.i + resistorl.n.i;

resistorl.i = resistorl.p.i;

inductorl.L * der(inductorl.i) = inductorl.v;

inductorl.v = inductorl.p.v - inductorl.n.v;

0.0 = inductorl.p.i + inductorl.n.i;

inductorl.i = inductorl.p.i;

groundl.p.v = 0.0;

load.phi = load.flange_a.phi;

load.phi = load.flange_b.phi;

load.w = der(load.phi);

load.a = der(load.w);

load.] * load.a = load.flange_a.tau + load.flange_b.tau;

emfl. fixed.flange.phi = emfl.fixed.phi®;

emfl.internalSupport. flange.tau = emfl.internalSupport.tau;

emfl.internalSupport.flange.phi = emfl.internalSupport.phi;

emfl.v = emfl.p.v - emfl.n.v;

0.0 = emfl.p.i + emfl.n.i;

emfl.i = emfl.p.i;

emfl.phi = emfl.flange.phi - emfl.internalSupport.phi;

emfl.w = der(emfl.phi);

emfl.k * emfl.w = emfl.v;

emfl.tau = -emfl.k * emfl.i;

emfl.tauElectrical = -emfl.tau;

emfl.tau = emfl.flange.tau;

stepl.y = stepl.offset + (if time < stepl.startTime then 0.0 else stepl.height);

signalVoltagel.v = signalVoltagel.p.v - signalVoltagel.n.v;

0.0 = signalVoltagel.p.i + signalVoltagel.n.i;

signalVoltagel.i = signalVoltagel.p.i;
end dcmotor;

Note:

Notification: dcmotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

We plot part of the simulated result:

12 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

T
load.w
load.phi

25 -

15 -

Figure 1.2: Rotation and rotational velocity of the DC motor

1.2.6 The val() function

The val(variableName,time) scription function can be used to retrieve the interpolated value of a simulation result
variable at a certain point in the simulation time, see usage in the BouncingBall simulation below.

1.2.7 BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica
keywords have been bold-faced by hand for better readability):

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/BouncingBall.
—mo")
true

>>> list(BouncingBall)
model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";
Real v(fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";
Boolean impact;
Real v_new(fixed = true);
Integer foo;
equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der(v) = if flying then -g else 0;
der(h) = v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new = if edge(impact) then -e*pre(v) else 0;
flying = v_new > 0;
reinit(v, v_new);
end when;
end BouncingBall;

1.2. Interactive Session with Examples 13

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos (Modelica script)
file sim_BouncingBall.mos that contains these commands:

>>> writeFile("sim_BouncingBall.mos",
loadFile(getInstallationDirectoryPath() + \"/share/doc/omc/testmodels/BouncingBall.
—mo\");
simulate(BouncingBall, stopTime=3.0);
/* plot({h,flying}); */
"
true
>>> runScript("sim_BouncingBall.mos")
"true
record SimulationResult
resultFile = \"«DOCHOME»/BouncingBall_res.mat\",
simulationOptions = \"startTime = 0.0, stopTime = 3.0, numberOfIntervals = 500,

—tolerance = le-6, method = 'dassl', fileNamePrefix = 'BouncingBall', options = '',.
—outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = '"\",
messages = \"LOG_SUCCESS | info | The initialization finished.,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.
We
timeFrontend = 0.002297289,
timeBackend = 0.0052230110000000005,
timeSimCode = 0.001646438,
timeTemplates = 0.0029541470000000003,
timeCompile = 0.674218,

timeSimulation = 0.019622817,
timeTotal = 0.706080152
end SimulationResult;

n

model Switch
Real v;
Real i;
Real il;
Real itot;
Boolean open;
equation
itot = i + il;
if open then
v =20;
else
i=0;
end if;
1 - i1 = 0;
1 -v-1=0;
open = time >= 0.5;
end Switch;

>>> simulate(Switch, startTime=0, stopTime=1)
record SimulationResult
resultFile = "«DOCHOME»/Switch_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOfIntervals = 500,.
—tolerance = le-6, method = 'dassl', fileNamePrefix = 'Switch', options = '', .
—outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished.

—successfully without homotopy method.

(continues on next page)

14 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

(continued from previous page)

LOG_SUCCESS | info | The simulation finished successfully.

timeFrontend = 0.0019295750000000002,

timeBackend = 0.007653906,
timeSimCode = 0.001467086,
timeTemplates = 0.002294496,
timeCompile = 0.6490416130000001,

timeSimulation = 0.020938976,
timeTotal = 0.68347141
end SimulationResult;

Retrieve the value of itot at time=0 using the val(variableName, time) function:

>>> val(itot,0)
1.0

Plot itot and open:

2 T T T T
itot
open
15 F .
1
05 i
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

Figure 1.3: Plot when the switch opens

We note that the variable open switches from false (0) to true (1), causing itot to increase from 1.0 to 2.0.

1.2.8 Clear All Models

Now, first clear all loaded libraries and models:

>>> clear()
true

List the loaded models - nothing left:

>>> 1list()

1.2. Interactive Session with Examples 15

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

1.2.9 VanDerPol Model and Parametric Plot

‘We load another model, the VanDerPol model (or via the menu File->LLoad Model):

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/VanDerPol.mo
-
true

It is simulated:

>>> simulate(VanDerPol, stopTime=80)
record SimulationResult
resultFile = "«DOCHOME»/VanDerPol_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 80.0, numberOfIntervals = 500,.
—tolerance = le-6, method = 'dassl', fileNamePrefix = 'VanDerPol', options = '',.
—outputFormat = 'mat', variableFilter = '.*', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished..
—successfully without homotopy method.

LOG_SUCCESS | info | The simulation finished successfully.

timeFrontend = 0.0037191890000000003,

timeBackend = 0.005127956,
timeSimCode = 0.0015814170000000001,
timeTemplates = 0.0023301150000000002,
timeCompile = 0.564025006,

timeSimulation = 0.015686352,
timeTotal = 0.5926175389999999
end SimulationResult;

It is plotted:

[>>> plotParametric("x","y")

2.5 T T T T T T T T T
2+ -

T
|

1.5
1 - -
0.5

T
|

> ot i

T
|

-0.5
1k i

T
|

-1.5
2+ i

_2.5 1 1 1 1 1 1 1 1 1
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Figure 1.4: VanDerPol plotParametric(x,y)

Perform code instantiation to flat form of the VanDerPol model:

>>> instantiateModel (VanDerPol)
class VanDerPol "Van der Pol oscillator model"
(continues on next page)

16 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

(continued from previous page)

Real x(start = 1.0, fixed = true);

Real y(start = 1.0, fixed = true);

parameter Real lambda = 0.3;
equation

der(x) = y;

der(y) = lambda * (1.0 - x * x) * y - x;
end VanDerPol;

1.2.10 Using Japanese or Chinese Characters

Japenese, Chinese, and other kinds of UniCode characters can be used within quoted (single quote) identifiers, see

for example the variable name to the right in the plot below:

File Edit Special

Plot by OpenModelica

0.4r 7

0.2r 7

0.0

0.0 0.3 1.0 1.5 2.0 2.5

1.2.11 Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation at each line into OMShell requires copy-

paste as one operation from another document):

>>> k 1= 0;

>>> for i in 1:1000 loop
k :=k + 1;

end for;

>>> k

500500

A nested loop summing reals and integers:

>>> g := 0.0;
>>> h = 5;
>>> for i in {23.0,77.12,88.23} loop
for j in i:0.5:(i+1) loop
g =9+ J;
g:=9g+h/2;
end for;
h :=h + g;
end for;

1.2. Interactive Session with Examples

17

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

By putting two (or more) variables or assignment statements separated by semicolon(s), ending with a variable,
one can observe more than one variable value:

>>> h; g
1997.4500000000003
1479.0900000000001

A for-loop with vector traversal and concatenation of string elements:

>>> i:="";
>>> 1st := {"Here ", "are ","some ","strings."};
>>> s = "";
>>> for i in 1st loop
S = s + 1i;
end for;
>>> 8
"Here are some strings."

Normal while-loop with concatenation of 10 "abc " strings:

>>> s:="";
>>> i:=1;
>>> while i<=10 loop
s:="abc "+s;
i:=i+1;
end while;
>>> 8
"abc abc abc abc abc abc abc abc abc abc

A simple if-statement. By putting the variable last, after the semicolon, its value is returned after evaluation:

>>> if 5>2 then a := 77; end if; a
77

An if-then-else statement with elseif:

>>> if false then
a := 5;

elseif a > 50 then
b:= "test"; a:= 100;

else
a:=34;
end if;

Take a look at the variables a and b:

>>> a;b
100
"test"

18 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

1.2.12 Variables, Functions, and Types of Variables

Assign a vector to a variable:

>>> a:=1:5
{1,2,3,4,5}

Type in a function:

function mySqr
input Real x;
output Real y;

algorithm
V:i=X*X;

end mySqr;

Call the function:

>>> b:=mySqr(2)
4.0

Look at the value of variable a:

>>> a
{1,2,3,4,5%

Look at the type of a:

>>> typeOf(a)
"Integer[5]"

Retrieve the type of b:

>>> typeOf(b)
IlReal n

What is the type of mySqr? Cannot currently be handled.

[>>> typeOf (mySqr)

List the available variables:

>>> listVariables()
{b,a,s,1lst,i,h,g,k,currentSimulationResult}

Clear again:

>>> clear()
true

1.2. Interactive Session with Examples

19

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

1.2.13 Getting Information about Error Cause

Call the function getErrorString() in order to get more information about the error cause after a simulation failure:

>>> getErrorString()

1.2.14 Alternative Simulation Output Formats

There are several output format possibilities, with mat being the default. plt and mat are the only formats that allow
you to use the val() or plot() functions after a simulation. Compared to the speed of plt, mat is roughly 5 times for
small files, and scales better for larger files due to being a binary format. The csv format is roughly twice as fast
as plt on data-heavy simulations. The plt format allocates all output data in RAM during simulation, which means
that simulations may fail due applications only being able to address 4GB of memory on 32-bit platforms. Empty
does no output at all and should be by far the fastest. The csv and plt formats are suitable when using an external
scripts or tools like gnuplot to generate plots or process data. The mat format can be post-processed in MATLAB

or Octave.

>>> simulate(... , outputFormat="mat")
>>> simulate(... , outputFormat="csv")
>>> simulate(... , outputFormat="plt")
>>> simulate(... , outputFormat="empty')

It is also possible to specify which variables should be present in the result-file. This is done by using POSIX
Extended Regular Expressions. The given expression must match the full variable name (* and $ symbols are

automatically added to the given regular expression).

/I Default, match everything

[>>> simulate(... , variableFilter=".*")

/I match indices of variable myVar that only contain the numbers using combinations

/1 of the letters 1 through 3

[>>> simulate(... , variableFilter="myVar\\\[[1-3]1*\\\1")

/l match x or y or z

[>>> simulate(... , variableFilter="x|y|z")

1.2.15 Using External Functions

See Chapter Interoperability - C and Python for more information about calling functions in other programming
languages.

1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support

Faster simulations on multi-core computers can be obtained by using a new OpenModelica feature that automat-
ically partitions the system of equations and schedules the parts for execution on different cores using shared-
memory OpenMP based execution. The speedup obtained is dependent on the model structure, whether the system
of equations can be partitioned well. This version in the current OpenModelica release is an experimental version
without load balancing. The following command, not yet available from the OpenModelica GUI, will run a parallel
simulation on a model:

[>>> omc -d=openmp model.mo

20

Chapter 1. Introduction

http://www.mathworks.com/products/matlab
http://www.gnu.org/software/octave/
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

1.2.17 Loading Specific Library Version

There exist many different versiosn of Modelica libraries which are not compatible. It is possible to keep mul-
tiple versions of the same library stored in the directory given by calling getModelicaPath(). By calling load-
Model(Modelica,{"3.2"}), OpenModelica will search for a directory called "Modelica 3.2" or a file called "Mod-
elica3.2.mo". It is possible to give several library versions to search for, giving preference for a pre-release version
of a library if it is installed. If the searched version is "default", the priority is: no version name (Modelica), main
release version (Modelica 3.1), pre-release version (Modelica 3.1Beta 1) and unordered versions (Modelica Special
Release).

The loadModel command will also look at the uses annotation of the top-level class after it has been loaded. Given
the following package, Complex 1.0 and ModelicaServices 1.1 will also be loaded into the AST automatically.

package Modelica
annotation(uses(Complex(version="1.0"),
ModelicaServices(version="1.1")));

end Modelica;

Warning:
Notification: Automatically loaded package Complex 4.0.0 due to uses annotation from Modelica.
Notification: Automatically loaded package ModelicaServices 4.0.0 due to uses annotation from Modelica.

Warning: Requested package Modelica of version 4.0.0, but this package was already loaded with version
. OpenModelica cannot reason about compatibility between the two packages since they are not semantic
versions.

>>> clear()
true

Packages will also be loaded if a model has a uses-annotation:

model M
annotation(uses(Modelica(version="3.2.1")));
end M;

Note:
Notification: Automatically loaded package Modelica 3.2.1 due to uses annotation from M.
Notification: Automatically loaded package Complex 3.2.1 due to uses annotation from Modelica.

Notification: Automatically loaded package ModelicaServices 3.2.1 due to uses annotation from Modelica.

>>> instantiateModel (M)
class M
end M;

Packages will also be loaded by looking at the first identifier in the path:

>>> instantiateModel (Modelica.Electrical.Analog.Basic.Ground)
class Modelica.Electrical.Analog.Basic.Ground "Ground node"
Real p.v(quantity = "ElectricPotential"”, unit = "V") "Potential at the pin";

Real p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin";
equation
p.-i = 0.0;

(continues on next page)

1.2. Interactive Session with Examples 21

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

(continued from previous page)
p.v = 0.0;
end Modelica.Electrical.Analog.Basic.Ground;

Note:
Notification: Automatically loaded package Complex 4.0.0 due to uses annotation from Modelica.
Notification: Automatically loaded package ModelicaServices 4.0.0 due to uses annotation from Modelica.

Notification: Automatically loaded package Modelica default due to usage.

1.2.18 Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application programming interface) is described
which returns information about models and/or allows manipulation of models. Calls to these functions can be
done interactively as below, but more typically by program clients to the OpenModelica Compiler (OMC) server.
Current examples of such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the OMEdit graphic
model editor, etc. This API is untyped for performance reasons, i.e., no type checking and minimal error checking
is done on the calls. The results of a call is returned as a text string in Modelica syntax form, which the client has
to parse. An example parser in C++ is available in the OMNotebook source code, whereas another example parser
in Java is available in the MDT Eclipse plugin.

Below we show a few calls on the previously simulated BouncingBall model. The full documentation on this API
is available in the system documentation. First we load and list the model again to show its structure:

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/BouncingBall.
-mo");
>>> list(BouncingBall)
model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";
Real v(fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";
Boolean impact;
Real v_new(fixed = true);
Integer foo;
equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der(v) = if flying then -g else 0;
derCh) = v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new = if edge(impact) then -e*pre(v) else 0;
flying = v_new > 0;
reinit(v, v_new);
end when;
end BouncingBall;

Different kinds of calls with returned results:

>>> getClassRestriction(BouncingBall)

"model"

>>> getClassInformation(BouncingBall)

("model","", false, false, false,"/var/lib/jenkins/ws/OpenModelica_PR-9383/build/share/
—doc/omc/testmodels/BouncingBall.mo", false,1,1,23,17,{}, false, false,"","", false,"","

(continues on next page)

22 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

(continued from previous page)

(_>") " ’ ""’"")

>>> isFunction(BouncingBall)

false

>>> existClass(BouncingBall)

true

>>> getComponents(BouncingBall)

{{Real, e, "coefficient of restitution", "public", false, false, false, false,

- '"parameter"”, "none", "unspecified", {}},{Real, g, "gravity acceleration", "public",.
—false, false, false, false, "parameter", "none", "unspecified", {}},{Real, h,
—"height of ball", "public", false, false, false, false, "unspecified", "none",
~"unspecified", {}},{Real, v, "velocity of ball", "public", false, false, false,..

—.false, "unspecified", "none", "unspecified", {}},{Boolean, flying, "true, if ball.
—is flying", "public", false, false, false, false, "unspecified", "none",
~'"unspecified", {3}},{Boolean, impact, "", "public", false, false, false, false,
~'"unspecified", "none", "unspecified", {}},{Real, v_new, "", "public", false, false,.
—false, false, "unspecified", "none", "unspecified", {}},{Integer, foo, "", "public",
-, false, false, false, false, "unspecified", "none", "unspecified", {}}}

>>> getConnectionCount (BouncingBall)

0

>>> getInheritanceCount (BouncingBall)

0

>>> getComponentModifierValue(BouncingBall,e)

ng. 7"

>>> getComponentModifierNames(BouncingBall, "e")

{}

>>> getClassRestriction(BouncingBall)

"model™

>>> getVersion() // Version of the currently running OMC
"OMCompiler v1.24.0-dev.53+gc9e78be0®33"

1.2.19 Quit OpenModelica

Leave and quit OpenModelica:

[>>> quitQ

1.2.20 Dump XML Representation

The command dumpXMLDAE dumps an XML representation of a model, according to several optional parameters.

dumpXMLDAE(modelnamel,asInSimulationCode=<Boolean>] [filePrefix=<String>] [,storeln-
Temp=<Boolean>] [,addMathMLCode =<Boolean>])

This command dumps the mathematical representation of a model using an XML representation, with optional
parameters. In particular, asInSimulationCode defines where to stop in the translation process (before dumping the
model), the other options are relative to the file storage: filePrefix for specifying a different name and storeInTemp
to use the temporary directory. The optional parameter addMathMLCode gives the possibility to don't print the
MathML code within the xml file, to make it more readable. Usage is trivial, just: addMathMLCode=true/false
(default value is false).

1.2. Interactive Session with Examples 23

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

1.2.21 Dump Matlab Representation

The command export dumps an XML representation of a model, according to several optional parameters.
exportDAEtoMatlab(modelname);

This command dumps the mathematical representation of a model using a Matlab representation. Example:

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/BouncingBall.
—mo")

true

>>> exportDAEtoMatlab(BouncingBall)

"The equation system was dumped to Matlab file:BouncingBall_imatrix.m"

% Adjacency Matrix
%
% number of rows: 6

IM={{3,6},{1,{"if", "true','==" {3},{},}},{{"if", 'true','==" {4},{},}},{5},{2,{"if",
—'edge(impact) ' {3},{5},}},{4,2}};

VL = {'foo','v_new', 'impact', 'flying','v','h'};

EgStr = {'impact = h <= 0.0;"', 'foo = if impact then 1 else 2;','der(v) = if flying.
—then -g else 0.0;','der(h) = v;', 'when {h <= 0.0 and v <= 0.0, impact} then v_new =,
—if edge(impact) then (-e) * pre(v) else 0.0; end when;', 'when {h <= 0.0 and v <= 0.
-0, impact} then flying = v_new > 0.0; end when;'};

01dEqStr={'class BouncingBall',' parameter Real e = 0.7 "coefficient of restitution";
—'," parameter Real g = 9.81 "gravity acceleration";',' Real h(start = 1.0, fixed.
—= true) "height of ball";',' Real v(fixed = true) "velocity of ball";',' Boolean.
—flying(start = true, fixed = true) "true, if ball is flying";',' Boolean impact;',
—"' Real v_new(fixed = true);',' Integer foo;','equation',' impact = h <= 0.0;"',' .
—foo = if impact then 1 else 2;',' der(v) = if flying then -g else 0.0;',' derCh).
~=v;',' when {h <= 0.0 and v <= 0.0, impact} then',' v_new = if edge(impact).
—then -e * pre(v) else 0.0;'," flying = v_new > 0.0;"',"' reinit(v, v_new);"',' .
—end when;','end BouncingBall;',''};

1.3 Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in the interactive session hander.

simulate(modelname) Translate a model named modelname and simulate it.

simulate(modelnamel startTime=<Real>][,stopTime=<Real>][,numberOfIntervals
=<Integer>][,outputlnterval=<Real>][,method=<String>]

[,tolerance=<Real>][,fixedStepSize=<Real>]

[,outputFormat=<String>]) Translate and simulate a model, with optional start time, stop time, and optional
number of simulation intervals or steps for which the simulation results will be computed. More intervals will
give higher time resolution, but occupy more space and take longer to compute. The default number of intervals
is 500. It is possible to choose solving method, default is “dassl”, “euler” and “rungekutta” are also available.
Output format “mat” is default. “plt” and “mat” (MATLAB) are the only ones that work with the val() command,
“csv” (comma separated values) and “empty” (no output) are also available (see section Alternative Simulation
Output Formats).

24 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

plot(vars) Plot the variables given as a vector or a scalar, e.g. plot({x1,x2}) or plot(x1).

plotParametric(varl, var2) Plot var2 relative to varl from the most recently simulated model, e.g. plotParamet-
ric(x,y).

cd() Return the current directory.

cd(dir) Change directory to the directory given as string.
clear() Clear all loaded definitions.

clearVariables() Clear all defined variables.

dumpXMLDAE(modelname, ...) Dumps an XML representation of a model, according to several optional param-
eters.

exportDAEtoMatlab(name) Dumps a Matlab representation of a model.

instantiateModel(modelname)Performs code instantiation of a model/class and return a string containing the flat
class definition.

list() Return a string containing all loaded class definitions.
list(modelname) Return a string containing the class definition of the named class.
listVariables() Return a vector of the names of the currently defined variables.

loadModel(classname) Load model or package of name classname from the path indicated by the environment
variable OPENMODELICALIBRARY.

loadFile(str) Load Modelica file (.mo) with name given as string argument str.
readFile(str) Load file given as string str and return a string containing the file content.
runScript(str) Execute script file with file name given as string argument str.

system(str) Execute str as a system(shell) command in the operating system; return integer success value. Output
into stdout from a shell command is put into the console window.

timing(expr) Evaluate expression expr and return the number of seconds (elapsed time) the evaluation took.
typeOf(variable) Return the type of the variable as a string.

saveModel(str,modelname) Save the model/class with name modelname in the file given by the string argument
str.

val(variable,timePoint) Return the (interpolated) value of the variable at time timePoint.
help() Print this helptext (returned as a string).

quit() Leave and quit the OpenModelica environment

1.4 Running the compiler from command line

The OpenModelica compiler can also be used from command line, in Windows cmd.exe or a Unix shell. The
following examples assume omc is on the PATH; if it is not, you can run C:\OpenModelica 1.16.0\build\
bin\omc.exe or similar (depending on where you installed OpenModelica).

1.4. Running the compiler from command line 25

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

1.4.1 Example Session 1 - obtaining information about command line parame-
ters

$ omc --help

OpenModelica Compiler OMCompiler v1.24.0-dev.53+gc9e78be®33
Copyright © 2019 Open Source Modelica Consortium (OSMC)
Distributed under OMSC-PL and GPL, see www.openmodelica.org

Usage: omc [Options] (Model.mo | Script.mos) [Libraries | .mo-files]
* Libraries: Fully qualified names of libraries to load before processing Model or..
—Script.

Documentation is available in the built-in package OpenModelica.Scripting or
online <https://build.openmodelica.org/Documentation/OpenModelica.Scripting.html>.

1.4.2 Example Session 2 - create an TestModel.mo file and run omc on it

model TestModel
parameter Real x
end TestModel;

I}
—

$ omc TestModel.mo

class TestModel
parameter Real x = 1.0;

end TestModel;

1.4.3 Example Session 3 - create a mos-script and run omc on it

loadModel (Modelica);

getErrorString();
simulate(Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum) ;
getErrorString(Q);

$ omc TestScript.mos

false

"Error: Failed to open file for writing: //.openmodelica/libraries/index.json.tmpl
Error: Failed to download package index https://libraries.openmodelica.org/index/v1/
—~index.json to file //.openmodelica/libraries/index. json.

Error: Failed to open file for writing: //.openmodelica/libraries/index.json.tmpl
Error: Failed to download package index https://libraries.openmodelica.org/index/vl/
—,index.json to file //.openmodelica/libraries/index. json.

Error: Failed to load package Modelica (default) using MODELICAPATH //.openmodelica/
—libraries/.

record SimulationResult

resultFile = "",

simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOfIntervals = 500,.
—.tolerance = le-6, method = 'dassl', fileNamePrefix = 'Modelica.Mechanics.MultiBody.
—Examples.Elementary.Pendulum', options = '', outputFormat = 'mat', variableFilter =
~'.*' cflags = '', simflags = ''",

messages = "Simulation Failed. Model: Modelica.Mechanics.MultiBody.Examples.

—Elementary.Pendulum does not exist! Please load it first before simulation.",
timeFrontend = 0.0,

(continues on next page)

26 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

(continued from previous page)
timeBackend
timeSimCode
timeTemplates
timeCompile = ,
timeSimulation = 0.0,
timeTotal = 0.0

end SimulationResult;

0
0.
= 0.0,
0

(=2 — I — I —]

J

In order to obtain more information from the compiler one can use the command line options --
showErrorMessages -d=failtrace when running the compiler:

$ omc --showErrorMessages -d=failtrace TestScript.mos
InstFunction.getRecordConstructorFunction failed for OpenModelica.Scripting.loadModel
- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE()>].<Prefix.NOPRE()>.Modelica..
—env: <global scope>

- Static.elabCref failed: Modelica in env: <global scope>

- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE()>].<Prefix.NOPRE()>.Modelica.,
—env: <global scope>

timeSimulation = 0.0,
timeTotal = 0.0
end SimulationResult;

1.4. Running the compiler from command line 27

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

28 Chapter 1. Introduction

CHAPTER
TWO

PACKAGE MANAGEMENT

2.1 Overview of Basic Modelica Package Management Concepts

The Modelica language promotes the orderly reuse of component models by means of packages that contain struc-
tured libraries of reusable models. The most prominent example is the Modelica Standard Library (MSL), that
contains basic models covering many fields of engineering. Other libraries, both open-source and commercial, are
available to cover specific applications domains.

When you start a simulation project using Modelica, it is common practice to collect all related system models in a
project-specific package that you develop. The models in this package are often instantiated (e.g. by drag-and-drop
in OMEdit) from released libraries, which are read-only for your project. This establishes a dependency between
your project package and a certain version of a read-only package (or library), which is the one you have loaded in
OMEdit and that you drag-and-drop components from.

This dependency is automatically marked in your package by adding a uses annotation at the top level.
For example, if you drag and drop components from MSL 4.0.0 into models of your package, the
annotation(uses(Modelica(version="4.0.0"))); will be added automatically to it. This information al-
lows OpenModelica to automatically load all the libraries that are required to compile the models in your own
package next time you (or someone else, possibly on a different computer) loads your package, provided they are
installed in places on the computer's file system where OpenModelica can find them.

The default place where OpenModelica looks for packages is the so-called MODELICAPATH. You can check
where it is by typing getModelicaPath() in the Interactive Environment (Tools | OpenModelica Compiler CLI
in OMEdit). Installed read-only libraries are placed by default in the MODELICAPATH.

When a new version of certain package comes out, conversion annotations in it declare whether your models
using a certain older version of it can be used as they are with the new one, which is then 100% backwards-
compatible, or whether they need to be upgraded by running a conversion script, provided with the new version
of the package. The former case is declared explicitly by a conversion(noneFromVersion) annotation. For
example, a conversion(noneFromVersion="3.0.0") annotation in version 3. 1.0 of a certain package means
that all packages using version 3.0.0 can use 3. 1.0 without any change. Of course it is preferrable to use a newer,
backwards-compatible version, as it contains bugfixes and possibly new features.

Hence, if you install a new version of a library which is 100% backwards-compatible with the previous ones, all
your models that used the old one will automatically load and use the new one, without the need of any further
action.

If the new version is not backwards-compatible, instead, you will need to create a new version of your library that
uses it, by running the provided conversion scripts.

OpenModelica has a package manager that can be used to install and update libraries on your computer, and is
able to run conversion scripts. Keep in mind there are three stages in package usage: available packages are
indexed on the OSMC servers and can be downloaded from public repositories; installed packages are stored in
the MODELICAPATH of your computer; loaded packages are loaded in memory in an active OMC session, either
via the Interactive Environment, or via the OMEdit GUI, where they are shown in the Libraries Browser. When
you load a package, OpenModelica tries to load the best possible installed versions of all the dependencies declared
in the uses annotation.

29

https://specification.modelica.org/maint/3.5/annotations.html#version-handling
https://specification.modelica.org/maint/3.5/packages.html#the-modelica-library-path-modelicapath
https://specification.modelica.org/maint/3.5/annotations.html#version-handling

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

2.2 The Package Manager

The Open Source Modelica Consortium (OSMC) maintains a collection of publicly available, open-source Mod-
elica libraries on its servers, see https://github.com/OpenModelica/OMPackageManager. These libraries are rou-
tinely tested with past released versions of OpenModelica, as well as with the current development version on the
master branch, see the overview report. Based on the testing results and on information gathered from the library
developers, these packages are classified in terms of level of support in OpenModelica. Backwards-compatibility
information is also collected from the conversion annotations.

The OpenModelica Package Manager relies on this information to install the best versions of the library depen-
dencies of your own, locally developed Modelica packages and models. It can be run both from the OMEdit GUI
and from the command-line interactive environment. The libraries and their index. json index file with all the
library metadata are installed in the ~/ . openmodelica/libraries directory under Linux and in the %AppData%\
.openmodelica\libraries directory on Windows. Note that these directories are user-specific, so if there are
multiple users on the same computer, each of them will install and manage his/her own set of libraries independently
from the others.

The Package Manager may install multiple builds of the same library version in your own package manager di-
rectory, if they are indexed on the OSMC servers. When this happens, they are distinguished among each other
by means of semver-style pre- or post-release metadata in the top directory name on the file system. Post-release
builds are denoted by a plus sign (e.g. 2.0.0+build.02) and have higher priority over the corresponding plain
release (e.g. 2.0.0), while pre-release builds are denoted by a minus sign (e.g. 2.0.0-dev. 30) and have a lower
priority.

When loading a certain version of a library, unless a specific build is explicitly referenced, the one with higher
precedence will always be loaded. For example, if the versions 2.0.0-beta.01, 2.0.0, and 2.0.0+build.01
are installed, the latter is loaded by libraries with uses annotation requiring version 2.0.0. Unless, of course,
there are later backwards-compatible versions installed, e.g., 2. 0. 1, in which case the one with the highest release
number and priority is installed.

In any case, semver version semantics is only used to order the releases, while backwards-compatibility is deter-
mined exclusively on the basis of noneFromVersion annotations.

When installing OpenModelica, a cached version of the latest versions of the Modelica Standard Library is included
in the installation files. As soon as a user starts any OpenModelica tool (e.g., OMEdit, OMNotebook, OMShell, or
direct command-line invocation of omc), if the user's . openmodelica directory is empty the Modelica Standard
Library will be installed automatically using this cached version. This happens when using OpenModelica for the
first time, or if the contents of the . openmodelica directory have been deleted to get rid of all installed libraries.
This automatic installation needs no Internet connection, so it also works behind firewalls or in set-ups with limited
available bandwidth. Therefore, the Modelica Standard Library is immediately available without the need of using
the package manager explicitly. It is then possible to install and manage other libraries using the package manager,
as explained previously.

As a final remark, please note that the version numbers of the various Modelica packages have no relation with the
version numbers of the OpenModelica tool itself. Since version 1.19.0, OpenModelica is no longer shipped with
built-in installed libraries, that are instead managed independently by the user with the online Package Manager.
You can install and use old and new versions of a certain open source Modelica library using the latest released
version of OpenModelica, by using the Package Manager. We strive to make sure that new released versions of
OpenModelica are backwards-compatible, meaning that you should always be able to run the same models/libraries
with a new version of OpenModelica if you could with an older version of the tool. Hence, we strongly advise you
to always use the latest released version of OpenModelica, even if you are running old models; by doing so, you
benefit from faster performance, more robust numerical performance, new tool features, and a lot of bug fixes.

You should never find yourself in a situation where you are forced to stick to an old version of OpenModelica to run
your models. If that happens to you, please open a ticket on the issue tracker, so we can hopefully fix the problem
and allow you to keep using the latest OpenModelica release.

30 Chapter 2. Package Management

https://github.com/OpenModelica/OMPackageManager
https://libraries.openmodelica.org/branches/overview-combined.html
https://semver.org/#semantic-versioning-specification-semver
https://github.com/OpenModelica/OpenModelica/issues/new/choose

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

2.2.1 Package Management in OMEdit

Installing a new library in OMEdit.

2.2.2 Running Conversion Scripts in OMEdit

Converting a library in OMEdit.

2.2.3 Automatically Loaded Packages in OMEdit

When you start OMEdit, some packages can be automatically loaded into the environment, and shown in the
Libraries Browser. You can configure which ones are loaded from the Tools|Options|Libraries menu.

Please note that automatically loaded libraries may be in conflict with the dependencies of packages that you may
later load from the File menu. For example, if you automatically load Modelica 4.0.0, and then load a library
XYZ that still uses MSL 3.2.3, you get a conflict, because Modelica 4.0.0 is not backwards-compatible with
Modelica 3.2. 3, so XYZ cannot be used.

In this case you have two options:
 Cancel Operation: this means XYZ is not actually loaded, and all previously loaded libraries remain in place.

e Unload all and Reload XYZ: in this case, all previously loaded libraries, that may generate conflicts, are
unloaded first; then XYZ is loaded, and finally the right versions of the libraries XYZ uses, as declared in
its uses annotation, will be loaded automatically.

If you are normally working with only one version of the Modelica standard library, you can set it to be automatically
loaded from the Tools|Options|Libraries menu; in case you need to work with a library that uses a previous, non-
backwards compatible version, the Unload all and Reload option comes handy. Otherwise, you can avoid loading
the Modelica library automatically upon starting OMEdit, and let the right version of the Modelica library be loaded
automatically when you open the library you want to work with. In this case, if you want to get the Modelica library
into the Package Browser to start developing a new library, you can do so easily from the Welcome tab, by clicking
on the System Libraries button and selecting the version that you want to load.

2.2.4 Manually Loading Packages

If you want to maintain full control over which library dependencies are loaded, you can use the File | Open
Model/Library Files(s) menu command in OMEdit to open the libraries one by one from specific locations in
your file system. Note, however, that whenever a library is loaded, its dependencies, that are declared in its uses
annotation, will automatically be loaded. If you want to avoid that, you need to load the library dependencies in
reverse order, so that the intended library dependencies are already loaded when you open the library that needs
them.

If you are using the Interactive Environment, you can use the loadFile () command to load libraries from specific
locations on the file system, also in reverse dependency order, unless you also set the optional uses = false input
argument to disable the automatic loading of dependencies.

2.2.5 Using the Package Manager from the Interactive Environment

The Package Manager can also be used from the Interactive Environment command line shell. Here is a list of ex-
amples of relevant commands; please type them followed by getErrorString(), e.g., updatePackagelndex(); getEr-
rorString(), in order to get additional information, notifications and error messages.

* updatePackagelndex() - this command puts the Package Manager in contact with the OSMC servers and
updates the internally stored list of available packages;

* getAvailablePackageVersions(Building, "") - lists all available versions of the Buildings library on the OSMC
server, starting from the most recent one, in descending order of priority. Note that pre-release versions have
lower priority than all other versions;

2.2. The Package Manager 31

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

e getAvailablePackageVersions(Building, "7.0.0") - lists all available versions of the Buildings library on the
OSMC server that are backwards-compatible with version 7.0.0, in descending order of priority;

e installPackage(Buildings, "") - install the most recent version of the Building libraries, and all its dependen-
cies;

e installPackage(Buildings, "7.0.0") - install the most recent version of the Building libraries which is
backwards-compatible with version 7.0.0, and all its dependencies;

e installPackage(Buildings, "7.0.0", exactMatch = true) - install version 7.0.0 even if there are more recent
backwards-compatible versions available, and all its dependencies;

e upgradelnstalledPackages(installNewestVersions = true) - installs the latest available version of all installed
packages.

2.3 How the package index works

The package index is generated by OMPackageManager on an OSMC server, based on these settings. See its
documentation to see how to add new packages to the index, change support level, and so on.

The index is generated by scanning git repositories on github. All tags and optionally some specific branches are
scanned. The tag name is parsed as if it was a semantic version, with prerelease and metadata of the tag added to
the version of Modelica packages in the repository. If the tag name is not a semantic version, it is sorted differently.

Packages are sorted as follows:
* Support level: each package is given a level of support in the index

» Semantic version: according to the semver specification, but build metadata is also considered (sorted the
same way as pre-releases)

» Non-semantic versions: alphabetically

32 Chapter 2. Package Management

https://github.com/OpenModelica/OMPackageManager
https://github.com/OpenModelica/OMPackageManager/blob/master/repos.json

CHAPTER
THREE

OMEDIT - OPENMODELICA CONNECTION EDITOR

OMEdit - OpenModelica Connection Editor is the new Graphical User Interface for graphical model editing in
OpenModelica. It is implemented in C++ using the Qt graphical user interface library and supports the Modelica
Standard Library that is included in the latest OpenModelica installation. This chapter gives a brief introduction
to OMEdit and also demonstrates how to create a DCMotor model using the editor.

OMEdit provides several user friendly features for creating, browsing, editing, and simulating models:
* Modeling - Easy model creation for Modelica models.
* Pre-defined models - Browsing the Modelica Standard library to access the provided models.
» User defined models - Users can create their own models for immediate usage and later reuse.

* Component interfaces - Smart connection editing for drawing and editing connections between model inter-
faces.

* Simulation - Subsystem for running simulations and specifying simulation parameters start and stop time,
etc.

* Plotting - Interface to plot variables from simulated models.

3.1 Starting OMEdit

A splash screen similar to the one shown in Figure 3.1 will appear indicating that it is starting OMEdit. The
executable is found in different places depending on the platform (see below).

3.1.1 Microsoft Windows
OMEdit can be launched wusing the executable placed in OpenModelicalnstallationDirec-

tory/bin/OMEdit/OMEdit.exe. Alternately, choose OpenModelica > OpenModelica Connection Editor from the
start menu in Windows.

3.1.2 Linux

Start OMEdit by either selecting the corresponding menu application item or typing “OMEdit” at the shell or
command prompt.

33

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

Figure 3.1: OMEdit Splash Screen.

3.1.3 Mac OS X

The default installation is /Application/MacPorts/OMEdit.app.

3.2 MainWindow & Browsers

The MainWindow contains several dockable browsers,
¢ Libraries Browser
* Documentation Browser
 Variables Browser
* Messages Browser
Figure 3.2 shows the MainWindow and browsers.

The default location of the browsers are shown in Figure 3.2. All browsers except for Message Browser can be
docked into left or right column. The Messages Browser can be docked into top or bottom areas. If you want
OMEdit to remember the new docked position of the browsers then you must enable Preserve User's GUI Cus-
tomizations option, see section General Options.

34 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

o OMEdit - OpenModelica Connection Editor = B

Eile Edit View Simulation FMI Export Jools Help
=Kl - N

FeHB - @Heee \OHNOTH
Libraries Browser Documentation Browser @ X

& X
|Search Classes | \ 4) Previous | [MNext

w

Libraries

4 E OpenModelica

3 D MeodelicaServices
> . Complex

b P7%2] Modelica

[o ModelicaReference

Wﬂm -4

|Find Variables | &

Variables Value

£ >
g X

X:108.62 ¥:-16.90 o Modeling 8

Figure 3.2: OMEdit MainWindow and Browsers.

3.2. MainWindow & Browsers 35

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.2.1 Filter Classes

To filter a class click Edit > Filter Classes or press keyboard shortcut Ctrl+Shift+F. The loaded Modelica classes
can be filtered by typing any part of the class name.

3.2.2 Libraries Browser

To view the Libraries Browser click View > Windows > Libraries Browser. Shows the list of loaded Modelica
classes. Each item of the Libraries Browser has right click menu for easy manipulation and usage of the class.
The classes are shown in a tree structure with name and icon. The protected classes are not shown by default. If
you want to see the protected classes then you must enable the Show Protected Classes option, see section General
Options.

3.2.3 Documentation Browser

Displays the HTML documentation of Modelica classes. It contains the navigation buttons for moving forward and
backward. It also contains a WYSIWYG editor which allows writing class documentation in HTML format. To
view the Documentation Browser click View > Windows > Documentation Browser.

Documentation Browser n
-3 > > L
info rev hadr e
. A
Modelica

Modelica Standard Library - Version 3.2.2

Information

Package Modelica® is a standardized and free package that is developed together with the Modelica® lnguage from the Modelica
Association, see https://'www.Modelica.org. It is also caled Modelica Standard Library. It provides model components in many dormains
that are based on standardired interface definitions. Some typical examples are shown in the next figure:

:Lj‘?' ambient
s, Dd 00 I®
;{H : e

Mrem I |

L]
AIMC1

cormection

For an introduction, have especialy a look at:

+ Overview provides an overview of the Modelica Standard Library inside the User's Guide.
* Release Motes summarizes the changes of new versions of this package.
¢ Contact lists the contributors of the Modelica Standard Library.

+ The Examples packages in the various libraries, demonstrate how to use the components of the corresponding sublibrary.

This version of the Modelica Standard Library consists of

¢« 1600 models and blocks, and
* 1350 functions

that are directly usable (= number of public, non-partial classes). It is fully compliant to Modelica Specification Version 3.2 Revision 2 and it
has heen tested with Madelica tanls fram different vendars.

Figure 3.3: Documentation Browser.

36 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.2.4 Variables Browser

The class variables are structured in the form of the tree and are displayed in the Variables Browser. Each variable
has a checkbox. Ticking the checkbox will plot the variable values. The complete Variables Browser can be
collapsed and expanded using the Collapse All and Expand All buttons.

There is a find box for filtering the variable in the tree. By clicking the yellow down arrow you can set all the
filtering options. The filtering can be done using Regular Expression, Wildcard and Fixed String; in all three
cases, all variables whose full name contains a string corresponding to the filter string will be displayed.

Fixed String: shows all variables whose name contains the string verbatim
¢ abc shows abc, abc.def, xyz.abc, der(abc) etc.
e a.bshowsa.b,a.bcd,a.b.c,x.a.b, x.a.b.c,etc.
Wildcard: same as Fixed String; additionally, asterisks match any number of characters
e der(*) shows all derivatives, e.g. der(x), der(abc), abc.der(xyz), etc.
e a*c shows ac, abc, abdc, xyz.adefc, etc.

Regular expression: shows all variables whose name contain a string that matches the regexp; if the regexp ends
with $, then the name must end with a string matching the regexp

¢ abc shows abc, abc.def, xyz.abc, der(abc) etc.

* abc$ shows abc, xyz.abc only

* a.c shows abc, abc.def, azc, xyz.adc etc. (. matches any character)

* a.*c shows abc, abc.def, axyc, xyz.axxxxdc etc. (.* matches any number of character)

* body\.a_0\[1\] shows variables containing body.a_0[1]. Note that ., [, and] are special regexp char-
acters, so they must be escaped

e der\(.*\) shows all derivatives in the model. Note that (and) must be escaped
e x\[[2-4]\] shows elements 2, 3, and 4 of arrays x[:], abc.x[:],x[:].abc

e x\[.*\] shows all elements of arrays x[:], abc.x[:], x[:].abc

* abc|def shows all variables with names containing either abc or def

The browser allows manipulation of changeable parameters for Plor Window. It also displays the unit and descrip-
tion of the variable.

The browser also contains the slider and animation buttons. These controls are used for variable graphics and
schematic animation of models i.e., DynamicSelect annotation. They are also used for debugging of state machines.
Open the Diagram Window for animation. It is only possible to animate one model at a time. This is achieved by
marking the result file active in the Variables Browser. The animation only read the values from the active result
file. It is possible to simulate several models. In that case, the user will see a list of result files in the Variables
Browser. The user can switch between different result files by right clicking on the result file and selecting Set
Active in the context menu.

3.2.5 Messages Browser

Shows the list of errors. Following kinds of error can occur,
e Syntax
e Grammar
* Translation
¢ Symbolic
* Simulation

* Scripting

3.2. MainWindow & Browsers 37

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

Variables Browser g X
|Filter variables o
|:| Casze Sensitive Regular Expression o

Expand All Collapse all
Simulation Time Unit 5 -

“ ’ II Time:| 0.0 Speed:| 1~
)

Variables Value Display Unit Description
=] @ Meodelica.E...huaCircuit
=1
C F Capacitance
[] derfv) 0.014557 km2...-1.g der(Voltage drop of...pins (= p.v - nv))
i 0.14557 A Current flowing from pin p to pin n
n

Yoltage drop of the... pins (= p.v - nw)

[=Y = I =

= T &1 & M

= =] ra
(=9

=
=
[=]

Figure 3.4: Variables Browser.

38 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

See section Messages Options for Messages Browser options.

3.3 Perspectives

The perspective tabs are located at the bottom right of the Main Window:
* Welcome Perspective
¢ Modeling Perspective
* Plotting Perspective

* Debugging Perspective

3.3.1 Welcome Perspective

&t OMEdit - OpenMadelica Connection Editor - O >

File Edit View Simulation FMI Export Debug Git Tools Help

EA"1=1 066 \® B &9 X-|5»

Libraries Browser

|Fi|1er Claszes

OMEdit - OpenModelica Connection Editor

Libraries

> @ OpenModelica

> G ModelicaServices

Recent Files Latest News
> . Complex
¥ @ Modelica E:> C:/OpenModelica/OMCompiler/Exan ED‘ February 6, 2017: OpenModelica 1.11.0 released
’ o ModelicaReference E:> C:/Users/adeas31/Desktop/Connecto ED‘ January 17, 2017: OpenModelica 1.11 Beta3 released

E‘,> C/Users/adeas31/Desktop/PhotoVolt ED‘ Decemnber 20, 2016: OpenModelica 1.11 Betal released
E‘,> C:/Users/adeas31/Desktop/OmcOmc ED‘ Novernber 22, 2016 OpenModelica 1.9.7 released
E:> Ci/Users/adeas31/Desktop/Folder/pa ED‘ March 16, 2016: OpenModelica 1.9.6 released
ED’ March 9, 2016: OpenModelica 1.9.4 released
ED’ February 18, 2016: OpenModelica 1.9.4 beta2 released
ED Program OpenMedelica Annual Workshop 2016
£ >
Clear Recent Files Reload | For more details visit our website www.openmodelica.org

G ol i)

t Welcome d Modeling ﬂ Plotting ‘» Debugging

Figure 3.5: OMEdit Welcome Perspective.

The Welcome Perspective shows the list of recent files and the list of latest news from https://www.openmodelica.
org. See Figure 3.5. The orientation of recent files and latest news can be horizontal or vertical. User is allowed to
show/hide the latest news. See section General Options.

3.3. Perspectives 39

https://www.openmodelica.org
https://www.openmodelica.org

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.3.2 Modeling Perspective

The Modeling Perspective provides the interface where user can create and design their models. See Figure 3.6.

ot OMEdit - OpenModelica Connection Editor — O *

Eile Edit View Simulation FMI Export Debug Git Tools Help

J'Gél?ﬁ ﬁ.\.\.\ \N® » 'O” 9”%’”'1” o>

Libraries Browser =4 di DCMotor® @
[Fiter Classes | & |||-| AE O ‘Wribble |Model |Diagram View ‘DCMotor ‘DCMotor |LinE: 1, Col: 0 ‘ |
Libraries

@ OpenModelica

D ModelicaServices
Complex

7% Modelica

0 MeodelicaReference

¥:-124.07 ¥:-32.34 & vielcome o Modeling B9 Plotting @ Debugging

Figure 3.6: OMEdit Modeling Perspective.

The Modeling Perspective interface can be viewed in two different modes, the tabbed view and sub-window view,
see section General Options.

3.3.3 Plotting Perspective

The Plotting Perspective shows the simulation results of the models. Plotting Perspective will automatically become
active when the simulation of the model is finished successfully. It will also become active when user opens any
of the OpenModelica's supported result file. Similar to Modeling Perspective this perspective can also be viewed
in two different modes, the tabbed view and sub-window view, see section General Options.

40 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

ot OMEdit - OpenModelica Connection Editor - [Plot: 1] — O *,
IZ Eile Edit View Simulation FM| Export Debug Git Tools Help - &8 X
[L. |
BB @000\ »E-|Q-]d DX
Libraries Browser g X Zoom Pan | AutoScale FitinView | Save | Print | Grid | Detsiled Grid = **| | Variables Browser g X
|Filter Classes | ¥ |Filter Variables | v

f. phi [d
Libraries emf.ph [deg] Simulation Time Unit l:l

E OpenMedelica 0 __\\\- Variables Value
G ModelicaServices E‘M
. Complex -1 = emf

7% Modelica [dertph) -03403

-3 fined
'o MaodelicaReference b flange
E DCMotor] i -0.53350
-3

internalSupport

[k 1.0

-4 n
\ P
5] M phi -7.23033
] Cv -0.3403
1 \ Cw -0.3403
-6 7] ground1
] \ inductorl
-7 inertia
] resistor]
5] i i o . A signalvoltagel
0 0.2 0.4 0.6 0.8 1 step
time [s] < N

¥:-138.55 ¥: 43.45 & welcome oA Modeling BB piotting @ Debugging

Figure 3.7: OMEdit Plotting Perspective.

3.3. Perspectives a1

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.3.4 Debugging Perspective

The application automatically switches to Debugging Perspective when user simulates the class with algorithmic
debugger. The perspective shows the list of stack frames, breakpoints and variables.

E OpenModelica

D ModelicaServices
. Complex

@ Modelica

o ModelicaReference

m DCMotor
getValueM...liedByTwo
m SimulationModel

I'-:\/ getVi.yTwo 5

Simul..ion_1 5

Ci/Users/adeas31/De..eMultipliedBy Two.mo
C:/Users/adeas31/De.../SimulationModel.mo
C:/Users/adeas31/App...ulaticnModel_12jac.h

Simu.ns 0 33

Simul..tions 43 C:/Users/adeas31/App...ulationModel_12jac.h

v

rurebn bimm

&4 OMEdit - OpenModelica Connection Editor - O X
File Edit View Simulation FMI Export Debug Git Tools Help

a8 B0.00 \OWOTH <E O 3 oiX-
Libraries Browser & X | Stack Frames Browser & X | BreakPoints Browser X || Locals Browser & X
ZivnE ||b— N |Threads: 1 - |Shoppedatb.._inﬁ'1read1 Line File Name Type Value
Librarics Function line File ~ || ® 5 CiUsers/..dByTwo.mo inValue Real 0

= B

getValueMultipliedByTwo

|II'I oﬁ E o |Wrimble |Function |Tert View |get\|‘alueMuIﬁpIiedByTwo C:fUse.. Two.mo | Line: 5, Col: 0 | a |

1 function getValueMultipliedByTIwo
2 input Real inValue;
output Real outValue;

outValue Real 4.1445)

algorithm
® S outValue := inValue * 2;
end getValueMultipliedByTwo:
£ >
4.1445230292290475e-316
Qutput Browser [4
Debugger CLI Qutput Browser
¥: -95,10 i 105.72 t Welcome o’.i Modeling ﬂ Plotting o Debugging

Figure 3.8: OMEdit Debugging Perspective.

3.4 File Menu

e New

e New Modelica Class - Creates a new Modelica class.

e New SSP Model - Creates a new SSP model.

Open Model/Library File(s) - Opens the Modelica file or a library.

* Open/Convert Modelica File(s) With Encoding - Opens the Modelica file or a library with a specific encoding.
It is also possible to convert to UTF-8.

* Load Library -

Loads a Modelica library. Allows the user to select the library path assuming that the path
contains a package.mo file.

Open Result File(s) - Opens a result file.
Open Transformations File - Opens a transformational debugger file.

Unload All - Unloads all loaded classes.

Load Encrypted Library - Loads an encrypted library. see OpenModelica Encryption

42

Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

New Composite Model - Creates a new composite model.

Open Composite Model(s) - Loads an existing composite model.

Load External Model(s) - Loads the external models that can be used within composite model.
Open Directory - Loads the files of a directory recursively. The files are loaded as text files.
Save - Saves the class.

Save As - Save as the class.

Save Total - Saves the class and all the classes it uses in a single file. The class and its dependencies can only
be loaded later by using the loadFile() API function in a script. Allows third parties to reproduce an issue
with a class without worrying about library dependencies.

Import

FMU - Imports the FMU.

FMU Model Description - Imports the FMU model description.

From OMNotbook - Imports the Modelica models from OMNotebook.

Ngspice netlist - Imports the ngspice netlist to Modelica code.

Export

To Clipboard - Exports the current model to clipboard.

Image - Exports the current model to image.

FMU - Exports the current model to FMU.

Read-only Package - Exports a zipped Modelica library with file extension .mol
Encrypted Package - Exports an encrypted package. see OpenModelica Encryption
XML - Exports the current model to a xml file.

Figaro - Exports the current model to Figaro.

To OMNotebook - Exports the current model to a OMNotebook file.

System Libraries - Contains a list of system libraries.

Manage Libraries

Install Library - Opens a dialog to select and install a new library, see Install Library
Upgrade Installed Libraries - Opens a dialog to upgrade the installed libraries.
Update Library Index - Updates the library index.

Recent Files - Contains a list of recent files.

Clear Recent Files - Clears the list of recent files.

Print - Prints the current model.

Quit - Quit the OpenModelica Connection Editor.

3.4. File Menu 43

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.5 Edit Menu

* Undo - Undoes the last change.
* Redo - Redoes the last undone change.

e Filter Classes - Filters the classes in Libraries Browser, see Filter Classes

3.6 View Menu

* Toolbars - Toggle visibility of toolbars.

* Windows - Toggle visibility of windows.

* Close Window - Closes the current model window.

* Close All Windows - Closes all the model windows.

* Close All Windows But This - Closes all the model windows except the current.

* Cascade Windows - Arranges all the child windows in a cascade pattern.

* Tile Windows Horizontally - Arranges all child windows in a horizontally tiled pattern.
* Tile Windows Vertically - Arranges all child windows in a vertically tiled pattern.
* Toggle Tab/SubWindow View - Switches between tab and sub-window view.

* Grid Lines - Toggle grid lines of the current model.

* Reset Zoom - Resets the zoom of the current model.

* Zoom In - Zoom in the current model.

* Zoom Out - Zoom out the current model.

* Fit to Diagram - Fit the current model diagram in the view.

3.7 SSP Menu

* Add System - Adds the system to a model.
Add/Edit Icon - Add/Edit the system/submodel icon.

¢ Delete Icon - Deletes the system/submodel icon.

* Add Connector - Adds a connector to a system/submodel.

Add Bus - Adds a bus to a system/submodel.
Add TLM Bus - Adds a TLM bus to a system/submodel.
Add SubModel - Adds a submodel to a system.

44 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.8

3.9

Simulation Menu

Check Model - Checks the current model.

Check All Models - Checks all the models of a library.
Instantiate Model - Instantiates the current model.
Simulation Setup - Opens the simulation setup window.
Simulate - Simulates the current model.

Simulate with Transformational Debugger - Simulates the current model and opens the transformational
debugger.

Simulate with Algorithmic Debugger - Simulates the current model and opens the algorithmic debugger.
Simulate with Animation - Simulates the current model and open the animation.

Archived Simulations - Shows the list of simulations already finished or running. Double clicking on any of
them opens the simulation output window.

Data Reconciliation

* Calculate Data Reconciliation - Opens the dialog to run the data reconciliation algorithm.

3.10 Sensitivity Optimization Menu

* Run Sensitivity Analysis and Optimization - Runs the sensitivity analysis and optimization.

3.11 Debug Menu

* Debug Configurations - Opens the debug configurations window.

e Attach to Running Process - Attaches the algorithmic debugger to a running process.

3.12 Tools Menu

OpenModelica Compiler CLI - Opens the OpenModelica Compiler command line interface window.

OpenModelica Command Prompt - Opens the OpenModelica Command Prompt (Only available on Win-
dows).

Open Temporary Directory - Opens the current temporary directory.
Open Working Directory - Opens the current working directory.
Open Terminal - Runs the terminal command set in General Options.

Options - Opens the options window.

3.8. Simulation Menu 45

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.13 Help Menu

* OpenModelica User's Guide - Opens the OpenModelica User's Guide.

* OpenModelica User's Guide (PDF) - Opens the OpenModelica User's Guide (PDF).

* OpenModelica System Documentation - Opens the OpenModelica System Documentation.

* OpenModelica Scripting Documentation - Opens the OpenModelica Scripting Documentation.
* Modelica Documentation - Opens the Modelica Documentation.

* OMSimulator User's Guide - Opens the OMSimulator User's Guide.

* OpenModelica TLM Simulator Documentation - Opens the OpenModelica TLM Simulator Documentation.

About OMEdit - Shows the information about OpenModelica Connection Editor.

3.14 Modeling a Model

3.14.1 Creating a New Modelica Class

Creating a new Modelica class in OMEdit is rather straightforward. Choose any of the following methods,
¢ Select File > New > New Modelica Class from the menu.
* Click on New Modelica Class toolbar button.
* Click on the Create New Modelica Class button available at the left bottom of Welcome Perspective.

¢ Press Ctrl+N.

3.14.2 Opening a Modelica File

Choose any of the following methods to open a Modelica file,
* Select File > Open Model/Library File(s) from the menu.
* Click on Open Model/Library File(s) toolbar button.
* Click on the Open Model/Library File(s) button available at the right bottom of Welcome Perspective.
* Press Ctrl+O.
(Note, for editing Modelica system files like MSL (not recommended), see Editing Modelica Standard Library)

3.14.3 Opening a Modelica File with Encoding

Select File > Open/Convert Modelica File(s) With Encoding from the menu. It is also possible to convert files to
UTF-8.

46 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.14.4 Model Widget

For each Modelica class one Model Widget is created. It has a statusbar and a view area. The statusbar contains
buttons for navigation between the views and labels for information. The view area is used to display the icon,
diagram and text layers of Modelica class. See Figure 3.9.

ot DCMotor™® B8

II-IE 0 Writable | Model | Diagram View | C:/Users/adeas31/Desktop/DCmotor.mo Line: 1, Col: 0
-~
resistar 1 inductorl
epl
o r
m
i
I :: -
+ &
- [y
startTime=startTime
groundl
W
< >

Figure 3.9: Model Widget showing the Diagram View.

3.14.5 Adding Component Models

Drag the models from the Libraries Browser and drop them on either Diagram or Icon View of Model Widget.
3.14.6 Making Connections

In order to connect one component model to another the user first needs to enable the connect mode (<:) from the
toolbar.

Move the mouse over the connector. The mouse cursor will change from arrow cursor to cross cursor. To start
the connection press left button and move while keeping the button pressed. Now release the left button. Move
towards the end connector and click when cursor changes to cross cursor.

3.14. Modeling a Model 47

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.15 Simulating a Model

The simulation process in OMEdit is split into three main phases:

1.

The Modelica model is translated into C/C++ code. The model is first instantiated by the frontend, which
turns it into a flat set of variables, parameters, equations, algorithms, and functions. The backend then
analyzes the mathematical structure of the flat model, applies symbolic simplifications and determines how
the equations can be solved efficiently. Finally, based on this information, model-specific C/C++ code is
generated. This part of the process can be influenced by setting Translation Flags (a.k.a. Command Line
Options), e.g. deciding which kind of structural simplifications should be performed during the translation
phase.

The C/C++ code is compiled and linked into an executable simulation code. Additional C/C++ compiler

flags can be given to influence this part of the process, e.g. by setting compiler optimizations such as -03.

Since multiple C/C++ source code files are generated for a given model, they are compiled in parallel by
OMEdit, exploiting the power of multi-core CPUs.

The simulation executable is started and produces the simulation results in a .mat or .csv file. The runtime
behavior can be influenced by Simulation Flags, e.g. by choosing specific solvers, or changing the output
file name. Note that it it possible to re-simulate a model multiple times, changing parameter values from the
Variables Browser and/or changing some Simulation Flags. In this case, only Phase 3. is repeated, skipping
Phases 1. and 2., which enables much faster iterations.

The simulation options for each model are stored inside the OMEdit data structure. They are set according to the
following sequence,

Each model has its own translation and simulation options.

If the model is opened for the first time then the translation and simulation options are set to defaults, that
can be customized in Tools | Options | Simulation.

experiment, __OpenModelica_commandLineOptions and __OpenModelica_simulationFlags an-
notations are applied if the model contains them.

After that all the changes done via Simulation Setup window for a certain model are preserved for the
whole session. If you want to use the same settings in future sessions then you should store them inside
experiment, __OpenModelica_commandLineOptions, and __OpenModelica_simulationFlags an-
notations.

PR—

The OMEdit Simulation Setup can be launched by,

Selecting Simulation > Simulation Setup from the menu. (requires a model to be active in ModelWidget)
Clicking on the Simulation Setup toolbar button. (requires a model to be active in ModelWidget)

Right clicking the model from the Libraries Browser and choosing Simulation Setup.

3.15.1 General

Simulation Interval

Start Time - the simulation start time.

Stop Time - the simulation stop time.

Number of Intervals - the simulation number of intervals.

Interval - the length of one interval (i.e., stepsize)

Integration
* Method - the simulation solver. See section Integration Methods for solver details.
* Tolerance - the simulation tolerance.

* Jacobian - the jacobian method to use.

48

Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

DASSL/IDA Options
* Root Finding - Activates the internal root finding procedure of dassl.
* Restart After Event - Activates the restart of dassl after an event is performed.
e [nitial Step Size
* Maximum Step Size
* Maximum Integration Order
C/C++ Compiler Flags (Optional) - the optional C/C++ compiler flags.
Number of Processors - the number of processors used to build the simulation.
Build Only - only builds the class.
Launch Transformational Debugger - launches the transformational debugger.
Launch Algorithmic Debugger - launches the algorithmic debugger.

Launch Animation - launches the 3d animation window.

3.15.2 Interactive Simulation

Simulate with steps (makes the interactive simulation synchronous; plots nicer curves at the expense of
performance)

Simulation server port

3.15.3 Translation Flags

3.15.4 Simulation Flags

Model Setup File (Optional) - specifies a new setup XML file to the generated simulation code.
Initialization Method (Optional) - specifies the initialization method.

Equation System Initialization File (Optional) - specifies an external file for the initialization of the model.
Equation System Initialization Time (Optional) - specifies a time for the initialization of the model.

Clock (Optional) - the type of clock to use.

Linear Solver (Optional) - specifies the linear solver method.

Non Linear Solver (Optional) - specifies the nonlinear solver.

Linearization Time (Optional) - specifies a time where the linearization of the model should be performed.

Output Variables (Optional) - outputs the variables a, b and c at the end of the simulation to the standard
output.

Profiling - creates a profiling HTML file.

CPU Time - dumps the cpu-time into the result file.
Enable All Warnings - outputs all warnings.
Logging (Optional)

LOG_STDOUT - standard output stream. This stream is always active, can be disabled with -lv=-
LOG_STDOUT

LOG_ASSERT - This stream is always active, can be disabled with -lv=-LOG_ASSERT
LOG_DASSL - additional information about dassl solver.
LOG_DASSL_STATES - outputs the states at every dassl call.

3.15

Simulating a Model 49

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

* LOG_DEBUG - additional debug information.

* LOG_DELAY - Debug information for delay operator.

* LOG_DIVISION - Log division by zero.

e LOG_DSS - outputs information about dynamic state selection.

e LOG_DSS_JAC - outputs jacobian of the dynamic state selection.

* LOG_DT - additional information about dynamic tearing.

* LOG_DT_CONS - additional information about dynamic tearing (local and global constraints).
e LOG_EVENTS - additional information during event iteration.

* LOG_EVENTS_V - verbose logging of event system.

e LOG_GBODE - Information about GBODE solver.

e LOG_GBODE V - Verbose information about GBODE solver.

* LOG_GBODE_NLS - Log non-linear solver process of GBODE solver.

* LOG_GBODE_NLS_V - Verbose log non-linear solver process of GBODE solver.
* LOG_GBODE_STATES - Output states at every GBODE call.

e LOG_INIT - additional information during initialization.

* LOG_INIT_HOMOTOPY - Log homotopy initialization.

e LOG_INIT_V - Verbose information during initialization.

* LOG_IPOPT - information from Ipopt.

e LOG_IPOPT_FULL - more information from Ipopt.

e LOG_IPOPT_JAC - check jacobian matrix with Ipopt.

* LOG_IPOPT_HESSE - check hessian matrix with Ipopt.

e LOG_IPOPT_ERROR - print max error in the optimization.

e LOG_JAC - Outputs the jacobian matrix used by ODE solvers.

* LOG_LS - logging for linear systems.

e LOG_LS_V - verbose logging of linear systems.

e LOG_NLS - logging for nonlinear systems.

e LOG_NLS_V - verbose logging of nonlinear systems.

* LOG_NLS_HOMOTOPY - logging of homotopy solver for nonlinear systems.
e LOG_NLS_JAC - outputs the jacobian of nonlinear systems.

e LOG_NLS_JAC_TEST - tests the analytical jacobian of nonlinear systems.

* LOG_NLS_NEWTON_DIAG - Log Newton diagnostics. A Diagnostic method to figure out which individual
initial guess values are more likely to be causing the convergence failure of Newton-type iterative nonlinear
solvers.

e LOG_NLS_RES - outputs every evaluation of the residual function.

* LOG_NLS_EXTRAPOLATE - outputs debug information about extrapolate process.
e LOG_RES_INIT - outputs residuals of the initialization.

* LOG_RT - additional information regarding real-time processes.

e LOG_SIMULATION - additional information about simulation process.

* LOG_SOLVER - additional information about solver process.

e LOG_SOLVER_V - verbose information about the integration process.

50 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

LOG_SOLVER_CONTEXT - context information during the solver process.

LOG_SOTI - final solution of the initialization.

LOG_SPATIALDISTR - logging of internal operations for spatialDistribution.

LOG_STATS - additional statistics about timer/events/solver.

LOG_STATS _V - additional statistics for LOG_STATS.

LOG_SUCCESS - This stream is always active, can be disabled with -lv=-LOG_SUCCESS.
LOG_SYNCHRONOUS - Log clocks and sub-clocks for synchronous features.
LOG_ZEROCROSSINGS - additional information about the zero-crossings.

Additional Simulation Flags (Optional) - specify any other simulation flag.

3.15.5 Output

Output Format - the simulation result file output format.

Single Precision - Output results in single precision (only for mat output format).

File Name Prefix (Optional) - the name is used as a prefix for the output files.

Result File (Optional) - the simulation result file name.

Variable Filter (Optional) - only output variables with names fully matching the regular expression.
Protected Variables if not encrypted - adds the protected variables in result file.

Equidistant Time Grid - output the internal steps given by dassl instead of interpolating results into an equidis-
tant time grid as given by stepSize or numberOfIntervals.

Store Variables at Events - adds the variables at time events.

Show Generated File - displays the generated files in a dialog box.

The Variable Filter takes a regular expression input and only saves in the simulation results file those variables
whose names fully match it. Here are some simple examples:

. * matches any variable (default choice)
Xy . * matches variables starting with xy
. *yz matches variables ending with yz

abc\ .def.* matches variables starting with abc.def. Note that the . character is a regex meta-character,
so it must be escaped by a \

.*body\ .a_0\ [1\] matches variables ending with body.a_0[1]. Note that ., [, and] must be escaped
x\ [.*\] matches all elements of array x

x\[[2-4]\] matches elements 2, 3, and 4 of array x

abc. *|def.* matches variables starting with abc or def

.*der\ (. *\) matches all derivatives in the model. Note that (and) must be escaped

Please note that all the model variables will still be shown in the Variables Browser tree; however, only those for
which results were actually saved will have a checkbox to plot them.

3.15.

Simulating a Model 51

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.15.6 CSV-File Data Input

When simulating Modelica models with top-level inputs (input variables or input connectors), these inputs are
assumed to be equal to their start value by default. However, it is possible to feed them with input signals
obtained from CSV (Comma-Separated Value) input data files, by means of the -csvinput simulation flag, that
can be set in the Additional Simulation Flags (Optional) field of the Simulation Flags tab. For example, setting
-csvInput=myinput.csv causes the runtime executable to read such input data from the myinput.csv file.

CSV files should contain the names of the input variables in the first row, beginning with time on the first column,
and the values of such variables for each point in time in subsequent rows, with non-decreasing time values. The
variable names should be enclosed by quotation marks in case they contain spaces, to avoid ambiguities. The
default separator for data items within each row is the comma, but it is also possible to use other separators, e.g.,
space, tab, or semi-colon; in this case, the file should start with the separator specification "sep=x" (including the
quotation marks), where x is the separator character.

For example, assume your model has three top-level inputs named ul, u2, and u3. These are valid CSV input files:

time, u3, u2, ul

0.0, 0.0, 0.0, 0.0

1.0, 0.0, 0.0, 0.0

2.0, 0.0, 0.0, 1.0
"sep=;" time; u3; u2; ul
0.0; 0.0; 0.0; 0.0

1.0; 0.0; 0.0; 0.0

2.0; 0.0; 0.0; 1.0

timen ||u3n nuzn Ilulll

Note that input labels need not be lexicographically ordered, the association between the columns and the inputs is
given by the first row.

The CSV-file provides the values of the top level inputs at the specified points in time; linear interpolation is used
to provide intermediate values between any two subsequent data points. Discontinuous inputs can be obtained by
providing two consecutive rows with the same time value, containing the left limit values and the right limit values.

Unless an absolute pathname is provided for the CSV-files, OMEdit will load it from the sub-directory of the
working directory which has the same name of the model, where all the other input and output data files are
located.

3.15.7 Data Reconciliation

* Algorithm - data reconciliation algorithm.
* Measurement Input File - measurement input file.
* Correlation Matrix Input File - correlation matrix file.

e Epsilon

52 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.16 2D Plotting

Successful simulation of model produces the result file which contains the instance variables that are candidate for
plotting. Variables Browser will show the list of such instance variables. Each variable has a checkbox, checking
it will plot the variable. See Figure 3.7. To get several plot windows tiled horizontally or vertically use the menu
items Tile Windows Horizontally or Tile Windows Vertically under View Menu.

3.16.1 Types of Plotting

The plotting type depends on the active Plot Window. By default the plotting type is Time Plot.

Time Plot

Plots the variable over the simulation time. You can have multiple Time Plot windows by clicking on New Plot

Window toolbar button (K).

Plot Parametric

Draws a two-dimensional parametric diagram, between variables x and y, with y as a function of x. You can have
multiple Plot Parametric windows by clicking on the New Plot Parametric toolbar button (I@).

Select the x-axis variable while holding down the shift key, release the shift key and then select y-axis variables.
One or many y-axis variables can be selected against one x-axis variable. To select a new x-axis variable press and
hold the shift key again.

Unchecking the x-axis variable will uncheck all y-axis variables linked to it.

Array Plot

Plots an array variable so that the array elements' indexes are on the x-axis and corresponding elements' values are
on the y-axis. The time is controlled by the slider above the variable tree. When an array is present in the model,
it has a principal array node in the variable tree. To plot this array as an Array Plot, match the principal node. The
principal node may be expanded into particular array elements. To plot a single element in the Time Plot, match

the element. A new Array Plot window is opened using the New Array Plot Window toolbar button (|L").

Array Parametric Plot
Plots the first array elements' values on the x-axis versus the second array elements' values on the y-axis. The time
is controlled by the slider above the variable tree. To create a new Array Parametric Plot, press the New Array

Parametric Plot Window toolbar button (| ':"':::}), then match the principle array node in the variable tree view to be
plotted on the x-axis and match the principle array node to be plotted on the y-axis.

3.16. 2D Plotting 53

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

Diagram Window

Shows the active ModelWidget as a read only diagram. You can only have one Diagram Window. To show it click

on Diagram Window toolbar button (Oﬁ).

3.16.2 Plot Window

A plot window shows the plot curve of instance variables. Several plot curves can be plotted in the same plot
window. See Figure 3.7.

Plot Window Menu

* Auto Scale - Automatically scales the horizontal and vertical axes.
e Fit in View - Adjusts the plot canvas to according to the size of plot curves.
* Save - Saves the plot to file system as .png, .svg or .bmp.
* Print - Prints the plot.
* Grid - Shows grid lines.
* Detailed Grid - Shows detailed grid lines.
* No Grid - Hides grid lines.
* Log X - Logarithmic scale of the horizontal axis.
e Log Y - Logarithmic scale of the vertical axis.
* Setup - Shows a setup window.
 Variables - List of all plotted variables.
* General - Variable general information.
* Legend - Display name for legend.
* File - File name where variable data is stored.
» Appearance - Visual settings of variable.
* Color - Display color.
* Pattern - Line pattern of curve.
* Thickness - Line thickness of curve.
* Hide - Hide/Show the curve.
» Toggle Sign - Toggles the sign of curve.
e Titles - Plot, axes and footer titles settings.
e Legend - Sets legend position and font.
* Range - Automatic or manual axes range.
* Auto Scale - Automatically scales the horizontal and vertical axes.
o X-Axis
* Minimum - Minimum value for x-axis.
e Maximum - Maximum value for x-axis.
e Y-Axis
* Minimum - Minimum value for y-axis.

* Maximum - Maximum value for y-axis.

54 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

* Prefix Units - Automatically pick the right prefix for units.

3.17 Re-simulating a Model

The Variables Browser allows manipulation of changeable parameters for re-simulation. After changing the pa-

rameter values user can click on the re-simulate toolbar button (9), or right click the model in Variables Browser
and choose re-simulate from the menu.

3.18 3D Visualization

Since OpenModelica 1.11 , OMEdit has built-in 3D visualization, which replaces third-party libraries (such as
Modelica3D) for 3D visualization.

3.18.1 Running a Visualization

The 3d visualization is based on OpenSceneGraph. In order to run the visualization simply right click the class in
Libraries Browser an choose “Simulate with Animation” as shown in Figure 3.10.

&% OMEdit - OpenModelica Connection Editor - [DoublePendulum] — O
O‘i File Edit View Simulation FMI Export Debug Tools Help - 8 x
[(- -
Ed =1~ Heee \PHOTHE < EQOY -EH- 9> [X- T~
Libraries Browser g x |II-I S E o | Writable | Model | Diagram View | Modelim.Memanics.MuIﬁBody.Examples.EIemeniary.Dou| | Line: 1, Col: 0 | |
|Sea|'ch Classes L 4 I
”~
Libraries o Open Class
D ModelicaServices o View Documentation
Complex Save Total
= .
@ Modelica E Instantiate Model
o UsersGuide 6 Check Model
(8] Blocks @) Check All Models
ComplexBlocks i) Simulate Ctrl+B Rvdfite2 boxBody2
@ StateGraph # Simulate with Transformational Debugger] I I-—-I] I
@] Electrical ‘ Simulate with Algorithmic Debugger w01 r={0.5, 0,0}
Magnetic 0 Simulate with Animation
=] Mechanics S| Simulation Setup
=] a MultiBody W Duplicate
.
o UsersGuide B Export FMU
World S Export XML
= E] Examples B Export Figaro
= Elementa
E] 4 Update Bindings
o DoublePendulum
» DoublePenduluminitTip
| ForceAndTorque
v
() FreeBod
- recBody v
Simulates the Modelica class with Animation ¥:-89.44 ¥:-53.85 t Welcome di Modeling & Plotting [4 Debugging

Figure 3.10: OMEdit Simulate with Animation.

One can also run the visualization via Simulation > Simulate with Animation from the menu.

When simulating a model in animation mode, the flag +d=visxml is set. Hence, the compiler will generate a scene
description file _visual. xml which stores all information on the multibody shapes. This scene description references
all variables which are needed for the animation of the multibody system. When simulating with +d=visxml, the
compiler will always generate results for these variables.

3.17. Re-simulating a Model 55

https://github.com/OpenModelica/Modelica3D

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.18.2 Viewing a Visualization

After the successful simulation of the model, the visualization window will show up automatically as shown in
Figure 3.11.

ot OMEdit - OpenModelica Connection Editor =NRSN X
File Edit View Simulation FMI Export Debug Tools Help
FeBB Hoee \OHNOTH - E-|0- > 9-[X- -
Libraries Browser 8 X | £2) Modelica, Mechanics. MultiBady. Examples. Elementary . DoublePendulum_res.mat [£J | Variables Browser g X
|FilterCIasses | L.'; " ’ II D — [s]: Speedd 1 - /_—;\ /::\ |Filter Variables |
Libraries - Simulation Time Unit E
= E?’?: Modelica Variables E Valu
o UsersGuide BDXMBooijic...endulum
r[SJ: Blocks 3 ™ boxBody2
’|E]‘ ComplexBlocks rd:\rrglﬁ;l
% StateGraph revolute?
:E%1 Electrical werld
:t[l: Magnetic
= r""‘III1 Mechanics x
5| 'i MultiBody
o UsersGuide
World
=] P Examples
= :’: Ele..ary
(») Dum
! Do in = < T [
X: 17.97 Y: 15.26 | t Welcome | c!i Modeling | E Plotting | ‘ Debugging

Figure 3.11: OMEdit 3D Visualization.

The animation starts with pushing the play button. The animation is played until stopTime or until the pause button
is pushed. By pushing the previous button, the animation jumps to the initial point of time. Points of time can be
selected by moving the time slider or by inserting a simulation time in the Time-box. The speed factor of animation
in relation to realtime can be set in the Speed-dialog. Other animations can be opened by using the open file button
and selecting a result file with a corresponding scene description file.

The 3D camera view can be manipulated as follows:

Operation Key Mouse Action
Move Closer/Further none Wheel

Move Closer/Further Right Mouse Hold Up/Down
Move Up/Down/Left/Right Middle Mouse Hold Move Mouse
Move Up/Down/Left/Right Left and Right Mouse Hold Move Mouse
Rotate Left Mouse Hold Move Mouse
Shape context menu Right Mouse + Shift

Predefined views (Isometric, Side, Front, Top) can be selected and the scene can be tilted by 90° either clock or
anticlockwise with the rotation buttons.

56 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.18.3 Additional Visualization Features

The shapes that are displayed in the viewer can be selected with shift + right click. If a shape is selected, a context
menu pops up that offers additional visualization features

1 shape ' |€ Change Transparency
Reset Transparency and Texture [Make Shape Invisible

Change Color

&

.. Apply Check Texture
oo

&

Apply Customn Texture

Remove Texure

The following features can be selected:

Menu Description

Change Transparency The shape becomes either transparent or intransparent.

Make Shape Invisible =~ The shape becomes invisible.

Change Color A color dialog pops up and the color of the shape can be set.

Apply Check Texture A checked texture is applied to the shape.

Apply Custom Texture A file selection dialog pops up and an image file can be selected as a texture.
Remove Texture Removes the current texture of the shape.

3.18. 3D Visualization 57

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.19 Animation of Realtime FMUs

Instead of a result file, OMEdit can load Functional Mock-up Units to retrieve the data for the animation of multi-
body systems. Just like opening a mat-file from the animation-plotting view, one can open an FMU-file. Neces-
sarily, the FMU has to be generated with the +d=visxml flag activated, so that a scene description file is generated
in the same directory as the FMU. Currently, only FMU 1.0 and FMU 2.0 model exchange are supported. When
choosing an FMU, the simulation settings window pops up to choose solver and step size. Afterwards, the model
initializes and can be simulated by pressing the play button.

3.19.1 Interactive Realtime Animation of FMUs

FMUs can be simulated with realtime user interaction. A possible solution is to equip the model with an inter-
action model from the Modelica_DeviceDrivers library (https://github.com/modelica/Modelica_DeviceDrivers).
The realtime synchronization is done by OMEdit so no additional time synchronization model is necessary.

oﬁOMEdit-OpenModeIicaConnedion Editor l‘:' = éj
File Edit View Simulation FMI Export Debug Git Tools Help

s8R @oee \OPHOTEE- QOE 3% 9~ -

Libraries Browser 8 X ai DoublePendulum_interactive ™ @ |
Filter Classes _I hd *@E o ‘Writable Model |Diagram View |DoubIePendqum_interacﬁve |D:,fProgramminngPENMODELICA...ub\ePendqum_inheracﬁve.mo | |

Libraries -

@ OpenModelica

o ModelicaReference

ModelicaServices _ trwm

Complex |

| j g L }

?'-:? Modelica addt
p— trqﬁr&d‘fraﬁudl Py, 1

' DD Modelica_...celrivers +
— ~

Meodelica..chronous Ly p' \ +1

m

positionl
1

3

J
| tWeImme | diModeIing | gPIotﬁng | I‘Debugging

58 Chapter 3. OMEdit - OpenModelica Connection Editor

https://github.com/modelica/Modelica_DeviceDrivers

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.20 Interactive Simulation

Warning: Interactive simulation is an experimental feature.

Interactive simulation is enabled by selecting interactive simulation in the simulation setup.

There are two main modes of execution: asynchronous and synchronous (simulate with steps). The difference is
that in synchronous (step mode), OMEdit sends a command to the simulation for each step that the simulation
should take. The asynchronous mode simply tells the simulation to run and samples variables values in real-time;
if the simulation runs very fast, fewer values will be sampled.

When running in asynchronous mode, it is possible to simulate the model in real-time (with a scaling factor just
like simulation flag -77, but with the ability to change the scaling factor during the interactive simulation). In the
synchronous mode, the speed of the simulation does not directly correspond to real-time.

3.21 How to Create User Defined Shapes - Icons

Users can create shapes of their own by using the shape creation tools available in OMEdit.

e Line Tool - Draws a line. A line is created with a minimum of two points. In order to create a line, the user
first selects the line tool from the toolbar and then click on the Icon/Diagram View; this will start creating a
line. If a user clicks again on the Icon/Diagram View a new line point is created. In order to finish the line
creation, user has to double click on the Icon/Diagram View.

* Polygon Tool - Draws a polygon. A polygon is created in a similar fashion as a line is created. The only
difference between a line and a polygon is that, if a polygon contains two points it will look like a line and if
a polygon contains more than two points it will become a closed polygon shape.

* Rectangle Tool - Draws a rectangle. The rectangle only contains two points where first point indicates the
starting point and the second point indicates the ending the point. In order to create rectangle, the user
has to select the rectangle tool from the toolbar and then click on the Icon/Diagram View, this click will
become the first point of rectangle. In order to finish the rectangle creation, the user has to click again on the
Icon/Diagram View where he/she wants to finish the rectangle. The second click will become the second
point of rectangle.

e Ellipse Tool - Draws an ellipse. The ellipse is created in a similar way as a rectangle is created.
 Text Tool - Draws a text label.
* Bitmap Tool - Draws a bitmap container.

The shape tools are located in the toolbar. See Figure 3.12.

The user can select any of the shape tools and start drawing on the Icon/Diagram View. The shapes created on the
Diagram View of Model Widget are part of the diagram and the shapes created on the Icon View will become the
icon representation of the model.

For example, if a user creates a model with name testModel and add a rectangle using the rectangle tool and a
polygon using the polygon tool, in the Icon View of the model. The model's Modelica Text will appear as follows:

~N

model testModel

annotation(Icon(graphics = {Rectangle(rotation = 0, lineColor = {0,0,255},.
—fillColor = {0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern.None,..
—.lineThickness = 0.25, extent = {{ -64.5,88},{63, -22.5}}),Polygon(points = {{ -47.5,
— -29.5},{52.5, -29.5},{4.5, -86},{ -47.5, -29.5}}, rotation = 0, lineColor = {0,0,
-.255}, fillColor = {0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern.
—None, lineThickness = 0.25)}));
end testModel;

3.20. Interactive Simulation 59

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

(Rectangle Tool (Text Tool >

\

(¢ Line Tool) A4—“WOHOEN —»(Bitmap Tool D

/N

(Polygon Tool) (¢ Ellipse Tool)

Figure 3.12: User defined shapes.

In the above code snippet of testModel, the rectangle and a polygon are added to the icon annotation of the model.
Similarly, any user defined shape drawn on a Diagram View of the model will be added to the diagram annotation
of the model.

3.22 Global head section in documentation

If you want to use same styles or same JavaScript for the classes contained inside a package then you can define
__Openlodelica_infoHeader annotation inside the Documentation annotation of a package. For example,

package P
model M
annotation(Documentation(info="<html>
Click here
</html>"));
end M;
annotation(Documentation(__OpenModelica_infoHeader="
<script type=\"text/javascript\">
function HelloWorld() {
alert(\"Hello World!\");
}
</script>"));
end P;

J

In the above example model M does not need to define the javascript function HelloWorld. It is only defined once
at the package level using the __OpenModelica_infoHeader and then all classes contained in the package can
use it.

In addition styles and JavaScript can be added from file locations using Modelica URIs. Example:

package P
model M
annotation(Documentation(info="<html>
Click here
</html>"));
end M;
annotation(Documentation(__OpenModelica_infoHeader="

(continues on next page)

60 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

(continued from previous page)
<script type=\"text/javascript\">
src=\"modelica://P/Resources/hello. js\">
}
</script>"));
end P;

Where the file Resources/hello. js then contains:

function HelloWorld() {
alert("Hello World!™);
}

3.23 Options

OME(dit allows users to save several options which will be remembered across different sessions of OMEdit. The
Options Dialog can be used for reading and writing the options.

3.23.1 General Options

* General

» Language - Sets the application language.

» Working Directory - Sets the application working directory. All files are generated in this directory.
* Toolbar Icon Size - Sets the size for toolbar icons.

* Preserve User's GUI Customizations - If true then OMEdit will remember its windows and toolbars positions
and sizes.

* Terminal Command - Sets the terminal command. When user clicks on Tools > Open Terminal then this
command is executed.

* Terminal Command Arguments - Sets the terminal command arguments.
* Hide Variables Browser - Hides the variable browser when switching away from plotting perspective.

* Activate Access Annotations - Activates the access annotations for the non-encrypted libraries. Access an-
notations are always active for encrypted libraries.

* Create a model bak-mo backup file when deleting a model

* Display errors/warnings when instantiating the graphical annotations - if true then the errors/warnings are
shown when using OMC API for graphical annotations.

e Libraries Browser
» Library Icon Size - Sets the size for library icons.

* Max. Library Icon Text Length to Show - Sets the maximum text length that can be shown in the icon in
Libraries Browser.

* Show Protected Classes - If enabled then Libraries Browser will also list the protected classes.

* Show Hidden Classes if not encrypted - If enabled then Libraries Browser will also list the hidden classes.
Ignores the annotation(Protection(access = Access.hide))

* Synchronize with Model Widget - If enabled then Libraries Browser will scroll automatically to the active
Model Widget i.e., the current model.

¢ Enable Auto Save - Enables/disables the auto save feature.

* Auto Save interval - Sets the auto save interval value. The minimum possible interval value is 60 seconds.

3.23. Options 61

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

Welcome Page

Horizontal View/Vertical View - Sets the view mode for welcome page.

Show Latest News - If enabled then the latest news from https://openmodelica.org are shown.
Recent Files and Latest News Size - Sets the display size for recent files and latest news items.
Optional Features

Disable new instance-based graphical editing of models - Enables/disables the use of instance-based graph-
ical editing. The instance-based graphical editing enables features like parameter-dependent conditional
connectors, conditional dialog enable, replaceable classes and models, etc. It also provides much faster
rendering than the previously implemented graphical editing framework. This feature has been thoroughly
tested, but it could still have some issues; in case the graphical rendering of models fails (blank screen) or
is not correct, you can disable the instance-based editing and fall back to the old editing framework. In that
case, please open a ticket on the OpenModelica issue tracker so we can fix the issue for the next release.

3.23.2 Libraries Options

General
MODELICAPATH - Sets the MODELICAPATH. MODELICAPATH is used to load libraries.
System libraries loaded automatically on startup - The list of system libraries that are loaded on startup.

Load latest Modelica version on startup - Is true then the latest available version of the Modelica Standard
Library is always loaded along with its dependencies.

User libraries loaded automatically on startup - The list of user libraries/files that are loaded on startup.

3.23.3 Text Editor Options

Format
Line Ending - Sets the file line ending.
Byte Order Mark (BOM) - Sets the file BOM.
Tabs and Indentation
Tab Policy - Sets the tab policy to either spaces or tabs only.
Tab Size - Sets the tab size.
Indent Size - Sets the indent size.
Syntax Highlight and Text Wrapping
» Enable Syntax Highlighting - Enable/Disable the syntax highlighting.

e Enable Code Folding - Enable/Disable the code folding. When code folding is enabled multi-
line annotations are collapsed into a compact icon (a rectangle containing "...)"). A marker

containing a "+" sign becomes available at the left-side of the involved line, allowing the code to

be expanded/re-collapsed at will.

* Match Parentheses within Comments and Quotes - Enable/Disable the matching of parentheses
within comments and quotes.

» Enable Line Wrapping - Enable/Disable the line wrapping.
Autocomplete
Enable Autocomplete - Enables/Disables the autocomplete.
Font

Font Family - Shows the names list of available fonts. Sets the font for the editor.

62

Chapter 3. OMEdit - OpenModelica Connection Editor

https://openmodelica.org
https://github.com/OpenModelica/OpenModelica/issues/new/choose

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

e Font Size - Sets the font size for the editor.

3.23.4 Modelica Editor Options
* Preserve Text Indentation - If true then uses diffModelicaFileListings API call otherwise uses the OMC
pretty-printing.
* Colors
e [Items - List of categories used of syntax highlighting the code.
* Item Color - Sets the color for the selected item.

¢ Preview - Shows the demo of the syntax highlighting.

3.23.5 MetaModelica Editor Options

* Colors
e [tems - List of categories used of syntax highlighting the code.
¢ [tem Color - Sets the color for the selected item.

* Preview - Shows the demo of the syntax highlighting.

3.23.6 CompositeModel Editor Options

* Colors
* [tems - List of categories used of syntax highlighting the code.
e Jtem Color - Sets the color for the selected item.

* Preview - Shows the demo of the syntax highlighting.

3.23.7 SSP Editor Options

* Colors
e [tems - List of categories used of syntax highlighting the code.
e Jtem Color - Sets the color for the selected item.

* Preview - Shows the demo of the syntax highlighting.

3.23.8 C/C++ Editor Options

* Colors
* Jtems - List of categories used of syntax highlighting the code.
* Jtem Color - Sets the color for the selected item.

* Preview - Shows the demo of the syntax highlighting.

3.23. Options 63

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.23.9 HTML Editor Options

* Colors
e [tems - List of categories used of syntax highlighting the code.
e [tem Color - Sets the color for the selected item.

e Preview - Shows the demo of the syntax highlighting.

3.23.10 Graphical Views Options

¢ General

Modeling View Mode

Tabbed View/SubWindow View - Sets the view mode for modeling.
Default View

Icon View/DiagramView/Modelica Text View/Documentation View - If no preferredView annotation is
defined then this setting is used to show the respective view when user double clicks on the class in the
Libraries Browser.

— Move connectors together on both icon and diagram layers
* Graphics

— Icon/Diagram View
% Extent
% Left - Defines the left extent point for the view.
% Bottom - Defines the bottom extent point for the view.
% Right - Defines the right extent point for the view.
% Top - Defines the top extent point for the view.
% Grid
* Horizontal - Defines the horizontal size of the view grid.
% Vertical - Defines the vertical size of the view grid.
% Component
% Scale factor - Defines the initial scale factor for the component dragged on the view.

% Preserve aspect ratio - If true then the component's aspect ratio is preserved while scaling.

3.23.11 Simulation Options

e Simulation
e Translation Flags
* Matching Algorithm - sets the matching algorithm for simulation.
* Index Reduction Method - sets the index reduction method for simulation.

» Show additional information from the initialization process - prints the information from the
initialization process

e Evaluate all parameters (faster simulation, cannot change them at runtime) - makes the simu-
lation more efficient but you have to recompile the model if you want to change the parameter
instead of re-simulate.

64 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

Enable analytical jacobian for non-linear strong components - enables analytical jacobian for
non-linear strong components without user-defined function calls.

Enable parallelization of independent systems of equations (Experimental)
Enable old frontend for code generation

Enable FMU Import - See FMI Import - SSP.

Additional Translation Flags - sets the translation flags see Options

Target Language - sets the target language in which the code is generated.
Target Build - sets the target build that is used to compile the generated code.
C Compiler - sets the C compiler for compiling the generated code.

CXX Compiler - sets the CXX compiler for compiling the generated code.

Use static linking - if true then static linking is used for simulation executable. The default is
dynamic linking. This option is only available on Windows.

Post compilation command - if not empty allows to run a command after the compilation step. A
possible use-case is to be able to sign the binaries before execution to comply with the security
policy. The command is run in the same folder where the simulation executable is created. The
interpreter executable must be passed to run shell scripts, eg on Windows: powershell.exe -File
C:script.psl

Ignore __OpenModelica_commandLineOptions annotation - if true then ignores the __Open-
Modelica_commandLineOptions annotation while running the simulation.

Ignore __OpenModelica_simulationFlags annotation - if true then ignores the __ OpenModel-
ica_simulationFlags annotation while running the simulation.

Save class before simulation - if true then always saves the class before running the simulation.

Switch to plotting perspective after simulation - if true then GUI always switches to plotting
perspective after the simulation.

Close completed simulation output windows before simulation - if true then the completed sim-
ulation output windows are closed before starting a new simulation.

Delete intermediate compilation files - if true then the files generated during the compilation are
deleted automatically.

Delete entire simulation directory of the model when OMEdit is closed - if true then the entire
simulation directory is deleted on quit.

Output
Structured - Shows the simulation output in the form of tree structure.
Formatted Text - Shows the simulation output in the form of formatted text.

Display Limit - Sets the display limit for simulation output. A link to log file is shown once the
limit is reached.

3.23.12 Messages Options

General

Output Size - Specifies the maximum number of rows the Message Browser may have. If there are more rows
then the rows are removed from the beginning.

Reset messages number before simulation - Resets the messages counter before starting the simulation.

Clear messages browser before checking, instantiation & simulation - If enabled then the message browser
is cleared before checking, instantiation & simulation of model.

3.23

. Options 65

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

Do not automatically enlarge message browser when a new message is available - If enabled then the message
browser will not be enlarged instead the tabbar shown will start blinking indicating that a new message is

available.

Font and Colors

Font Family - Sets the font for the messages.

Font Size - Sets the font size for the messages.

Notification Color - Sets the text color for notification messages.

Warning Color - Sets the text color for warning messages.

Error Color - Sets the text color for error messages.

3.23.13 Notifications Options

¢ Notifications

L]

Always quit without prompt - If true then OMEdit will quit without prompting the user.

Show item dropped on itself message - If true then a message will pop-up when a class is dragged
and dropped on itself.

Show model is partial and component is added as replaceable message - If true then a message
will pop-up when a partial class is added to another class.

Show component is declared as inner message - If true then a message will pop-up when an inner
component is added to another class.

Show save model for bitmap insertion message - If true then a message will pop-up when user
tries to insert a bitmap from a local directory to an unsaved class.

Always ask for the dragged component name - If true then a message will pop-up when user drag
& drop the component on the graphical view.

Always ask for what to do with the text editor error - If true then a message will always pop-up
when there is an error in the text editor.

If new frontend for code generation fails
Always ask for old frontend

Try with old frontend once

Switch to old frontend permanently

Keep using new frontend

3.23.14 Line Style Options

 Line Style

Color - Sets the line color.

Pattern - Sets the line pattern.

Thickness - Sets the line thickness.

Start Arrow - Sets the line start arrow.

End Arrow - Sets the line end arrow.

Arrow Size - Sets the start and end arrow size.

Smooth - If true then the line is drawn as a Bezier curve.

66

Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.23.15 Fill Style Options

* Fill Style
e Color - Sets the fill color.

e Pattern - Sets the fill pattern.

3.23.16 Plotting Options

* General
» Auto Scale - Sets whether to auto scale the plots or not.

* Prefix Units - Automatically pick the right prefix for units for the new plot windows. For existing plot
windows use the Plot Window Menu.

* Plotting View Mode

* Tabbed View/SubWindow View - Sets the view mode for plotting.
 Curve Style

* Pattern - Sets the curve pattern.

 Thickness - Sets the curve thickness.

* Variable filter

e Filter Interval - Delay in filtering the variables. Set the value to 0 if you don't want any delay.
» Font Size - sets the font size for plot window items

* Title

* Vertical Axis Title

* Vertical Axis Numbers

* Horizontal Axis Title

* Horizontal Axis Numbers

* Footer

e Legend

3.23.17 Figaro Options

 Figaro
e Figaro Library - the Figaro library file path.
 Tree generation options - the Figaro tree generation options file path.

* Figaro Processor - the Figaro processor location.

3.23. Options 67

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.23.18

Debugger Options

* Algorithmic Debugger

* GDB Path - the gnu debugger path

* GDB Command Timeout - timeout for gdb commands.

* GDB Output Limit - limits the GDB output to N characters.

* Display C frames - if true then shows the C stack frames.

e Display unknown frames - if true then shows the unknown stack frames. Unknown stack frames means
frames whose file path is unknown.

* Clear old output on a new run - if true then clears the output window on new run.

* Clear old log on new run - if true then clears the log window on new run.

* Transformational Debugger

* Always show Transformational Debugger after compilation - if true then always open the Transformational
Debugger window after model compilation.

* Generate operations in the info xml - if true then adds the operations information in the info xml file.

3.23.19 FMI Options
* Export

* Version

e 1.0 - Sets the FMI export version to 1.0

e 2.0 - Sets the FMI export version to 2.0

* Type

* Model Exchange - Sets the FMI export type to Model Exchange.

» Co-Simulation - Sets the FMI export type to Co-Simulation.

* Model Exchange and Co-Simulation - Sets the FMI export type to Model Exchange and Co-
Simulation.

e FMU Name - Sets a prefix for generated FMU file.

* Move FMU - Moves the generated FMU to a specified path.

 Platforms: See Platforms.

* Solver for Co-Simulation

e Explicit Euler

* CVODE

e Model Description Filters - Sets the variable filter for model description file, see --finifilter.

e Include Modelica based resources via loadResource

e Include Source Code - Sets if the exported FMU can contain source code. Model Description
Filter "blackBox" will override this, because black box FMUs do never contain their source code.

e Generate Debug Symbols - Generates a FMU with debug symbols.

e Import

* Delete FMU directory and generated model when OMEdit is closed - If true then the temporary FMU direc-
tory that is created for importing the FMU will be deleted.

68

Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.23.20 OMTLMSimulator Options

* General
* Path - path to OMTLMSimulator bin directory.
* Manager Process - path to OMTLMSimulator manager process.

* Monitor Process - path to OMTLMSimulator monitor process.

3.23.21 OMSimulator/SSP Options

* General
* Command Line Options - sets the OMSimulator command line options.

* Logging Level - OMSimulator logging level.

3.24 _ OpenModelica_commandLineOptions Annotation

OpenModelica specific annotation to define the command line options needed to simulate the model. For example
if you always want to simulate the model with a specific matching algorithm and index reduction method instead
of the default ones then you can write the following code,

model Test

annotation(__OpenModelica_commandLineOptions = "--matchingAlgorithm=BFSB --
—»indexReductionMethod=dynamicStateSelection");
end Test;

The annotation is a space separated list of options where each option is either just a command line flag or a flag
with a value.

In OMEdit open the Simulation Setup and set the Translation Flags then in the bottom check Save translation flags
inside model i.e., __OpenModelica_commandLineOptions annotation and click on OK.

If you want to ignore this annotation then use setCommandLineOptions("--
ignoreCommandLineOptionsAnnotation=true"). In OMEdit Tools > Options > Simulation check Ignore
__OpenModelica_commandLineOptions annotation.

3.25 __OpenModelica_simulationFlags Annotation

OpenModelica specific annotation to define the simulation options needed to simulate the model. For example if
you always want to simulate the model with a specific solver instead of the default DASSL and would also like to
see the cpu time then you can write the following code,

model Test
annotation(__OpenModelica_simulationFlags(s = "heun", cpu = "(0"));
end Test;

The annotation is a comma separated list of options where each option is a simulation flag with a value. For flags
that doesn't have any value use () (See the above code example).

In OMEdit open the Simulation Setup and set the Simulation Flags then in the bottom check Save simulation flags
inside model i.e., __OpenModelica_simulationFlags annotation and click on OK.

If you want to ignore this annotation then use setCommandLineOptions("--
ignoreSimulationFlagsAnnotation=true"). In OMEdit Tools > Options > Simulation check Ignore __Open-
Modelica_simulationFlags annotation.

3.24. _ OpenModelica_commandLineOptions Annotation 69

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.26 Global and Local Flags

There is a large number of optional settings and flags to influence the way OpenModelica generates the simulation
code (Compiler flags, a.k.a. Translation flags or Command Line Options) and the way the simulation executable
is run (Simulation Flags).

The global default settings can be accessed and changed with the Tools > Options menu. It is also possible to reset
them to factory state by clicking on the Reset button of the Tools > Options dialog window.

When you start OMEdit and you simulate a model for the first time, the model-specific simulation ses-
sion settings are initialized by copying the global default settings, and then by applying any further set-
tings that are saved in the model within OpenModelica-specific __OpenModelica_commandLineOptions and
__OpenlModelica_simulationFlags annotations. Note that the latter may partially override the former, if they
give different values to the same flags.

You can change those model-specific settings at will with the Simulation Setup window. Any change you make
will be remembered until the end of the simulation session, i.e. until you close OMEdit. This is very useful to
experiment with different settings and find the optimal ones, or to investigate bugs by turning on logging options,
etc. If you check the Save translation flagsand Save simulation flags options in the simulation setup,
those settings will be saved in the model within the corresponding OpenModelica-specific annotations, so that you
can get the same behavior when you start a new session later on, or if someone else loads the model on a different
computer. Otherwise, all of those changes will be forgotten when you exit OMEdit.

If you change the global default settings after running some models, the simulation settings of those models will
be reset as if you closed OMEdit and restarted a new session: the new global options will first be applied, and then
any further setting saved in the OpenModelica-specific annotations will be applied, possibly overriding the global
options if the same flags get different values from the annotations. Any model-specific settings that you may have
changed with Simulation Setup up to that point will be lost, unless you saved them in the OpenModelica-specific
annotations before changing the global default settings.

3.27 Debugger

For debugging capability, see Debugging.

3.28 Editing Modelica Standard Library

By default OMEdit loads the Modelica Standard Library (MSL) as a system library. System libraries are read-only.
If you want to edit MSL you need to load it as user library instead of system library. We don't recommend editing
MSL but if you really need to and understand the consequences then follow these steps,

* Go to Tools > Options > Libraries.

* Remove Modelica & ModelicaReference from list of system libraries.

* Uncheck force loading of Modelica Standard Library.

Add SOPENMODELICAHOME/lib/omlibrary/Modelica X.X/package.mo under user libraries.

¢ Restart OMEdit.

70 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.29 Install Library

A new library can be installed with the help of the package manager. Click File->Manage Libraries->Install
Library to open the install library dialog. OMEdit lists the libraries that are available for installation through the

package manager.

&% OMEdit - Install Library

Install Library

Level of support by OpenModelica

Full Partial
|:| Experimental |:| Obsolete

|:| None

Version: 1.1.0
https://github.com/DLR-SR/AdvancedNoise.qgit

Name: AdvancedNoise

OK

Exact Match (Install only the specified version of dependencies)

Cancel

X

Figure 3.13: Install Library.

3.30 Convert Libraries using Conversion Scripts

In order to convert the libraries right-click the model/package in the Libraries Browser and choose Convert to
newer versions of used libraries. OMEdit will read the used libraries from the uses-annotation and list any new

version of the library that provide the conversion using the conversion script.

3.29. Install Library

7

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

? X

a.’i OMEdit - Convert M to newer versions of used libr...

Following libraries from the uses annotation have new versions available.

Library To From
Modelica 4.0.0+maint.om v~ 3.2.3

Note: The converted class and used library might be reloaded.
If the new used library is not available then it will be installed.
This operation can take sometime depending on the conversions.

Backup your work before starting the conversion.

OK Cancel

Figure 3.14: Converts the model/package to newer version of used libraries.

72 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.31 State Machines

3.31.1 Creating a New Modelica State Class

Follow the same steps as defined in Creating a New Modelica Class. Additionally make sure you check the State
checkbox.

o't OMEdit - Create New Modelica Class ? pd
Mame: Statel

Spedialization: Model A
Extends (optional): Browse...
Insert in class (optional): Browse...

[] Partial

[] Encapsulated
State

Ok Cancel

Figure 3.15: Creating a new Modelica state.

3.31.2 Making Transitions

c—
In order to make a transition from one state to another the user first needs to enable the transition mode (—) from
the toolbar.

Move the mouse over the state. The mouse cursor will change from arrow cursor to cross cursor. To start the
transition press left button and move while keeping the button pressed. Now release the left button. Move towards
the end state and click when cursor changes to cross cursor.

A Create Transition dialog box will appear which allows you to set the transition attributes. Cancelling the dialog
will cancel the transition.

Double click the transition or right click and choose Edit Transition to modify the transition attributes.

3.31.3 State Machines Simulation

Support for Modelica state machines was added in the Modelica Language Specification v3.3. A subtle problem can
occur if Modelica v3.2 libraries are loaded, e.g., the Modelica Standard Library v3.2.2, because in this case OMC
automatically switches into Modelica v3.2 compatibility mode. Trying to simulate a state machine in Modelica
v3.2 compatibility mode results in an error. It is possible to use the OMC flag --std=latest in order to ensure
(at least) Modelica v3.3 support. In OMEdit this can be achieved by setting that flag in the Tools > Options >
Simulation dialog.

3.31. State Machines 73

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

OMEdit - Options

El General Simulation
& Libraries
E Text Editor Matching Algorithm: PFPlusExt >

Index Reduction Method: | dynamicStateSelection ~

CompositeModel Editor Target Language: C e

C/C++ Editor

Target Compiler: gec ~
B+ editor
ﬂ-"i Graphical Views OMC Flags: —std=latest | KA
Simulation : . . .
|:| Ignore __OpenModelica_commandLineQptions annotation
‘Eq Messages
7 I [1gnore __0OpenModelica_simulationFlags annotation
ﬂ Motifications W hd
* The changes will take effect after restart. OK Cancel

Figure 3.16: Ensure (at least) Modelica v3.3 support.

3.31.4 State Machines Debugger

Modelica state machines debugger is implemented as a visualization, which allows the user to run the state machines
simulation as an animation.

A special Diagram Window is developed to visualize the active and inactive states. The active and inactive value
of the states are stored in the OpenModelica simulation result file. After the successful simulation, of the state
machine model, OMEdit reads the start, stop time values, and initializes the visualization controls accordingly.

The controls allows the easy manipulation of the visualization,
* Rewind - resets the visualization to start.
* Play - starts the visualization.
* Pause - pauses the visualization.
* Time - allows the user to jump at any specific time.
» Speed - speed of the visualization.
« Slider - controls the time.

The visualization is based on the simulation result file. All three formats of the simulation result file are supported
i.e., mat, csv and plt where mat is a matlab file format, csv is a comma separated file and plt is an ordered text file.

It is only possible to debug one state machine at a time. This is achieved by marking the result file active in the
Variables Browser. The visualization only read the values from the active result file. It is possible to simulate
several state machine models. In that case, the user will see a list of result files in the Variables Browser. The user
can switch between different result files by right clicking on the result file and selecting Set Active in the context
menu.

74 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

&% OMEdit - OpenModelica Connection Editor - O *
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help

e g . ¢ CsV A .

PeBR 95 XOl-E a4 S % &
Libraries Browser g x [X Plot : 1 B 4 Diagram %] Variables Browser 8 X
Filter Classes L4 A | [Filter Variables &
Libraries Simulation Time Unit s =
@ OpenModelica I
D ModelicaServices

Time:| 14,4 | Speed:| 1
o @ compin K>l
@ Modelica Variables Value Displ
o ModelicaReference Sta te 1 = @ (Active...erQuter
=] E SMGraphi...estCases i “
. . [previous(i) 42

m SimpleS.. tations smOf

m InnerQuter statel

. Maraninchi2003_2 state?

M| MLswa

(M| cor
E Components true
m DeepHierarchy
v
£ > £ >
t Welcome oﬁ Modeling g Plotting ‘\ Debugging
Figure 3.17: State machine debugger in OMEdit.

3.31. State Machines 75

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

3.32 Using OMEdit as Text Editor

OMEdit can be be used as a Text editor. Currently support for editing MetaModelica,Modelica and C/C++ are
available with syntax highlighting and autocompletion of keywords and types. Additionaly the Modelica and
MetaModelica files are provided with autocompletion of code-snippets along with keywords and types. The users
can load the directory from file menu File > Open Directory. which opens the Directory structure in the Libraries-
browser.

&% OMEdit - OpenModelica Connection Editor — O X
File Edit View Simulation Debug OMSimulator Git Tools Help
j’ New Modelica Class Ctrl+N
' Open Model/Library File(s) Ctrl+O
Open/Convert Modelica File(s) With Encoding
(e forees @ g Ope pdelica Connhectio adlto
Load Encrypted Library
Open Result File(s) Ctrl+Shift+O
Open Transformations File rent F|Ies Latest NEWS
F New Composite Model -/OPENMODELICAGIT/Op, " & b January 31, 2019 OpenModelica 1.13.2 released ™
L Open Composite Model(s)
Load External Model(s) :/OPENMODELICAGIT/Og £» December 20, 2018: OpenModelica 1.13.0 released
Open Directory :/OPENMODELICAGIT/Og B> December 10, 2018: OpenModelica 1.13.0-dev.beta 1
H 5 G -fUsers/arupa54/Downloi 33 Program OpenModelica Annual Workshop 2019 v
ave trl+
> < >
l"] Save As
Se el r Recent Files Reload | For more details visit our website www.openmodelica.org
Import 4
B , e New Modelica Class Open Model/Library File(s)
System Libraries » Browser 8 X
Recent Files 3 ,7- History: | Mews Search -
Clear Recent Files
All -
& Print.. Ctrl+P
or: ‘ \’|
Quit ctrl+Q ben: [+ -]
Search
Search Browser Messages Browser
Opens the directory Ln: 439, Col: 20 t Welcome g.‘& Modeling &5 Plotting ‘ Debugging

Figure 3.18: open-directory

After the directory is opened in the Libraries-browser, the users can expand the directory structure and click the
file which opens in the texteditor.

3.32.1 Advanced Search

Support to search in OMEdit texteditor is available. The search browser can be enabled by selecting View >
Windows > Search browser or through shortcut keys (ctrl+h).

The users can start the search by loading the directory they want to search and fill in the text to be searched for and
file pattern if needed and click the search button.

After the search is completed the results are presented to the users in a separate window, The search results contains
the following

1) The name of the files where the searched word is matched
2) The line number and text of the matched word.

The users can click the line number or the matched text and it will automatically open the file in the texteditor and
move the cursor to matched line number of the text.

The users can perform multiple searches and go back to old search results using search histroy option.

76 Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

% OMEdit - OpenModelica Connection Editor - O XK
File Edit WView Simulation Debug OMSimulator Git Tools Help

: ¥ — 3
EA 1=1- Hoeee \oHOTHE <= K- >% - &- T ¥-
Libraries Browser & x u\i BackendDAEUl.mo a

‘Fi\ter Classes

| am

W

E |Writab\e | C:/OPENMODELICAGIT/OpenModelica/ OMCompiler/ Compiler/BackEnd/BackendDAEULIl. mo

Libraries

50 ModelicaReference
ED ModelicaServices

B Complex
E@ Modelica
EI OMCompiler
3rdParty
commaon
|E| Compiler
[=] = Backend

;;. AdjacencyMatrix.mo

;;. BackendDAE.mo

;;. BackendDAECreate.mo
%/ BackendDAEEXT.mo

;;. BackendDAEFunc.mo
;;. BackendDAEQOptimize.mo
;;. BackendDAETransform.mo
;;. BackendDump.mo

;;. BackendEquation.mo
;;. Backendlnline.mo

;;. BackendVariable.mo

;;. BackendVarTransform.mo
;;. BinaryTree.mo

! n; Temolat

~

tl = Expression.typeof (el);
t2 = ComponentReference.creflastType (cr):
b = Expression.equalTypes (tl,t2):
wrongEgnsl = List.consOnTrue (not
b, e,wrongEgns) ;
then (e,wrongEgnsl);

/7
else (inEq, inEgs);
end matchcontinue;
end checkEguationSize;

439

[l public function checkAssertCondition "Succeds if
condition of assert is not constant false™
input DAE.Exp cond;

~

Search Browser & X
% History: |Mew Search -
Scope: All -
Search for: | v‘
File Pattern: |* v‘
Search
Search Browser Messages Browser
Ln: 439, Col: 20 6L Welcome A Modeling Plotting @ Debugging

Figure 3.19: openfile in texteditor

3.33 Temporary Directory, Log Files and Working Directory

On Unix/Linux systems temporary directory is the path in the TMPDIR environment variable or /tmp if TMPDIR is
not defined appended with directory paths OpenModelica< USERNAME=>/OMEdit so the complete path is usually
/tmp/OpenModelica<USERNAME=>/OMEdit.

On Windows its the path in the TEMP or TMP environment variable appended with directory paths OpenModel-
ica/OMEdit so the complete path is usually %TEMP %/OpenModelica/OMEdit.

All the log files are always generated in the temporary directory. Choose Tools > Open Temporary Directory to

open the temporary directory.

By default the working directory has the same path as the temporary directory. You can change the working
directory from Tools > Options > General see section General Options.

For each simulation a new directory with the model name is created in the working directory and then all the
simulation intermediate and results files are generated in it.

3.33. Temporary Directory, Log Files and Working Directory

77

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

gﬁ OMEdit - OpenModelica Connection Editor

E» C/Users/arupa54/AppDa
(‘\

Clear Recent Files

Create New Modelica Class

File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help
’j' = ﬂ Toolbars v |
eTea O Windows Y~ Libraries Browser
[Filter Classes| Toggle Tab/Sub-window View Documentation Browser
I - Variables Browser
Lbraries [Grid Lines 3D Viewer Browser
lE Oper ©, Reset Zoom Ctrl+0 ' Messages Browser
O Mo ®, ZoomIn Cirl++ . Search Browser
(] Mod¢®, Zoom Out Ctrl+- Stack Frames Browser
[complex B C/OPENMODELICAGIT/C BreakPoints Browser
@ Modelica £» C;/OpenPBS/OpenPBS/pz Locals Browser
OMCompiler Output Browser

Debugger CLI

Close Window
Close All Windows
Close All Windows But This

Cascade Windows
Tile Windows Horizontally

nection Editor

lews

31, 2019: OpenModelica 1.13.2 released
F 20, 2018: OpenModelica 1.13.0 released

[10, 2018: OpenModelica 1.13.0-dev.beta released
W

>

For more details visit our website www.openmodelica.org

Open Model/Library File(s)

. Tile Windows Vertically g x
v I_ d ,- History: | Mew Search
Scope: oMCompiler -
Search for: | V|
File Pattern: | * V|
Search
Messages Browser Search Browser
t Welcome n’.& Modeling Plotting ‘ Debuqging

Figure 3.20: Enable omedit search browser

3.34 High DPI Settings

When the text is too big / too small to read there are options to change the font size used in OMEdit, see Text Editor

Options.

If you are using a high-resolution screen (1080p, 4k and more) and the app is blurry or the overall proportions of
the different windows are off, it can help to change the DPI settings.

On Windows it is possible to change the scaling factor to adjust the size of text, apps and other times, but the default
setting might not be appropriate for OMEdit e.g., on compact notebooks with high resolution screens.

You can either change the scaling factor for the whole Windows system or only change the scaling used for OMEdit.
This is done by changing the Compatibility settings for High DPI settings for OMEdit.exe with the following steps:

1. Press Windows-Key and type OpenModelica Connection Editor and right-click on the app and Open file

location, Figure 3.24.

2. Right-click on OpenModelica Connection Editor and open Properties.

3. In the properties window go to tab Compatibility and open Change high DPI settings. In the High DPI
settings for OMEdit.exe choose Use the settings to fix scaling problems for this program instead of the one
in Settings and Override high DPI scaling behavior.Scaling performed by: and choose System from the

drop-down menu, Figure 3.25.

78

Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

o%% OMEdit - OpenModelica Connection Editor — O X
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help
(LD =N s =
FeBHRA Hoeee \OHOTH- - - >- &- T~ &~
Libraries Browser & X gﬁ BackendDump.mo (x| &% BackendDump.interface.mo [
IMI A "E“Wrﬂahle ‘C:,I’OPENMDDEIJI:AG]T!OpenModeIica!{)MCompiIer!CompilerfbootfhuildeackendDump.interface.rrn ‘ a
Libraries ~] H:I ~
E‘E OpenModelica —| function dumpDAE
F|@ Modeli...erence input BackendDAE.BackendDAE inDAE;
F10) Modeli...vices guZputDigckendDAE.BackendDHE outDAE;
| Complex en ump ’
2 MOdehca_ 16 function dumpBackendDAE
=| | omCompiler 149 input BackendDAE.BackendDAE inBackendDAE;
3rdParty 150 input String heading;
commaon 151 - end dumpBackendDAE;
=]~ compiler 152
[=] © Backend 153 function dumpBackendDAEToModelica
ot Adj...mo 154 input BackendDAE.BackendDAE inBackendDAE; v
g& Bac...mo Search Browser 8 X
“ﬁ Bac..mo 2 '\lv" <+ History: MNew Search -
g!i Bac...mo
u& Bac...mo Scope: OMCompiler M
ﬂ& Bac..mo Search for: |dumpEackendDAEFoModeIica V|
p& Bac...mo
ﬂ& File Pattern: |*.mo V|
Bac...mo
g‘& Bac...mo Search
p& Bac...mo
p& Bac...mo
u& Bac..mo Y Messages Browser Search Browser

Ln: 153, Col: O tWeIcome Dﬁ Modeling a Plotting * Debugging

Figure 3.21: Start search in search browser

3.34. High DPI Settings

79

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

FeB8E

g& OMEdit - OpenModelica Connection Editor

File Edit View Simulation

O X

FMI Export Debug OMSimulator

@O\e\e\ \..

Git Tools Help

OTR <=E-0O0%E > - & = &~

»

Libraries Browser 8 x ‘,ﬁ BackendDump.mo (x| g& BackendDump.interface.mo a
M‘ ¥ |Wrilable | C:/OPENMODELICAGIT /OpenMadelica/OMCompiler/Compiler/boat/build/BackendDump.interface.mo | i.‘
Libraries ~ 150 { input String heading; ()
HE OpenModelica 15 end dumpBackendDAE;
+|@ Modeli...erence L5))
) Modeli..rvices 153[= function dumpBackendDAEToModelica
Il Complex 154 input BackendDAE.BackendDAE inBackendDAE;
77 Model 155 input String suffix;
caelica 56 - end dumpBackendDAEToModelica;
El OMCompiler]
3rdParty 1 H—] function dumpEgSystem
common $ input BackendDAE.EgSystem inEgSystem;
[=] T compiler input String heading;
[=] © Backend - end dumpEgSystem;
ok Adi...mo 162 | v
ﬁ Bac...mo Search Browser g x
Bac...mo
“& Bac..mo \’ @ G History: |Project-OMCompiler: dumpBackendDAEToModel -
E& Bac..mo Searched 1160 of 1160 files. Search Completed. 3 FOUND
ﬁ& Bac...ma
Cancel
ﬁf‘i Bac...mo
ﬁ& Bac...mo E| C,/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/boot/build/BackendDump.interface.mo ~
“& Bac...mo 153 function dumpBackendDAEToModelica
“& Bac..mo |156 end dumpBackendDAEToModelica;
".& Bac...mo [+] C./OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/Backend Dump.mo e
d& Bac..mo | Messages Browser Search Browser

& Plotting * Debugging

Ln: 156, Col: 0 tWeIcome p& Modeling

Figure 3.22: Search Results

80

Chapter 3. OMEdit - OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

FeBB

gﬂ OMEdit - OpenModelica Connection Editor

File Edit View Simulation

O X

FMI Export Debug OMSimulator Git Tools Help

rE@Eoee \oHOTHE <= B- 99E > - &- 7~ ¥~

Libraries Browser X A BackendDump.mo (] o% Bsackendbump.interface.mo [X]
Filter Classes T | Writable |C:fDPENMDDEL'IEAG]'I',poenModelicafDMCompiler,fCompiler,fbaot,,’buildjliackendﬂump.interface.rno ‘ = ‘
Libraries - input String heading: ~
ﬂ OpenModelica end dumpBackendDAE;
Bﬂ Modeli...erence . .
FI) Modeii..rvices furllctlon dumpBackendDP;EToModel}ca
@ Complex input BackendDAE.BackendDAE inBackendDAE;
1P% Model input String suffix;
oaelica end dumpBackendDAEToModelica;
El OMCompiler
3rdParty function SisiHeERERR=S
common input BackendDAE.EgSystem inEqSystem;
[=] © compiler input String heading;
[=] © Backend end dumpEgSystem:
o4& Adj..mo v
d& Bac..mo Search Browser 8 x
Bac...mo
L} N — - -
ﬁ& Bac...mo L% G G History: |Project-OMCompiler: dumpEqSystem |
ﬁ& Bac...mo Searched 557 of 1160 Pr‘cqect-:)l'dComp\er' dumpBackendDAET oModelica 14 FOUND
ﬂ.& Bac...mo Froject-OMCompiler: dumpEqSystem
d& Bac...mo
6& Bac...mo EEI C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/boot/build/BackendDump.interface.mo ~
Bac...mo EE| C./OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/SynchronousFeatures.mo
d& Bac...mo Ezl C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/Resolveloops.ma
ﬁ& Bac...mo |:-| C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/OnRelaxation.mo ©
ﬁ& Bac..mo v | Messages Browser Search Browser

& Plotting & Debugging

Ln: 158, Col: 23 tWe\come a& Modeling

Figure 3.23: Search History

3.34. High DPI Settings

81

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

All Apps

Documents Web

Best match

ﬂ-‘i OpenMadelica Connection Editor

App L3 Run as administrator
Search work and web [0 Open file location
£ omedit - See work and web results <3 Pin to Start
O omedit idf <3 Pin to taskbar
Photos il Uninstall
OMEdit-plot-DualMassOscillator.png >
Recent

2 oMEdit

e

Tl open ~
B Edit

elect all

elect none

Security
General

Details Previous Versions

< > 4 | I - Microsoft > Windows > Start Menu > Prf Shorteut Compatibility

fthis program isn't working carrectly on this version of Windows, try

Name running the compatibility roubleshooter.

5

W Quic Run compatibility roubleshooter
B8 Documentation

How do | choose y settings manually?

I pySimulator Compatibility mode

[CJRun this program in compatibility mode for:
B OpenModelica Connection Editor
Windows &

g OpenModelica Notebook
Settings

&7 OpenModel e

ﬁ OpenModelic 8-bit (256) calor

Run in 640 x 480 screen resolution

& OpenModelica Website
[Disable fullscreen optimizations

B Uninstall OpenModelica [[JRunthis program as an administrator

™ This PC [Registerthis program for restart

| Network [JUse legacy display ICC color management

. Change high DPI settings
A Linux

8items | 1item selected 1.95KB |

‘y Change settings for all users

Cancel

'nModelica Connection Editor

B DualMassOscillator.mo

Lo 2

App

High DPI settings for OMEdit.exe

Choose the high DPI settings for this program.

Program DPI

Use this setting to fix scaling problems for this program
mslead of the one in Settings

Open Advanced scaling settings

A program might look blurry if the DPI for your main display
changes after you sign in to Windows. Windows can try to fix
this scaling problem for this program by using the DFI that's
set for your main display when you open this program.

Use the DPI that's set for my main display when

Isigned in to Windows v

Learn more

High DPI scaling override

[Cverride high DPLscaling behavior.
Scaling performed by:

System

Cancel

Figure 3.25: Change high DPI settings for OMEdit.exe

82

Chapter 3. OMEdit - OpenModelica Connection Editor

CHAPTER
FOUR

2D PLOTTING

This chapter covers the 2D plotting available in OpenModelica via OMNotebook, OMShell and command line
script. The plotting is based on OMPlot application. See also OMEdit 2D Plotting.

4.1 Example

model HelloWorld
Real x(start = 1, fixed = true);
parameter Real a = 1;

equation
der(x) = - a * x;

end HelloWorld;

J

To create a simple time plot the above model HelloWorld is simulated. To reduce the amount of simulation data in
this example the number of intervals is limited with the argument numberOfIntervals=5. The simulation is started
with the command below.

>>> simulate(HelloWorld, outputFormat="csv'", startTime=0, stopTime=4,..
—numberOfIntervals=5)
record SimulationResult

resultFile = "«DOCHOME»/HelloWorld_res.csv",

simulationOptions = "startTime = 0.0, stopTime = 4.0, numberOfIntervals = 5,.
—tolerance = le-6, method = 'dassl', fileNamePrefix = 'HelloWorld', options = '',.
—outputFormat = 'csv', variableFilter = '.*', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished..
—successfully without homotopy method.

LOG_SUCCESS | info | The simulation finished successfully.

timeFrontend = 0.00330021,

timeBackend = 0.009083628,
timeSimCode = 9.601080000000001e-4,
timeTemplates = 0.0023364,
timeCompile = 0.662707039,

timeSimulation = 0.015801172000000002,
timeTotal = 0©.694379292
end SimulationResult;

When the simulation is finished the file HelloWorld_res.csv contains the simulation data:

Listing 4.1: HelloWorld_res.csv

wongnon

"time","x","der(x)"
0,1,-1
0.8,0.4493289092712475,-0.4493289092712475

(continues on next page)

83

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

(continued from previous page)

.6,0.2018973974273906,-0.2018973974273906
.4,0.09071896372718975,-0.09071896372718975
.2,0.04076293845066793,-0.04076293845066793
0.01831609502171534,-0.01831609502171534

0.01831609502171534,-0.01831609502171534

1
2
3
4
4

Use plot(x) to plot the diagram using OMPlot.

T
1

0.9
0.8

T
1

0.7

T
1

0.6

T
1

T
1

0.5

0.4

T
1

0.3

T
1

T
1

0.2

0.1

T
1

0 I I I I I I 1
0 0.5 1 1.5 2 2.5 3 3.5 4

Figure 4.1: Simple 2D plot of the HelloWorld example.

By re-simulating and saving results at many more points, for example using the default 500 intervals, a much
smoother plot can be obtained. Note that the default solver method dassl has more internal points than the output
points in the initial plot. The results are identical, except the detailed plot has a smoother curve.

>>> O==system("./HelloWorld -override stepSize=0.008")
true

>>> res:=strtok(readFile("HelloWorld_res.csv"), "\n'");
>>> res[end]
"4,0.01831609502171534,-0.01831609502171534"

4.2 Plot Command Interface

Plot command have a number of optional arguments to further customize the the resulting diagram.

>>> list(OpenModelica.Scripting.plot,interfaceOnly=true)
"function plot
input VariableNames vars \"The variables you want to plot\";
input Boolean externalWindow = false \"Opens the plot in a new plot window\";
input String fileName = \"<default>\" \"The filename containing the variables.
—<default> will read the last simulation result\";
input String title = \"\" \"This text will be used as the diagram title.\";
input String grid = \"simple\" \"Sets the grid for the plot i.e simple, detailed,.
—none.\";
input Boolean logX = false \"Determines whether or not the horizontal axis is..
—logarithmically scaled.\";

(continues on next page)

84 Chapter 4. 2D Plotting

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

09 N

0.8 N

0.7
0.6

0.5

0.4

0.3

0.2

0.1

Figure 4.2: Simple 2D plot of the HelloWorld example with a larger number of output points.

(continued from previous page)

input Boolean logY = false \"Determines whether or not the vertical axis is.
—logarithmically scaled.\";

input String xLabel = \"time\" \"This text will be used as the horizontal label in.,
—the diagram.\";

input String yLabel = \"\" \"This text will be used as the vertical label in the.
—diagram.\";

input Real xRange[2] = {0.0, 0.0} \"Determines the horizontal interval that is.
—visible in the diagram. {0,0} will select a suitable range.\";

input Real yRange[2] = {0.0, 0.0} \"Determines the vertical interval that is.
—visible in the diagram. {0,0} will select a suitable range.\";

input Real curveWidth = 1.0 \"Sets the width of the curve.\";

input Integer curveStyle = 1 \"Sets the style of the curve. SolidLine=1, DashLine=2,
—» DotLine=3, DashDotLine=4, DashDotDotLine=5, Sticks=6, Steps=7.\";

input String legendPosition = \"top\" \"Sets the POSITION of the legend i.e left,.
—right, top, bottom, none.\";

input String footer = \"\" \"This text will be used as the diagram footer.\";

input Boolean autoScale = true \"Use auto scale while plotting.\";

input Boolean forceOMPlot = false \"if true launches OMPlot and doesn't call.,
—callback function even if it is defined.\";

output Boolean success \"Returns true on success\";
end plot;"

4.2. Plot Command Interface 85

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

86 Chapter 4. 2D Plotting

CHAPTER
FIVE

OPENMODELICA COMPILER

The OpenModelica Compiler (OMC) consists of a frontend, backend, code generation and the runtimes.
1. Lexical Analysis
Keywords, operators and identifiers are extracted from the model.
2. Parsing
An abstract syntax tree represented in Meta-Modelica is created from the operators and identifiers.
3. Semantic Analysis
The abstract syntax tree gets tested for semantic errors.

4. Intermediate Representation

Translation of the abstract syntax tree to an intermediate representation called SCode in MetaModelica. This

is further processed by the frontend producing DAE intermediate representation code.
5. Symbolic Optimization Backend

The intermediate representation gets optimized and preprocessed.
6. Code Generation

Executable code gets generated from the low level intermediate representation.

For more details see [FPA+20]. A full list of compiler flags can be found in OpenModelica Compiler Flags.

5.1 Frontend Modules

5.2 Backend Modules

1. Pre-Optimization

* Partitioning

* Alias removal
2. Causalization

* Matching

* Sorting

¢ Index reduction
3. Post-Optimization

» Tearing

¢ Jacobian

87

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

5.2.1 Backend DAE Info

With compiler debug flag backenddaeinfo it is possible to get additional information from the Backend modules.
* Number of equations / variables
* Number of states
* Information about initialization and simulation system
— Equation types
— Equation system details (linear and non-linear)

The output of backenddaeinfo can be expanded by using additional compiler debug flags stateselection and dis-
creteinfo.

Example

>>> loadFile(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/BouncingBall.\
—mo")
true
>>> setCommandLineOptions("-d=backenddaeinfo,stateselection,discreteinfo")
true
>>> translatelModel (BouncingBall)
true
"Notification: Model statistics after passing the front-end and creating the data.
—structures used by the back-end:
* Number of equations: 6
* Number of variables: 6
Notification: Model statistics after passing the back-end for initialization:
* Number of independent subsystems: 3
* Number of states: 0 ()
* Number of discrete variables: 9 (v_new,$PRE.v_new,flying, $PRE.flying, foo,impact,
—$whenConditionl, $whenCondition2, $whenCondition3)
* Number of discrete states: 0 ()
* Number of clocked states: 0 ()
* Top-level inputs: 0
Notification: Strong component statistics for initialization (13):
* Single equations (assignments): 13
* Array equations: 0
* Algorithm blocks: 0
* Record equations: 0
* When equations: 0
If-equations: 0O
Equation systems (not torn): O
Torn equation systems: 0
* Mixed (continuous/discrete) equation systems: 0
Notification: Model statistics after passing the back-end for simulation:
* Number of independent subsystems: 1
* Number of states: 2 (h,v)
Number of discrete variables: 7 ($whenCondition3, $whenCondition2,$whenConditionl,
—flying,impact,v_new, foo)
* Number of discrete states: 2 (impact,v)
* Number of clocked states: 0 ()
* Top-level inputs: 0
Notification: Strong component statistics for simulation (9):
* Single equations (assignments): 7
* Array equations: 0
* Algorithm blocks: 0
* Record equations: 0

o

(continues on next page)

88 Chapter 5. OpenModelica Compiler

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

(continued from previous page)
* When equations: 2
* If-equations: O
* Equation systems (not torn): O
* Torn equation systems: 0
* Mixed (continuous/discrete) equation systems: 0

5.3 Code generation

From the low level intermediate representation from the backend code will be generated. The default code genera-
tion target is C and offers the largest model coverage. An alternative is the C++ (Cpp) which can produce significant
faster executables in some cases.

The target language can be changed with compiler flag --simCodeTarget.

Depending on the target the compiler will write code and compile everything into a single simulation executable.

5.4 Simulation Runtimes

The generated code is linked with the appropriate runtime.

5.4.1 C Runtime

In Solving Modelica Models the methods implemented in the C runtime are described. In C Runtime Simulation
Flags the runtime flags are documented.

5.4.2 C++ Runtime

Solver methods and runtime flags are currently undocumented. Refer to the source code

5.4.3 References

5.3. Code generation 89

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

90 Chapter 5. OpenModelica Compiler

CHAPTER
SIX

SOLVING MODELICA MODELS

6.1 Integration Methods

By default OpenModelica transforms a Modelica model into an ODE representation to perform a simulation by
using numerical integration methods. This section contains additional information about the different integration
methods in OpenModelica. They can be selected by the method parameter of the simulate command or the -s

simflag.
The different methods are also called solver and can be distinguished by their characteristic:
* explicit vs. implicit
e order
* step size control
* multi step

A good introduction on this topic may be found in [CK06] and a more mathematical approach can be found in
[HNorsettW93].

6.1.1 DASSL

DASSL is the default solver in OpenModelica, because of a severals reasons. It is an implicit, higher order, multi-
step solver with a step-size control and with these properties it is quite stable for a wide range of models. Fur-
thermore it has a mature source code, which was originally developed in the eighties an initial description may be
found in [Pet82].

This solver is based on backward differentiation formula (BDF), which is a family of implicit methods for numerical
integration. The used implementation is called DASPK2.0 (see') and it is translated automatically to C by f2c
(see?).

The following simulation flags can be used to adjust the behavior of the solver for specific simulation problems:
Jacobian, noRootFinding, noRestart, initialStepSize, maxStepSize, maxIntegrationOrder, noEquidistantTimeGrid.

I DASPK Webpage
2 Cdaskr source

91

https://cse.cs.ucsb.edu/software
https://github.com/wibraun/Cdaskr

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

6.1.2 IDA

The IDA solver is part of a software family called sundials: SUite of Nonlinear and DIfferential/AL gebraic equa-
tion Solvers [HBG+05]. The implementation is based on DASPK with an extended linear solver interface, which
includes an interface to the high performance sparse linear solver KLU [DN10].

The simulation flags of DASSL are also valid for the IDA solver and furthermore it has the following IDA specific
flags: idalLS, idaMaxNonLinlters, idaMaxConvFails, idaNonLinConvCoef , idaMaxErrorTestFails.

6.1.3 CVODE

The CVODE solver is part of sundials: SUite of Nonlinear and DIfferential/ALgebraic equation Solvers [HBG+05].
CVODE solves initial value problems for ordinary differential equation (ODE) systems with variable-order,
variable-step multistep methods.

In OpenModelica, CVODE uses a combination of Backward Differentiation Formulas (varying order 1 to 5) as
linear multi-step method and a modified Newton iteration with fixed Jacobian as non-linear solver per default.
This setting is advised for stiff problems which are very common for Modelica models. For non-stiff problems an
combination of an Adams-Moulton formula (varying order 1 to 12) as linear multi-step method together with a
fixed-point iteration as non-linear solver method can be choosen.

Both non-linear solver methods are internal functions of CVODE and use its internal direct dense linear solver
CVDense. For the Jacobian of the ODE CVODE will use its internal dense difference quotient approximation.

CVODE has the following solver specific flags: cvodeNonlinearSolveriteration, cvodeLinearMultistepMethod.

6.1.4 GBODE

GBODE stands for Generic Bi-rate ordinary differential equation (ODE) solver and is a generic implementation for
any Runge-Kutta (RK) scheme [HNorsettWO00]. In GBODE there are already many different implicit and explicit
RK methods (e.g. SDIRK, ESDIRK, Gauss, Radau, Lobatto, Fehlberg, DOPRI45, Merson) with different approx-
imation order configurable and ready to use. New RK schemes can easily be added, if the corresponding Butcher
tableau is available. By default the solver runs in single-rate mode using the embedded RK scheme ESDIRK4
[KC19] with variable-step-size control and efficient event handling.

The bi-rate mode can be utilized using the simulation flag gbratio. This flag determines the percentage of fast
states with respect to all states. These states will then be automatically detected during integration based on the
estimated approximation error and afterwards refined using an appropriate inner step-size control and interpolated
values of the slow states.

The solver utilizes by default the sparsity pattern of the ODE Jacobian and solves the corresponding non-linear
system in case of an implicit chosen RK scheme using KINSOL.

GBODE is highly configurable and the following simulation flags can be used to adjust the behavior of the solver
for specific simulation problems: gbratio, gbm, gbctrl, gbnls, gbint, gberr, gbfm, gbfctrl, gbfnls, gbfint, gbferr.

This solver will replace obsolete and no longer maintained solvers providing a lot more using the following simu-
lation flags:

old: -s=euler
new: -s=gbode -gbm=expl_euler -gbctrl=const

old: -s=heun
new: -s=gbode -gbm=heun -gbctrl=const

old: -s=impeuler
new: -s=gbode -gbm=impl_euler -gbctrl=const

old: -s=trapezoid
new: -s=gbode -gbm=trapezoid -gbctrl=const

(continues on next page)

92 Chapter 6. Solving Modelica Models

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

(continued from previous page)

old: -s=imprungekutta
new -s=gbode -gbm=(one of the lobatto or radau or gauss RK methods) -gbctrl=const

old: -s=irksco
new: -s=gbode -gbm=trapezoid

old: -s=rungekuttaSsc
new: -s=gbode -gbm=rungekuttaSsc

6.1.5 Basic Explicit Solvers

The basic explicit solvers are performing with a fixed step-size and differ only in the integration order. The step-size
is based on the numberOfIntervals, the startTime and stopTime parameters in the simulate command: stepSize ~
stopTime — startTime

numberOfintervals
e euler - order 1

¢ heun - order 2

* rungekutta - order 4

6.1.6 Basic Implicit Solvers

The basic implicit solvers are all based on the non-linear solver KINSOL from the SUNDIALS suite. The under-
lining linear solver can be modified with the simflag -impRKLS. The step-size is determined as for the basic explicit
solvers.

* impeuler - order 1
* trapezoid - order 2

» imprungekutta - Based on Radau IIA and Lobatto IITA defined by its Butcher tableau where the order can
be adjusted by -impRKorder.

6.1.7 Experimental Solvers

The following solvers are marked as experimental, mostly because they are till now not tested very well.

* cvode - experimental implementation of SUNDIALS CVODE solver - BDF or Adams-Moulton method -
step size control, order 1-12

* rungekuttaSsc - Runge-Kutta based on Novikov (2016) - explicit, step-size control, order 4-5
* irksco - Own developed Runge-Kutta solver - implicit, step-size control, order 1-2
* symSolver - Symbolic inline solver (requires --symSolver) - fixed step-size, order 1

* symSolverSsc - Symbolic implicit inline Euler with step-size control (requires --symSolver) - step-size con-
trol, order 1-2

e gss - A QSS solver

6.1. Integration Methods 93

OpenModelica User’s Guide, Release v1.24.0-dev-53-g021ea6db67

6.2 DAE Mode Simulation

Beside the default ODE simulation, OpenModelica is able to simulate models in DAE mode. The DAE mode is
enabled by the flag --daeMode. In general the whole equation system of a model is passed to the DAE integrator,
including all algebraic loops. This reduces the amount of work that needs to be done in the post optimization phase
of the OpenModelica backend. Thus models with large algebraic loops might compile faster in DAE mode.

Once a model is compiled in DAE mode the simulation can be only performed with SUNDIALS/IDA integrator
and with enabled -daeMode simulation flag. Both are enabled automatically by default, when a simulation run is
started.

6.3 Initialization

To simulate an ODE representation of an Modelica model with one of the methods shown in Integration Methods
a valid initial state is needed. Equations from an initial equation or initial algorithm block define a desired initial
system.

6.3.1 Choosing start values
Only non-linear iteration v