OpenModelica User’s Guide
Release v1.18.0-38-ga767f054d8

Open Source Modelica Consortium

2021

CONTENTS

1 Introduction 3
1.1 System OVErview L o 0t e e e e e e e e e e e e e 4
1.2 Interactive Session with Examples o oo 5
1.3 Summary of Commands for the Interactive Session Handler 24
1.4 Running the compiler from command line 25

2 OMEdit - OpenModelica Connection Editor 27
2.1 Starting OMEdit o e e e 27
2.2 MainWindow & Browsers e 28
2.3 PErSpeCtiVES . . . v v i e 32
24 FileMenu. e e e 37
25 EditMenu e 38
2,6 ViewMenu e e e 38
2.7 Simulation Menuo e e e e e e 38
2.8 DebugMenu e e e e e e e e 39
29 SSPMenu e e 39
2.10 Sensitivity Optimization Menu o e 39
211 ToolsMenu L o e e e e e e e 39
212 Help Menu o e e e e e e e e e e e 39
2.13 ModelingaModel e e e e e e 40
2.14 Simulating aModel L e e e e 42
2,15 2D Plotting e e e e e 45
2.16 Re-simulatingaModel oL 47
2.17 3D Visualization e e e e e e 47
2.18 Animation of Realtime FMUs e 50
2.19 Interactive Simulation L e e 51
2.20 How to Create User Defined Shapes —Icons, 51
2.21 Global head section in documentation Lol e e e e e e e 52
222 OPHONS . . v v v ot e e e e e e e e e 53
2.23 __OpenModelica_commandLineOptions Annotationo v v v v v 60
2.24 __ OpenModelica_simulationFlags Annotation 60
225 Globaland Local Flags e 61
226 Debuggero e e 61
2.27 Editing Modelica Standard Library 61
228 State Machines e e e e 62
2.29 Using OMEditas Text Editor e e e e e 65
2.30 Temporary Directory, Log Files and Working Directory 66
231 HighDPISettings e e 67

3 2D Plotting 73
3.1 Example . . .o e e e e 73
3.2 Plot Command Interface e 75

4 Solving Modelica Models 77

10

11

12

13

4.1 Integration Methods e

42 DAE Mode Simulation e e e e e e e e e e e e e e
43 Initialization L e e e e e e e e e e e e e
4.4 Algebraic Solvers e e e e e
Debugging

5.1 The Equation-based Debugger
5.2 The Algorithmic Debugger e
Porting Modelica libraries to OpenModelica

6.1 Mapping of the library on the file system oL
6.2 Modifiers forarrays L. e e e e e e
6.3 Access to conditional componentsol oo e e
6.4 Access to classes defined in partial packages oL oL
6.5 Equality operator in algorithms e e
6.6 Public non-input non-output variables in functions 0oL
6.7 Subscripting of eXpressionso e
6.8 Incomplete specification of initial conditions Lo
6.9 Modelica_LinearSystems2 Library e

Generating Graph Representations for Models

FMI and TLM-Based Simulation and Co-simulation of External Models

8.1 Functional Mock-up Interface -FMI 0 o o
8.2 Transmission Line Modeling (TLM) Based Co-Simulation
8.3 Composite Model Editing of External Models

OMSimulator

9.1 Introduction e e e e e
0.2 OMSIMUIatoro e e e
9.3 OMSimulatorLib
9.4 OMSimulatorLua e
9.5 OMSimulatorPython e
9.6 OpenModelicaScripting L
9.7 Graphical Modelling e
0.8 SSPSupport e e e e e

System Identification
10.1 Exampleso o e e e
10.2 Pythonand C APL e e e e e e

OpenModelica Encryption

11.1 Encryptingthe Library o e
11.2 Loading an Encrypted Library 0 0 i e e e
I1.3 NOteS . . . v o o e e e e

OMNotebook with DrModelica and DrControl

12.1 Interactive Notebooks with Literate Programming
12.2 DrModelica Tutoring System — an Application of OMNotebook
12.3 DrControl Tutorial for Teaching Control Theory
12.4 OpenModelica Notebook Commands
12.5 References e

Optimization with OpenModelica

13.1 Builtin Dynamic Optimization with OpenModelicaand IpOpt
13.2 Compiling the Modelicacode e
13.3 AnExample e e e e e e e e
13.4 Different Options for the Optimizer IPOPT
13.5 Dynamic Optimization with OpenModelica and CasADi
13.6 Parameter Sweep Optimization using OMOptim

85
85
88

93
93
93
94
95
96
96
97
97
98

929

101
101
104
104

119
119
119
121
136
150
166
179
183

191
191
193

201
201
201
201

203
203
204
210
220
225

14

15

16

17

18

19

20

21

22

23

Parameter Sensitivities with OpenModelica
14.1 Single Parameter sensitivities with IDA/Sundials
14.2 Single and Multi-parameter sensitivities withOMSens

PDEModelical

15.1 PDEModelical language elements o o v i i i e e e
15.2 LIimitations o ot i e e e e e e e e e e e e e
153 Viewingresults

MDT - The OpenModelica Development Tooling Eclipse Plugin

16.1 Introduction e
16.2 Installation L e
16.3 Getting Started L e e e e e

MDT Debugger for Algorithmic Modelica
17.1 The Eclipse-based Debugger for Algorithmic Modelica.

Modelica Performance Analyzer

18.1 Profiling information for ProfilingTest L. .
18.2 Genenerated JSON for the Example
18.3 Using the Profiler from OMEdit

Simulation in Web Browser

Interoperability — C and Python

20.1 Calling External Cfunctions e
20.2 Calling external Python Code from a Modelicamodel
20.3 Calling OpenModelica from PythonCode

OpenModelica Python Interface and PySimulator

21.1 OMPython — OpenModelica Python Interface
21.2 Enhanced OMPython Features i
21.3 PySimulator e e e e e e e e e e e e e

OMMatlab — OpenModelica Matlab Interface

22.1 Featuresof OMMatlab e
222 TestCommands i e e e e e e e e e
223 WOrkDIrectory o o i e e e e e e e e e e e e e e
224 BuildModel L e
22.5 Standard get methods L L e e e e e
22.6 UsageofgetMethods e
2277 Standardsetmethods L. e
22.8 UsageofsetMethods o i e e e e e
229 Advanced Simulationl e e e e e e e
22.10 Linearization e
22.11 Usage of Linearization methods

OMJulia — OpenModelica Julia Scripting

23.1 Featuresof OMJulia e
232 TestCommands e e e e e e
23.3 WOrkDIrectory v o v i e e e e e e e e e e e e e e e e e
234 BuildModel L e e e e
23.5 Standard get methods L L e e e e e
23.6 Usageof getMethods L e e
2377 Standard setmethods L. L L e
23.8 UsageofsetMethods e
23.9 Advanced Simulation L e e e e
23.10 Linearizationo e e e e e e e e e e e e e e
23.11 Usage of Linearization methods
23.12 Sensitivity Analysiso e e e e e e

243
243
245

259
259
260
260

261
261
261
262

277
277

285
286
288
289

291

293
293
294
296

299
299
302
306

307
307
307
309
309
309
309
311
312
312
313
313

315
315
315
317
317
317
317
319
319
319
320
320
320

24

25

26

27

28

29

30

31

32

2313 USAZE . . v v e e e e e e e 321

Jupyter-OpenModelica 323
Scripting API 325
25.1 OpenModelica Scripting Commands Lo 325
25.2 Simulation Parameter SWeep e e e e e 401
253 Examples o e e e 401
Package manager 407
26.1 Installing packages L e e e e 407
26.2 How the package index works L 410
OpenModelica Compiler Flags 411
27.1 OPtONS . . v v o ot e e e e e e e e 411
27.2 Debugflags e e e e 427
27.3 Flags for Optimization Modules o e e e 433
Small Overview of Simulation Flags 435
28.1 OpenModelica (C-runtime) Simulation Flags 435
Technical Details 443
29.1 The MATv4 Result File Format 443
DataReconciliation 445
30.1 Defining DataReconciliation Problem in OpenModelica 445
30.2 DataReconcilation Support with Scripting Interface L. 447
30.3 DataReconciliation Supportin OMEdit 447
30.4 DataReconcilation Results oL e 451
Frequently Asked Questions (FAQ) 455
31.1 OpenModelicaGeneral i i i e e e e e e e e e e e 455
31.2 OMNOteboOK o o e e e e e e e e 455
31.3 OMDeyv - OpenModelica Development Environment 456
Major OpenModelica Releases 457
32.1 Release Notes for OpenModelica 1.18.0 457
32.2 Release Notes for OpenModelica 1.17.0 oo 459
32.3 Release Notes for OpenModelica 1.16.5 461
32.4 Release Notes for OpenModelica 1.16.4 o s 461
32.5 Release Notes for OpenModelica 1.16.0 i 461
32.6 Release Notes for OpenModelica 1.15.0 o i 462
32.7 Release Notes for OpenModelica 1.14.0 463
32.8 Release Notes for OpenModelica 1.13.0 i 464
32.9 Release Notes for OpenModelica 1.12.0 o o o o 465
32.10 Release Notes for OpenModelica 1.11.0 i et 467
32.11 Release Notes for OpenModelica 1.10.0 i 469
32.12 Release Notes for OpenModelica 1.9.4 o 469
32.13 Release Notes for OpenModelica 1.9.3 o 470
32.14 Release Notes for OpenModelica 1.9.2 471
32.15 Release Notes for OpenModelica 1.9.1 i 473
32.16 Release Notes for OpenModelica 1.9.0 e 475
32.17 Release Notes for OpenModelica 1.8.1 477
32.18 OpenModelica 1.8.0, November 2011 o 479
32.19 OpenModelica 1.7.0, April 2011 o . o e 480
32.20 OpenModelica 1.6.0, November 2010 e 481
32.21 OpenModelica 1.5.0, July 2010 o e e e e 482
32.22 OpenModelica 1.4.5, January 2009 e e e 483
32.23 OpenModelica 1.4.4, Feb 2008 e 483
32.24 OpenModelica 1.4.3,June 2007 o o o e e 484

32.25 OpenModelica 1.4.2, October 2006 o i it e
32.26 OpenModelica 1.4.1,June 2006 o 0 i e e e e e e e
32.27 OpenModelica 1.4.0, May 2006 o i i e e e e e e
32.28 OpenModelica 1.3.1, November 2005 e

33 Contributors to OpenModelica
33.1 OpenModelica Contributors 2015 e
33.2 OpenModelica Contributors 2014 e
33.3 OpenModelica Contributors 2013 e
33.4 OpenModelica Contributors 2012 e
33.5 OpenModelica Contributors 2011 o e e
33.6 OpenModelica Contributors 2010 o e e e e e
33.7 OpenModelica Contributors 2009 e
33.8 OpenModelica Contributors 2008 e e
33.9 OpenModelica Contributors 2007 e
33.10 OpenModelica Contributors 2000 o 0 i i e e e e e e e e e
33.11 OpenModelica Contributors 2005 0 . o e e e e e e
33.12 OpenModelica Contributors 2004 e
33.13 OpenModelica Contributors 2003 o o e e e e e
33.14 OpenModelica Contributors 2002 o e
33.15 OpenModelica Contributors 2001 o e
33.16 OpenModelica Contributors 2000 o 0 i e e e e e e
33.17 OpenModelica Contributors 1999
33.18 OpenModelica Contributors 1998 Lo o

Bibliography

Index

Vi

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Generated on 2021-12-14 at 10:05

Copyright © 1998-2021 Open Source Modelica Consortium (OSMC)
c/o Link&pings universitet, Department of Computer and Information Science
SE-58183 Linkoping, Sweden

(o). @

This work is licensed under a Creative Commons Attribution 4.0 International License.

This document is part of OpenModelica: https://www.openmodelica.org Contact: OpenModelica@ida.liu.se
Modelica® is a registered trademark of the Modelica Association, https://www.Modelica.org
Mathematica® is a registered trademark of Wolfram Research Inc, http://www.wolfram.com

This users guide provides documentation and examples on how to use the OpenModelica system, both for the
Modelica beginners and advanced users.

CONTENTS 1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.openmodelica.org
mailto:OpenModelica@ida.liu.se
https://www.Modelica.org
http://www.wolfram.com

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The 0penM°de"cq system described in this document has both short-term and long-term goals:

The short-term goal is to develop an efficient interactive computational environment for the Modelica lan-
guage, as well as a rather complete implementation of the language. It turns out that with support of
appropriate tools and libraries, Modelica is very well suited as a computational language for development
and execution of both low level and high level numerical algorithms, e.g. for control system design, solving
nonlinear equation systems, or to develop optimization algorithms that are applied to complex applications.

The long-term goal is to have a complete reference implementation of the Modelica language, including
simulation of equation based models and additional facilities in the programming environment, as well
as convenient facilities for research and experimentation in language design or other research activities.
However, our goal is not to reach the level of performance and quality provided by current commercial
Modelica environments that can handle large models requiring advanced analysis and optimization by the
Modelica compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a Modelica
environment include but are not limited to the following:

Development of a complete formal specification of Modelica, including both static and dynamic semantics.
Such a specification can be used to assist current and future Modelica implementers by providing a semantic
reference, as a kind of reference implementation.

Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as modeling problems that require extensions such as partial
differential equations, enlarged scope for discrete modeling and simulation, etc.

Language design to improve abstract properties such as expressiveness, orthogonality, declarativity, reuse,
configurability, architectural properties, etc.

Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by gen-
erating code for parallel hardware.

Improved debugging support for equation based languages such as Modelica, to make them even easier to
use.

Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.
Visualization and animation techniques for interpretation and presentation of results.

Application usage and model library development by researchers in various application areas.

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be submit-
ted to the Modelica Association for consideration regarding possible inclusion in the official Modelica standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and function
parts of Modelica to be executed interactively, as well as equation models and Modelica functions to be compiled
into efficient C code. The generated C code is combined with a library of utility functions, a run-time library, and
a numerical DAE solver.

https://openmodelica.org

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

1.1 System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1.1.

MDT Eclipse Plugir

Editor/Browser

GraphicalModel
Editor/Browser

3
OMODfi Interactive t
ptim sessionhandler
Optimization —— Mo-gee)l(téglitor
Subsystem
OMNotebook _
DrModelica Execution Model_lca
Model Editor Compiler
Modelica
Debugger

Figure 1.1: The architecture of the OpenModelica environment. Arrows denote data and control flow. The inter-
active session handler receives commands and shows results from evaluating commands and expressions that are
translated and executed. Several subsystems provide different forms of browsing and textual editing of Modelica
code. The debugger currently provides debugging of an extended algorithmic subset of Modelica.

The following subsystems are currently integrated in the OpenModelica environment:

* An interactive session handler, that parses and interprets commands and Modelica expressions for evalua-
tion, simulation, plotting, etc. The session handler also contains simple history facilities, and completion of
file names and certain identifiers in commands.

A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing definitions
of classes, functions, and variables. Such definitions can be predefined, user-defined, or obtained from
libraries. The compiler also includes a Modelica interpreter for interactive usage and constant expression
evaluation. The subsystem also includes facilities for building simulation executables linked with selected
numerical ODE or DAE solvers.

An execution and run-time module. This module currently executes compiled binary code from translated
expressions and functions, as well as simulation code from equation based models, linked with numerical
solvers. In the near future event handling facilities will be included for the discrete and hybrid parts of the
Modelica language.

Eclipse plugin editor/browser. The Eclipse plugin called MDT (Modelica Development Tooling) provides
file and class hierarchy browsing and text editing capabilities, rather analogous to previously described
Emacs editor/browser. Some syntax highlighting facilities are also included. The Eclipse framework has
the advantage of making it easier to add future extensions such as refactoring and cross referencing support.

OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor, compared
to the more advanced Mathematica notebooks available in MathModelica. This basic functionality still
allows essentially the whole DrModelica tutorial to be handled. Hierarchical text documents with chapters
and sections can be represented and edited, including basic formatting. Cells can contain ordinary text
or Modelica models and expressions, which can be evaluated and simulated. However, no mathematical
typesetting facilities are yet available in the cells of this notebook editor.

Graphical model editor/browser OMEdit. This is a graphical connection editor, for component based model
design by connecting instances of Modelica classes, and browsing Modelica model libraries for reading and
picking component models. The graphical model editor also includes a textual editor for editing model class
definitions, and a window for interactive Modelica command evaluation.

Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

* Optimization subsystem OMOptim. This is an optimization subsystem for OpenModelica, currently for
design optimization choosing an optimal set of design parameters for a model. The current version has a
graphical user interface, provides genetic optimization algorithms and Pareto front optimization, works in-
tegrated with the simulators and automatically accesses variables and design parameters from the Modelica
model.

* Dynamic Optimization subsystem. This is dynamic optimization using collocation methods, for Model-
ica models extended with optimization specifications with goal functions and additional constraints. This
subsystem is integrated with in the OpenModelica compiler.

* Modelica equation model debugger. The equation model debugger shows the location of an error in the
model equation source code. It keeps track of the symbolic transformations done by the compiler on the
way from equations to low-level generated C code, and also explains which transformations have been done.

* Modelica algorithmic code debugger. The algorithmic code Modelica debugger provides debugging for an
extended algorithmic subset of Modelica, excluding equation-based models and some other features, but in-
cluding some meta-programming and model transformation extensions to Modelica. This is a conventional
full-feature debugger, using Eclipse for displaying the source code during stepping, setting breakpoints, etc.
Various back-trace and inspection commands are available. The debugger also includes a data-view browser
for browsing hierarchical data such as tree- or list structures in extended Modelica.

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenModelica environment,
called OMShell — the OpenModelica Shell). Most of these examples are also available in the OMNotebook with
DrModelica and DrControl UsersGuideExamples.onb as well as the testmodels in:

>>> getInstallationDirectoryPath() + "/share/doc/omc/testmodels/"
"«OPENMODELICAHOME»/share/doc/omc/testmodels/"

The following commands were run using OpenModelica version:

>>> getVersion ()
"OMCompiler v1.18.0-v1.18.0.38+ga767£054d8"

1.2.1 Starting the Interactive Session

The Windows version which at installation is made available in the start menu as OpenModelica->OpenModelica
Shell which responds with an interaction window:

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be stored in
the variable x. The value of the expression is returned.

>>> x = 1:12
{1,2,3,4,5,6,7,8,9,10,11,12}

1.2.2 Using the Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one can make load classes and execute
commands. Here we give a few example sessions.

1.2. Interactive Session with Examples 5

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Example Session 1

>>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type
{A}
>>> instantiateModel (&)

nn

"[<interactive>:1:9-1:23:writable] Error: Type mismatch in binding t = 1.5

[

—expected subtype of Integer, got type Real.

n

Example Session 2

If you do not see the error-message when running the example, use the command getErrorString ().

model C
Integer a;
Real b;
equation
der(a) = b; // der(a) is illegal since a 1is not a Real number
der (b) 12.0;
end C;

>>> instantiateModel (C)
"class C
Integer a;

Real Db;

equation
der (/*Realx/(a)) = b;
der (b) = 12.0;

end C;

n

1.2.3 Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly giving the
command:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—bubblesort.mo")
true

The function bubblesort is called below to sort the vector x in descending order. The sorted result is returned to-
gether with its type. Note that the result vector is of type Real[:], instantiated as Real[12], since this is the declared
type of the function result. The input Integer vector was automatically converted to a Real vector according to
the Modelica type coercion rules. The function is automatically compiled when called if this has not been done
before.

>>> bubblesort (x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

>>> bubblesort ({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

6 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

1.2.4 Trying the system and cd Commands

It is also possible to give operating system commands via the system utility function. A command is provided as
a string argument. The example below shows the system utility applied to the UNIX command cat, which here
outputs the contents of the file bubblesort.mo to the output stream when running omc from the command-line.

>>> gystem("cat '"+getInstallationDirectoryPath()+"/share/doc/omc/testmodels/
—bubblesort.mo' > bubblesort.mo")
0

function bubblesort

input Real[:] x;

output Real[size(x,1)] y;
protected

Real t;
algorithm

Yy T X

for i in l:size(x,1l) loop

for j in 1l:size(x,1) loop
if y[i] > yI[J] then

t o= ylil;
y[i] = y[31;
yI[3l = t;
end if;
end for;
end for;

end bubblesort;

Note: The output emitted into stdout by system commands is put into log-files when running the CORBA-based
clients, not into the visible GUI windows. Thus the text emitted by the above cat command would not be returned,
which is why it is redirected to another file.

A better way to read the content of files would be the readFile command:

>>> readFile ("bubblesort.mo")
function bubblesort

input Real[:] x;

output Real[size(x,1)] vy;
protected

Real t;
algorithm

y 1= X

for i in 1l:size(x,1) loop

for j in 1l:size(x,1) loop
if y[i] > y[Jj] then

t o= ylil;
yl[il = y[3];
yI[3l = t;
end if;
end for;
end for;

end bubblesort;

The system command only returns a success code (0 = success).

>>> sgystem("dir")

0

>>> system("Non-existing command")
127

Another built-in command is cd, the change current directory command. The resulting current directory is returned
as a string.

1.2. Interactive Session with Examples 7

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

>>> dir:=cd ()

"«DOCHOME»"

>>> cd("source")

"«DOCHOME»/source"

>>> cd(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/")
"/var/lib/jenkinsl/ws/OpenModelica_maintenance_v1.18/build/share/doc/omc/testmodels

"
—

>>> cd(dir)
"«DOCHOME»"

1.2.5 Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also can be done through the File->Load
Modelica Library menu item:

>>> loadModel (Modelica, {"3.2.3"})
true

We also load a file containing the dcmotor model:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/dcmotor.mo
:_)")

true

Note:

Notification: decmotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

It is simulated:

>>> simulate (dcmotor, startTime=0.0, stopTime=10.0)
record SimulationResult

resultFile = "«DOCHOME»/dcmotor_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500,
— tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'dcmotor', options = '', |
—outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.5796366509999999,
timeBackend = 0.017099753,
timeSimCode = 0.005224810000000001,
timeTemplates = 0.154979306,
timeCompile = 0.87357246,
timeSimulation = 0.08441725600000001,
timeTotal = 1.715132837

end SimulationResult;

Note:

Notification: demotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

We list the source code of the model:

8 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

>>> list (dcmotor)
model dcmotor

import Modelica.Electrical.Analog.Basic;

Basic.Resistor resistorl (R 10);

Basic.Inductor inductorl(L = 0.2, 1i.fixed = true);

Basic.Ground groundl;

Modelica.Mechanics.Rotational.Components.Inertia load(J = 1, phi.fixed = true, w.
—~fixed = true);

Basic.EMF emfl(k = 1.0);

Modelica.Blocks.Sources.Step stepl;

Modelica.Electrical.Analog.Sources.SignalVoltage signalVoltagel;
equation

connect (stepl.y, signalVoltagel.v);

connect (signalVoltagel.p, resistorl.p);
connect (resistorl.n, inductorl.p);
(
(
(

connect (inductorl.n, emfl.p);
connect (emfl.flange, load.flange_a);
connect (signalVoltagel.n, groundl.p);
connect (groundl.p, emfl.n);
annotation (
uses (Modelica (version = "3.2.2")));
end dcmotor;

We test code instantiation of the model to flat code:

>>> instantiateModel (dcmotor)
class dcmotor

parameter Real resistorl.R(quantity = "Resistance", unit = "Ohm", start = 1.0) =
—10.0 "Resistance at temperature T_ref";

parameter Real resistorl.T_ref (quantity = "ThermodynamicTemperature", unit = "K",
— displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = 300.15
—"Reference temperature";

parameter Real resistorl.alpha(quantity = "LinearTemperatureCoefficient", unit =
—"1/K") = 0.0 "Temperature coefficient of resistance (R_actual = Rx (1 + alphax (T_

—heatPort — T_ref))";

Real resistorl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of
—the two pins (= p.v - n.v)";

Real resistorl.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from_
—pin p to pin n";

Real resistorl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real resistorl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing_
—into the pin";

Real resistorl.n.v(quantity = "ElectricPotential"”, unit = "V") "Potential at the_
—pin";

Real resistorl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing,
—into the pin";

final parameter Boolean resistorl.useHeatPort = false "=true, if heatPort is_
—enabled";

parameter Real resistorl.T(quantity = "ThermodynamicTemperature", unit = "K",
—~displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = resistorl.T_
—ref "Fixed device temperature if useHeatPort = false";

Real resistorl.LossPower (quantity = "Power", unit = "W") "Loss power leaving_
—component via heatPort";

Real resistorl.T_heatPort (quantity = "ThermodynamicTemperature", unit = "K", |
—displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) "Temperature
—~of heatPort";

Real resistorl.R_actual (quantity = "Resistance", unit = "Ohm") "Actual,_
—resistance = Rx (1l + alphax (T_heatPort - T_ref))";

Real inductorl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of |
—the two pins (= p.v - n.v)";

Real inductorl.i(quantity = "ElectricCurrent", unit = "A", start = 0.0, fixed =_

true)—Current—fiowingfrompimrp topimr 'y (continues on next page)

1.2. Interactive Session with Examples 9

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

Real inductorl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real inductorl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing_
—into the pin";

Real inductorl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real inductorl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing
—into the pin";

parameter Real inductorl.L(quantity = "Inductance", unit = "H", start = 1.0) = 0.
—2 "Inductance";

Real groundl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real groundl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into,
—the pin";

Real load.flange_a.phi (quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real load.flange_a.tau(gquantity = "Torque", unit = "N.m") "Cut torque in the_
—flange";

Real load.flange_b.phi(quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real load.flange_b.tau(quantity = "Torque", unit = "N.m") "Cut torque in the_
—flange";

parameter Real load.J(quantity = "MomentOfInertia", unit = "kg.m2", min = 0.0,
—start = 1.0) = 1.0 "Moment of inertia";

final parameter enumeration (never, avoid, default, prefer, always) load.
—stateSelect = StateSelect.default "Priority to use phi and w as states";

Real load.phi(quantity = "Angle", unit = "rad", displayUnit = "deg", fixed =
—true, stateSelect = StateSelect.default) "Absolute rotation angle of component";

Real load.w(quantity = "AngularVelocity", unit = "rad/s", fixed = true,
—stateSelect = StateSelect.default) "Absolute angular velocity of component (=
—der (phi))";

Real load.a(quantity = "AngularAcceleration", unit = "rad/s2") "Absolute angular,
—acceleration of component (= der(w))";

final parameter Boolean emfl.useSupport = false "= true, if support flange_
—enabled, otherwise implicitly grounded";

parameter Real emfl.k(quantity = "ElectricalTorqueConstant", unit = "N.m/A",
—~start = 1.0) = 1.0 "Transformation coefficient";

Real emfl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop between_
—the two pins";

Real emfl.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from,
—positive to negative pin";

Real emfl.phi (quantity = "Angle", unit = "rad", displayUnit = "deg") "Angle of |
—shaft flange with respect to support (= flange.phi - support.phi)";

Real emfl.w(quantity = "AngularVelocity", unit = "rad/s") "Angular velocity of
—flange relative to support";

Real emfl.tau(quantity = "Torque", unit = "N.m") "Torque of flange";

Real emfl.tauElectrical (quantity = "Torque", unit = "N.m") "Electrical torque";

Real emfl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";

Real emfl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into
—the pin";

Real emfl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";

Real emfl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into
—the pin";

Real emfl.flange.phi(quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real emfl.flange.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange
=";

protected parameter Real emfl.fixed.phiO (quantity = "Angle", unit = "rad",_
—displayUnit = "deg") = 0.0 "Fixed offset angle of housing";

protected Real emfl.fixed.flange.phi (quantity = "Angle", unit = "rad",
—displayUnit = "deg") "Absolute rotation angle of flange";

(continues on next page)

10 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

protected Real emfl.fixed.flange.tau(quantity = "Torque", unit = "N.m") "Cut_
—torque in the flange";

protected Real emfl.internalSupport.tau(quantity = "Torque", unit = "N.m") = -
—emfl.tau "External support torque (must be computed via torque balance in model_
—where InternalSupport is used; = flange.tau)";

protected Real emfl.internalSupport.phi(quantity = "Angle", unit = "rad",
—displayUnit = "deg") "External support angle (= flange.phi)";

protected Real emfl.internalSupport.flange.phi (quantity = "Angle", unit = "rad",
—displayUnit = "deg") "Absolute rotation angle of flange";

protected Real emfl.internalSupport.flange.tau(quantity = "Torque", unit = "N.m
—") "Cut torque in the flange";

parameter Real stepl.height = 1.0 "Height of step";
Real stepl.y "Connector of Real output signal";
parameter Real stepl.offset = 0.0 "Offset of output signal y";

parameter Real stepl.startTime (quantity = "Time", unit = "s") = 0.0 "Output y =,
—~offset for time < startTime";

Real signalVoltagel.p.v(quantity = "ElectricPotential", unit = "V") "Potential,
—at the pin";

Real signalVoltagel.p.i(quantity = "ElectricCurrent"”, unit = "A") "Current,_

—flowing into the pin";

Real signalVoltagel.n.v(quantity = "ElectricPotential", unit = "V") "Potential
—at the pin";

Real signalVoltagel.n.i(quantity = "ElectricCurrent"”, unit = "A") "Current
—~flowing into the pin";

Real signalVoltagel.v(unit = "V") "Voltage between pin p and n (= p.v — n.v) as,
—input signal";

Real signalVoltagel.i(quantity = "ElectricCurrent", unit = "A") "Current flowing_

—from pin p to pin n";
equation
emfl.internalSupport.flange.phi = emfl.fixed.flange.phi;
stepl.y = signalVoltagel.v;
signalVoltagel.p.v = resistorl.p.v;
resistorl.n.v = inductorl.p.v;
inductorl.n.v = emfl.p.v;
emfl.flange.phi = load.flange_a.phi;
groundl.p.v = emfl.n.v;
groundl.p.v = signalVoltagel.n.v;
inductorl.p.i + resistorl.n.i = 0.0;
emfl.p.i + inductorl.n.i = 0.0;
load.flange_b.tau = 0.0;
emfl.flange.tau + load.flange_a.tau = 0.0;
emfl.internalSupport.flange.tau + emfl.fixed.flange.tau = 0.0;
signalVoltagel.p.1i + resistorl.p.i = 0.0;
signalVoltagel.n.i + emfl.n.i + groundl.p.i = 0.0;
assert (1.0 + resistorl.alpha * (resistorl.T_heatPort - resistorl.T_ref) >= le-15,
— "Temperature outside scope of model!");
resistorl.R_actual = resistorl.R % (1.0 + resistorl.alpha * (resistorl.T_
—heatPort - resistorl.T_ref));
resistorl.v = resistorl.R_actual *» resistorl.i;
resistorl.LossPower = resistorl.v * resistorl.i;
resistorl.T_heatPort = resistorl.T;
resistorl.v = resistorl.p.v - resistorl.n.v;
0.0 = resistorl.p.i + resistorl.n.i;
resistorl.i = resistorl.p.i;
inductorl.L % der (inductorl.i) = inductorl.v;
inductorl.v = inductorl.p.v - inductorl.n.v;
0.0 = inductorl.p.i + inductorl.n.i;
inductorl.i = inductorl.p.i;
groundl.p.v = 0.0;
load.phi = load.flange_a.phi;
load.phi = load.flange_b.phi;

(continues on next page)

1.2. Interactive Session with Examples 11

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

load.w = der(load.phi);

load.a = der(load.w);

load.J % load.a = load.flange_a.tau + load.flange_b.tau;
emfl.fixed.flange.phi = emfl.fixed.phiO;
emfl.internalSupport.flange.tau = emfl.internalSupport.tau;
emfl.internalSupport.flange.phi = emfl.internalSupport.phi;
emfl.v = emfl.p.v — emfl.n.v;

0.0 = emfl.p.i + emfl.n.i;

emfl.i = emfl.p.1i;

emfl.phi = emfl.flange.phi - emfl.internalSupport.phi;
emfl.w = der (emfl.phi);

emfl.k » emfl.w = emfl.v;
emfl.tau = -emfl.k » emfl.i;
emfl.tauElectrical = -emfl.tau;

emfl.tau = emfl.flange.tau;
stepl.y = stepl.offset + (if time < stepl.startTime then 0.0 else stepl.height);
signalVoltagel.v = signalVoltagel.p.v - signalVoltagel.n.v;
0.0 = signalvVoltagel.p.i + signalVoltagel.n.i;
signalVoltagel.i = signalVoltagel.p.i;
end dcmotor;

Note:

Notification: dcmotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

We plot part of the simulated result:

T
load.w
load.phi

15 1

0.5]

Figure 1.2: Rotation and rotational velocity of the DC motor

12 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

1.2.6 The val() function

The val(variableName,time) scription function can be used to retrieve the interpolated value of a simulation result
variable at a certain point in the simulation time, see usage in the BouncingBall simulation below.

1.2.7 BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica
keywords have been bold-faced by hand for better readability):

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")
true

>>> list (BouncingBall)
model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";
Real v (fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";
Boolean impact;
Real v_new(fixed = true);
Integer foo;
equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der (v) = if flying then -g else 0;
der (h) = v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new = if edge (impact) then -e » pre(v) else 0;
flying = v_new > 0O;
reinit (v, v_new);
end when;
end BouncingBall;

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos (Modelica script)
file sim_BouncingBall.mos that contains these commands:

>>> writeFile("sim_BouncingBall.mos", "

loadFile (getInstallationDirectoryPath() + \"/share/doc/omc/testmodels/
—BouncingBall.mo\");

simulate (BouncingBall, stopTime=3.0);

/* plot ({h, flying}); =/
")
true
>>> runScript ("sim_BouncingBall.mos")
"true
record SimulationResult

resultFile = \"«DOCHOME»/BouncingBall_res.mat\",

simulationOptions = \"startTime = 0.0, stopTime = 3.0, numberOfIntervals = 500,
— tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'BouncingBall', options =
—''", outputFormat = 'mat', variableFilter = '.%', cflags = '', simflags = ''\",

messages = \"LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.
\"I

timeFrontend = 0.001205381,

timeBackend = 0.006808310000000001,

timeSimCode = 0.002248297,

timeTemplates = 0.158337605,

(continues on next page)

1.2. Interactive Session with Examples 13

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

timeCompile = 0.858760788,
timeSimulation = 0.043557458,
timeTotal = 1.071052883

end SimulationResult;

"

model Switch
Real v;
Real i;
Real i1l;
Real itot;
Boolean open;
equation
itot = 1i + 1i1;
if open then
v = 0;
else
i = 0;
end if;
1 - 11 = 0;
1 - v -1 = 0;
open = time >= 0.5;
end Switch;

>>> simulate (Switch, startTime=0, stopTime=1)
record SimulationResult

resultFile = "«DOCHOME»/Switch_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOflIntervals = 500,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'Switch', options = "',
—outputFormat = 'mat', variableFilter '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.000811051,

timeBackend = 0.010232983,
timeSimCode = 0.002097044,
timeTemplates = 0.114817297,

timeCompile = 0.856196569,
timeSimulation = 0.067175387,
timeTotal = 1.051445877

end SimulationResult;

Retrieve the value of itot at time=0 using the val(variableName, time) function:

>>> val (itot, 0)
1.0

Plot itot and open:

We note that the variable open switches from false (0) to true (1), causing itot to increase from 1.0 to 2.0.

14 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2 T T T T .
itot
open
15 F b
1
0.5 i
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Figure 1.3: Plot when the switch opens
1.2.8 Clear All Models
Now, first clear all loaded libraries and models:
>>> clear ()
true
List the loaded models — nothing left:
>>> list ()
nmnn
1.2.9 VanDerPol Model and Parametric Plot
We load another model, the VanDerPol model (or via the menu File->Load Model):
>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/VanDerPol.
—mo")
true
It is simulated:
>>> simulate (VanDerPol, stopTime=80)
record SimulationResult
resultFile = "«DOCHOME»/VanDerPol_res.mat",
simulationOptions = "startTime = 0.0, stopTime = 80.0, numberOfIntervals = 500,
— tolerance = le-06, method = 'dassl', fileNamePrefix = 'VanDerPol', options = "'
— outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",
messages = "LOG_SUCCESS | info | The initialization finished
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
4

timeFrontend = 0.000695064,
timeBackend = 0.002676229,
timeSimCode .005080369,
timeTemplates = 0.160013017,
timeCompile = 0.881090692,

0
0

(continues on next page)

1.2. Interactive Session with Examples 15

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

timeSimulation = 0.050487957,
timeTotal = 1.10016675
end SimulationResult;

It is plotted:

>>> plotParametric("x","y")

2.5 T T T T T T T

2 b
15

1k
0.5

> 0+

-0.5
1k
-1.5

2+

_25 | | | | | | |

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

Figure 1.4: VanDerPol plotParametric(x,y)

Perform code instantiation to flat form of the VanDerPol model:

>>> instantiateModel (VanDerPol)
class VanDerPol "Van der Pol oscillator model"
Real x(start = 1.0, fixed = true);

Real y(start = 1.0, fixed = true);
parameter Real lambda = 0.3;
equation
der (x) = y;
der(y) = (-x) + lambda * (1.0 — x % x) * y;

end VanDerPol;

1.2.10 Using Japanese or Chinese Characters

Japenese, Chinese, and other kinds of UniCode characters can be used within quoted (single quote) identifiers, see

for example the variable name to the right in the plot below:

16

Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

File Edit Special

Plot by OpenModelica
1.0f i i 1 &= =

g.8r }

0.6 }

0.0

0,0 0.3 1.0 1.2 2.0 2.2

1.2.11 Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation at each line into OMShell requires
copy-paste as one operation from another document):

>>> k := 0;

>>> for 1 in 1:1000 loop
k := k + 1i;

end for;

>>> k

500500

A nested loop summing reals and integers:

>>> g := 0.0;
>>> h := 5;
>>> for i in {23.0,77.12,88.23} loop
for j in 1i:0.5:(i+1l) loop
g =g+ 3J;
g := g+ h / 2;
end for;
h :=h + g;
end for;

By putting two (or more) variables or assignment statements separated by semicolon(s), ending with a variable,
one can observe more than one variable value:

>>> h; g
1997.45
1479.09

A for-loop with vector traversal and concatenation of string elements:

>>> j.="";
>>> 1lst := {"Here ", "are ","some ","strings."};
>>> g = "";

>>> for i in lst loop

(continues on next page)

1.2. Interactive Session with Examples 17

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

s := s + 1ij
end for;
>>> 5

"Here are some strings."

Normal while-loop with concatenation of 10 "abc " strings:

>>> g:="";
>>> i:=1;
>>> while i<=10 loop
s:="abc "+s;
i:=1i+1;
end while;
>>> 3
"abc abc abc abc abc abc abc abc abc abc "

A simple if-statement. By putting the variable last, after the semicolon, its value is returned after evaluation:

>>> if 5>2 then a := 77; end if; a
77

An if-then-else statement with elseif"

>>> if false then

a := 5;
elseif a > 50 then
b:= "test"; a:= 100;
else
a:=34;
end if;

Take a look at the variables a and b:

>>> a;b
100
"test"

1.2.12 Variables, Functions, and Types of Variables

Assign a vector to a variable:

>>> ga:=1:5
{1,2,3,4,5}

Type in a function:

function mySqr
input Real x;
output Real y;

algorithm
ViI=X*X;

end mySqr;

Call the function:

>>> b:i=mySqr (2)
4.0

Look at the value of variable a:

18 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

>>> a
{1,2,3,4,5}

Look at the type of a:

>>> typeOf (a)
"Integer[5]"

Retrieve the type of b:

>>> typeOf (b)
"Real "

What is the type of mySqr? Cannot currently be handled.

>>> typeOf (mySqgr)

List the available variables:

>>> listVariables ()
{b,a,s,1lst,i,h,g,k,currentSimulationResult}

Clear again:

>>> clear ()
true

1.2.13 Getting Information about Error Cause

Call the function getErrorString() in order to get more information about the error cause after a simulation failure:

>>> getErrorString()

1.2.14 Alternative Simulation Output Formats

There are several output format possibilities, with mat being the default. plt and mat are the only formats that
allow you to use the val() or plot() functions after a simulation. Compared to the speed of plt, mat is roughly 5
times for small files, and scales better for larger files due to being a binary format. The csv format is roughly twice
as fast as plt on data-heavy simulations. The plt format allocates all output data in RAM during simulation, which
means that simulations may fail due applications only being able to address 4GB of memory on 32-bit platforms.
Empty does no output at all and should be by far the fastest. The csv and plt formats are suitable when using an
external scripts or tools like gnuplot to generate plots or process data. The mat format can be post-processed in
MATLAB or Octave.

>>> simulate (...
>>> simulate (...

(
(
(
(

outputFormat="mat")
outputFormat="csv")
outputFormat="plt")
outputFormat="empty")

>>> simulate (...
>>> simulate (...

~ S~ S~ 0~

It is also possible to specify which variables should be present in the result-file. This is done by using POSIX
Extended Regular Expressions. The given expression must match the full variable name (* and $ symbols are
automatically added to the given regular expression).

/l Default, match everything

>>> simulate (... , variableFilter=".x")

1.2. Interactive Session with Examples 19

http://www.mathworks.com/products/matlab
http://www.gnu.org/software/octave/
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

/I match indices of variable myVar that only contain the numbers using combinations

/1 of the letters 1 through 3

’>>> simulate (... , variableFilter="myVar\\\[[1-3]7*\\\1")

// match x or y or z

’>>> simulate (... , variableFilter="x|y|z")

1.2.15 Using External Functions

See Chapter Interoperability — C and Python for more information about calling functions in other programming
languages.

1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support

Faster simulations on multi-core computers can be obtained by using a new OpenModelica feature that auto-
matically partitions the system of equations and schedules the parts for execution on different cores using shared-
memory OpenMP based execution. The speedup obtained is dependent on the model structure, whether the system
of equations can be partitioned well. This version in the current OpenModelica release is an experimental ver-
sion without load balancing. The following command, not yet available from the OpenModelica GUI, will run a
parallel simulation on a model:

>>> omc —d=openmp model.mo

1.2.17 Loading Specific Library Version

There exist many different versiosn of Modelica libraries which are not compatible. It is possible to keep mul-
tiple versions of the same library stored in the directory given by calling getModelicaPath(). By calling load-
Model(Modelica,{"3.2"}), OpenModelica will search for a directory called "Modelica 3.2" or a file called "Mod-
elica 3.2.mo". Itis possible to give several library versions to search for, giving preference for a pre-release version
of a library if it is installed. If the searched version is "default", the priority is: no version name (Modelica), main
release version (Modelica 3.1), pre-release version (Modelica 3.1Beta 1) and unordered versions (Modelica Spe-
cial Release).

The loadModel command will also look at the uses annotation of the top-level class after it has been loaded. Given
the following package, Complex 1.0 and ModelicaServices 1.1 will also be loaded into the AST automatically.

package Modelica
annotation (uses (Complex (version="1.0"),
ModelicaServices (version="1.1")));

end Modelica;

>>> clear ()
true

Packages will also be loaded if a model has a uses-annotation:

model M
annotation (uses (Modelica (version="3.2.1")));
end M;

>>> instantiateModel (M)
class M
end M;

20 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Note:
Notification: Automatically loaded package Modelica 3.2.1 due to uses annotation.
Notification: Automatically loaded package Complex 3.2.1 due to uses annotation.

Notification: Automatically loaded package ModelicaServices 3.2.1 due to uses annotation.

Packages will also be loaded by looking at the first identifier in the path:

>>> instantiateModel (Modelica.Electrical.Analog.Basic.Ground)
class Modelica.Electrical.Analog.Basic.Ground "Ground node"

Real p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
Real p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin
=";
equation
p.i = 0.0;
p.v = 0.0;

end Modelica.Electrical.Analog.Basic.Ground;

Note:
Notification: Automatically loaded package Complex 4.0.0 due to uses annotation.
Notification: Automatically loaded package ModelicaServices 4.0.0 due to uses annotation.

Notification: Automatically loaded package Modelica default due to uses annotation.

1.2.18 Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application programming interface) is described
which returns information about models and/or allows manipulation of models. Calls to these functions can be
done interactively as below, but more typically by program clients to the OpenModelica Compiler (OMC) server.
Current examples of such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the OMEdit graphic
model editor, etc. This API is untyped for performance reasons, i.e., no type checking and minimal error checking
is done on the calls. The results of a call is returned as a text string in Modelica syntax form, which the client has
to parse. An example parser in C++ is available in the OMNotebook source code, whereas another example parser
in Java is available in the MDT Eclipse plugin.

Below we show a few calls on the previously simulated BouncingBall model. The full documentation on this API
is available in the system documentation. First we load and list the model again to show its structure:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo");
>>> list (BouncingBall)
model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";
Real v (fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";
Boolean impact;
Real v_new(fixed = true);
Integer foo;

equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der(v) = if flying then -g else 0;
der (h) = v;

when {h <= 0.0 and v <= 0.0, impact} then

(continues on next page)

1.2. Interactive Session with Examples 21

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

v_new = if edge (impact) then -e * pre(v) else 0;
flying = v_new > 0;
reinit (v, v_new);
end when;
end BouncingBall;

Different kinds of calls with returned results:

>>> getClassRestriction (BouncingBall)
"model"

>>> getClassInformation (BouncingBall)
("model","", false, false, false, "/var/lib/jenkinsl/ws/OpenModelica_maintenance_v1.18/

—build/share/doc/omc/testmodels/BouncingBall .mo", false,1,1,23,17,{}, false, false,"
_’", n ", false, n ")

>>> isFunction (BouncingBall)

false

>>> existClass (BouncingBall)

true

>>> getComponents (BouncingBall)

{{Real,e,"coefficient of restitution", "public", false, false, false, false,
—"parameter", "none", "unspecified",{}},{Real,qg,"gravity acceleration", "public",
—false, false, false, false, "parameter", "none", "unspecified",{}}, {Real,h,
—"height of ball", "public", false, false, false, false, "unspecified", "none",
—"unspecified", {}}, {Real,v,"velocity of ball", "public", false, false, false,
—false, "unspecified", "none", "unspecified", {}}, {Boolean,flying,"true, if ball
—~is flying", "public", false, false, false, false, "unspecified", "none",
—"unspecified", {}}, {Boolean, impact,"", "public", false, false, false, false,
—"unspecified", "none", "unspecified", {}}, {Real,v_new,"", "public", false, false,
—~false, false, "unspecified", "none", "unspecified",{}}, {Integer, foo,"",
— false, false, false, false, "unspecified", "none", "unspecified",{}}}
>>> getConnectionCount (BouncingBall)

0

>>> getInheritanceCount (BouncingBall)
0

>>> getComponentModifierValue (BouncingBall,e)
IIO.7II

>>> getComponentModifierNames (BouncingBall, "e")

{}

>>> getClassRestriction (BouncingBall)

"model"

>>> getVersion() // Version of the currently running OMC
"OMCompiler v1.18.0-v1.18.0.38+ga767£054d8"

"public",

1.2.19 Quit OpenModelica

Leave and quit OpenModelica:

>>> quit ()

22 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

1.2.20 Dump XML Representation

The command dumpXMLDAE dumps an XML representation of a model, according to several optional parame-
ters.

dumpXMLDAE(modelnamel ,asInSimulationCode=<Boolean>] [filePrefix=<String>] [,storeln-
Temp=<Boolean>] [,addMathMLCode =<Boolean>])

This command dumps the mathematical representation of a model using an XML representation, with optional
parameters. In particular, asInSimulationCode defines where to stop in the translation process (before dumping the
model), the other options are relative to the file storage: filePrefix for specifying a different name and storeInTemp
to use the temporary directory. The optional parameter addMathMLCode gives the possibility to don't print the
MathML code within the xml file, to make it more readable. Usage is trivial, just: addMathMLCode=true/false
(default value is false).

1.2.21 Dump Matlab Representation

The command export dumps an XML representation of a model, according to several optional parameters.
exportDAEtoMatlab(modelname);

This command dumps the mathematical representation of a model using a Matlab representation. Example:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> exportDAEtoMatlab (BouncingBall)

"The equation system was dumped to Matlab file:BouncingBall_imatrix.m"

% Adjacency Matrix

o)

% number of rows: 6

IM={{3,6},{1,{"if", "true','=='" {3}, {},}},{{"1f", 'true','==" {4},{},}}, {5}, {2, {"1if
—', 'edge (impact)"' {3}, {5},}},{4,2}};

VL = {'foo','v_new', "impact', 'flying','v', 'h'};

EgStr = {'impact = h <= 0.0;"',"'"foo = if impact then 1 else 2;','der(v) = if flying,
—then -g else 0.0;','der(h) = v;','when {h <= 0.0 and v <= 0.0, impact} then v_
—new = 1f edge (impact) then (-e) * pre(v) else 0.0; end when;', 'when {h <= 0.0,
—and v <= 0.0, impact} then flying = v_new > 0.0; end when;'};

OldEgStr={'class BouncingBall',' parameter Real e = 0.7 "coefficient of

—restitution";',' parameter Real g = 9.81 "gravity acceleration";',' Real
—h(start = 1.0, fixed = true) "height of ball";',' Real v (fixed = true)
—"velocity of ball";',' Boolean flying(start = true, fixed = true) "true, if
—ball is flying";',' Boolean impact;',' Real v_new(fixed = true);"',"' Integer,,
—~foo; ', 'equation', ' impact = h <= 0.0;"'," foo = if impact then 1 else 2;','
—der(v) = if flying then -g else 0.0;"'," der(h) = v;',"' when {h <= 0.0 and v <=_
—0.0, impact} then',' v_new = if edge (impact) then -e x pre(v) else 0.0;',"' .
—~flying = v_new > 0.0;"'," reinit (v, v_new);',' end when;','end BouncingBall; "',

=ty

1.2. Interactive Session with Examples 23

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

1.3 Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in the interactive session hander.

simulate(modelname) Translate a model named modelname and simulate it.

simulate(modelnamel startTime=<Real>][,stopTime=<Real>][,numberOflntervals
=<Integer>][,outputlnterval=<Real>][,method=<String>]
[,tolerance=<Real>][,fixedStepSize=<Real>]

[,outputFormat=<String>]) Translate and simulate a model, with optional start time, stop time, and optional
number of simulation intervals or steps for which the simulation results will be computed. More intervals will
give higher time resolution, but occupy more space and take longer to compute. The default number of intervals
is 500. It is possible to choose solving method, default is “dassl”, “euler” and “rungekutta” are also available.
Output format “mat” is default. “plt” and “mat” (MATLAB) are the only ones that work with the val() command,
“csv” (comma separated values) and “empty” (no output) are also available (see section Alternative Simulation
Output Formats).

plot(vars) Plot the variables given as a vector or a scalar, e.g. plot({x1,x2}) or plot(x1).

plotParametric(var!, var2) Plot var2 relative to varl from the most recently simulated model, e.g. plotParamet-
ric(x,y).

cd() Return the current directory.

cd(dir) Change directory to the directory given as string.

clear() Clear all loaded definitions.

clearVariables() Clear all defined variables.

dumpXMLDAE(modelname, ...) Dumps an XML representation of a model, according to several optional param-
eters.

exportDAEtoMatlab(name) Dumps a Matlab representation of a model.

instantiateModel(modelname)Performs code instantiation of a model/class and return a string containing the flat
class definition.

list() Return a string containing all loaded class definitions.
list(modelname) Return a string containing the class definition of the named class.
listVariables() Return a vector of the names of the currently defined variables.

loadModel(classname) Load model or package of name classname from the path indicated by the environment
variable OPENMODELICALIBRARY.

loadFile(str) Load Modelica file (.mo) with name given as string argument str.
readFile(str) Load file given as string str and return a string containing the file content.
runScript(str) Execute script file with file name given as string argument str.

system(str) Execute str as a system(shell) command in the operating system; return integer success value. Output
into stdout from a shell command is put into the console window.

timing(expr) Evaluate expression expr and return the number of seconds (elapsed time) the evaluation took.
typeOf(variable) Return the type of the variable as a string.

saveModel(str,modelname) Save the model/class with name modelname in the file given by the string argument
str.

val(variable,timePoint) Return the (interpolated) value of the variable at time timePoint.
help() Print this helptext (returned as a string).

quit() Leave and quit the OpenModelica environment

24 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

1.4 Running the compiler from command line

The OpenModelica compiler can also be used from command line, in Windows cmd.exe or a Unix shell. The fol-
lowing examples assume omc is on the PATH; if it is not, you can run C: \OpenModelica 1.16.0\build\
bin\omc.exe or similar (depending on where you installed OpenModelica).

1.4.1 Example Session 1 — obtaining information about command line parame-
ters

$ omc —--help

OpenModelica Compiler OMCompiler v1.18.0-v1.18.0.38+ga767£054d8
Copyright © 2019 Open Source Modelica Consortium (OSMC)
Distributed under OMSC-PL and GPL, see www.openmodelica.org

Usage: omc [Options] (Model.mo | Script.mos) [Libraries | .mo-files]
* Libraries: Fully qualified names of libraries to load before processing Model or
—~Script.

Documentation is available in the built-in package OpenModelica.Scripting or
online <https://build.openmodelica.org/Documentation/OpenModelica.Scripting.html>.

1.4.2 Example Session 2 — create an TestModel.mo file and run omc on it

model TestModel
parameter Real x = 1;
end TestModel;

$ omc TestModel.mo

class TestModel
parameter Real x = 1.0;

end TestModel;

1.4.3 Example Session 3 — create a mos-script and run omc on it

loadModel (Modelica) ;

getErrorString();

simulate (Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum);
getErrorString();

$ omc TestScript.mos
true
nn
record SimulationResult

resultFile = "/var/lib/jenkinsl/ws/OpenModelica_maintenance_vl.18/doc/
—UsersGuide/source/Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum_res.
—mat",

simulationOptions = "startTime = 0.0, stopTime = 5.0, numberOfIntervals = 500,
—~tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'Modelica.Mechanics.
—MultiBody.Examples.Elementary.Pendulum', options = '', outputFormat = 'mat',
—variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished
—successfully without homotopy method.

LOG_SUCCESS | info | The simulation finished successfully.

"
’

timeFrontend = 0.313155408,

(continues on next page)

1.4. Running the compiler from command line 25

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

timeBackend = 0.440320133,
timeSimCode = 0.030835236,
timeTemplates = 0.022854006,

timeCompile = 0.6244408379999999,
timeSimulation = 0.04253864700000001,
timeTotal = 1.474284902

end SimulationResult;

In order to obtain more information from the compiler one can use the command line options --
showErrorMessages -d=failtrace when running the compiler:

$ omc —--showErrorMessages —-d=failtrace TestScript.mos
InstFunction.getRecordConstructorFunction failed for OpenModelica.Scripting.
—loadModel

- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE ()>].<Prefix.NOPRE ()>.Modelica,,
—env: <global scope>

— Static.elabCref failed: Modelica in env: <global scope>

- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE ()>].<Prefix.NOPRE ()>.Modelica_,
—env: <global scope>

timeTotal = 1.687181179
end SimulationResult;
"[/var/lib/jenkinsl/ws/OpenModelica_maintenance_v1.18/0OMCompiler/Compiler/BackEnd/
—ExpressionSolve.mo:186:9-186:210:writable] Error: Internal error Failed to solve,
—\"world.z_label.cylinders[2].lengthDirection[1l] = world.z_label.cylinders([1].
—lengthDirection[1]\" w.r.t. \"world.z_label.R lines[1l,1]\"

n

26 Chapter 1. Introduction

CHAPTER
TWO

OMEDIT — OPENMODELICA CONNECTION EDITOR

OMEdit — OpenModelica Connection Editor is the new Graphical User Interface for graphical model editing in
OpenModelica. It is implemented in C++ using the Qt graphical user interface library and supports the Modelica
Standard Library that is included in the latest OpenModelica installation. This chapter gives a brief introduction
to OMEdit and also demonstrates how to create a DCMotor model using the editor.

OMEdit provides several user friendly features for creating, browsing, editing, and simulating models:
* Modeling — Easy model creation for Modelica models.
* Pre-defined models — Browsing the Modelica Standard library to access the provided models.
 User defined models — Users can create their own models for immediate usage and later reuse.

* Component interfaces — Smart connection editing for drawing and editing connections between model in-
terfaces.

* Simulation — Subsystem for running simulations and specifying simulation parameters start and stop time,
etc.

* Plotting — Interface to plot variables from simulated models.

2.1 Starting OMEdit

A splash screen similar to the one shown in Figure 2.1 will appear indicating that it is starting OMEdit. The
executable is found in different places depending on the platform (see below).

2.1.1 Microsoft Windows
OMEdit can be launched wusing the executable placed in OpenModelicalnstallationDirec-

tory/bin/OMEdit/OMEdit.exe. Alternately, choose OpenModelica > OpenModelica Connection Editor from the
start menu in Windows.

2.1.2 Linux

Start OMEdit by either selecting the corresponding menu application item or typing “OMEdit” at the shell or
command prompt.

27

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

OMEdit

—
. L L
{

Figure 2.1: OMEdit Splash Screen.

2.1.3 Mac OS X

The default installation is /Application/MacPorts/OMEdit.app.

2.2 MainWindow & Browsers

The MainWindow contains several dockable browsers,
e Libraries Browser
¢ Documentation Browser
* Variables Browser
* Messages Browser
Figure 9.2 shows the MainWindow and browsers.

The default location of the browsers are shown in Figure 9.2. All browsers except for Message Browser can
be docked into left or right column. The Messages Browser can be docked into top or bottom areas. If you
want OMEdit to remember the new docked position of the browsers then you must enable Preserve User's GUI
Customizations option, see section General.

28 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

o OMEdit - OpenModelica Connection Editor = B

File Edit View Simulation FMI Export Tools Help
BB 9%

FwHB - @Heee \OHNOTH
Libraries Browser Documentation Browser @ X

& X
|Search Classes | \ < Previous | [Next

v

Libraries

4 E OpenModelica

3 D MeodelicaServices
> . Complex

b P7%2] Modelica

[o ModelicaReference

Variables Browser g X

|Find Variables | ¥

Variables Value

£ >
F X

X:108.62 ¥:-16.90 o Modeling 8

Figure 2.2: OMEdit MainWindow and Browsers.

2.2. MainWindow & Browsers 29

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.2.1 Filter Classes

To filter a class click Edit > Filter Classes or press keyboard shortcut Ctrl+Shift+F. The loaded Modelica classes
can be filtered by typing any part of the class name.

2.2.2 Libraries Browser

To view the Libraries Browser click View > Windows > Libraries Browser. Shows the list of loaded Modelica
classes. Each item of the Libraries Browser has right click menu for easy manipulation and usage of the class. The
classes are shown in a tree structure with name and icon. The protected classes are not shown by default. If you
want to see the protected classes then you must enable the Show Protected Classes option, see section General.

2.2.3 Documentation Browser

Displays the HTML documentation of Modelica classes. It contains the navigation buttons for moving forward
and backward. It also contains a WYSIWYG editor which allows writing class documentation in HTML format.
To view the Documentation Browser click View > Windows > Documentation Browser.

Documentation Browser n
» - 5 L)
info rev hadr e
. ~
Modelica

Modelica Standard Library - Version 3.2.2

Information

Package Modelica® is a standardized and free package that is developed together with the Modelica® language from the Modelica
Association, see https://'www.Modelica.org. It is also caled Modelica Standard Library. It provides model components in many dormains
that are based on standardired interface definitions. Some typical examples are shown in the next figure:

l‘f‘?’ ambient
5, Did 00 I®
;{H : e

e I |

L]
AIMC1

cormvection

For an introduction, have especialy a look at:

* Overview provides an overview of the Modelica Standard Library inside the User's Guide.
¢ Release Motes summarizes the changes of new versions of this package.

¢ Contact lists the contributors of the Modelica Standard Library.

+ The Examples packages in the various libraries, demonstrate how to use the components of the corresponding sublibrary.

This version of the Modelica Standard Library consists of

« 1600 models and blocks, and
« 1350 functions

that are directly usable {= number of public, non-partial classes). It is fully compliant to Modelica Specification Version 3.2 Revision 2 and it
has heen tested with Madelica tanls fram different vendars.

Figure 2.3: Documentation Browser.

30 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.2.4 Variables Browser

The class variables are structured in the form of the tree and are displayed in the Variables Browser. Each variable
has a checkbox. Ticking the checkbox will plot the variable values. There is a find box on the top for filtering the
variable in the tree. The filtering can be done using Regular Expression, Wildcard and Fixed String. The complete
Variables Browser can be collapsed and expanded using the Collapse All and Expand All buttons.

The browser allows manipulation of changeable parameters for Plot Window. It also displays the unit and descrip-
tion of the variable.

The browser also contains the slider and animation buttons. These controls are used for variable graphics and
schematic animation of models i.e., DynamicSelect annotation. They are also used for debugging of state ma-
chines. Open the Diagram Window for animation. It is only possible to animate one model at a time. This is
achieved by marking the result file active in the Variables Browser. The animation only read the values from the
active result file. It is possible to simulate several models. In that case, the user will see a list of result files in
the Variables Browser. The user can switch between different result files by right clicking on the result file and
selecting Set Active in the context menu.

Variables Browser g X

|FiItE|' Variables

|:| Casze Sensitive Regular Expression o
Expand All Collapse All

Simulation Time Unit g -

“ ’ II Time:| 0.0 Speed:| 1~
)

Variables Value Display Unit Description
=] @ Meodelica.E...huaCircuit
=1
C F Capacitance
[] derfv) 0.014557 km2...-1.g der(Voltage drop of...pins (= p.v - nv))
i 0.14557 A Current flowing from pin p to pin n
n

Yoltage drop of the... pins (= p.v - nw)

[=Y = I =

= T &1 & M

= =] ra
(=9

=
=
[=]

Figure 2.4: Variables Browser.

2.2. MainWindow & Browsers 31

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.2.5 Messages Browser

Shows the list of errors. Following kinds of error can occur,
* Syntax
e Grammar
e Translation
* Symbolic
¢ Simulation
e Scripting

See section Messages for Messages Browser options.

2.3 Perspectives

The perspective tabs are loacted at the bottom right of the MainWindow:
* Welcome Perspective
* Modeling Perspective
* Plotting Perspective

* Debugging Perspective

2.3.1 Welcome Perspective

The Welcome Perspective shows the list of recent files and the list of latest news from https://www.openmodelica.
org. See Figure 2.5. The orientation of recent files and latest news can be horizontal or vertical. User is allowed
to show/hide the latest news. See section General.

2.3.2 Modeling Perspective

The Modeling Perpective provides the interface where user can create and design their models. See Figure 2.6.

The Modeling Perspective interface can be viewed in two different modes, the tabbed view and subwindow view,
see section General.

2.3.3 Plotting Perspective

The Plotting Perspective shows the simulation results of the models. Plotting Perspective will automatically
become active when the simulation of the model is finished successfully. It will also become active when user
opens any of the OpenModelica’s supported result file. Similar to Modeling Perspective this perspective can also
be viewed in two different modes, the tabbed view and subwindow view, see section General.

2.3.4 Debugging Perspective

The application automatically switches to Debugging Perpective when user simulates the class with algorithmic
debugger. The prespective shows the list of stack frames, breakpoints and variables.

32 Chapter 2. OMEdit — OpenModelica Connection Editor

https://www.openmodelica.org
https://www.openmodelica.org

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

ot OMEdit - OpenModelica Connection Editor — O *

File Edit View Sirmulation FMI Export Debug Git Tools Help

JeBB - l@meee/\® -EH|GQf X |-

Libraries Browser A X

|Filter Classes | ¥ ~t

OMEdit - OpenModelica Connection Editor

Libraries

> E OpenModelica

> [] ModelicaServices

Recent Files Latest News
> . Complex
> @ Meodelica E:> C:/OpenModelica/OMCompiler/Exan ED’ February &, 2017: OpenMeodelica 1.11.0 released
’ 0 ModelicaReference E:> C:/Users/adeas31/Desktop/Connecto ED’ January 17, 2017: OpenModelica 1.11 Beta3 released

E:> C:/Users/adeas31/Desktop/PhotoVolt December 20, 2016: OpenMeodelica 1.11 Beta2 released

E:> C:/Users/adeas31/Desktop/OmcOmc Movernber 22, 2016 OpenModelica 1.9.7 released

E:> C:/Users/adeas31/Desktop/Folder/pa March 16, 2016 OpenModelica 1.9.6 released

February 18, 2016: OpenModelica 1.9.4 beta2 released

EC}’ March 9, 2016: OpenModelica 1.9.4 released
ED’ Program OpenModelica Annual Workshop 2016

Clear Recent Files Reload | For more details visit our website www.openmodelica.or

oo oty e

t Welcome oﬁ Modeling s Plotting *» Debugging

Figure 2.5: OMEdit Welcome Perspective.

2.3. Perspectives 33

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

ot OMEdit - OpenModelica Connection Editor — O *
File Edit View Sirmulation FMI Export Debug Git Tools Help

teBB @oee \® -E-| QP9 X5
Libraries Browser T x| o4 DCMotor™® 8
[Fiter Classes | @ |.|.. A=) ‘szble |Mode| |Diagram View ‘DCI\"Iotor ‘DCI'\"Iotor |Une: 1,Cal: 0 ‘ h|
Libraries
@ OpenModelica
D ModelicaServices
. Complex
P72 Modelica
o MeodelicaReference

[

¥:-124.07 ¥:-32.34 t Welcome gﬁ Modeling ﬁ Plotting ‘» Debugging

Figure 2.6: OMEdit Modeling Perspective.

34 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

ot OMEdit - OpenModelica Connection Editor - [Plot: 1] — O *,
IZ Eile Edit View Simulation FM| Export Debug Git Tools Help - &8 X
FeBB @O0 \® -E| Q][R]X 5
Libraries Browser @ %' Zoom Pan | AutoScale = FitinView Save | Print | Grid | Detailed Grid || Variables Browser g X
|Filter Classes | ¥ |Filter Variables | &
Libraries emf.phi [deg] Simulation Time Linit l:l

E OpenMeodelica 0 __\\\\- Variables Value
[] ModelicaServices E‘M
. Complex -1 = emf

P72 Modelica [dertph) -03403

-3 fined
o MaodelicaReference b flange
E DCMotor] i -0.53350
-3

internalSupport

[k 1.0

-4 n
\ P
5] [phi -7.23033
] v -0.3403
1 \ Cw -0.3403
-6 groundl
] \ inductorl
74 inertial
] resistor]
" 1 S S S . A signalvoltagel
0 0.2 0.4 0.6 0.8 1 stepl
time [s] ‘ N

¥:-138.55 ¥:-43.45 t Welcome oﬁ Modeling m Flotting ‘ Debugging

Figure 2.7: OMEdit Plotting Perspective.

2.3. Perspectives 35

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

% OMEdit - OpenModelica Connection Editor — O X
File Edit View Simulation FMI Export Debug Git Tools Help
[[=3 9 o]
FeBA Heee \PHOTHE < EH-©-2-9 X5~
Libraries Browser & X Stack Frames Browser & X BreakPoints Browser & X | Locals Browser F X
5 io Il W] 2 2 [y <[souvedotb_mvent[ire i Nome Type vaue
))) ® 5 C/Users/..dByTwo.mo inValue Real 0
L ~
Libraries Function Line File outValue Real 4.1445)
E OpenModelica E’> getV.yTwo 35 C:/Users/adeas31/De...eMultipliedByTwo.mo
D ModelicaServices Simul...ion_1 5 C:/Users/adeas31/De.../SimulationModel.mo
Simu..ns_ 0 33 :/Users/adeas31/App...ulaticnModel_12jac.h
. Complex ; ; r . ‘h - -
Simul...tions 43 C:/Users/adeas31/App...ulationModel_12jac.h
@ Modelica fumb_ finn hd
o ModelicaReference E getValueMultipliedByTwo [5¢]
m DCMotor |I'I o&o |Wr1'tzble |Function |Text\ﬁew |getVaIueMuIﬁp|iedByTwo C:/Use.. Two.mo | Line: 5, Col: 0 | ﬁ|
getValueM.. liedByTwo 1 function getValueMultipliedByTwo
M| SimulationModel 2 input Real inValue;
3 output Eeal outValue:;
1 algorithm
® S outValue := inValue * 2;
&8 end getValueMultipliedByTwo;
£ >
4.1445230292290475e-316
Qutput Browser [4
Debugger CLI QOutput Browser
¥: -95,10 i 105.72 t Welcome oﬁ Modeling ﬂ Plotting ‘ Debugging

Figure 2.8: OMEdit Debugging Perspective.

36

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.4 File Menu

New

New Modelica Class - Creates a new Modelica class.

New SSP Model - Creates a new SSP model.

Open Model/Library File(s) - Opens the Modelica file or a library.

Open/Convert Modelica File(s) With Encoding - Opens the Modelica file or a library with a specific encod-
ing. It is also possible to convert to UTF-8.

Load Library - Loads a Modelica library. Allows the user to select the library path assuming that the path
contains a package.mo file.

Load Encrypted Library - Loads an encrypted library. see OpenModelica Encryption

Open Result File(s) - Opens a result file.

Open Transformations File - Opens a transformational debugger file.

New Composite Model - Creates a new composite model.

Open Composite Model(s) - Loads an existing composite model.

Load External Model(s) - Loads the external models that can be used within composite model.
Open Directory - Loads the files of a directory recursively. The files are loaded as text files.
Save - Saves the class.

Save As - Save as the class.

Save Total - Saves the class and all the classes it uses in a single file. The class and its dependencies can
only be loaded later by using the loadFile() API function in a script. Allows third parties to reproduce an
issue with a class without worrying about library dependencies.

Import

FMU - Imports the FMU.

FMU Model Description - Imports the FMU model description.

From OMNotbook - Imports the Modelica models from OMNotebook.

Ngspice netlist - Imports the ngspice netlist to Modelica code.

"Export"

To Clipboard - Exports the current model to clipboard.

Image - Exports the current model to image.

FMU - Exports the current model to FMU.

Read-only Package - Exports a zipped Modelica library with file extension .mol
Encrypted Package - Exports an encrypted package. see OpenModelica Encryption
XML - Exports the current model to a xml file.

Figaro - Exports the current model to Figaro.

To OMNotebook - Exports the current model to a OMNotebook file.

System Libraries - Contains a list of system libraries.

Recent Files - Contains a list of recent files.

Clear Recent Files - Clears the list of recent files.

Print - Prints the current model.

Quit - Quit the OpenModelica Connection Editor.

2.4.

File Menu 37

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.5

2.6

2.7

Edit Menu

Undo - Undoes the last change.
Redo - Redoes the last undone change.

Filter Classes - Filters the classes in Libraries Browser. see Filter Classes

View Menu

Toolbars - Toggle visibility of toolbars.

Windows - Toggle visibility of windows.

Close Window - Closes the current model window.

Close All Windows - Closes all the model windows.

Close All Windows But This - Closes all the model windows except the current.
Cascade Windows - Arranges all the child windows in a cascade pattern.

Tile Windows Horizontally - Arranges all child windows in a horizontally tiled pattern.
Tile Windows Vertically - Arranges all child windows in a vertically tiled pattern.
Toggle Tab/Sub-window View - Switches between tab and subwindow view.
Grid Lines - Toggle grid lines of the current model.

Reset Zoom - Resets the zoom of the current model.

Zoom In - Zoom in the current model.

Zoom Out - Zoom out the current model.

Simulation Menu

Check Model - Checks the current model.

Check All Models - Checks all the models of a library.
Instantiate Model - Instantiates the current model.
Simulation Setup - Opens the simulation setup window.

Simulate - Simulates the current model.

Simulate with Transformational Debugger - Simulates the current model and opens the transformational

debugger.

Simulate with Algorithmic Debugger - Simulates the current model and opens the algorithmic debugger.

Simulate with Animation - Simulates the current model and open the animation.

Archived Simulations - Shows the list of simulations already finished or running. Double clicking on any of

them opens the simulation output window.

38

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.8 Debug Menu

* Debug Configurations - Opens the debug configurations window.

* Attach to Running Process - Attaches the algorithmic debugger to a running process.

2.9 SSP Menu

* Add System - Adds the system to a model.
Add/Edit Icon - Add/Edit the system/submodel icon.

* Delete Icon - Deletes the system/submodel icon.

* Add Connector - Adds a connector to a system/submodel.

Add Bus - Adds a bus to a system/submodel.
Add TLM Bus - Adds a TLM bus to a system/submodel.
Add SubModel - Adds a submodel to a system.

2.10 Sensitivity Optimization Menu

* Run Sensitivity Analysis and Optimization - Runs the sensitivity analysis and optimization.

2.11 Tools Menu

* OpenModelica Compiler CLI - Opens the OpenModelica Compiler command line interface window.

* OpenModelica Command Prompt - Opens the OpenModelica Command Prompt (Only available on Win-
dows).

* Open Working Directory - Opens the current working directory.
* Open Terminal - Runs the terminal command set in General.

* Options - Opens the options window.

2.12 Help Menu

* OpenModelica Users Guide - Opens the OpenModelica Users Guide.

* OpenModelica Users Guide (PDF) - Opens the OpenModelica Users Guide (PDF).

* OpenModelica System Documentation - Opens the OpenModelica System Documentation.

* OpenModelica Scripting Documentation - Opens the OpenModelica Scripting Documentation.

* Modelica Documentation - Opens the Modelica Documentation.

* OMSimulator Users Guide - Opens the OMSimulator Users Guide.

* OpenModelica TLM Simulator Documentation - Opens the OpenModelica TLM Simulator Documentation.

About OMEdit - Shows the information about OpenModelica Connection Editor.

2.8. Debug Menu 39

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.13 Modeling a Model

2.13.1 Creating a New Modelica Class

Creating a new Modelica class in OMEdit is rather straightforward. Choose any of the following methods,
* Select File > New > New Modelica Class from the menu.
* Click on New Modelica Class toolbar button.
* Click on the Create New Modelica Class button available at the left bottom of Welcome Perspective.

¢ Press Ctrl+N.

2.13.2 Opening a Modelica File

Choose any of the following methods to open a Modelica file,
* Select File > Open Model/Library File(s) from the menu.
* Click on Open Model/Library File(s) toolbar button.
* Click on the Open Model/Library File(s) button available at the right bottom of Welcome Perspective.
¢ Press Ctrl+O.
(Note, for editing Modelica system files like MSL (not recommended), see Editing Modelica Standard Library)

2.13.3 Opening a Modelica File with Encoding

Select File > Open/Convert Modelica File(s) With Encoding from the menu. It is also possible to convert files to
UTF-8.

2.13.4 Model Widget

For each Modelica class one Model Widget is created. It has a statusbar and a view area. The statusbar contains
buttons for navigation between the views and labels for information. The view area is used to display the icon,
diagram and text layers of Modelica class. See Figure 2.9.

2.13.5 Adding Component Models

Drag the models from the Libraries Browser and drop them on either Diagram or Icon View of Model Widget.

2.13.6 Making Connections

In order to connect one component model to another the user first needs to enable the connect mode ('<:) from
the toolbar.

Move the mouse over the connector. The mouse cursor will change from arrow cursor to cross cursor. To start
the connection press left button and move while keeping the button pressed. Now release the left button. Move
towards the end connector and click when cursor changes to cross cursor.

40 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

oA DCMotor* %]
II-IE € | writable | Model | Diagram View | C:/Users/adeas31/Desktop/DCmotor.mo Line: 1, Col: 0 | &
~
resistor 1 inductorl
sepl
4 oo
=
»)ﬁ
z
+ 5
[| [
startTime=startTime
groundl
w
< >

Figure 2.9: Model Widget showing the Diagram View.

2.13. Modeling a Model 41

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.14 Simulating a Model

The simulation process in OMEdit is split into three main phases:

1. The Modelica model is translated into C/C++ code. The model is first instantiated by the frontend, which
turns it into a flat set of variables, parameters, equations, algorithms, and functions. The backend then
analyzes the mathematical structure of the flat model, applies symbolic simplifications and determines how
the equations can be solved efficiently. Finally, based on this information, model-specific C/C++ code is
generated. This part of the process can be influenced by setting Translation Flags (a.k.a. Command Line
Options), e.g. deciding which kind of structural simplifications should be performed during the translation
phase.

2. The C/C++ code is compiled and linked into an executable simulation code. Additional C/C++ compiler
flags can be given to influence this part of the process, e.g. by setting compiler optimizations such as —03.
Since multiple C/C++ source code files are generated for a given model, they are compiled in parallel by
OMEdit, exploiting the power of multi-core CPUs.

3. The simulation executable is started and produces the simulation results in a .mat or .csv file. The runtime
behaviour can be influenced by Simulation Flags, e.g. by choosing specific solvers, or changing the output
file name. Note that it it possible to re-simulate a model multiple times, changing parameter values from the
Variables Browser and/or changing some Simulation Flags. In this case, only Phase 3. is repeated, skipping
Phases 1. and 2., which enables much faster iterations.

The simulation options for each model are stored inside the OMEdit data structure. They are set according to the
following sequence,

* Each model has its own translation and simulation options.

* If the model is opened for the first time then the translation and simulation options are set to defaults, that
can be customized in Tools | Options | Simulation.

* experiment,__ OpenModelica_commandLineOptionsand__ OpenModelica_simulationFlags
annotations are applied if the model contains them.

e After that all the changes done via Simulation Setup window for a certain model are pre-
served for the whole session. If you want to use the same settings in future sessions then
you should store them inside experiment, OpenModelica_commandLineOptions, and
__OpenModelica_simulationFlags annotations.

The OMEdit Simulation Setup can be launched by,
* Selecting Simulation > Simulation Setup from the menu. (requires a model to be active in ModelWidget)
¢ Clicking on the Simulation Setup toolbar button. (requires a model to be active in ModelWidget)

* Right clicking the model from the Libraries Browser and choosing Simulation Setup.

2.14.1 General

 Simulation Interval

e Start Time — the simulation start time.

e Stop Time — the simulation stop time.

* Number of Intervals — the simulation number of intervals.

¢ Interval — the length of one interval (i.e., stepsize)

* Integration
e Method — the simulation solver. See section Integration Methods for solver details.
* Tolerance — the simulation tolerance.
* Jacobian - the jacobian method to use.

DASSL/IDA Options

* Root Finding - Activates the internal root finding procedure of dassl.

42 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

* Restart After Event - Activates the restart of dassl after an event is performed.
e Initial Step Size
* Maximum Step Size
* Maximum Integration Order
C/C++ Compiler Flags (Optional) — the optional C/C++ compiler flags.
Number of Processors — the number of processors used to build the simulation.
Build Only — only builds the class.
Launch Transformational Debugger — launches the transformational debugger.
Launch Algorithmic Debugger — launches the algorithmic debugger.

Launch Animation — launches the 3d animation window.

2.14.2 Interactive Simulation

Simulate with steps (makes the interactive simulation synchronous; plots nicer curves at the expense of
performance)

Simulation server port

2.14.3 Translation Flags

2.14.4 Simulation Flags

Model Setup File (Optional) — specifies a new setup XML file to the generated simulation code.
Initialization Method (Optional) — specifies the initialization method.

Equation System Initialization File (Optional) — specifies an external file for the initialization of the model.
Equation System Initialization Time (Optional) — specifies a time for the initialization of the model.

Clock (Optional) — the type of clock to use.

Linear Solver (Optional) — specifies the linear solver method.

Non Linear Solver (Optional) — specifies the nonlinear solver.

Linearization Time (Optional) — specifies a time where the linearization of the model should be performed.

Output Variables (Optional) — outputs the variables a, b and c at the end of the simulation to the standard
output.

Profiling — creates a profiling HTML file.

CPU Time — dumps the cpu-time into the result file.

Enable All Warnings — outputs all warnings.

Logging (Optional)

stdout - standard output stream. This stream is always active, can be disabled with -lv=-stdout
assert - This stream is always active, can be disabled with -lv=-assert
LOG_DASSL - additional information about dassl solver.
LOG_DASSL_STATES - outputs the states at every dassl call.
LOG_DEBUG - additional debug information.

LOG_DSS - outputs information about dynamic state selection.
LOG_DSS_JAC - outputs jacobian of the dynamic state selection.
LOG_DT - additional information about dynamic tearing.

LOG_DT_CONS - additional information about dynamic tearing (local and global constraints).

2.14

. Simulating a Model 43

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

LOG_EVENTS - additional information during event iteration.
LOG_EVENTS_V - verbose logging of event system.

LOG_INIT - additional information during initialization.

LOG_IPOPT - information from Ipopt.

LOG_IPOPT_FULL - more information from Ipopt.

LOG_IPOPT_JAC - check jacobian matrix with Ipopt.
LOG_IPOPT_HESSE - check hessian matrix with Ipopt.
LOG_IPOPT_ERROR - print max error in the optimization.

LOG_JAC - outputs the jacobian matrix used by dassl.

LOG_LS - logging for linear systems.

LOG_LS_V - verbose logging of linear systems.

LOG_NLS - logging for nonlinear systems.

LOG_NLS_V - verbose logging of nonlinear systems.
LOG_NLS_HOMOTOPY - logging of homotopy solver for nonlinear systems.
LOG_NLS_JAC - outputs the jacobian of nonlinear systems.
LOG_NLS_JAC_TEST - tests the analytical jacobian of nonlinear systems.
LOG_NLS_RES - outputs every evaluation of the residual function.
LOG_NLS_EXTRAPOLATE - outputs debug information about extrapolate process.
LOG_RES_INIT - outputs residuals of the initialization.

LOG_RT - additional information regarding real-time processes.
LOG_SIMULATION - additional information about simulation process.
LOG_SOLVER - additional information about solver process.
LOG_SOLVER_V - verbose information about the integration process.
LOG_SOLVER_CONTEXT - context information during the solver process.
LOG_SOTI - final solution of the initialization.

LOG_STATS - additional statistics about timer/events/solver.
LOG_STATS_V - additional statistics for LOG_STATS.

LOG_SUCCESS - This stream is always active, can be disabled with -lv=-LOG_SUCCESS.
LOG_UTIL.

LOG_ZEROCROSSINGS - additional information about the zerocrossings.
Additional Simulation Flags (Optional) — specify any other simulation flag.

2.14.5 Output

Output Format — the simulation result file output format.

Single Precision - Output results in single precision (only for mat output format).
File Name Prefix (Optional) — the name is used as a prefix for the output files.
Result File (Optional) - the simulation result file name.

Variable Filter (Optional)

Protected Variables — adds the protected variables in result file.

Equidistant Time Grid — output the internal steps given by dassl instead of interpolating results into an
equidistant time grid as given by stepSize or numberOfIntervals

44

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

e Store Variables at Events — adds the variables at time events.

* Show Generated File — displays the generated files in a dialog box.

2.14.6 Data Reconciliation

* Algorithm — data reconciliation algorithm.
* Measurement Input File — measurement input file.
e Correlation Matrix Input File — correlation matrix file.

* Epsilon

2.15 2D Plotting

Successful simulation of model produces the result file which contains the instance variables that are candidate for
plotting. Variables Browser will show the list of such instance variables. Each variable has a checkbox, checking
it will plot the variable. See Figure 2.7. To get several plot windows tiled horizontally or vertically use the menu
items Tile Windows Horizontally or Tile Windows Vertically under View Menu.

2.15.1 Types of Plotting

The plotting type depends on the active Plot Window. By default the plotting type is Time Plot.

Time Plot

Plots the variable over the simulation time. You can have multiple Time Plot windows by clicking on New Plot

Window toolbar button (|Z).

Plot Parametric

Draws a two-dimensional parametric diagram, between variables x and y, with y as a function of x. You can have
multiple Plot Parametric windows by clicking on the New Plot Parametric toolbar button (I@).

Select the x-axis variable while holding down the shift key, release the shift key and then select y-axis variables.
One or many y-axis variables can be selected against one x-axis variable. To select a new x-axis variable press
and hold the shift key again.

Unchecking the x-axis variable will uncheck all y-axis variables linked to it.

Array Plot

Plots an array variable so that the array elements' indexes are on the x-axis and corresponding elements' values are
on the y-axis. The time is controlled by the slider above the variable tree. When an array is present in the model,
it has a principal array node in the variable tree. To plot this array as an Array Plot, match the principal node. The
principal node may be expanded into particular array elements. To plot a single element in the Time Plot, match

the element. A new Array Plot window is opened using the New Array Plot Window toolbar button (|L").

2.15. 2D Plotting 45

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Array Parametric Plot

Plots the first array elements' values on the x-axis versus the second array elements' values on the y-axis. The time
is controlled by the slider above the variable tree. To create a new Array Parametric Plot, press the New Array

Parametric Plot Window toolbar button (|), then match the principle array node in the variable tree view to be
plotted on the x-axis and match the principle array node to be plotted on the y-axis.

Diagram Window

Shows the active ModelWidget as a read only diagram. You can only have one Diagram Window. To show it click

on Diagram Window toolbar button (tﬂi).

2.15.2 Plot Window

A plot window shows the plot curve of instance variables. Several plot curves can be plotted in the same plot
window. See Figure 2.7.

Plot Window Menu

* Auto Scale - Automatically scales the horizontal and vertical axes.
* Fit in View - Adjusts the plot canvas to according to the size of plot curves.
* Save - Saves the plot to file system as .png, .svg or .bmp.
* Print - Prints the plot.
* Grid - Shows grid lines.
* Detailed Grid - Shows detailed grid lines.
* No Grid - Hides grid lines.
* Log X - Logarithmic scale of the horizontal axis.
* Log Y - Logarithmic scale of the vertical axis.
* Setup - Shows a setup window.
* Variables - List of all plotted variables.

* General - Variable general information.

* Legend - Display name for legend.

* File - File name where variable data is stored.

* Appearance - Visual settings of variable.

* Color - Display color.

e Pattern - Line pattern of curve.

* Thickness - Line thickness of curve.

* Hide - Hide/Show the curve.

» Toggle Sign - Toggles the sign of curve.

* Titles - Plot, axes and footer titles settings.

* Legend - Sets legend position and font.

* Range - Automatic or manual axes range.

* Auto Scale - Automatically scales the horizontal and vertical axes.
* X-Axis

e Minimum - Minimum value for x-axis.

46 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

e Maximum - Maximum value for x-axis.

e Y-Axis

* Minimum - Minimum value for y-axis.

* Maximum - Maximum value for y-axis.

* Prefix Units - Automatically pick the right prefix for units.

2.16 Re-simulating a Model

The Variables Browser allows manipulation of changeable parameters for re-simulation. After changing the pa-

rameter values user can click on the re-simulate toolbar button (9), or right click the model in Variables Browser
and choose re-simulate from the menu.

2.17 3D Visualization

Since OpenModelica 1.11 , OMEdit has built-in 3D visualization, which replaces third-party libraries (such as
Modelica3D) for 3D visualization.

2.17.1 Running a Visualization

The 3d visualization is based on OpenSceneGraph. In order to run the visualization simply right click the class in
Libraries Browser an choose “Simulate with Animation” as shown in Figure 2.10.

% File Edit View Simulation FMI
(e =
Libraries Browser =

|Sea|'ch Classes |

A
(1]

Libraries
D ModelicaServices

Complex

= P7%] Modelica

&% OMEdit - OpenModelica Connection Editor - [DoublePendulum]

Export Debug Tools Help

Heee \OHOTHE < EQY -

- %»

O

- &8 X

IZ » m))

£3 |II'I o’& E o | Writable | Model | Diagram View | Modelim.Med'1anics.MuIﬁBody.Examples.EIemenizry.Dou| | Line: 1, Col: 0 | |

Open Class

View Documentation

Save Total

Ll

E Instantiate Model
0 UsersGuide Q Check Model
(8] Blocks @) Check All Models
ComplexBlocks =) Simulate Ctrl+B boxBodyl Rudfi=2 boxBody2
@ StateGraph # Simulate with Transformational Debugger] I I-—-I] I
@] Electrical # Simulate with Algorithmic Debugger r={05. 0.0} .0, r={05, 0,0}
Magnetic 6 Simulate with Animation
=] Mechanics S| Simulation Setup
= Y| MultiBody W Duplicate
o UsersGuide - Export FMU
World S Export XML
= E] Examples B Export Figaro
- E] Elementary Update Bindings
() DoublePenduluminitTip
) ForceAndTorque
':\!,:' FreeBody v v
Simulates the Modelica class with Animation ¥:-89.44 ¥:-53.85 t Welcome oﬁ Modeling & Plotting [4 Debugging

Figure 2.10: OMEdit Simulate with Animation.

One can also run the visualization via Simulation > Simulate with Animation from the menu.

2.16. Re-simulating a Model

47

https://github.com/OpenModelica/Modelica3D

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

When simulating a model in animation mode, the flag +d=visxml is set. Hence, the compiler will generate a
scene description file _visual.xml which stores all information on the multibody shapes. This scene description
references all variables which are needed for the animation of the multibody system. When simulating with
+d=visxml, the compiler will always generate results for these variables.

2.17.2 Viewing a Visualization

After the successful simulation of the model, the visualization window will show up automatically as shown in
Figure 2.11.

,ﬁ OMEdit - OpenModelica Connection Editor = | B |
File Edit View Simulation FMI Export Debug Tools Help
j.l—'_-'. ..R @O\(D\O\ \\ODOTB» v » r det Q»K» r-L.'»
Libraries Browser g X | £2) Modelica,Mechanics. MultiBody Examples. Elementary. DoublePendulum_res.mat [£J | Variables Browser g X%
[Fitter Clzsses | @ - " > II 0 rime [s]: et 1 (_"‘\ —~ [Filter variables | @
Libraries - Simulation Time Unit [:]
= 7’:’ Modelica Variables . Valu
o UsersGuide E\DXMBszic...endulum
IE] Blocks 3 > boxBody2
:EE]: ComplexBlocks rd:\:li:td
D+0 StateGraph revolute?
:E%J Electrical werld
:tl]: Magnetic
= :’“III‘ Mechanics x
| T MultiBody
o UsersGuide
World
=] rh1 Examples
= :’: Ele..ary
l- D..m
l' Dain «[m s
X: 17.97 ¥:15.286 | t Welcome | o’ Modeling | Plotting | & Debugging

Figure 2.11: OMEdit 3D Visualization.

The animation starts with pushing the play button. The animation is played until stopTime or until the pause
button is pushed. By pushing the previous button, the animation jumps to the initial point of time. Points of time
can be selected by moving the time slider or by inserting a simulation time in the Time-box. The speed factor of
animation in relation to realtime can be set in the Speed-dialog. Other animations can be openend by using the
open file button and selecting a result file with a corresping scene description file.

The 3D camera view can be manipulated as follows:

Operation Key Mouse Action
Move Closer/Further none Wheel

Move Closer/Further Right Mouse Hold Up/Down
Move Up/Down/Left/Right | Middle Mouse Hold Move Mouse
Move Up/Down/Left/Right | Left and Right Mouse Hold | Move Mouse
Rotate Left Mouse Hold Move Mouse
Shape context menu Right Mouse + Shift

Predefined views (Isometric, Side, Front, Top) can be selected and the scene can be tilted by 90° either clock or
anticlockwise with the rotation buttons.

48 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.17.3 Additional Visualization Features

The shapes that are displayed in the viewer can be selected with shift + right click. If a shape is selected, a context
menu pops up that offers additional visualization features

1 shape ' |€ Change Transparency
Reset Transparency and Texture [Make Shape Invisible

Change Color

&

.. Apply Check Texture
oo

&

Apply Customn Texture

Remove Texure

The following features can be selected:

Menu Description

Change Transparency | The shape becomes either transparent or intransparent.

Make Shape Invisible | The shape becomes invisible.

Change Color A color dialog pops up and the color of the shape can be set.

Apply Check Texture A checked texture is applied to the shape.

Apply Custom Texture | A file selection dialog pops up and an image file can be selected as a texture.
Remove Texture Removes the current texture of the shape.

2.17. 3D Visualization

49

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.18 Animation of Realtime FMUs

Instead of a result file, OMEdit can load Functional Mock-up Units to retrieve the data for the animation of
multibody systems. Just like opening a mat-file from the animation-plotting view, one can open an FMU-file.
Necessarily, the FMU has to be generated with the +d=visxml flag activated, so that a scene description file is
generated in the same directory as the FMU. Currently, only FMU 1.0 and FMU 2.0 model exchange are supported.
When choosing an FMU, the simulation settings window pops up to choose solver and step size. Afterwards, the
model initializes and can be simulated by pressing the play button.

2.18.1 Interactive Realtime Animation of FMUs

FMUs can be simulated with realtime user interaction. A possible solution is to equip the model with an inter-
action model from the Modelica_DeviceDrivers library (https://github.com/modelica/Modelica_DeviceDrivers).
The realtime synchronization is done by OMEdit so no additional time synchronization model is necessary.

&t OMEdit - OpenModelica Connection Editor l‘:' E] éj
File Edit View Simulation FMI Expot Debug Git Tools Help

s8R oo \PHOTREK 5- O9E »%-9- 7

Libraries Browser 8 x| 4 DoublePendulum_interactive™ 8 |
Filter Classes _I N *@]E o ‘Writable |Mode\ |Diagram View |DoubIePendqum_interacﬁve |D:fProgramminngPENMODELICA...ub\ePendqum_inheracﬁve.mo | |

-

Libraries

@ OpenModelica

o ModelicaReference

ModelicaServices
Complex
. 777 Modelica =ddl
: : Bl +1
l DU Modelica_..ceDrivers +
—) I
Modelica...chronous p' \ +1

m

positionl
1

| tWeImme | diMUdeIing | aPlotﬁng | uDebugging

50 Chapter 2. OMEdit — OpenModelica Connection Editor

https://github.com/modelica/Modelica_DeviceDrivers

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.19 Interactive Simulation

Warning: Interactive simulation is an experimental feature.

Interactive simulation is enabled by selecting interactive simulation in the simulation setup.

There are two main modes of execution: asynchronous and synchronous (simulate with steps). The difference is
that in synchronous (step mode), OMEdit sends a command to the simulation for each step that the simulation
should take. The asynchronous mode simply tells the simulation to run and samples variables values in real-time;
if the simulation runs very fast, fewer values will be sampled.

When running in asynchronous mode, it is possible to simulate the model in real-time (with a scaling factor just
like simulation flag -7z, but with the ability to change the scaling factor during the interactive simulation). In the
synchronous mode, the speed of the simulation does not directly correspond to real-time.

2.20 How to Create User Defined Shapes - Icons

Users can create shapes of their own by using the shape creation tools available in OMEdit.

 Line Tool — Draws a line. A line is created with a minimum of two points. In order to create a line, the user
first selects the line tool from the toolbar and then click on the Icon/Diagram View; this will start creating a
line. If a user clicks again on the Icon/Diagram View a new line point is created. In order to finish the line
creation, user has to double click on the Icon/Diagram View.

* Polygon Tool — Draws a polygon. A polygon is created in a similar fashion as a line is created. The only
difference between a line and a polygon is that, if a polygon contains two points it will look like a line and
if a polygon contains more than two points it will become a closed polygon shape.

* Rectangle Tool — Draws a rectangle. The rectangle only contains two points where first point indicates the
starting point and the second point indicates the ending the point. In order to create rectangle, the user
has to select the rectangle tool from the toolbar and then click on the Icon/Diagram View, this click will
become the first point of rectangle. In order to finish the rectangle creation, the user has to click again on the
Icon/Diagram View where he/she wants to finish the rectangle. The second click will become the second
point of rectangle.

* Ellipse Tool — Draws an ellipse. The ellipse is created in a similar way as a rectangle is created.
e Text Tool — Draws a text label.
* Bitmap Tool — Draws a bitmap container.

The shape tools are located in the toolbar. See Figure 2.12.

The user can select any of the shape tools and start drawing on the Icon/Diagram View. The shapes created on the
Diagram View of Model Widget are part of the diagram and the shapes created on the Icon View will become the
icon representation of the model.

For example, if a user creates a model with name testModel and add a rectangle using the rectangle tool and a
polygon using the polygon tool, in the Icon View of the model. The model’s Modelica Text will appear as follows:

model testModel

annotation (Icon (graphics = {Rectangle(rotation = 0, lineColor = {0,0,255},
—~fillColor = {0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern.
—None, lineThickness = 0.25, extent = {{ -64.5,88},{63, —-22.5}}),Polygon(points =
—{{ -47.5, -29.5},{52.5, -29.5},{4.5, -86},{ -47.5, -29.5}}, rotation = 0,
—~lineColor = {0,0,255}, fillColor = {0,0,255}, pattern = LinePattern.Solid,
—~fillPattern = FillPattern.None, lineThickness = 0.25)1}));
end testModel;

In the above code snippet of testModel, the rectangle and a polygon are added to the icon annotation of the model.
Similarly, any user defined shape drawn on a Diagram View of the model will be added to the diagram annotation
of the model.

2.19. Interactive Simulation 51

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(Rectangle Tool (Text Tool >

\

(¢ Line Tool) A4—“WOHOEN —»(Bitmap Tool D

/N

(Polygon Tool) (¢ Ellipse Tool)

Figure 2.12: User defined shapes.

2.21 Global head section in documentation

If you want to use same styles or same JavaScript for the classes contained inside a package then you can de-
fine __ OpenModelica_infoHeader annotation inside the Documentation annotation of a package. For
example,

package P
model M
annotation (Documentation (info="<html>
Click here
</html>"));
end M;
annotation (Documentation (___OpenModelica_infoHeader="
<script type=\"text/javascript\">
function HelloWorld() {
alert (\"Hello World!'\")
}
</script>"));
end P;

In the above example model M does not need to define the javascript function HelloWorld. It is only defined
once at the package level using the __OpenModelica_infoHeader and then all classes contained in the
package can use it.

In addition styles and JavaScript can be added from file locations using Modelica URIs. Example:

package P
model M
annotation (Documentation (info="<html>
Click here
</html>"));
end M;
annotation (Documentation (___OpenModelica_infoHeader="
<script type=\"text/javascript\">
src=\"modelica://P/Resources/hello.js\">
t
</script>"));
end P;

Where the file Resources/hello. js then contains:

52 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

function HelloWorld() {
alert ("Hello World!™);

}

2.2

2 Options

OMEdit allows users to save several options which will be remembered across different sessions of OMEdit. The
Options Dialog can be used for reading and writing the options.

2.22.1 General

General

Language — Sets the application language.

Working Directory — Sets the application working directory. All files are generated in this directory.
Toolbar Icon Size — Sets the size for toolbar icons.

Preserve User’s GUI Customizations — If true then OMEdit will remember its windows and toolbars posi-
tions and sizes.

Terminal Command — Sets the terminal command. When user clicks on Tools > Open Terminal then this
command is executed.

Terminal Command Arguments — Sets the terminal command arguments.
Hide Variables Browser — Hides the variable browser when switching away from plotting perspective.

Activate Access Annotations — Activates the access annotations for the non-encrypted libraries. Access
annotations are always active for encrypted libraries.

Create a model.bak-mo backup file when deleting a model

Display errors/warnings when instantiating the graphical annotations - if true then the errors/warnings are
shown when using OMC API for graphical annotations.

Libraries Browser
Library Icon Size — Sets the size for library icons.

Max. Library Icon Text Length to Show — Sets the maximum text length that can be shown in the icon in
Libraries Browser.

Show Protected Classes — If enabled then Libraries Browser will also list the protected classes.

Show Hidden Classes — If enabled then Libraries Browser will also list the hidden classes. Ignores the
annotation(Protection(access = Access.hide))

Synchronize with Model Widget — If enabled then Libraries Browser will scroll automatically to the active
Model Widget i.e., the current model.

Enable Auto Save - Enables/disables the auto save feature.

Auto Save interval — Sets the auto save interval value. The minimum possible interval value is 60 seconds.
Welcome Page

Horizontal View/Vertical View — Sets the view mode for welcome page.

Show Latest News - If enabled then the latest news from https://openmodelica.org are shown.

Recent Files and Latest News Size - Sets the display size for recent files and latest news items.

Optional Features

Enable replaceable support - Enables/disables the replaceable support.

Enable new frontend use in OMC API (faster GUI response) - if true then uses the new frontend in OMC
API calls.

2.22

. Options 53

https://openmodelica.org

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.22.2 Libraries

 System Libraries — The list of system libraries that should be loaded every time OMEdit starts.

e Force loading of Modelica Standard Library — If true then Modelica and ModelicaReference will always
load even if user has removed them from the list of system libraries.

* Load OpenModelica library on startup — If true then OpenModelica package will be loaded when OMEdit
is started.

e User Libraries — The list of user libraries/files that should be loaded every time OMEdit starts.

2.22.3 Text Editor

* Format
* Line Ending - Sets the file line ending.
e Byte Order Mark (BOM) - Sets the file BOM.
* Tabs and Indentation
 Tab Policy — Sets the tab policy to either spaces or tabs only.
* Tab Size — Sets the tab size.
* Indent Size — Sets the indent size.
» Syntax Highlight and Text Wrapping
» Enable Syntax Highlighting — Enable/Disable the syntax highlighting.

* Enable Code Folding - Enable/Disable the code folding. When code folding is enabled multi-
line annotations are collapsed into a compact icon (a rectangle containing "...)"). A marker
containing a "+" sign becomes available at the left-side of the involved line, allowing the code
to be expanded/re-collapsed at will.

* Match Parentheses within Comments and Quotes — Enable/Disable the matching of parentheses
within comments and quotes.

» Enable Line Wrapping — Enable/Disable the line wrapping.
* Autocomplete
* Enable Autocomplete — Enables/Disables the autocomplete.
* Font
 Font Family — Shows the names list of available fonts. Sets the font for the editor.

e Font Size — Sets the font size for the editor.

2.22.4 Modelica Editor

* Preserve Text Indentation — If true then uses diffModelicaFileListings API call otherwise uses the OMC
pretty-printing.

e Colors
* Jtems — List of categories used of syntax highlighting the code.
¢ [tem Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

54 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.22.5 MetaModelica Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.6 CompositeModel Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.7 SSP Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.8 C/C++ Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.9 HTML Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.10 Graphical Views

* General

Modeling View Mode

Tabbed View/SubWindow View — Sets the view mode for modeling.
Default View

Icon View/DiagramView/Modelica Text View/Documentation View — If no preferredView annotation is
defined then this setting is used to show the respective view when user double clicks on the class in
the Libraries Browser.

— Move connectors together on both icon and diagram layers

* Graphics

2.22. Options 55

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

— Icon/Diagram View
* Extent
Left — Defines the left extent point for the view.
* Bottom — Defines the bottom extent point for the view.
% Right — Defines the right extent point for the view.
+ Top — Defines the top extent point for the view.
Grid
* Horizontal — Defines the horizontal size of the view grid.
* Vertical — Defines the vertical size of the view grid.
* Component
* Scale factor — Defines the initial scale factor for the component dragged on the view.

Preserve aspect ratio — If true then the component’s aspect ratio is preserved while scaling.

2.22.11 Simulation

» Simulation
e Translation Flags
* Matching Algorithm — sets the matching algorithm for simulation.
¢ Index Reduction Method — sets the index reduction method for simulation.

e Show additional information from the initialization process - prints the information from the
initialization process

e Evaluate all parameters (faster simulation, cannot change them at runtime) - makes the simu-
lation more efficient but you have to recompile the model if you want to change the parameter
instead of re-simulate.

* Enable analytical jacobian for non-linear strong components - enables analytical jacobian for
non-linear strong components without user-defined function calls.

* Enable pedantic debug-mode, to get much more feedback

» Enable parallelization of independent systems of equations (Experimental)

* Enable old frontend for code generation

* Additional Translation Flags — sets the translation flags see Options

» Target Language — sets the target language in which the code is generated.

» Target Build — sets the target build that is used to compile the generated code.
* C Compiler — sets the C compiler for compiling the generated code.

e CXX Compiler — sets the CXX compiler for compiling the generated code.

e Use static linking — if true then static linking is used for simulation executable. The default is
dynamic linking. This option is only available on Windows.

e Ignore __OpenModelica_commandLineOptions annotation — if true then ignores the __Open-
Modelica_commandLineOptions annotation while running the simulation.

e Ignore __OpenModelica_simulationFlags annotation — if true then ignores the __OpenModel-
ica_simulationFlags annotation while running the simulation.

* Save class before simulation — if true then always saves the class before running the simulation.

* Switch to plotting perspective after simulation — if true then GUI always switches to plotting
perspective after the simulation.

56 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

* Close completed simulation output windows before simulation — if true then the completed sim-
ulation output windows are closed before starting a new simulation.

* Delete intermediate compilation files — if true then the files generated during the compilation
are deleted automatically.

e Delete entire simulation directory of the model when OMEdit is closed — if true then the entire
simulation directory is deleted on quit.

¢ Output
o Structured - Shows the simulation output in the form of tree structure.
o Formatted Text - Shows the simulation output in the form of formatted text.

e Display Limit - Sets the display limit for simulation output. A link to log file is shown once the
limit is reached.

2.22.12 Messages

¢ General

* Qutput Size - Specifies the maximum number of rows the Messages Browser may have. If there are more
rows then the rows are removed from the beginning.

* Reset messages number before simulation — Resets the messages counter before starting the simulation.

* Clear messages browser before checking, instantiation & simulation — If enabled then the messages browser
is cleared before checking, instantiation & simulation of model.

* Font and Colors

* Font Family — Sets the font for the messages.

* Font Size — Sets the font size for the messages.

* Notification Color — Sets the text color for notification messages.
* Warning Color — Sets the text color for warning messages.

e Error Color — Sets the text color for error messages.

2.22.13 Notifications

* Notifications
* Always quit without prompt — If true then OMEdit will quit without prompting the user.

» Show item dropped on itself message — If true then a message will pop-up when a class is dragged
and dropped on itself.

* Show model is partial and component is added as replaceable message — If true then a message
will pop-up when a partial class is added to another class.

* Show component is declared as inner message — If true then a message will pop-up when an
inner component is added to another class.

* Show save model for bitmap insertion message — If true then a message will pop-up when user
tries to insert a bitmap from a local directory to an unsaved class.

e Always ask for the dragged component name — If true then a message will pop-up when user
drag & drop the component on the graphical view.

* Always ask for what to do with the text editor error — If true then a message will always pop-up
when there is an error in the text editor.

 If new frontend for code generation fails
e Always ask for old frontend

* Try with old frontend once

2.22. Options 57

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

e Switch to old frontend permanently

* Keep using new frontend

2.22.14 Line Style

Line Style

Color — Sets the line color.

Pattern — Sets the line pattern.

Thickness — Sets the line thickness.

Start Arrow — Sets the line start arrow.

End Arrow — Sets the line end arrow.

Arrow Size — Sets the start and end arrow size.

Smooth — If true then the line is drawn as a Bezier curve.

2.22.15 Fill Style

Fill Style
Color — Sets the fill color.
Pattern — Sets the fill pattern.

2.22.16 Plotting

General
Auto Scale — Sets whether to auto scale the plots or not.

Prefix Units — Automatically pick the right prefix for units for the new plot windows. For existing plot
windows use the Plot Window Menu.

Plotting View Mode

Tabbed View/SubWindow View — Sets the view mode for plotting.
Curve Style

Pattern — Sets the curve pattern.

Thickness — Sets the curve thickness.

Variable filter

Filter Interval - Delay in filtering the variables. Set the value to 0 if you don't want any delay.
Font Size - sets the font size for plot window items

Title

Vertical Axis Title

Vertical Axis Numbers

Horizontal Axis Title

Horizontal Axis Numbers

Footer

Legend

58

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.22.17 Figaro

Figaro
Figaro Library — the Figaro library file path.
Tree generation options — the Figaro tree generation options file path.

Figaro Processor — the Figaro processor location.

2.22.18 Debugger

Algorithmic Debugger

GDB Path — the gnu debugger path

GDB Command Timeout — timeout for gdb commands.
GDB Output Limit — limits the GDB output to N characters.
Display C frames — if true then shows the C stack frames.

Display unknown frames — if true then shows the unknown stack frames. Unknown stack frames means
frames whose file path is unknown.

Clear old output on a new run — if true then clears the output window on new run.
Clear old log on new run — if true then clears the log window on new run.
Transformational Debugger

Always show Transformational Debugger after compilation — if true then always open the Transformational
Debugger window after model compilation.

Generate operations in the info xml — if true then adds the operations information in the info xml file.

2.22.19 FMI

Export
* Version
e 1.0 — Sets the FMI export version to 1.0
e 2.0 — Sets the FMI export version to 2.0
* Type
e Model Exchange — Sets the FMI export type to Model Exchange.
* Co-Simulation — Sets the FMI export type to Co-Simulation.

* Model Exchange and Co-Simulation — Sets the FMI export type to Model Exchange and Co-
Simulation.

e FMU Name — Sets a prefix for generated FMU file.

* Move FMU — Moves the generated FMU to a specified path.

* Platforms - list of platforms to generate FMU binaries.

* Model Description Filters - Sets the variable filter for model description file.

e Include Source Code - Sets if the exported FMU can contain source code. Model Description
Filter "blackBox" will override this, because black box FMUs do never contain their source
code.

Import

Delete FMU directory and generated model when OMEdit is closed - If true then the temporary FMU
directory that is created for importing the FMU will be deleted.

2.22,

Options 59

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.22.20 OMTLMSimulator

* General
* Path - path to OMTLMSimulator bin directory.
* Manager Process - path to OMTLMSimulator managar process.

* Monitor Process - path to OMTLMSimulator monitor process.

2.22.21 OMSimulator/SSP

* General
* Command Line Options - sets the OMSimulator command line options.

* Logging Level - OMSimulator logging level.

2.23 __OpenModelica_commandLineOptions Annotation

OpenModelica specific annotation to define the command line options needed to simulate the model. For example
if you always want to simulate the model with a specific matching algorithm and index reduction method instead
of the default ones then you can write the following code,

model Test

annotation (___OpenModelica_commandLineOptions = "--matchingAlgorithm=BFSB —-
—indexReductionMethod=dynamicStateSelection");
end Test;

The annotation is a space separated list of options where each option is either just a command line flag or a flag
with a value.

In OMEdit open the Simulation Setup and set the Translation Flags then in the bottom check Save translation
flags inside model i.e., __OpenModelica_commandLineOptions annotation and click on OK.

It you want to ignore this annotation then use setCommandLineOptions("--
ignoreCommandLineOptionsAnnotation=true"). In OMEdit Tools > Options > Simulation check Ignore
__OpenMaodelica_commandLineOptions annotation.

2.24 OpenModelica_simulationFlags Annotation

OpenModelica specific annotation to define the simulation options needed to simulate the model. For example if
you always want to simulate the model with a specific solver instead of the default DASSL and would also like to
see the cpu time then you can write the following code,

model Test
annotation (__OpenModelica_simulationFlags (s = "heun", cpu = "()"));
end Test;

The annotation is a comma separated list of options where each option is a simulation flag with a value. For flags
that doesn't have any value use () (See the above code example).

In OMEdit open the Simulation Setup and set the Simulation Flags then in the bottom check Save simulation flags
inside model i.e., __OpenModelica_simulationFlags annotation and click on OK.

If you want to ignore this annotation then use setCommandLineOptions("--
ignoreSimulationFlagsAnnotation=true"). In OMEdit Tools > Options > Simulation check Ignore __OpenMod-
elica_simulationFlags annotation.

60 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.25 Global and Local Flags

There is a large number of optional settings and flags to influence the way OpenModelica generates the simulation
code (Compiler flags, a.k.a. Translation flags or Command Line Options) and the way the simulation executable
is run (Simulation Flags).

The global default settings can be accessed and changed with the Tools > Options menu. It is also possible to reset
them to factory state by clicking on the Reset button of the Tools > Options dialog window.

When you start OMEdit and you simulate a model for the first time, the model-specific simulation ses-
sion settings are initialized by copying the global default settings, and then by applying any further settings
that are saved in the model within OpenModelica-specific __OpenModelica_commandLineOptions and
__OpenModelica_simulationFlags annotations. Note that the latter may partially override the former, if
they give different values to the same flags.

You can change those model-specific settings at will with the Simulation Setup window. Any change you make
will be remembered until the end of the simulation session, i.e. until you close OMEdit. This is very useful
to experiment with different settings and find the optimal ones, or to investigate bugs by turning on logging
options, etc. If you check the Save translation flags and Save simulation flags options in
the simulation setup, those settings will be saved in the model within the corresponding OpenModelica-specific
annotations, so that you can get the same behavior when you start a new session later on, or if someone else loads
the model on a different computer. Otherwise, all of those changes will be forgotten when you exit OMEdit.

If you change the global default settings after running some models, the simulation settings of those models will
be reset as if you closed OMEdit and restarted a new session: the new global options will first be applied, and then
any further setting saved in the OpenModelica-specific annotations will be applied, possibly overriding the global
options if the same flags get different values from the annotations. Any model-specific settings that you may have
changed with Simulation Setup up to that point will be lost, unless you saved them in the OpenModelica-specific
annotations before changing the global default settings.

2.26 Debugger

For debugging capability, see Debugging.

2.27 Editing Modelica Standard Library

By default OMEdit loads the Modelica Standard Library (MSL) as a system library. System libraries are read-
only. If you want to edit MSL you need to load it as user library instead of system library. We don't recommend
editing MSL but if you really need to and understand the consequences then follow these steps,

* Go to Tools > Options > Libraries.

* Remove Modelica & ModelicaReference from list of system libraries.

* Uncheck force loading of Modelica Standard Library.

Add SOPENMODELICAHOME/lib/omlibrary/Modelica X.X/package.mo under user libraries.
* Restart OMEdit.

2.25. Global and Local Flags 61

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.28 State Machines

2.28.1 Creating a New Modelica State Class

Follow the same steps as defined in Creating a New Modelica Class. Additionally make sure you check the State
checkbox.

o't OMEdit - Create New Modelica Class ? pd
Mame: Statel

Spedialization: Model A
Extends (optional): Browse...
Insert in class (optional): Browse...

[] Partial

[] Encapsulated
State

Ok Cancel

Figure 2.13: Creating a new Modelica state.

2.28.2 Making Transitions

3
In order to make a transition from one state to another the user first needs to enable the transition mode (—) from
the toolbar.

Move the mouse over the state. The mouse cursor will change from arrow cursor to cross cursor. To start the
transition press left button and move while keeping the button pressed. Now release the left button. Move towards
the end state and click when cursor changes to cross cursor.

A Create Transition dialog box will appear which allows you to set the transition attributes. Cancelling the dialog
will cancel the transition.

Double click the transition or right click and choose Edit Transition to modify the transition attributes.

2.28.3 State Machines Simulation

Support for Modelica state machines was added in the Modelica Language Specification v3.3. A subtle problem
can occur if Modelica v3.2 libraries are loaded, e.g., the Modelica Standard Library v3.2.2, because in this case
OMC automatically switches into Modelica v3.2 compatibility mode. Trying to simulate a state machine in
Modelica v3.2 compatibility mode results in an error. It is possible to use the OMC flag --std=latest in order to
ensure (at least) Modelica v3.3 support. In OMEdit this can be achieved by setting that flag in the Tools > Options
> Simulation dialog.

62 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

OMEdit - Options

El General Simulation
& Libraries
E Text Editor Matching Algorithm: PFPlusExt >

Index Reduction Method: | dynamicStateSelection ~

C/C++ Editor

E HTML Editor

=
=
E CompositeModel Editor Target Language: C e
=

Target Compiler: gec ~

ﬂ-"i Graphical Views OMC Flags: —std=latest | KA
Simulation : . . .
|:| Ignore __OpenModelica_commandLineQptions annotation
‘Eq Messages
7 I [1gnore __0OpenModelica_simulationFlags annotation
ﬂ Motifications W hd
* The changes will take effect after restart. OK Cancel

Figure 2.14: Ensure (at least) Modelica v3.3 support.

2.28.4 State Machines Debugger

Modelica state machines debugger is implemented as a visualization, which allows the user to run the state ma-
chines simulation as an animation.

A special Diagram Window is developed to visualize the active and inactive states. The active and inactive value
of the states are stored in the OpenModelica simulation result file. After the successful simulation, of the state
machine model, OMEdit reads the start, stop time values, and initializes the visualization controls accordingly.

The controls allows the easy manipulation of the visualization,
* Rewind — resets the visualization to start.
* Play — starts the visualization.
 Pause — pauses the visualization.
* Time — allows the user to jump at any specific time.
* Speed — speed of the visualization.
* Slider — controls the time.

The visualization is based on the simulation result file. All three formats of the simulation result file are supported
i.e., mat, csv and plt where mat is a matlab file format, csv is a comma separated file and plt is an ordered text file.

It is only possible to debug one state machine at a time. This is achieved by marking the result file active in the
Variables Browser. The visualization only read the values from the active result file. It is possible to simulate
several state machine models. In that case, the user will see a list of result files in the Variables Browser. The user
can switch between different result files by right clicking on the result file and selecting Set Active in the context
menu.

2.28. State Machines 63

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

@ OpenModelica
D ModelicaServices

. Complex

&% OMEdit - OpenModelica Connection Editor - O *
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help

e 98 XPl-[E o4 3 % -
Libraries Browser g x [X Plot : 1 B 4 Diagram %] Variables Browser 8 X
Filter Classes L4 A | [Filter Variables >
Libraries Simulation Time Unit s =

D> B el s~

@ Modelica Variables Value Displ
o ModelicaReference Sta te 1 &l @ (Active...erOuter
= E SMGraphi...estCases i “
O previous(i) 42
m SimpleS.. tations cmOf
m InnerCuter statel
. Maraninchi2003_2 state?
E Components true
m DeepHierarchy
v
£ > £ >
t Welcome oﬁ Modeling g Plotting ‘ Debugging

Figure 2.15: State machine debugger in OMEdit.

64 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2.29 Using OMEdit as Text Editor

OMEdit can be be used as a Text editor. Currently support for editing MetaModelica,Modelica and C/C++ are
available with syntax highlighting and autocompletion of keywords and types. Additionaly the Modelica and
MetaModelica files are provided with autocompletion of code-snippets along with keywords and types. The users
can load the directory from file menu File > Open Directory. which opens the Directory structure in the Libraries-
browser.

&% OMEdit - OpenModelica Connection Editor — O X
File Edit View Simulation Debug OMSimulator Git Tools Help
j’ New Modelica Class Ctrl+N
' Open Model/Library File(s) Ctrl+O
Open/Convert Modelica File(s) With Encoding
(e forees @ g Ope pdelica Connhectio adlto
Load Encrypted Library
Open Result File(s) Ctrl+Shift+O
Open Transformations File rent Files Latest NEWS
F New Composite Model -/OPENMODELICAGIT/Op, " & b January 31, 2019 OpenModelica 1.13.2 released ™
L Open Composite Model(s)
Load External Model(s) :/OPENMODELICAGIT/Og £» December 20, 2018: OpenModelica 1.13.0 released
. :/OPENMODELICAGIT/Og B> December 10, 2018: OpenModelica 1.13.0-dev.beta 1
Open Directory
. -fUsers/arupa54/Downloi B> Program OpenModelica Annual Workshop 2019 v
B save Ctrl+S s . s
l"] Save As
Se el r Recent Files Reload | For more details visit our website www.openmodelica.org
Import 4 -
B , e New Modelica Class Open Model/Library File(s)
System Libraries » Browser 8 X
Recent Files 3 ,7- History: | Mews Search -
Clear Recent Files
All -
& Print.. Ctrl+P
ar: ‘ V|
Quit ctrl+Q ben: [+ -]
Search
Search Browser Messages Browser
Opens the directory Ln: 439, Col: 20 t Welcome g.‘& Modeling &5 Plotting ‘ Debugging

Figure 2.16: open-directory

After the directory is opened in the Libraries-browser, the users can expand the directory structure and click the
file which opens in the texteditor.

2.29.1 Advanced Search

Support to search in OMEdit texteditor is available. The search browser can be enabled by selecting View >
Windows > Search browser or through shortcut keys (ctrl+h).

The users can start the search by loading the directory they want to search and fill in the text to be searched for
and file pattern if needed and click the search button.

After the search is completed the results are presented to the users in a separate window, The search results contains
the following

1) The name of the files where the searched word is matched
2) The line number and text of the matched word.

The users can click the line number or the matched text and it will automatically open the file in the texteditor and
move the cursor to matched line number of the text.

The users can perform multiple searches and go back to old search results using search histroy option.

2.29. Using OMEdit as Text Editor 65

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

% OMEdit - OpenModelica Connection Editor - O XK
File Edit WView Simulation Debug OMSimulator Git Tools Help
. Ll LN — %]
TEE”ZZ @O\®\O\ \OuoT< ' '7’*{% > " ot ™ 'i"”
Libraries Browser & x u\i BackendDAEUl.mo a
[Filter Classes | & E |Writab\e | C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/BackendDAEUt. mo | |
Libraries ~ tl = Expression.typeof (el); ~
Eo ModelicaReference t2 = ComponentReference.creflastType (cr):
T[] Modelicaservices b = Expression.equalTypes (tl,t2):
I Complex L wEongl)ﬂqnsl = List.consOnTrue (not
. e,wrongEgns) ;
i Modelica res .
He) then (e,wrongEgnsl);
EI OMCompiler
3rdParty .
comm_on else (inEg, inEgs);
[=] " compiler 439 end matchcontinue;
[=] = Backend end checkEguationSize;

;;. AdjacencyMatrix.mo

;;. BackendDAE.mo

;;. BackendDAECreate.mo
%/ BackendDAEEXT.mo

;;. BackendDAEFunc.mo

;;. BackendDAEQOptimize.mo
;;. BackendDAETransform.mo
;;. BackendDump.mo

;;. BackendEquation.mo

;;. Backendlnline.mo

;;. BackendVariable.mo

;;. BackendVarTransform.mo
;;. BinaryTree.mo

! n; T.

Lot

[l public function checkAssertCondition "Succeds if
condition of assert is not constant false™
input DAE.Exp cond;

Search Browser & X
% History: |Mew Search -
Scope: All -
Search for: | v‘
File Pattern: |* v‘
Search
Search Browser Messages Browser
Ln: 439, Col: 20 6L Welcome A Modeling Plotting @ Debugging

Figure 2.17: openfile in texteditor

2.30 Temporary Directory, Log Files and Working Directory

On Unix/Linux systems temporary directory is the path in the TMPDIR environment variable or /tmp if TMPDIR is
not defined appended with directory paths OpenModelica< USERNAME>/OMEdit so the complete path is usually
/tmp/OpenModelica< USERNAME>/OMEdit.

On Windows its the path in the TEMP or TMP environment variable appended with directory paths OpenModel-
ica/OMEdit so the complete path is usually %TEMP%/OpenModelica/OMEdit.

All the log files are always generated in the temporary directory. Choose Tools > Open Temporary Directory to

open the temporary directory.

By default the working directory has the same path as the temporary directory. You can change the working
directory from Tools > Options > General see section General.

For each simulation a new directory with the model name is created in the working directory and then all the
simulation intermediate and results files are generated in it.

66

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Libraries Brov

Filter Classes Toggle Tab/Sub-window View

Libraries || Grid Lines

o OMEdit - OpenModelica Connection Editor - O X

File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help

’j' & | To_olbars
Windows Y |~ Libraries Browser

> |

Documentation Browser

nection Editor

Variables Browser
3D Viewer Browser

< Close Window
Close All Windows

Close All Windows But This

Clear Recent Files

lE Oper ©, Reset Zoom CUri0 - s Messages Browser
@, ZoomIn Ctrl++

O Mod “ . Search Browser Jews

(] Mod¢®, Zoom Out Ctrl+- Stack Frames Browser

[complex B C/OPENMODELCAGIT/C BreakPoints Browser 31, 2019: OpenModelica 1.13.2 released "

7% Modelica £» C;/OpenPBS/OpenPBS/pz Locals Browser F 20, 2018: OpenModelica 1.13.0 released

OMCompiler Output B
p E» C/Users/arupa54/AppDa utput Browser I 10, 2018: OpenModelica 1.13.0-dev.beta1 released

Debugger CLI v

For more details visit our website www.openmodelica.org

>

Create New Modelica Class Cascade Windows

Tile Windows Horizontally
Tile Windows Vertically

Search Browser

Open Model/Library File(s)

8 X

- '_ ’ ,- History: | Mew Search =
Scope: OMCompiler -
Search for: | V|
File Pattern: | * V|
Search

Messages Browser Search Browser

Figure 2.18: Enable omedit search browser

2.31 High DPI Settings

tWeIcome n’.& Modeling

Plotting ‘ Debugqing

When the text is too big / too small to read there are options to change the font size used in OMEdit, see 7Text

Editor.

If you are using a high-resolution screen (1080p, 4k and more) and the app is blurry or the overall proportions of

the different windows are off, it can help to change the DPI settings.

On Windows it is possible to change the scaling factor to adjust the size of text, apps and other times, but the
default setting might not be appropriate for OMEdit e.g., on compact notebooks with high resolution screens.

You can either change the scaling factor for the whole Windows system or only change the scaling used for
OMEdit. This is done by changing the Compatibility settings for High DPI settings for OMEdit.exe with the

following steps:

1. Press Windows-Key and type OpenModelica Connection Editor and right-click on the app and Open file

location, Figure 2.22.

2. Right-click on OpenModelica Connection Editor and open Properties.

3. In the properties window go to tab Compatibility and open Change high DPI settings. In the High DPI
settings for OMEdit.exe choose Use the settings to fix scaling problems for this program instead of the one
in Settings and Override high DPI scaling behavior.Scaling performed by: and choose System from the

drop-down menu, Figure 2.23.

2.31. High DPI Settings

67

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

u& Bac..mo Y Messages Browser Search Browser

o%% OMEdit - OpenModelica Connection Editor — O X
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help
[(0 LN ; [—
J.h @O\G)\e\ \\’..T.” ' 0” =, ® *' wou | il »
Libraries Browser & x ﬁ.ﬁ BackendDump.mo B &% BackendDump.interface.mo [
IMI A ‘E ‘Wrﬂable ‘C:,I’OPENMDDEIJI:AG]T!OpenModeIica!{)MCompiIer!CompilerfbootfhuildeackendDump.interface.rrn ‘ a
Libraries ~ 14 ZH:I “
ﬂ OpenModelica 143|=| function dumpDAE
F|@ Modeli...erence 1 input BackendDAE.BackendDAE inDAE;
F10) Modeli...vices 1 guzputDigckendDAE.BackendDHE outDAE;
E. Complex g en Hmp .
i MOdehca_ 148 function dumpBackendDAE
=| = omcompiler 149 input BackendDAE.BackendDAE inBackendDAE;
3rdParty 150 input String heading:
commaon 151 - end dumpBackendDAE;
=]~ compiler 152
[=] © Backend 153 function dumpBackendDAEToModelica
ot Adj...mo 154 input BackendDAE.BackendDAE inBackendDAE; v
g& Bac...mo Search Browser F X
"& Bac..mo 2 '»'v'-' | History: |Mew Search -
p& Bac...mo
p& Bac...mo Scope: OMCompiler M
d‘i Bac..mo Search for: |dumpEackendDAEFoModeIica V|
p& Bac...mo
ﬂ& File Pattern: |*.mo V|
Bac...mo
g‘& Bac...mo Search
p& Bac...mo
p& Bac...mo

Figure 2.19: Start search in search browser

Ln: 153, Col: O tWeIcome Daﬁ Modeling a Plotting * Debugging

68 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

FeBR

g& OMEdit - OpenModelica Connection Editor

File Edit View Simulation

O X

FMI Export Debug OMSimulator

@O\e\e\ \..

Git Tools Help

TR <=-K-O9%98 > - &- 7~ #-

»

Libraries Browser 8 x ‘,ﬁ BackendDump.mo (x| g& BackendDump.interface.mo a
M‘ ¥ |Wrilable | C:/OPENMODELICAGIT /OpenMadelica/OMCompiler/Compiler/boat/build/BackendDump.interface.mo | h‘
Libraries A~ 150 L input String heading: &
HE OpenModelica 15 _ end dumpBackendDAE;
+ @ Modeli...erence 152))
1) Modeli..rvices 153[= function dumpBackendDAEToModelica
B Complex 154 input BackendDAE.BackendDAE inBackendDAE;:
77 Mode 155 input String suffix;
oaelica 56 - end dumpBackendDAEToModelica;
El OMCompiler
3rdParty function dumpEgSystem
common input BackendDAE.EgSystem inEgSystem;
[=] T compiler input String heading;
[=] © Backend end dumpEgSystem;
& Adj..mo 162 | v
Bac...mo Search Browser g x
‘,& Bac...mo s
G& Bac..mo o @ G History: |Pr01ecthMCompi\er:dumpBackendDAEI’oModel v|
Bac..mo Searched 1160 of 1160 files. Search Completed. 3 FOUND
‘,& Bac...mo
Cancel
ﬂ'& Bac...mo
ﬂ'& Bac...mo E| C,/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/boot/build/BackendDump.interface.mo ~
‘,& Bac...mo 153 function dumpBackendDAEToModelica
“& Bac...mo |156 end dumpBackendDAEToModelica;
|¢| C./OPENMODELICAGIT/OpenMaodelica/OMCompiler/Compiler/BackEnd/Backend Dump.mo v
Bac...mo
Bac..mo | Messages Browser Search Browser
Ln: 156, Col: 0 tWEﬂCOme o't Modeling 5 Flotting “ Debugging
Figure 2.20: Search Results
2.31. High DPI Settings 69

OpenModelica

User’s Guide, Release v1.18.0-38-ga767f054d8

o't OMEdit - OpenModelica Connection Editor - O >
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help
[LD Y / 3 —
TeBE r Boee \PHOTRE <= E- O%9E > - &- T~ ¥~
Libraries Browser X A BackendDump.mo (] o% Bsackendbump.interface.mo [X]
Filter Classes T | Writable |C:fDPENMDDEL'IEAG]'I',poenModelicafDMCompiler,fCompiler,fbaot,,’buildjliackendﬂump.interface.rno ‘ o ‘
Libraries ~ input String heading: ~
ﬂ OpenModelica end dumpBackendDAE;
Bﬂ Modeli...erence . .
FI) Modeii..rvices furllctlon dumpBackendDBEToModel}ca
@ Complex input BackendDAE.BackendDAE inBackendDAE;
1P% Model input String suffix;
oaelica end dumpBackendDAEToModelica;
El OMCompiler
3rdParty function SisiHeERERR=S
common input BackendDAE.EgSystem inEqSystem;
[=] © compiler 1 input String heading;
[=] © Backend 161 - end dumpEgSystem;
& Adj...mo 162 | v
ﬁ Bac..mo Search Browser 8 x
Bac...mo
L} e — - -
d& Bac..ma " G G History: |Project-OMCompiler: dumpEqSystem |
u‘& Bac...mo Searched 557 of 1160 Pr‘cqect-:)l'dComp\er' dumpBackendDAET oModelica 14 FOUND
ﬂ.& Bac...mo Project-OMCompiler: dumpEqSystem
d& Bac...mo
u‘fg Bac...mo EEI C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/boot/build/BackendDump.interface.mo ~
Bac...mo EE| C./OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/SynchronousFeatures.mo
uﬁ Bac...mo Ezl C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/Resolveloops.ma
u.& Bac...mo |:-| C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/OnRelaxation.mo ©
u‘& Bac..mo v | Messages Browser Search Browser
Ln: 158, Col: 23 tWe\come g& Modeling & Flotting & Debugging

Figure 2.21: Search History

70

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

All Apps Documents ~ Web More ¥

Best match
e . . . i
ﬂ-‘i OpenMadelica Connection Editor
e LS Run as administrator ﬁ"
Search work and web [0 Open file location . . .
P :nModelica Connection Editor

L omedit - See work and web results -3 Pin to Start App

O omedit idf <3 Pin to taskbar

Photos il Uninstall

OMEdit-plot-DualMassOscillator.png > v

Recent
B/ DualMassOscillator.mo

£ OMEdit

View

I Open - elect all

B Edit elect none

Security Details Previous Versions
General Shorteut Compatibility

) fthis program isn't working carrectly on this version of Windows, try
Name running the compatibility troubleshooter. High DPI settings for OMEdit.exe

Run compaiibility roubleshooter
BB Documentation Choose the high DPI settings for this program.
; How do | choase y seffings manually?

Program DPI

I pySimulator Compatibility mode [Use this setting to fix scaling problems for this program

[JRun this program in compatibility mode for instead of the one in Settings
B OpenModelica Connection Editor Open Advanced scaling seftings
U T A program might look blurry if the DPI for your main display

& OpenMadelica Notebook changes after you sign in to Windows. Windows can try to fix
this scaling problem for this program by using the DFI that's

Settings set for your main display when you apen this program.

&7 OpenModel e

Use the DPI that's set for my main display when

BE® OpenMadel e 8-bit (256) color Isigned in to Windows ~

& OpenModelica Website Run in 640 x 480 screen resolution Learn more
[Disable fullscreen optimizations

e Uninstall OpenModelica ["]Run this program as an administrator BN TS
7] verride high DI scaling behavior.

¥ This PC Scaling performed by:

] Register this program for restart

S [JUse legacy display ICC color management AT

. Change high DPI settings
A Linux

8items | 1item selected 1.95KB |

Cancel

‘y Change settings for all users

Cancel

Figure 2.23: Change high DPI settings for OMEdit.exe

2.31. High DPI Settings 71

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

72 Chapter 2. OMEdit — OpenModelica Connection Editor

CHAPTER
THREE

2D PLOTTING

This chapter covers the 2D plotting available in OpenModelica via OMNotebook, OMShell and command line
script. The plotting is based on OMPIlot application. See also OMEdit Data Reconciliation.

3.1 Example

class HelloWorld

Real x(start = 1, fixed = true);
parameter Real a = 1;

equation
der (x) = — a * x;

end HelloWorld;

To create a simple time plot the above model HelloWorld is simulated. To reduce the amount of simulation data in
this example the number of intervals is limited with the argument numberOflIntervals=5. The simulation is started
with the command below.

>>> simulate (HelloWorld, outputFormat="csv", startTime=0, stopTime=4, |
—numberOfIntervals=5)
record SimulationResult

resultFile = "«DOCHOME»/HelloWorld_res.csv",

simulationOptions = "startTime = 0.0, stopTime = 4.0, numberOfIntervals = 5, |,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'HelloWorld', options = '',
— outputFormat = 'csv', variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.001068324,
timeBackend = 0.003109723,
timeSimCode = 0.0009963190000000001,
timeTemplates = 0.012822731,
timeCompile = 0.416569055,
timeSimulation = 0.016643417,
timeTotal = 0.4513326489999999

end SimulationResult;

When the simulation is finished the file HelloWorld_res.csv contains the simulation data:

Listing 3.1: HelloWorld_res.csv

"time", "X", "der(x) n

0,1,-1
0.8,0.4493289092712475,-0.4493289092712475
1.6,0.2018973974273906,-0.2018973974273906
2.4,0.09071896372718975,-0.09071896372718975
3.2,0.04076293845066793,-0.04076293845066793

(continues on next page)

73

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

4,0.01831609502171534,-0.01831609502171534
4,0.01831609502171534,-0.01831609502171534

Diagrams are now created with the new OMPlot program by using the following plot command:

0.8

0.6

04
03
0.2

0.1

0 1 1 1 1 1
0 0.5 1 1.5 2 2.5

Figure 3.1: Simple 2D plot of the HelloWorld example.

By re-simulating and saving results at many more points, for example using the default 500 intervals, a much
smoother plot can be obtained. Note that the default solver method dassl has more internal points than the output
points in the initial plot. The results are identical, except the detailed plot has a smoother curve.

>>> (O==system("./HelloWorld -override stepSize=0.008")
true

>>> res:=strtok (readFile ("HelloWorld res.csv"), "\n");
>>> res[end]
"4,0.01831609502171534,-0.01831609502171534"

0.8

0.6

0.4

03

0.1

Figure 3.2: Simple 2D plot of the HelloWorld example with a larger number of output points.

74

Chapter 3. 2D Plotting

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

3.2 Plot Command Interface

Plot command have a number of optional arguments to further customize the the resulting diagram.

>>> list (OpenModelica.Scripting.plot, interfaceOnly=true)
"function plot
input VariableNames vars \"The variables you want to plot\";
input Boolean externalWindow = false \"Opens the plot in a new plot window\";
input String fileName = \"<default>\" \"The filename containing the variables.
—<default> will read the last simulation result\";
input String title = \"\" \"This text will be used as the diagram title.\";
input String grid = \"simple\" \"Sets the grid for the plot i.e simple, detailed,
< none.\";

input Boolean logX = false \"Determines whether or not the horizontal axis is_
—logarithmically scaled.\";
input Boolean logY = false \"Determines whether or not the vertical axis is_

—logarithmically scaled.\";
input String xLabel = \"time\" \"This text will be used as the horizontal label_
—in the diagram.\";

input String yLabel = \"\" \"This text will be used as the vertical label in the_
—~diagram.\";

input Real xRange([2] = {0.0, 0.0} \"Determines the horizontal interval that is,
—visible in the diagram. {0,0} will select a suitable range.\";
input Real yRange[2] = {0.0, 0.0} \"Determines the vertical interval that is,,

—visible in the diagram. {0,0} will select a suitable range.\";

input Real curveWidth = 1.0 \"Sets the width of the curve.\";

input Integer curveStyle = 1 \"Sets the style of the curve. SolidLine=1,
—DashLine=2, DotLine=3, DashDotLine=4, DashDotDotLine=5, Sticks=6, Steps=7.\";

input String legendPosition = \"top\" \"Sets the POSITION of the legend i.e left,
— right, top, bottom, none.\";

input String footer = \"\" \"This text will be used as the diagram footer.\";

input Boolean autoScale = true \"Use auto scale while plotting.\";

input Boolean forceOMPlot = false \"if true launches OMPlot and doesn't call
—callback function even if it is defined.\";

output Boolean success \"Returns true on success\";
end plot;"

3.2. Plot Command Interface 75

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

76 Chapter 3. 2D Plotting

CHAPTER
FOUR

SOLVING MODELICA MODELS

4.1 Integration Methods

By default OpenModelica transforms a Modelica model into an ODE representation to perform a simulation by
using numerical integration methods. This section contains additional information about the different integration
methods in OpenModelica. They can be selected by the method parameter of the simulate command or the -s

simflag.
The different methods are also called solver and can be distinguished by their characteristic:
* explicit vs. implicit
* order
* step size control
* multi step

A good introduction on this topic may be found in [CK06] and a more mathematical approach can be found in
[HNorsettW93].

4.1.1 DASSL

DASSL is the default solver in OpenModelica, because of a severals reasons. It is an implicit, higher order,
multi-step solver with a step-size control and with these properties it is quite stable for a wide range of models.
Furthermore it has a mature source code, which was originally developed in the eighties an initial description may
be found in [Pet82].

This solver is based on backward differentiation formula (BDF), which is a family of implicit methods for numer-
ical integration. The used implementation is called DASPK?2.0 (see') and it is translated automatically to C by f2¢
(see?).

The following simulation flags can be used to adjust the behavior of the solver for specific simulation problems:
Jjacobian, noRootFinding, noRestart, initialStepSize, maxStepSize, maxIntegrationOrder, noEquidistantTimeGrid.

4.1.2 IDA

The IDA solver is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic equa-
tion Solvers [HBG+05]. The implementation is based on DASPK with an extended linear solver interface, which
includes an interface to the high performance sparse linear solver KLU [DN10].

The simulation flags of DASSL are also valid for the IDA solver and furthermore it has the following IDA specific
flags: idaLsS, idaMaxNonLinlters, idaMaxConvFails, idaNonLinConvCoef, idaMaxErrorTestFails.

I DASPK Webpage
2 Cdaskr source

77

https://cse.cs.ucsb.edu/software
https://github.com/wibraun/Cdaskr

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

4.1.3 CVODE

The CVODE solver is part of sundials: SUite of Nonlinear and DIfferential/ALgebraic equation Solvers
[HBG+05]. CVODE solves initial value problems for ordinary differential equation (ODE) systems with variable-
order, variable-step multistep methods.

In OpenModelica, CVODE uses a combination of Backward Differentiation Formulas (varying order 1 to 5) as
linear multi-step method and a modified Newton iteration with fixed Jacobian as non-linear solver per default.
This setting is advised for stiff problems which are very common for Modelica models. For non-stiff problems
an combination of an Adams-Moulton formula (varying order 1 to 12) as linear multi-step method together with a
fixed-point iteration as non-linear solver method can be choosen.

Both non-linear solver methods are internal functions of CVODE and use its internal direct dense linear solver
CVDense. For the Jacobian of the ODE CVODE will use its internal dense difference quotient approximation.

CVODE has the following solver specific flags: cvodeNonlinearSolverlteration, cvodeLinearMultistepMethod.

4.1.4 Basic Explicit Solvers

The basic explicit solvers are performing with a fixed step-size and differ only in the integration order. The
step-size is based on the numberOfIntervals, the startTime and stopTime parameters in the simulate command:

. stopTime — startTime
stepSize ~

numberOflntervals
e euler - order 1

¢ heun - order 2

* rungekutta - order 4

4.1.5 Basic Implicit Solvers

The basic implicit solvers are all based on the non-linear solver KINSOL from the SUNDIALS suite. The un-
derlining linear solver can be modified with the simflag -impRKLS. The step-size is determined as for the basic
explicit solvers.

 impeuler - order 1
* trapezoid - order 2

» imprungekutta - Based on Radau ITA and Lobatto IITA defined by its Butcher tableau where the order can
be adjusted by -impRKorder.

4.1.6 Experimental Solvers

The following solvers are marked as experimental, mostly because they are till now not tested very well.

* cvode - experimental implementation of SUNDIALS CVODE solver - BDF or Adams-Moulton method -
step size control, order 1-12

* rungekuttaSsc - Runge-Kutta based on Novikov (2016) - explicit, step-size control, order 4-5
* irksco - Own developed Runge-Kutta solver - implicit, step-size control, order 1-2
* symSolver - Symbolic inline solver (requires --symSolver) - fixed step-size, order 1

* symSolverSsc - Symbolic implicit inline Euler with step-size control (requires --symSolver) - step-size
control, order 1-2

* gss - A QSS solver

78 Chapter 4. Solving Modelica Models

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

4.2 DAE Mode Simulation

Beside the default ODE simulation, OpenModelica is able to simulate models in DAE mode. The DAE mode is
enabled by the flag --daeMode. In general the whole equation system of a model is passed to the DAE integrator,
including all algebraic loops. This reduces the amount of work that needs to be done in the post optimization
phase of the OpenModelica backend. Thus models with large algebraic loops might compile faster in DAE mode.

Once a model is compiled in DAE mode the simulation can be only performed with SUNDIALS/IDA integrator
and with enabled -daeMode simulation flag. Both are enabled automatically by default, when a simulation run is
started.

4.3 Initialization

To simulate an ODE representation of an Modelica model with one of the methods shown in Integration Methods
a valid initial state is needed. Equations from an initial equation or initial algorithm block define a desired initial
system.

4.3.1 Choosing start values
Only non-linear iteration variables in non-linear strong components require start values. All other start values will
have no influence on convergence of the initial system.

Use -d=initialization to show additional information from the initialization process. In OMEdit Tools->Options-
>Simulation->OMCFlags, in OMNotebook call setCommandLineOptions("-d=initialization")

model piston
Modelica.Mechanics.MultiBody.Parts.Fixed fixedl annotation (
Placement (visible = true, transformation(origin = {-80, 70}, extent = {{-10, -
—10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Parts.Body bodyl(m = 1) annotation (

Placement (visible = true, transformation(origin = {30, 70}, extent = {{-10, -
10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Parts.FixedTranslation fixedTranslationl(r = {0.3,_
—0, 0}) annotation (
Placement (visible = true, transformation(origin = {-10, 70}, extent = {{-10, -
10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Parts.FixedTranslation fixedTranslation2(r = {0.8,
—~0, 0}) annotation (
Placement (visible = true, transformation(origin = {10, 20}, extent = {{-10,
10}, {10, 10}}, rotation = -90)));
Modelica.Mechanics.MultiBody.Parts.Fixed fixed2 (animation = false, r = {1.1, O,
—~0}) annotation (
Placement (visible = true, transformation(origin = {70, -60}, extent = {{-10,

10}, {10, 10}}, rotation = 180)));
Modelica.Mechanics.MultiBody.Parts.Body body2 (m = 1) annotation (
Placement (visible = true, transformation(origin = {30, -30}, extent
10}, {10, 10}}, rotation = 0)));
inner Modelica.Mechanics.MultiBody.World world annotation (
Placement (visible = true, transformation(origin = {-70, -50}, extent = {{-10, -
10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Joints.Prismatic prismatic(animation = true)
—annotation (
Placement (visible = true, transformation(origin = {30, -60}, extent = {{-10, -
10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Joints.RevolutePlanarLoopConstraint revolutePlanar,
—annotation (
Placement (visible = true, transformation(origin = {-50, 70}, extent = {{-10,
—~10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Joints.Revolute revolutel (a(fixed = false),

{({-10, -

= = 7 = continues on next page

4.2. DAE Mode Simulation 79

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

fixed1
fixedTranslation1
a b
| I
r={0.3, 0, 0} m
revolutePlanar m=1 kg
r={0,0,0} m 5
u o]
o
o @
=
= X
b, D
~ ¥ o
=N =
o o
=l 2
o o
3 | s | g
N
3
1
fpan)
o
o
o
world
Y

r={1.1, 0,0} m

fixed2

Figure 4.1: piston.mo

80 Chapter 4. Solving Modelica Models

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

Placement (visible = true, transformation(origin = {10, 48}, extent = {{-10, -
—10}, {10, 10}}, rotation = -90)));
Modelica.Mechanics.MultiBody.Joints.Revolute revolute2 annotation (
Placement (visible = true, transformation(origin = {10, -10}, extent = {{-10,
—10}, {10, 10}}, rotation = -90)));
equation

connect (prismatic.frame_b, fixed2.frame_b) annotation (
Line (points = {{40, -60}, {60, -60}, {60, -60}, {60, -60}}, color = {95, 95

—=95}));
connect (fixedl.frame_b, revolutePlanar.frame_a) annotation (
Line (points = {{-70, 70}, {-60, 70}, {-60, 70}, {-60, 70}}));
connect (revolutePlanar. frame_b, fixedTranslationl.frame_a) annotation
Line (points = {{-40, 70}, {-20, 70}, {-20, 70}, {-20, 70}}, color = {95, 95,

—95}));
connect (fixedTranslationl.frame_b, revolutel.frame_a) annotation (
Line (points = {{0, 70}, {10, 70}, {10, 58}, {10, 58}}, color = {95, 95, 95}));
connect (revolutel.frame_b, fixedTranslation2.frame_a) annotation (
Line (points = {{10, 38}, {10, 38}, {10, 30}, {10, 30}}, color = {95, 95, 95}));
connect (revolute2.frame_b, prismatic.frame_a) annotation/
Line (points = {{10, -20}, {10, -20}, {10, -60}, {20, -60}, {20, -60}}));
connect (revolute2.frame_b, body2.frame_a) annotation (
Line (points = {{10, -20}, {10, -20}, {10, -30}, {20, -30}, {20, -30}}, color =
—~{95, 95, 95}));
connect (revolute2.frame_a, fixedTranslation?2.frame_b) annotation (
Line (points = {{10, 0}, {10, 0O}, {10, 10}, {10, 10}}, color = {95, 95, 95}));
connect (fixedTranslationl.frame_b, bodyl.frame_a) annotation (
Line (points = {{0, 70}, {18, 70}, {18, 70}, {20, 70}}));
end piston;

>>> loadModel (Modelica);
>>> setCommandLineOptions ("-d=initialization");
>>> buildModel (piston);
"[/var/lib/jenkinsl/ws/OpenModelica_maintenance_v1.18/build/lib/omlibrary/Modelica,,
—4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:,
—Parameter body2.r_CM[3] has no value, and is fixed during initialization,
— (fixed=true), using available start value (start=0.0) as default wvalue.
[/var/lib/jenkinsl/ws/OpenModelica_maintenance_v1.18/build/lib/omlibrary/Modelica,,
—4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter body2.r_CM[2] has no value, and is fixed during initialization,
— (fixed=true), using available start value (start=0.0) as default value.
[/var/lib/Jjenkinsl/ws/OpenModelica_maintenance_v1.18/build/lib/omlibrary/Modelica,,
—4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:,
—Parameter body2.r_CM[1l] has no value, and is fixed during initialization,
— (fixed=true), using available start value (start=0.0) as default wvalue.
[/var/lib/jenkinsl/ws/OpenModelica_maintenance_v1.18/build/lib/omlibrary/Modelica,,
—4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:,,
—Parameter bodyl.r_CM[3] has no value, and is fixed during initialization,
— (fixed=true), using available start value (start=0.0) as default value.
[/var/lib/jenkinsl/ws/OpenModelica_maintenance_v1.18/build/lib/omlibrary/Modelica,,
—4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter bodyl.r CM[2] has no value, and is fixed during initialization,
— (fixed=true), using available start value (start=0.0) as default value.
[/var/lib/jenkinsl/ws/OpenModelica_maintenance_vl1.18/build/lib/omlibrary/Modelica,,
—4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:,
—Parameter bodyl.r_ CM[1l] has no value, and is fixed during initialization,
— (fixed=true), using available start value (start=0.0) as default value.
Warning: Assuming fixed start value for the following 2 variables:
SSTATESET1 .x:VARIABLE (start = /*Realx/ (SSTATESET1.A[1]) * SSTART.
—revolutel.w + /*Realx/ (SSTATESET1.A[2]) % S$SSTART.revolute2.w fixed = true)
—type: Real
SSTATESET2 .x:VARIABLE (start = /*Realx/ (SSTATESET2.A[1]) * SSTART.

—revolutel.phi T /*Real*/ (SSTATESETZ.A[Z]) * SSTARI.revoluteZ.phi T ifcontinuesonrexipage)
—type: Real

[

4.3. Initialization 81

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

Note how OpenModelica will inform the user about relevant and irrelevant start values for this model and for
which variables a fixed default start value is assumed. The model has four joints but only one degree of freedom,
so one of the joints revolutePlanar or prismatic must be initialized.

So, initializing phi and w of revolutePlanar will give a sensible start system.

model pistonInitialize

extends piston(revolutel.phi.fixed = true, revolutel.phi.start = -1.
—221730476396031, revolutel.w.fixed = true, revolutel.w.start = 5);
equation

end pistonlInitialize;

>>> gsetCommandLineOptions ("-d=initialization");

>>> simulate (pistonInitialize, stopTime=2.0);
"[/var/lib/jenkinsl/ws/OpenModelica_maintenance_v1.18/build/lib/omlibrary/Modelica,,
—4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter body2.r_ CM[3] has no value, and is fixed during initialization,

— (fixed=true), using available start value (start=0.0) as default value.
[/var/lib/jenkinsl/ws/OpenModelica_maintenance_vl1.18/build/lib/omlibrary/Modelica,,
—4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning: |,
—Parameter body2.r_CM[2] has no value, and is fixed during initialization,,

— (fixed=true), using available start value (start=0.0) as default value.
[/var/lib/jenkinsl/ws/OpenModelica_maintenance_vl1.18/build/lib/omlibrary/Modelica,,
—4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter body2.r_CM[1l] has no value, and is fixed during initialization,,

— (fixed=true), using available start value (start=0.0) as default value.
[/var/lib/jenkinsl/ws/OpenModelica_maintenance_vl1.18/build/lib/omlibrary/Modelica,,
—4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter bodyl.r CM[3] has no value, and is fixed during initialization

— (fixed=true), using available start value (start=0.0) as default wvalue.
[/var/lib/jenkinsl/ws/OpenModelica_maintenance_vl1.18/build/lib/omlibrary/Modelica,,
—4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter bodyl.r_CM[2] has no value, and is fixed during initialization,,

— (fixed=true), using available start value (start=0.0) as default value.
[/var/lib/jenkinsl/ws/OpenModelica_maintenance_vl1.18/build/lib/omlibrary/Modelica,,
—4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] Warning:
—Parameter bodyl.r_CM[1l] has no value, and is fixed during initialization,,

— (fixed=true), using available start value (start=0.0) as default wvalue.

n

4.3.2 Homotopy Method

For complex start conditions OpenModelica can have trouble finding a solution for the initialization problem with
the default Newton method.

Modelica offers the homotopy operator’ to formulate actual and simplified expression for equations, with homo-
topy parameter A\ going from O to 1:

actual - A + simplified - (1 — X).

OpenModelica has different solvers available for non-linear systems. Initializing with homotopy on the first try
is default if a homotopy operator is used. It can be switched off with noHomotopyOnFirstTry. For a general
overview see [SCO+11], for details on the implementation in OpenModelica see [OB13].

The homotopy methods distinguish between local and global methods meaning, if A affects the entire initialization
system or only local strong connected components. In addition the homotopy methods can use equidistant A or
and adaptive A in [0,1].

3 Modelica Association, Modelica® - A Unified Object-Oriented Language for Systems Modeling Language Specification - Version 3.4,
2017 - Section 3.7.2.4

82 Chapter 4. Solving Modelica Models

https://specification.modelica.org/maint/3.4/Ch3.html#homotopy
https://specification.modelica.org/maint/3.4/Ch3.html#homotopy

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

1.1 T T

T
body2.frame,.rg[1] —

0.8
0.7

0.6

Figure 4.2: Vertical movement of mass body2.

Default order of methods tried to solve initialization system
If there is no homotopy in the model
» Solve without homotopy method.
If there is homotopy in the model or solving without homotopy failed
* Try global homotopy approach with equidistant \.
The default homotopy method will do three global equidistant steps from O to 1 to solve the initialization system.

Several compiler and simulation flags influence initialization with homotopy: --homotopyApproach,
-homAdaptBend, -homBacktraceStrategy, -homHEps, -homMaxLambdaSteps, -homMaxNewtonSteps,
-homMaxTries, -homNegStartDir, -homotopyOnkFirstTry, -homTauDecFac, -homTauDecFacPredictor, -
homTaulncFac, -homTaulncThreshold, -homTauMax, -homTauMin, -homTauStart, -ils.

4.4 Algebraic Solvers

If the ODE system contains equations that need to be solved together, so called algebraic loops, OpenModelica
can use a variety of different linear and non-linear methods to solve the equation system during simulation.

For the C runtime the linear solver can be set with -/s and the non-linear solver with -n/s. There are dense and
sparse solver available.

Linear solvers

* default : Lapack with totalpivot as fallback [ABB+99]

¢ lapack : Non-Sparse LU factorization using [ABB+99]

e [is : Iterative linear solver [Nis10]

* klu : Sparse LU factorization [Nat05]

* umfpack : Sparse unsymmetric multifrontal LU factorization [Dav(04]

* totalpivot : Total pivoting LU factorization for underdetermined systems
Non-linear solvers

* hybrid : Modified Powell hybrid method from MINPACK [DJS96]

¢ kinsol : Combination of Newton-Krylov, Picard and fixed-point solver [T+98]

4.4. Algebraic Solvers 83

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

* newton : Newton-Raphson method [CK06]
* mixed : Homotopy with hybrid as fallback [Kel78] [BBOR15]
* homotopy : Damped Newton solver with fixed-point solver and Newton homotopy solver as fallbacks

In addition, there are further optional settings for the algebraic solvers available. A few of them are listed in the
following:

General: -nlsLS
Newton: -newton -newtonFTol -newtonMaxStepFactor -newtonXTol
Sparse solver: -nlssMinSize -nlssMaxDensity

Enable logging: -lv=LOG_LS -lv=LOG_LS_V -lv=LOG_NLS -lv=LOG_NLS_V

4.4.1 References

84 Chapter 4. Solving Modelica Models

CHAPTER
FIVE

DEBUGGING

There are two main ways to debug Modelica code, the transformations browser, which shows the transformations
OpenModelica performs on the equations. There is also a debugger for debugging of algorithm sections and
functions.

5.1 The Equation-based Debugger

This section gives a short description how to get started using the equation-based debugger in OMEdit.

5.1.1 Enable Tracing Symbolic Transformations

This enables tracing symbolic transformations of equations. It is optional but strongly recommended in order to
fully use the debugger. The compilation time overhead from having this tracing on is less than 1%, however, in
addition to that, some time is needed for the system to write the xml file containing the transformation tracing
information.

Enable -d=infoXmlOperations in Tools->Options->Simulation (see section Simulation) OR alternatively click on
the checkbox Generate operations in the info xml in Tools->Options->Debugger (see section Debugger) which
performs the same thing.

This adds all the transformations performed by OpenModelica on the equations and variables stored in the
model_info.xml file. This is necessary for the debugger to be able to show the whole path from the source
equation(s) to the position of the bug.

5.1.2 Load a Model to Debug

Load an interesting model. We will use the package Debugging.mo since it contains suitable, broken models to
demonstrate common errors.

5.1.3 Simulate and Start the Debugger

Select and simulate the model as usual. For example, if using the Debugging package, select the model Debug-
ging.Chattering.ChatteringEvents1. If there is an error, you will get a clickable link that starts the debugger. If the
user interface is unresponsive or the running simulation uses too much processing power, click cancel simulation
first.

85

https://github.com/OpenModelica/OMCompiler/blob/master/Examples/Debugging.mo

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Running Simulation of Debugging.C hattering.C hatteringEvents1.
Please wait for a while.

IRNRNRNNNNNNNNNNRNEE

Cancel Simulation

™ OMEdit - Debugging.Chattering.ChatteringEvents1 Simulation Output - 0O &

Output Compilation]

Jtop/OpenModel ica /OMEd] ¢ /Debugging . Chattering . ChatteringEventsl -

port=50212 -logFormat=xml -w -1wv=LOG_ STATS
stdout | info | Chattering detected arcund time

0.500000005..0.500000995001 (100 state events in a row with a total time
delta less than the step size 0.002). This can be a performance
bottleneck. Use -1v LOG EVENTS for more information. The zZero-crossing

was: 2 > 0.0 D;e%g more

Figure 5.1: Simulating the model.

86 Chapter 5. Debugging

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

5.1.4 Use the Transformation Debugger for Browsing

The debugger opens on the equation where the error was found. You can browse through the dependencies
(variables that are defined by the equation, or the equation is dependent on), and similar for variables. The
equations and variables form a bipartite graph that you can walk.

If the -d=infoXmlOperations was used or you clicked the “generate operations” button, the operations performed
on the equations and variables can be viewed. In the example package, there are not a lot of operations because
the models are small.

Try some larger models, e.g. in the MultiBody library or some other library, to see more operations with several
transformation steps between different versions of the relevant equation(s). If you do not trigger any errors in a
model, you can still open the debugger, using File->Open Transformations File (model_info.json).

OMEdit - Transformational Debugger

& | /tmp/Openmodelica_marsj/OMEdit/Debugging.Chattering.ChatteringEvents1_infoxml

Variables | [Source Browser |
Variables Browser |[Defined In Equations | [Used In Equations | /home/marsj/trunk/testsuite/openmodelica,
Find Variables |inc» Type Equation Inc * Type Equation 1 within ;

"] Case Sensitive Regular Expression = |:2 initial (assignmen...0 else 1.0 |:3 initial (assignment)y=2.0%z £ Eiﬁﬁg?;eggﬂﬂsggn;Tﬁt

Expand All Collapse All 5 regular (assignmen...0 else 1.0 6 regular (assignment)y=2.0%z declarative models"

Variables ¥ Comment Line Location 2 package Chattering "Models
X 7 fhom...q. with chattering behaviour™
v 8 /hom...g. 5 model ChatteringEventsl

6 "Exhibits chattering
= 9 /hom...g. after t = 0.5, with
[variable Operations generated events”
: 7 Real x(start=1
Operations '
B fixed=true);
8 Real y;
Real z;
16 equation
11 z = if x > @ then -1
else 1;
12 y = 2%z;
13 der(x) =y;
(j v 14 annotation

Equations | (Documentation(info="<html>

Eauati B Defi) a 15 <p>After t = 8.5, chattering
quations Browser | [Defines | [Depends | Lakes place, due to the

Inc v+ Type Equation Variable ¥ | Variable M discontinuity in the right
1 initial (assignment) x=1.0 z Lx handtnde ?f the first

- . equation.</p>
2 !n!t!al (ass!gnment‘...o else 1.0 16 <p>Chattering can be
3 initial (assignment)y=2.0%z detected because lots of
4 initial (assignment) der(x) =y tightly spaced events are
5 & : . 0else 1.0 generated. The feedback to
e {assgnmen . the user should allow to
6 reqular (assignment)y=2.0%z identify the equation from
7 reqular (assignment) der(x) =y = = which the zero crossing
[Equation Operations | function that generates the
Operations events originates.</p>

17 </html=>"),
experiment (StopTime=1});

tsolved: z=if x> 0.0 then-1.0 else 1.0
18 end ChatteringEventsl;

original: z = if x > 0 then -1 else 1; => flattened: z = if x > 0.0 then -1.0 else 1.0;

24 model ChatteringEvents2
21 "Exhibits chattering
after t = 0.422, with

nenerated events" -

Figure 5.2: Transfomations Browser.

5.1. The Equation-based Debugger 87

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

5.2 The Algorithmic Debugger

This section gives a short description how to get started using the algorithmic debugger in OMEdit. See section
Simulation for further details of debugger options.

5.2.1 Adding Breakpoints

There are two ways to add the breakpoints,

* Click directly on the line number in Text View, a red circle is created indicating a breakpoint as shown in
Figure 5.3.

* Open the Algorithmic Debugger window and add a breakpoint using the right click menu of Breakpoints
Browser window.

g |
gi OMEdit - OpenModelica Connection Editor - [SimulationModel] l = Q
B Fle Edit View Simulaion FMI Export Tools Help NEE
FEHH 00 BQAQ WemNeEN[EQ9reS 8- 9 X »
Libraries Browser g X |II-I aﬁﬂ |Wriheab|e |Mode| ‘ Text View ‘ C:/Usersfadeas31/.. imulationModel. mo ‘ Line: 1, Col: 0 | i‘
L 1 model SimulationModel
+ Complex Beal =x=(start = 1);
1 7 Modelica Real y(start = 1);
o) algorithm
* ﬂ ModelicaReference [] x = getValueMulcipliedByTwo (x) ;
+ || ModelicaServices ¥ = X;
+ EI OpenModelica end SimulationModel;

|:|E| SimulationMaodel

getValueMultipliedByTwo

¥:-96.28 ¥: 100.83 €L welcome | o4 Modeling Plotting

Figure 5.3: Adding breakpoint in Text View.

5.2.2 Start the Algorithmic Debugger

You should add breakpoints before starting the debugger because sometimes the simulation finishes quickly and
you won’t get any chance to add the breakpoints.

There are four ways to start the debugger,
* Open the Simulation Setup and click on Launch Algorithmic Debugger before pressing Simulate.
 Right click the model in Libraries Browser and select Simulate with Algorithmic Debugger.
* Open the Algorithmic Debugger window and from menu select Debug-> Debug Configurations.

* Open the Algorithmic Debugger window and from menu select Debug-> Attach to Running Process.

88 Chapter 5. Debugging

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

5.2.3 Debug Configurations

If you already have a simulation executable with debugging symbols outside of OMEdit then you can use the
Debug->Debug Configurations option to load it.

The debugger also supports MetaModelica data structures so one can debug omc executable. Select omc exe-
cutable as program and write the name of the mos script file in Arguments.

.)
@& OMEdit - Debug Cenfigurations ﬂ

bk,
& New_configurationl Mame: |New_-:nnﬁguratinn1 |
Program: || | | Browse...
Working Directory: | | | Browse...
GOE Path: |C:,.’DMDEV,.’touIS,.’mingw,.'hin,.’gdb.E}(E | | Browse...
Arguments:
[Apply] [Reset]
[Save] [Saue &Debug] [Cancel]

Figure 5.4: Debug Configurations.

5.2.4 Attach to Running Process

If you already have a running simulation executable with debugging symbols outside of OMEdit then you can
use the Debug->Attach to Running Process option to attach the debugger with it. Figure 5.5 shows the Attach
to Running Process dialog. The dialog shows the list of processes running on the machine. The user selects the
program that he/she wish to debug. OMEdit debugger attaches to the process.

5.2. The Algorithmic Debugger 89

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

i ™
@& OMEdit - Attach to Running Pracess u

Attach to Process ID: |
| Filter Processes |
Process ID Mame : d
8760 AAM Updates Notifier.exe |—|

I 2164 AESTSr04.exe
2288 AppleMobileDeviceService.exe
3896 BT5tackServer.exe
1612 BT Tray.exe
7696 BluetocothHeadsetProxy.exe
7972 CCC.exe
7580 C55.55erviceManager.exe
6628 CamRecorder.exe
4960 CcrmExec.exe
588 CrRcService.exe
628 ConversionService.exe
1744 Cenceridae o
OK Refresh] [Cancel

Figure 5.5: Attach to Running Process.

90 Chapter 5. Debugging

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

5.2.5 Using the Algorithmic Debugger Window

Figure 5.6 shows the Algorithmic Debugger window. The window contains the following browsers,

* Stack Frames Browser — shows the list of frames. It contains the program context buttons like resume,
interrupt, exit, step over, step in, step return. It also contains a threads drop down which allows switching

between different threads.

* BreakPoints Browser — shows the list of breakpoints. Allows adding/editing/removing breakpoints.

* Locals Browser — Shows the list of local variables with values. Select the variable and the value will be
shown in the bottom right window. This is just for convenience because some variables might have long

values.

* Debugger CLI — shows the commands sent to gdb and their responses. This is for advanced users who want

to have more control of the debugger. It allows sending commands to gdb.

* Output Browser — shows the output of the debugged executable.

&% OMEdit - OpenModelica Connection Editor - [getValueMultipliedByTwo] — O *
E File Edit View Simulation Debug OMSimulator Git Tools Help - 8 X
W E * = 5/995 9 - &
JeB8R Heee \oHOTR < =K B % -
Libraries Browser & X Stack Frames Browser & X | BreakPoints Browser & X Locals Browser g X
Tinm ||'E R |Threads: 1 - |Sbo_._d1 Line File MName Type Value
)) ; ®5 C:/Users/ade...liedByTwo.mo inValue Real 0
L ~
Libraries Functon lne |Fe outValue Real 4.94065...5
SimulationModel [getValueMultipliedByTwo 5 C/Use.. Two
- F—Y - 3 an SUser. Mo ¥
getValueM...liedByTwo . SimulationM...aFunction 2 90 C: U_EI...H)C
|II-I oﬁ E o |Wr1'13ble |Funcﬁon |Te)rt\|"|ew |get\|‘alueMth'p|iedByTwo C:Nsers!a...edByTwo.mc| |
function getValusMultipliedByTwo
input Real inValue;
output EReal outValue;
algorithm
[I outValue := inValue * 2;
end getValusMultipliedByTwo;
£ >
a
Messages Browser & X OutputBrowser g X
all MNotifications Warnings Errors
Debugger CLI Qutput Browser
Ln: 5, Col: 0 t Welcome oﬂ Modeling ﬁ Flotting o Debugging
Figure 5.6: Algorithmic Debugger.
5.2. The Algorithmic Debugger 91

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

92 Chapter 5. Debugging

CHAPTER
SIX

PORTING MODELICA LIBRARIES TO OPENMODELICA

One of the goals of OpenModelica is to provide a full, no-compromise implementation of the latest version of the
Modelica Language Specification, released by the non-profit Modelica Association. This means that a main re-
quirement for a Modelica library to work in OpenModelica is to be fully compliant to the Language Specification.

Libraries and models developed with other Modelica tools may contain some code which is not valid according to
the current language specification, but still accepted by that tool, e.g. to support legacy code of their customers. In
order to use those libraries and models in OpenModelica, one needs to make sure that such code is replaced by a
valid one. Note that getting rid of invalid Modelica code does not make the library only usable in OpenModelica;
to the contrary, doing that is the best guarantee that the library will be usable both with the original tool used for
development and with OpenModelica, as well as with any other present or future Modelica tool that follows the
standard strictly.

The first recommendation is to use any flag or option of the tool that was originally used to develop the library, that
allows to check for strict compliance to the language specification. For example, Dymola features a translation
option 'Pedantic mode for checking Modelica semantics' that issues an error if non-standard constructs are used.

For your convenience, here you can find a list of commonly reported issues.

6.1 Mapping of the library on the file system

Packages can be mapped onto individual .mo files or onto hierarchical directory structures on the file system,
according to the rules set forth in Section 13.4. of the language specification. The file encoding must be UTF-
8; the use of a BOM at the beginning of the file is deprecated and preferably avoided. If there are non-ASCII
characters in the comments or in the documentation of your library, make sure that the file is encoded as UTF-8.

If a directory-based representation is chosen, each .mo file must start with a within clause, and each directory
should contain a package.order file that lists all the classes and constants defined as separate files in that directory.

When using revision control systems such as GIT or SVN, if the library is stored in a directory structure, it is
recommended to include the top-level directory (that must have the same name as the top-level package) in the
repository itself, to avoid problems in case the repository is cloned locally on a directory that doesn't have the right
name.

The top-level directory name, or the single .mo file containing the entire package, should be named exactly as the
package (e.g. Modelica), possibly followed by a space and by the version number (e.g. Modelica 3.2.3).

6.2 Modifiers for arrays

According to the rules set forth in Section 7.2.5 of the language specification, when instantiating arrays of com-
ponents, modifier values should be arrays of the same size of the component array, unless the each prefix is intro-
duced, in which case the scalar modifier values is applied to all the elements of the array. Thus, if MyComponent
has a Real parameter p, these are all valid declarations

parameter Real g = {0, 1, 2};
MyComponent ma[3] (p = {10, 20, 30});

(continues on next page)

93

https://specification.modelica.org
https://www.modelica.org
https://specification.modelica.org/maint/3.5/packages.html#mapping-package-class-structures-to-a-hierarchical-file-system
https://specification.modelica.org/maint/3.5/inheritance-modification-and-redeclaration.html#modifiers-for-array-elements

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

MyComponent mb[3] (p = q);
MyComponent mb[3] (each p = 10);

while these are not

parameter Real r = 4
MyComponent ma[3] (p
MyComponent mb[3] (p

I~

r);
20);

In most cases, the problem is solved by simply adding the each keyword where appropriate.

6.3 Access to conditional components

According to Section 4.4.5 of the language specification, "A component declared with a condition-attribute can
only be modified and/or used in connections". When dealing, e.g., with conditional input connectors, one can use
the following patterns:

model M
parameter Boolean activateInl = true;
parameter Boolean activateIn2 = true;

Modelica.Blocks.Interfaces.ReallInput ul_in if activatelInl;
Modelica.Blocks.Interfaces.RealInput u2_in = u2 if activatelIn2;
Real u2 "internal variable corresponding to u2_in";
Real y;
protected
Modelica.Blocks.Interfaces.Reallnput ul "internal connector corresponding to ul__
—~in";
equation
y = ul + uz2;
connect (ul_in, ul) "automatically disabled if ul_in is deactivated";
if not activateInl then

ul = 0 "default value for protected connector value when ul_in is disabled";
end if;
if not activateIn2 then
u2 = 0 "default value for u2 when u2_in is disabled";
end if;
end M;

where conditional components are only used in connect equations. The following patterns instead are not legal:

model M
parameter Boolean activatelInl = true;
parameter Boolean activateIn2 = true;

Modelica.Blocks.Interfaces.RealInput ul_in if activatelInl;
Modelica.Blocks.Interfaces.Reallnput u2_in if activateIn2;
Real ul "internal variable corresponding to ul_in";
Real u2 "internal variable corresponding to u2_in";

Real y;
equation
if activateInl then
ul = ul_in "invalid: uses conditional ul_in outside connect equations";
end if;
if activateIn2 then
u2 = u2_in "invalid: uses conditional ul_in outside connect equations";
end if;
y = ul + uz;
end M;

because those components are also used in other equations. The fact that those equations are conditional and are
not activated when the corresponding conditional components are also not activated is irrelevant, according to the

94 Chapter 6. Porting Modelica libraries to OpenModelica

https://specification.modelica.org/maint/3.5/class-predefined-types-and-declarations.html#conditional-component-declaration

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

language specification.

6.4 Access to classes defined in partial packages

Consider the following example package

package TestPartialPackage
partial package PartialPackage
function £
input Real x;
output Real y;

algorithm
y 1= 2%X%;
end £;

end PartialPackage;

package RegularPackage
extends PartialPackage;
model A
Real x = time;
end A;
end RegularPackage;

model M1
package P = PartialPackage;
Real x = P.f(time);

end M1;

model M2
extends Ml (redeclare package P = RegularPackage);
end M2;

model M3
encapsulated package LocalPackage
import TestPartialPackage.PartialPackage;
extends PartialPackage;
end LocalPackage;
package P = LocalPackage;
Real x = P.f(time);
end M3;
end TestPartialPackage;

Model M1 references a class (a function, in this case) from a partial package. This is perfectly fine if one wants
to write a generic model, which is then specialized by redeclaring the package to a non-partial one, as in M2.
However, M1 cannot be compiled for simulation, since, according to Section 5.3.2 of the language specification,
the classes that are looked inside during lookup shall not be partial in a simulation model.

This problem can be fixed by accessing that class (the function f, in this case) from a non-final package that extends
the partial one, either by redeclaring the partial package to a non-partial one, as in M2, or by locally defining a
non-partial package that extends from the partial one, as in M3. The latter option is of course viable only if the
class being accessed is in itself not a partial or somehow incomplete one.

This issue is often encountered in models using Modelica.Media, that sometimes use some class definitions (e.g.
unit types) from partial packages such as Modelica.Media.Interfaces.PartialMedium. The fix in most cases is just
to use the same definition from the actual replaceable Medium package defined in the model, which will eventually
be redeclared to a non-partial one in the simulation model.

6.4. Access to classes defined in partial packages 95

https://specification.modelica.org/maint/3.5/scoping-name-lookup-and-flattening.html#composite-name-lookup

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

6.5 Equality operator in algorithms

The following code is illegal, because it uses the equality '=' operator, which is reserved for equations, instead of
the assignment operator ":=' inside an algorithm:

function £
input Real x;
input Real y = 0;
output Real z;
algorithm
zZ = X +t y;
end £f;

so0, the OpenModelica parser does not accept it. The correct code is:

function £
input Real x;
input Real y = 0;
output Real z;

algorithm
Z::X+y;
end £;

Some tools automatically and silently apply the correction to the code, please save it in its correct form to make it
usable with OpenModelica.

Also note that binding equations with '=' sign are instead required for default values of function inputs.

6.6 Public non-input non-output variables in functions

According to Section 12.2 of the language specification, only input and output formal parameters are allowed in
the function’s public variable section. Hence, the following function declaration is not valid:

function £
input Real x;
output Real y;
Real z;
algorithm
z 1= 2;
y = xtz;
end £;

and should be fixed by putting the variable z in the protected section:

function £
input Real x;
output Real y;
protected
Real z;
algorithm
z 1= 2;
y = xtz;
end £f;

96 Chapter 6. Porting Modelica libraries to OpenModelica

https://specification.modelica.org/maint/3.5/functions.html#function-as-a-specialized-class

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

6.7 Subscripting of expressions

There is a proposal of allowing expression subscripting, e.g.

model M
Real x[31;
Real yI[3];
Real z;
equation
z = (x.xy)[2];

end M;

This construct is already accepted by some Modelica tools, but is not yet included in the current Modelica speci-
fication 3.5, nor even in the current working draft of 3.6, so it is not currently supported by OpenModelica.

6.8 Incomplete specification of initial conditions

The simulation of Modelica models of dynamical systems requires the tool to determine a consistent initial solution
for the simulation to start. To do so, the system equations are augmented by adding one initial condition for each
continuous state variable (after index reduction) and one initial condition for each discrete state variable. Then,
the augmented system is solved upon initialization.

These initial conditions can be formulated by adding a start = <expression> and a fixed = true attribute to those
variables, e.g.

parameter Real x_start = 10;

parameter Real v_start 2.5;

Real x(start = x_start, fixed = true);

discrete Real v (start = v_start, fixed = true);
Integer 1i(start = 2, fixed = true);

or by adding initial equations, e.g.:

parameter Real x_start = 10;
parameter Real v_start = 2.5;
Real x;

discrete Real v;

Integer i;

Real y(start = 3.5);
initial equation

x = x_start;
v = v_start;
i = 2;

der(y) = 0;

Note that in the latter case, the start attribute on y is not used directly to set the initial value of that variable,
but only potentially used as initial guess for the solution of the initialization problem, that may require using an
iterative nonlinear solver. Also note that sets of initial equations are often added to the models taken from reusable
component libraries by selecting certain component parameters, such as initOpt or similar.

If the number of initial conditions matches the number of continuous and discrete states, then the initialization
problem is well-defined. Although this is per se not a guarantee that all tools will be able to solve it and find the
same solution, this is for sure a prerequisite for across-tool portability.

Conversely, if the number of initial conditions is less than the number of states, the tool has to add some initial
equations, using some heuristics to change the fixed attribute of some variables from false to true. Consider for
example the following model:

6.7. Subscripting of expressions 97

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

model M
Real x;
Real y(start = ;
Real z(start = 2);
equation
der(x) =y + z;
y = 2%%;
z = 10xx + 1;
end M;

|
-

This model has one state variable x, no variables with fixed = true attributes and no initial equation, so there is
one missing initial condition. One tool could choose to add the fixed = true attribute to the state variable x, fixing
it to the default value of zero of its start attribute. Or, it could decide to give more priority to variables that have
an explicitly modified start attribute, hence fix the initial value of y to 1, or the initial value of z to 2. Three
completely different simulations would ensue.

The Modelica Language Specification, Section 8.6 does not prescribe or recommend any specific choice criterion
in this case. Hence, different tools, or even different versions of the same tool, could add different initial condi-
tions, leading to completely different simulations. In order to avoid any ambiguity and achieve good portability, it
is thus recommended to make sure that the initial conditions of all simulation model are well-specified.

A model with not enough initial conditions causes the OMC to issue the following translation warning: "The initial
conditions are not fully specified". By activating the Tools | Options | Simulation | Show additional information
from the initialization process option, or the -d=initialization compiler flag, one can get an explicit list of the
additional equations that OpenModelica automatically adds to get a fully specified initialization problem, which
may be helpful to figure out which initial conditions are missing. In this case, we recommend to amend the source
code of the model by adding suitable extra initial conditions, until that warning message no longer appears.

6.9 Modelica_LinearSystems2 Library

The Modelica_LinearSystem?2 library was originally developed in Dymola with a plan of eventually making it
part of the Modelica Standard Library (thus the underscore in the library name). The library is based on several
functions, e.g. readStringMatrix(), simulateModel(), linearizeModel() that are built-in Dymola functions but are
not part of the Modelica Standard Library.

In principle, these functions could be standardized and become part of the ModelicaServices library, which collects
standardized interfaces to tool-specific functionality; then, OpenModelica could easily implement them based on
its internal functionality. However, until this effort is undertaken, the Modelica_LinearSystem?2 library cannot be
considered as a full-fledged Modelica library, but only a Dymola-specific one.

If you are interested in using this library in OpenModelica and are willing to contribute to get it supported, please
contact the development team, e.g. by opening an ticket on the issue tracker.

98 Chapter 6. Porting Modelica libraries to OpenModelica

https://specification.modelica.org/maint/3.5/equations.html#initialization-initial-equation-and-initial-algorithm

CHAPTER
SEVEN

GENERATING GRAPH REPRESENTATIONS FOR MODELS

The system of equations after symbolic transformation is represented by a graph. OpenModelica can generate
graph representations which can be displayed in the graph tool yed (http://www.yworks.com/products/yed). The
graph generation is activated with the debug flag

+d=graphml

Two different graphml- files are generated in the working directory. TaskGraph_model.graphml, showing the
strongly-connected components of the model and BipartiteGraph_CompleteDAE_model.graphml showing all
variables and equations. When loading the graphs with yEd, all nodes are in one place. Please use the various
layout algorithms to get a better overview.

¥ TaskGraph_Modelica.Electrical.Spice3 Examples.Coupledinductors.graphml - yEd - o X

File Edit View Layout Tools Grouping Windows Help
BEER2+REX 0N Q8 QR IR e i~ @ P .y

¥ BiartiteGrap. . tors.araphml = x |) TaskGraph_Mod...tors.graphml * x 4 b E §
| E:E_jij o |

- l@me
L bl

[Meighborhood | B Folder Contents | 1] Predecessors | [Successors

ﬂ" = General
Search Desaiption] « Number of Nodes 18
= | Grapn Number of Edges 14

[= Data
CriticalPath

i # CLi=(L2internal) -R3. FOR CLi
i # C2i = (L3.internal) -R5.i FOR C2.i
LLv =sineVoltage.v -RLvFOR LLv
L2.v = Clvinternal -R2.y FOR L2.v
L # L3.v = C2vinternal -R4.y FOR L3.v
- # RLv =RLR *Llintenal FORR1v
- # R2v =R2.R *L2intenal FORR2.v
- # R3.=Clvinternal /R3.R FORR3.i
- # R4y =R4R *L3internal FOR R4v
- # RS.i=C2vinternal /R5.R FOR RS
- # Torn linear System

Figure 7.1: A task-graph representation of a model in yEd

99

http://www.yworks.com/products/yed

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

J BipartiteGraph_CompleteDAE_Modelica Electrical Spice3.Examples.Coupledinductors.graphml - yEd - [m] x
[File| Edit View Layout Tools Grouping Windows Help
: — ~ _—
BOE vRRE SN QR QR H (1B SMHEHP @ P J
@ Overview aax J Y BipartiteGrap...tors.graphml * x| PNl ¥ Paletts a8
I Shape Nodes ~
E]N'hhhdlﬂ]FldChet‘sl‘lé]Pd I=E | o o =
eighborhoor older Conten redecessars uccessars .,
2 £ Fi "Properties View RS
B Structure View EE] S General ”
search Description ~ Text 23
X 396.0
B} Graph ~ Y 556.0
- % CLi=(d2intemd) -R3.i “dth =0
- # CLEVARIABLE(unit = "A") "Current flowing from pin p to pin n” type: Rez roaht p
* # Clvinternal:STATE(1){unit = "V" protected = true) type: Real i iulm o #fossse
L% C2i=(d3.internal) -R5.i G T Ti—
C2.i:VARIABLE(unit = "A") “Current flowing from pin p to pin n” type: Rez i B Fooen
C2.vinternal:STATE(1)(unit = "V protected = true) type: Real i
L1.ICP.di:VARTABLE(fow=false unit = "Afs") “di/dt" type: Real - hbel""e
L1ICP.v +kl.inductiveCouplePin1.v +K2.inductiveCouplePin1.v = 0.0 abe
« [LICP.:VARTABLE(flow=true unit = V") type: Real |
@ LLL=LLICR.di=LLy +LLICR.Y g::;g:"”"d g::
© # Ltinternal:STATE(1,L 1.ICP.di){unit = "A") type: Real v color Beooow v

Figure 7.2: A biparite graph representation of a model in yEd

100

Chapter 7. Generating Graph Representations for Models

CHAPTER
EIGHT

FMI AND TLM-BASED SIMULATION AND CO-SIMULATION OF
EXTERNAL MODELS

8.1 Functional Mock-up Interface - FMI

The new standard for model exchange and co-simulation with Functional Mockup Interface (FMI) allows export of
pre-compiled models, i.e., C-code or binary code, from a tool for import in another tool, and vice versa. The FMI
standard is Modelica independent. Import and export works both between different Modelica tools, or between
certain non-Modelica tools.

See also OMSimulator documentation.

8.1.1 FMI Export

To export the FMU use the OpenModelica command translateModelFMU(ModelName) from command line in-
terface, OMShell, OMNotebook or MDT. The export FMU command is also integrated with OMEdit. Select File
> Export > FMU the FMU package is generated in the current directory of omc. You can use the cd() command
to see the current location. You can set which version of FMI to export through OMEdit settings, see section FMI.

To export the bouncing ball example to an FMU, use the following commands:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> translateModelFMU (BouncingBall)

"«DOCHOME» /BouncingBall. fmu"

>>> system("unzip -1 BouncingBall.fmu | egrep -v 'sources|files' | tail -n+3
—grep -o '[A-Za-z._0-9/]%$' > BB.log")

0

After the command execution is complete you will see that a file BouncingBall.fmu has been created. Its contents
varies depending on the current platform. On the machine generating this documentation, the contents in Listing
8.1 are generated (along with the C source code).

Listing 8.1: BouncingBall FMU contents

binaries/

binaries/linux64/
binaries/linux64/BouncingBall_FMU.libs
binaries/linux64/BouncingBall.so
modelDescription.xml

A log file for FMU creation is also generated named ModelName_FMU.log. If there are some errors while creating
FMU they will be shown in the command line window and logged in this log file as well.

By default an FMU that can be used for both Model Exchange and Co-Simulation is generated. We support FMI
1.0 & FMI 2.0 for Model Exchange FMUs and FMI 2.0 for Co-Simulation FMUs.

101

http://www.fmi-standard.org
https://openmodelica.org/doc/OMSimulator/master/html/
https://build.openmodelica.org/Documentation/OpenModelica.Scripting.translateModelFMU.html
https://build.openmodelica.org/Documentation/OpenModelica.Scripting.cd.html

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Currently the Co-Simulation FMU uses the forward Euler solver as default with root finding which does an
Euler step of communicationStepSize in fmi2DoStep. Events are checked for before and after the call to
fmi2GetDerivatives.

For FMI 2.0 for Co-Simulation OpenModelica can export an experimental implementation of SUNDIALS
CVODE (see') as internal integrator.

To export a Co-Simulation FMU with CVODE for the bouncing ball example use the following commands:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> setCommandLineOptions ("--fmiFlags=s:cvode")

true

>>> translateModelFMU (BouncingBall, version = "2.0", fmuType="cs")

"«DOCHOME»/BouncingBall.fmu"

>>> system("unzip -cgq BouncingBall.fmu resources/BouncingBall_flags.json >_
—BouncingBall_ flags.json")

0

The FMU BouncingBall.fmu will have a new file BouncingBall_flags.json in its resources directory. By manualy
changing its contant users can change the solver method without recompiling the FMU.

The BouncingBall_flags.json for this example is displayed in Listing 8.2.

Listing 8.2: BouncingBall FMI flags

For this to work OpenModelica will export all needed dependecies into the FMU if and only if the flag fmiFlags
was set. To have CVODE in a SourceCode FMU the user needs to add all sources for SUNDIALS manualy and
create a build script as well.

8.1.2 FMI Import

To import the FMU package use the OpenModelica command importFMU,

>>> list (OpenModelica.Scripting.importFMU, interfaceOnly=true)
function importFMU

input String filename "the fmu file name";

input String workdir = "<default>" "The output directory for imported FMU files.
—<default> will put the files to current working directory.";

input Integer loglevel = 3 "loglevel _nothing=0;loglevel_fatal=1;loglevel_error=2;
—loglevel_warning=3; loglevel_info=4;loglevel_verbose=5; loglevel_debug=6";

input Boolean fullPath = false "When true the full output path is returned
—otherwise only the file name.";

input Boolean debuglogging = false "When true the FMU's debug output is printed.
="

input Boolean generateInputConnectors = true "When true creates the input
—connector pins.";

input Boolean generateOutputConnectors = true "When true creates the output,
—connector pins.";

output String generatedFileName "Returns the full path of the generated file.";
end importFMU;

The command could be used from command line interface, OMShell, OMNotebook or MDT. The importFMU
command is also integrated with OMEdit. Select File > Import > FMU the FMU package is extracted in the
directory specified by workdir, since the workdir parameter is optional so if its not specified then the current
directory of omc is used. You can use the cd() command to see the current location.

! Sundials Webpage

102 Chapter 8. FMI and TLM-Based Simulation and Co-simulation of External Models

https://build.openmodelica.org/Documentation/OpenModelica.Scripting.cd.html
http://computation.llnl.gov/projects/sundials-suite-nonlinear-differential-algebraic-equation-solvers

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

The implementation supports FMI for Model Exchange 1.0 & 2.0 and FMI for Co-Simulation 1.0 stand-alone.
The support for FMI Co-Simulation is still under development.

The FMI Import is currently a prototype. The prototype has been tested in OpenModelica with several examples.
It has also been tested with example FMUs from FMUSDK and Dymola. A more complete version for FMI
Import will be released in the near future.

When importing the model into OMEdit, roughly the following commands will be executed:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> translateModelFMU (BouncingBall)

"«DOCHOME» /BouncingBall. fmu"

>>> imported_fmu_mo_file:=importFMU ("BouncingBall.fmu")
"BouncingBall_me_FMU.mo"

>>> loadFile (imported_fmu_mo_file)

true

The imported FMU can then be simulated like any normal model:

>>> gimulate (BouncingBall_me_FMU, stopTime=3.0)
record SimulationResult

resultFile = "",

simulationOptions = "startTime = 0.0, stopTime = 3.0, numberOflIntervals = 500,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'BouncingBall_me_FMU',

—options = , outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags,

— ram
= ,

messages = "Failed to build model: BouncingBall_me_FMU",
timeFrontend = 0.001873814,
timeBackend =
timeSimCode
timeTemplates .0,
timeCompile = ,
timeSimulation = 0.0,
timeTotal = 0.001903099

end SimulationResult;

14

Il
[oNe}

’

o O O O

o

Error:

[«DOCHOME»/BouncingBall_me_FMU.mo:67:7-67:37:writable] Error: Operator reinit may only be used in
the body of a when equation.

Error: Unable to execute gnuplot directive

expected str, bytes or os.PathLike object, not NoneType Traceback (most recent call last): File
"/var/lib/jenkins 1/ws/OpenModelica_maintenance_v1.18/doc/UsersGuide/source/sphinxcontribopenmodelica.ply",
line 173, in run filename = os.path.abspath(self.options.get('filename") or
omc.sendExpression("currentSimulationResult")) File "/usr/lib/python3.6/posixpath.py”, line 378, in ab-
spath path = os.fspath(path) TypeError: expected str, bytes or os.PathLike object, not NoneType

8.1. Functional Mock-up Interface - FMI 103

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

8.2 Transmission Line Modeling (TLM) Based Co-Simulation

This chapter gives a short description how to get started using the TLM-Based co-simulation accessible via
OMEdit.

The TLM Based co-simulation provides the following general functionalities:
* Import and add External non-Modelica models such as Matlab/SimuLink, Adams, and BEAST models

e Import and add External Modelica models e.g. from tools such as Dymola or Wolfram SystemModeler,
etc.

 Specify startup methods and interfaces of the external model
* Build the composite models by connecting the external models
* Set the co-simulation parameters in the composite model

 Simulate the composite models using TLM based co-simulation

8.3 Composite Model Editing of External Models

The graphical composite model editor is an extension and specialization of the OpenModelica connection editor
OMEdit. A composite model is composed of several external sub-models including the interconnections between
these sub-models. External models are models which need not be in Modelica, they can be FMUs, or models
accessed by proxies for co-simulation and connected by TLM-connections. The standard way to store a composite
model is in an XML format. The XML schema standard is accessible from timModelDescription.xsd. Currently
composite models can only be used for TLM based co-simulation of external models.

8.3.1 Loading a Composite Model for Co-Simulation
To load the composite model, select File > Open Composite Model(s) from the menu and select composite-
model.xml.

OME(dit loads the composite model and show it in the Libraries Browser. Double-clicking the composite model
in the Libraries Browser will display the composite model as shown below in Figure 8.1.

8.3.2 Co-Simulating the Composite Model
There are two ways to start co-simulation:
¢ Click TLM Co-Simulation setup button (@}) from the toolbar (requires a composite model to be active

in ModelWidget)

* Right click the composite model in the Libraries Browser and choose TLM Co-Simulation setup from
the popup menu (see Figure 8.2)

The TLM Co-Simulation setup appears as shown below in Figure 8.3.

Click Simulate from the Co-simulation setup to confirm the co-simulation. Figure 8.4 will appears in which you
will be able to see the progress information of the running co-simulation.

The editor also provides the means of reading the log files generated by the simulation manager and monitor.
When the simulation ends, click Open Manager Log File or Open Monitor Log File from the co-simulation
progress bar to check the log files.

104 Chapter 8. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

ot OMEdit - OpenModelica Cennection Editor - [deublePendulum] — O *,
gﬁ Eile Edit View Simulation FM| Export Debug Git Tools Help - &8 X
(L0 LA L =+ G . r==1
feBR @oee \ONO -5 Q3 o m-
Libraries Browser g X |n% B |‘.I'.|'riizble ‘Diagram View ‘C:!SIG:,IH_MPIU...EPendqum.m| h‘ 3D Viewer Browser g X
Fite Clsses | ¢ <] | [Bionerc - | T
L
Libraries
L)
doublePendulum
|
Eukl e il
i
v
£ >
t Welcome gﬁ Modeling ﬂ Plotting ‘» Debuaaing

Figure 8.1: Composite Model with 3D View.

105

8.3. Composite Model Editing of External Models

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

ot OMEdit - OpenModelica Cennection Editor - [deublePendulum] — O *,
gﬁ Eile Edit View Simulation FM| Export Debug Git Tools Help - &8 X
[. LY -+ 4 (==
Ba =1 Heee \PHO 59 >9 0"
Libraries Browser g X |n% B |‘.I'.|'riizble ‘Diagram View ‘C:!SIG:,IH_MPIU...EPendqum.m| 5 ‘ 3D Viewer Browser g X
Filter Classes \ 4 [B s oy
| | ~ é;lsometnc |]
Libraries
</> doublePen
{4- Fetch Interface Data
< TLM Co-Simulation Setup
Unload Del
|
Eukl e il
i
W
£ >
Opens the TLM co-simulation setup t Welcome gﬁ Modeling ﬁ Plotting ‘» Debugging

Figure 8.2: Co-simulating and Fetching Interface Data of a composite model from the Popup Menu .

106 Chapter 8. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

ot OMEdit - TLM Co-Simulation Setup - doublePendulum ? >

TLM Co-Simulation Setup - doublePendul

TLM Flugin Path: |C:,."5HF,."TLMPIugin,|'bin | Browse...
TLM Manager
Manager Process: |C:/SKF/TLMPlugin/bin/tmmanager.exe Browse...
Server Port: 11111
Monitor Port: 12111

[] Debug Mode

TLM Monitor

Monitor Process: | C:/SKF/TLMPlugin/bin/ftmmaonitor. exe Browse...

Mumber Of Steps: |

Time Step Size:

[] Debug Mode

Show TLM Co-Simulation Output Window

Simulate Cancel

Figure 8.3: TLM Co-simulation Setup.

. Composite Model Editing of External Models 107

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

o't OMEdit - doublePendulum TLM Co-Simulation — O >

Running co-simulation using the doublePendulum composite model. Please wait for a while.

I TN

Manager Output Stop Manager | Open Manager Log File

tlm.config ~
timeEnd = 3

MaxTimeStep "<"= 0.0001000000

Writing caselIl doublePendulumZ and server name 130.Z3&.15%0.168:11111 to £file
tlm.config

Writing doublePendulumZ .mos

Writing doublePenduluml .mos

Starting COpenModelica

C: /OpenModelicabuild/ /bin/omc.exe doublePendulumZ mos

Starting COpenModelica

C: /OpenModelicasbuild/ /bin/omc.exe doublePenduluml .mos

W

Monitor Output Stop Manitor | | Open Maonitor Log File

C:/8FF/TLMPlugin/bin/tlmmonitor.exe 130.236.15%0.168:12111 C:/5EKF/TILMPlugin/HMetaModels/
CmoCmeDoublePendul umy/doublePendulum. xml

Figure 8.4: TLM Co-Simulation Progress.

108 Chapter 8. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

8.3.3 Plotting the Simulation Results

When the co-simulation of the composite model is completed successful, simulation results are collected and
visualized in the OMEdit plotting perspective as shown in Figure 8.5 and Figure 8.6. The Variables Browser
display variables that can be plotted. Each variable has a checkbox, checking it will plot the variable.

&t OMEdit - OpenModelica Connection Editor - [Plot: 1] - O >

IZEiIe Edit View Simulation FMI Export Debug Git Tools Help - 8 X

FeBB 98 Xioa/S

Libraries Browser g x Auto Scale | FitinView | Save | Print | Grid | Detsiled Grid Mo Grid > Variables Browser 8 X

|Filter Claszes | L4 |Fi|ter Variables
doublePendulum 1. tm.A{1, 1) [] doublePendulum1.tm. A{1,2) []

Libraries Simulation Time Unit |5 -

doublePendulum 17 Variables Ve ™
] - T

] = doublePendulum?

] = tlm

0.5] A0 1]

4 401,21 [-1

. RS

1 Oaen -

1 Oaea -

0 Oaea -

7 [HEERNIR

Oac2i-]

Oacan-

[C1F_tie[...1) [M]

[CIF _tie..2) [N]

[IF _tie...3) [N]

1M _tie... [Nm]

I M_tie... [Nm]

I M_tie... [Nm]

'
N
_l

0 0.5 1 1.5 2 2.5 3 [0meg...d/s] 5
time [s] . [10meag...d/s] N

t Welcome u!i Modeling ﬂ Plotting w Debugging

Figure 8.5: TLM Co-Simulation Results Plotting.

8.3.4 Preparing External Models

First step in co-simulation Modeling is to prepare the different external simulation models with TLM inter-
faces. Each external model belongs to a specific simulation tool, such as MATLAB/Simulink*, BEAST,
MSC/ADAMS, Dymola and Wolfram SystemModeler.

When the external models have all been prepared, the next step is to load external models in OMEdit by selecting
the File > Load External Model(s) from the menu.

OMEdit loads the external model and show it in the Libraries Browser as shown below in Figure 8.7.

8.3. Composite Model Editing of External Models 109

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

ot OMEdit - OpenModelica Connection Editor - [deublePendulum.csv] — O *,

Eile Edit View Simulation FMI Export Debug Git Tools Help - &8 X

FwBHBR 985 Xoea S
Libraries Browser ﬁ'->.< h “ ’ II I Time [s]: Speed: @Isometric - |35 | Variables Browser & _>,<

|Filter Classes | w Filter Variables

Libraries Simulation Time Unit | s -

doublePendulum Variables |
= és‘;' doublePendulum
= doublePendulum1
= Hen

ClAm -]

| EEY !

I C1A3) -]

| HEERIG!

| AR [
AR
CIAGD [
CIAG2 [
CIAGI [
[CIF tiel...1) [M]
[C]F tiel..2) [M]
[C]F tiel...2) [M]
I M_tie... [Mm]
I M _tie... [Nm]
I M _tie... [Nm]
[10Ormeg...d/s]
[10meq..dfs] ¥

£ >

t Welcome &i Modeling ﬂ Flotting ‘ Debugging

Figure 8.6: TLM Co-Simulation Visualization.

110 Chapter 8. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

-
gﬁ OMEdit - CpenModelica Connection Editor

File Edit View Simulation FMI Export Tools Help

lThHlﬂ 0‘\6‘\9\

Libraries Browser B X
Search Classes o
Libraries

k> OpenModelica

P
[» ﬂ ModelicaReference

[ModelicaServices

k> i Complex

= A5 Modelica

chaftl
chaft?

TXT dgbb

Figure 8.7: External Models in OMEdit.

8.3. Composite Model Editing of External Models 111

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

8.3.5 Creating a New Composite Model

We will use the "Double pendulum" composite model which is a multibody system that consists of three sub-
models: Two OpenModelica Shaft sub-models (Shaftl and Shaft2) and one SKF/BEAST bearing sub-model
that together build a double pendulum. The SKF/BEAST bearing sub-model is a simplified model with only
three balls to speed up the simulation. Shaftl is connected with a spherical joint to the world coordinate system.
The end of Shaftl is connected via a TLM interface to the outer ring of the BEAST bearing model. The inner ring
of the bearing model is connected via another TLM interface to Shaft2. Together they build the double pendulum
with two shafts, one spherical OpenModelica joint, and one BEAST bearing.

To create a new composite model select File > New Composite Model from the menu.

Your new composite model will appear in the in the Libraries Browser once created. To facilitate the process of
textual composite modeling and to provide users with a starting point, the Text View (see Figure 8.8) includes the
composite model XML elements and the default simulation parameters.

&t OMEdit - OpenModelica Connection Editor - [CompositeModel1%] - O >
E File Edit View Simulation FMI Export Debug Tools Help - 8 X
reBB @oee \0 B0 X5
Libraries Browser g x ‘gﬁ E ‘Wrimble |Text\ﬂew ‘ |Line: 1, Col: 0 ‘ |
|Filter Classes | @ - -
1 <?xml version='l.0' encoding='UTF-8"'?>
Libraries <!—— The root node i=s the composite-model —->
-y <Model Name="CompositeModell™:>
CompositeModell «!'—— List of connected sub-models —->
<SubModels/>
<!-— List of TLM connections -->
<Connections/>
<!-— Parameters for the simmlation -->
<SimulationParams StartTime="0" StopTime="1"/>
</Model>

¥:-101.11 ¥: 105.89 t Welcome qli Modeling g Plotting w Debugging

Figure 8.8: New composite model text view.

112 Chapter 8. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

8.3.6 Adding Submodels

It is possible to build the double pendulum by drag-and-drop of each simulation model component (sub-model)
from the Libraries Browser to the Diagram View. To place a component in the Diagram View of the double
pendulum model, drag each external sub-model of the double pendulum (i.e. Shaftl, Shaft2, and BEAST bearing
sub-model) from the Libraries Browser to the Diagram View.

rd OMEdit - OpenModelica Connecticn Editor =HEC ﬂ&1
File Edit View Simulation FMI Export Tools Help
B 1=15 .oee N N=FH-E- Y
Libraries Browser » MetaModel 1= @]
|Search Classes | \ 4 @E |Wri13b|e Diagram View ‘ Line: 1, Cal: 0 | |
Libraries -
> IE OpenModelica
> o ModelicaReference
> |:| ModelicaServices
> Complex
> Muodelica shaft11 dgbb1 chaftzi
shaftl
shaft2
dgbb
MetaModell
I
4 }
X: 148.54 ¥:-16.01 & welcome | oA Modeling | B Plotting |

Figure 8.9: Adding sub-models to the double pendulum composite model.

8.3.7 Fetching Submodels Interface Data
To retrieve list of TLM interface data for sub-models, do any of the following methods:
¢ Click Fetch Interface Data button (<") from the toolbar (requires a composite model to be active in

ModelWidget)

* Right click the composite model in the Library Browser and choose Fetch Interface Data from the popup
menu (see Figure 8.2).

To retrieve list of TLM interface data for a specific sub-model,

* Right click the sub-model inside the composite model and choose Fetch Interface Data from the popup
menu.

Figure 8.10 will appear in which you will be able to see the progress information of fetching the interface data.

Once the TLM interface data of the sub-models are retrieved, the interface points will appear in the diagram view
as shown below in Figure 8.11.

8.3. Composite Model Editing of External Models 113

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

o4& OMEdit - Fetch Interface Data - MetaModel1 (P e

Fetching interface data for MetaModell. ..

| P . Cancel Fetch Again

Output

C:3WTIMPluginiyMetaModels\ testhshaftll>goto DONE

C:%wTIMPluginiyMetaModels\ testyshaftZl>goto DONE

C:Z\TIMFPlugin\wMetaModels\testyshaftilr»echo Done StartTLMOpenModelica
Done StartTIMOpenModelica

C:\TIMFlugin\wMetaModelsytestyshaftllr»echo Done StartTLMOpenModelica
Done StartTIMOpenModelica

1

Figure 8.10: Fetching Interface Data Progress.

8.3.8 Connecting Submodels

When the sub-models and interface points have all been placed in the Diagram View, similar to Figure 8.11, the

next step is to connect the sub-models. Sub-models are connected using the Connection Line Button ('<:) from
the toolbar.

To connect two sub-models, select the Connection Line Button and place the mouse cursor over an interface and
click the left mouse button, then drag the cursor to the other sub-model interface, and click the left mouse button
again. A connection dialog box as shown below in Figure 8.12 will appear in which you will be able to specify
the connection attributes.

Continue to connect all sub-models until the composite model Diagram View looks like the one in Figure 8.13
below.

8.3.9 Changing Parameter Values of Submodels

To change a parameter value of a sub-model, do any of the following methods:
* Double-click on the sub-model you want to change its parameter
* Right click on the sub-model and choose Attributes from the popup menu

The parameter dialog of that sub-model appears as shown below in Figure 8.14 in which you will be able to specify
the sub-models attributes.

114 Chapter 8. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

i Rl
% OMEdit - OpenModelica Cannection Editor . L= B

File Edit Wiew Simulation FMI Export Tools Help
rwHR Eee - \-5- 58 95
Libraries Browser ? X | A4 pendulum B8 |
|5E'-="":|'I Classes | v @E Writable | Diagram View | C:/TLMPlugin.. pendulum.xml | Line: 1, Col: 0 |
Libraries -
[OpenModelica
[MedelicaReference
> ModelicaServices
[Complex
[Modelica
<haftl shaftl dgbb1 shaft2
shaft2
dgbb
pendulum
'] b
X: 113.03 Y: 86.64 o4& Modeling
. 4

Figure 8.11: Fetching Interface Data.

8.3. Composite Model Editing of External Models 115

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

i
o& OMEdit - Connection Attributes (SRS

Connection Attributes

From: shaftl.dm
To: dgbb1.bIR. "cs1

Delay: | 1e-4
Fil 10000
Zfr: 100

|' Alpha: |0.2

[QK] | Cancel

L L

Figure 8.12: Sub-models Connection Dialog.

L Y
&t OMEdit - OpenModelica Connection Editor E‘Elg

File Edit Wiew Simulation FMI Expert Tools Help

EA71- 1" Eeee \OHO -E-H- 90

Libraries Browser 8 X | A pendulum x|

— = '_'4
|search Classes | @E ‘ Writable | Diagram View ‘ C:/TLMPlugin/MetaModels/test/pendulum. xmi ‘ Line: 1, Col: 0 | a ‘
Libraries -~

[> @ OpenMedelica

B o MeodelicaReference
[» D ModelicaServices
[. Complex

B @ Meodelica

4 »

Messages Browser g X

Figure 8.13: Connecting sub-models of the Double Pendulum Composite Model.

116 Chapter 8. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

.
o% OMEdit - SubModel Attributes -

Name: shaftl

Model File: shaftl.mo

Simulation Tool OpenModelica -
Start Command: startTLMOpenModelica

|| Exact Step Flag

Ok] | Cancel

Figure 8.14: Changing Parameter Values of Sub-models Dialog.

8.3.10 Changing Parameter Values of Connections

To change a parameter value of a connection, do any of the following methods:
* Double-click on the connection you want to change its parameter
* Right click on the connection and choose Attributes from the popup menu.

The parameter dialog of that connection appears (see Figure 8.12) in which you will be able to specify the con-
nections attributes.

8.3.11 Changing Co-Simulation Parameters
To change the co-simulation parameters, do any of the following methods:
| |
e Click Simulation Parameters button (to t) from the toolbar (requires a composite model to be active in

ModelWidget)

* Right click an empty location in the Diagram View of the composite model and choose Simulation Param-
eters from the popup menu (see Figure 8.15)

The co-simulation parameter dialog of the composite model appears as shown below in Figure 8.16 in which you
will be able to specify the simulation parameters.

8.3. Composite Model Editing of External Models 117

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

[-
{,ﬁ OMEdit - OpenModelica Connection Editor E@g

File Edit View Simulation FMI Export Tools Help

ITE » \\» E» v 9» tI}Hﬁ”

Libraries Browser g X | ot pendulum [
| search Classes | & @E Writable | Diagram View | C:/TLMP.Jum.xml | Line: 1, Col: 0 | /5
Libraries -
[P OpenModelica
B 0 ModelicaReference L
B [:] MoadelicaServices et e
k& - Complex
[@ Modelica o
M shaftl . Export as an Image
shaft2 Export to Clipboard

e = B Export to OMMNotebook .
" pendulum
Messages Browser | @& Print... Ctrl+P g X
—

v Simulation Parameters

Shows the Simulation Parar¥: -78.24 Y: 40,15 ‘:. Welcome di Madeling ﬂ Flotting |

Figure 8.15: Changing Co-Simulation Parameters from the Popup Menu.

-
o't OMEdit - Simulation Parameters - pendulum u

Simulation Parameters - pendulum

Start Time: |0.0

Stop Time: | 1.0
L [Save] | Cancel
L v

Figure 8.16: Changing Co-Simulation Parameters Dialog.

118 Chapter 8. FMI and TLM-Based Simulation and Co-simulation of External Models

CHAPTER
NINE

OMSIMULATOR

Version: v2.1.1.post80-g1bf17f4

9.1 Introduction

The OMSimulator project is a FMI-based co-simulation tool that supports ordinary (i.e., non-delayed) and TLM
connections. It supports large-scale simulation and virtual prototyping using models from multiple sources utiliz-
ing the FMI standard. It is integrated into OpenModelica but also available stand-alone, i.e., without dependencies
to Modelica specific models or technology. OMSimulator provides an industrial-strength open-source FMI-based
modelling and simulation tool. Input/output ports of FMUs can be connected, ports can be grouped to buses, FMUs
can be parameterized and composed, and composite models can be exported according to the (preliminary) SSP
(System Structure and Parameterization) standard. Efficient FMI based simulation is provided for both model-
exchange and co-simulation. TLM-based tool connection is provided for a range of applications, e.g., Adams,
Simulink, Beast, Dymola, and OpenModelica. Moreover, optional TLM (Transmission Line Modelling) domain-
specific connectors are also supported, providing additional numerical stability to co-simulation. An external API
is available for use from other tools and scripting languages such as Python and Lua.

9.2 OMSimulator

OMSimulator is a command line wrapper for the OMSimulatorLib library.

9.2.1 OMSimulator Flags

A brief description of all command line flags will be displayed using OMSimulator --help:

info: Usage: OMSimulator [Options] [Lua script] [FMU] [SSP file]
Options:

——addParametersToCSV=<arg> Export parameters to .csv file (true,
—[false])

—-—algLoopSolver=<arg> Specifies the alg. loop solver method,
— ([fixedpoint], kinsol) used for algebraic loops spanning over multiple
—components.

——clearAllOptions Reset all flags to default values

——deleteTempFiles=<bool> Deletes temp files as soon as they are
—no longer needed ([true], false)

——emitEvents=<bool> Specifies whether events should be
—emitted or not ([true], false)

—-—fetchAllVars=<arg> Workaround for certain FMUs that do not
—update all internal dependencies automatically

—-help [-h] Displays the help text

——ignoreInitialUnknowns=<bool> Ignore the initial unknowns from the_
—modelDescription.xml (true, [false])

——inputExtrapolation=<bool> Enables input extrapolation using,,
—derivative information (true, [false])

(continues on next page)

119

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

——intervals=<int> [-1] Specifies the number of communication,
—points (arg > 1)

—--logFile=<arg> [-1] Specifies the logfile (stdout is used,
—if no log file is specified)

——logLevel=<int> 0 default, 1 debug, 2 debug+t+trace

—--maxEventIteration=<int> Specifies the max. number of iterations,,

—for handling a single event

——-maxLoopIteration=<int> Specifies the max. number of iterations_
—for solving algebraic loops between system-level components. Internal algebraic,,
—~loops of components are not affected.

——mode=<arg> [-m] Forces a certain FMI mode iff the FMU,,
—provides cs and me (cs, [me])

——numProcs=<int> [-n] Specifies the max. number of processors,
—~to use (0U=auto, Il=default)

——progressBar=<bool> Shows a progress bar for the simulation,,
—progress in the terminal (true, [false])

—-realTime=<bool> Experimental feature for (soft) real-
—time co-simulation (true, [false])

—-—resultFile=<arg> [-r] Specifies the name of the output result
—~file

——-setInputDerivatives=<bool> Deprecated; see '——inputExtrapolation’

—-—-skipCSVHeader=<arg> Skip exporting the scv delimiter in the
—header (true, [false]),

—--solver=<arg> Specifies the integration method (euler,
— [cvode])

——-solverStats=<bool> Adds solver stats to the result file, e.
—~g. step size; not supported for all solvers (true, [false])

——startTime=<double> [-s] Specifies the start time

——stopTime=<double> [-t] Specifies the stop time

——-stripRoot=<bool> Removes the root system prefix from all
—exported signals (true, [false])

——suppressPath=<bool> Supresses path information in info_,
—messages; especially useful for testing ([true], false)

—-—tempDir=<arg> Specifies the temp directory

——timeout=<int> Specifies the maximum allowed time in_|
—seconds for running a simulation (0 disables)

—-—tolerance=<double> Specifies the relative tolerance

—-—version [-V] Displays version information

——wallTime=<bool> Add wall time information for to the
—result file (true, [false])

—--workingDir=<arg> Specifies the working directory

——-zeroNominal=<bool> Using this flag, FMUs with invalid

—nominal values will be accepted and the invalid nominal values will be replaced,
—with 1.0

To use flag 1ogLevel with option debug (-—1ogLevel=1) or debug+trace (——1ogLevel=2) one needs to
build OMSimulator with debug configuration enabled. Refer to the OMSimulator README on GitHub for further
instructions.

120 Chapter 9. OMSimulator

https://github.com/OpenModelica/OMSimulator/blob/master/README.md

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.2.2 Examples

’OMSimulator -—timeout 180 example.lua

9.3 OMSimulatorLib

This library is the core of OMSimulator and provides a C interface that can easily be utilized to handle co-
simulation scenarios.

9.3.1 RunFile

Simulates a single FMU or SSP model.

oms_status_enu_t oms_RunFile (const char+ filename);

9.3.2 addBus

Adds a bus to a given component.

oms_status_enu_t oms_addBus (const charx cref);

9.3.3 addConnection

Adds a new connection between connectors A and B. The connectors need to be specified as fully qualified com-
ponent references, e.g., "model.system.component.signal”.

oms_status_enu_t oms_addConnection (const charx crefA, const charx crefB);

The two arguments crefA and crefB get swapped automatically if necessary.

9.3.4 addConnector

Adds a connector to a given component.

oms_status_enu_t oms_addConnector (const charx cref, oms_causality_enu_t causality,
—oms_signal_type_enu_t type);

[

9.3.5 addConnectorToBus

Adds a connector to a bus.

oms_status_enu_t oms_addConnectorToBus (const charx busCref, const charx
—connectorCref) ;

9.3. OMSimulatorLib 121

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.6 addConnectorToTLMBus

Adds a connector to a TLM bus.

oms_status_enu_t oms_addConnectorToTLMBus (const charx busCref, const charx
—connectorCref, const char xtype);

9.3.7 addExternalModel

Adds an external model to a TLM system.

oms_status_enu_t oms_addExternalModel (const charx cref, const charx path, const
—char+ startscript);

9.3.8 addSignalsToResults

Add all variables that match the given regex to the result file.

oms_status_enu_t oms_addSignalsToResults (const char+ cref, const char* regex);

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

9.3.9 addSubModel

Adds a component to a system.

oms_status_enu_t oms_addSubModel (const char+ cref, const charx fmuPath);

9.3.10 addSystem

Adds a (sub-)system to a model or system.

oms_status_enu_t oms_addSystem(const charx cref, oms_system_enu_t type);

9.3.11 addTLMBus

Adds a TLM bus.

oms_status_enu_t oms_addTLMBus (const char+ cref, oms_tlm _domain_t domain, const
—int dimensions, const oms_tlm_ interpolation_t interpolation);

9.3.12 addTLMConnection

Connects two TLM connectors.

oms_status_enu_t oms_addTLMConnection (const charx crefA, const charx crefB, double
—~delay, double alpha, double linearimpedance, double angularimpedance);

122 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.13 compareSimulationResults

This function compares a given signal of two result files within absolute and relative tolerances.

int oms_compareSimulationResults (const charx filenameA, const charx filenameB,
—const charx var, double relTol, double absTol);

The following table describes the input values:

Input Type Description

filenameA String Name of first result file to compare.
filenameB String Name of second result file to compare.
var String Name of signal to compare.

relTol Number Relative tolerance.

absTol Number Absolute tolerance.

The following table describes the return values:

Type Description
Integer 1 if the signal is considered as equal, O otherwise

9.3.14 copySystem

Copies a system.

oms_status_enu_t oms_copySystem(const charx source, const charx target);

9.3.15 delete

Deletes a connector, component, system, or model object.

oms_status_enu_t oms_delete (const char+ cref);

9.3.16 deleteConnection

Deletes the connection between connectors crefA and crefB.

oms_status_enu_t oms_deleteConnection (const char+ crefA, const charx crefB);

The two arguments crefA and crefB get swapped automatically if necessary.

9.3.17 deleteConnectorFromBus

Deletes a connector from a given bus.

oms_status_enu_t oms_deleteConnectorFromBus (const charx busCref, const charx

—connectorCref) ;

9.3. OMSimulatorLib 123

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.18 deleteConnectorFromTLMBus

Deletes a connector from a given TLM bus.

oms_status_enu_t oms_deleteConnectorFromTLMBus (const charx busCref, const charx
—connectorCref) ;

9.3.19 doStep

Simulates a macro step of the given composite model. The step size will be determined by the master algorithm
and is limited by the definied minimal and maximal step sizes.

oms_status_enu_t oms_doStep (const charx cref);

9.3.20 export

Exports a composite model to a SPP file.

oms_status_enu_t oms_export (const charx cref, const charx filename);

9.3.21 exportDependencyGraphs

Export the dependency graphs of a given model to dot files.

oms_status_enu_t oms_exportDependencyGraphs (const charx cref, const charx
—initialization, const char* event, const char+ simulation);

9.3.22 exportSSMTemplate

Exports all signals that have start values of one or multiple FMUs to a SSM file that are read from modelDescrip-
tion.xml with a mapping entry. The mapping entry specifies a single mapping between a parameter in the source
and a parameter of the system or component being parameterized. The mapping entry contains two attributes
namely source and target. The source attribute will be empty and needs to be manually mapped by the users asso-
ciated with the parameter name defined in the SSV file, the target contains the name of parameter in the system or
component to be parameterized. The function can be called for a top level model or a certain FMU component. If
called for a top level model, start values of all FMUs are exported to the SSM file. If called for a component, start
values of just this FMU are exported to the SSM file.

oms_status_enu_t oms_exportSSMTemplate (const charx cref, const charx filename)

9.3.23 exportSSVTemplate

Exports all signals that have start values of one or multiple FMUs to a SSV file that are read from modelDescrip-
tion.xml. The function can be called for a top level model or a certain FMU component. If called for a top level
model, start values of all FMUs are exported to the SSV file. If called for a component, start values of just this
FMU are exported to the SSV file.

oms_status_enu_t oms_exportSSVTemplate (const charx cref, const charx filename)

124 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.24 exportSnapshot

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

oms_status_enu_t oms_exportSnapshot (const charx cref, charx* contents);

9.3.25 extractFMIKind

Extracts the FMI kind of a given FMU from the file system.

oms_status_enu_t oms_extractFMIKind (const charx filename, oms_fmi_kind_enu_t»*
—kind) ;

9.3.26 faultinjection

Defines a new fault injection block.

oms_status_enu_t oms_faultInjection(const charx signal, oms_fault_type_enu_t
—faultType, double faultValue);

type Description”
oms_fault_type_bias y = y.$original + faultValue
oms_fault_type_gain y = y.$original * faultValue
oms_fault_type_const | y = faultValue

9.3.27 freeMemory

Free the memory allocated by some other API. Pass the object for which memory is allocated.

void oms_freeMemory (void* obj);

9.3.28 getBoolean

Get boolean value of given signal.

oms_status_enu_t oms_getBoolean (const char* cref, boolx value);

9.3.29 getBus

Gets the bus object.

oms_status_enu_t oms_getBus (const charx cref, oms_busconnector_txx busConnector);

9.3. OMSimulatorLib 125

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.30 getComponentType

Gets the type of the given component.

oms_status_enu_t oms_getComponentType (const charx cref, oms_component_enu_t~* type);

9.3.31 getConnections

Get list of all connections from a given component.

oms_status_enu_t oms_getConnections (const charx cref, oms_connection_txx*x*
—sconnections) ;

9.3.32 getConnector

Gets the connector object of the given connector cref.

oms_status_enu_t oms_getConnector (const charx cref, oms_connector_tx% connector);

9.3.33 getElement

Get element information of a given component reference.

oms_status_enu_t oms_getElement (const charx cref, oms_element_txx element);

9.3.34 getElements

Get list of all sub-components of a given component reference.

oms_status_enu_t oms_getElements (const charx cref, oms_element_tx+x elements);

9.3.35 getFMUInfo

Returns FMU specific information.

oms_status_enu_t oms_getFMUInfo (const charx cref, const oms_fmu_info_t++ fmulnfo);

9.3.36 getFixedStepSize

Gets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the

integrator step size in model exchange systems.

oms_status_enu_t oms_getFixedStepSize (const charx cref, doublex stepSize);

126 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.37 getinteger

Get integer value of given signal.

oms_status_enu_t oms_getInteger (const charx cref, intx value);

9.3.38 getModelState

Gets the model state of the given model cref.

oms_status_enu_t oms_getModelState (const charx cref, oms_modelState_enu_tx
—modelState) ;

9.3.39 getReal

Get real value.

oms_status_enu_t oms_getReal (const charx cref, doublex value);

9.3.40 getResultFile

Gets the result filename and buffer size of the given model cref.

oms_status_enu_t oms_getResultFile (const charx cref, charx+ filename, intx
—bufferSize);

9.3.41 getSolver

Gets the selected solver method of the given system.

oms_status_enu_t oms_getSolver (const charx cref, oms_solver_enu_tx solver);

9.3.42 getStartTime

Get the start time from the model.

oms_status_enu_t oms_getStartTime (const charx cref, doublex startTime);

9.3.43 getStopTime

Get the stop time from the model.

oms_status_enu_t oms_getStopTime (const charx cref, doublex stopTime);

9.3. OMSimulatorLib

127

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.44 getSubModelPath

Returns the path of a given component.

oms_status_enu_t oms_getSubModelPath (const char+ cref, char*+ path);

9.3.45 getSystemType

Gets the type of the given system.

oms_status_enu_t oms_getSystemType (const charx cref, oms_system_enu_tx type);

9.3.46 getTLMBus

Gets the TLM bus objects of the given TLM bus cref.

oms_status_enu_t oms_getTLMBus (const charx cref, oms_tlmbusconnector_t«x*_,
—tlmBusConnector) ;

9.3.47 getTLMVariableTypes

Gets the type of an TLM variable.

oms_status_enu_t oms_getTLMVariableTypes (oms_tlm_domain_t domain, const int
—~dimensions, const oms_tlm_interpolation_t interpolation, char xxxtypes, char_
—xxxdescriptions);

9.3.48 getTime

Get the current simulation time from the model.

oms_status_enu_t oms_getTime (const char* cref, doublex time);

9.3.49 getTolerance

Gets the tolerance of a given system or component.

oms_status_enu_t oms_getTolerance (const charx cref, doublex absoluteTolerance,
—doublex relativeTolerance);

9.3.50 getVariableStepSize

Gets the step size parameters.

oms_status_enu_t oms_getVariableStepSize (const charx cref, doublex initialStepSize,
— doublex minimumStepSize, doublex maximumStepSize);

128 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.51 getVersion

Returns the library's version string.

const charx oms_getVersion();

9.3.52 importFile

Imports a composite model from a SSP file.

oms_status_enu_t oms_importFile (const charx filename, charxx cref);

9.3.53 importSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

oms_status_enu_t oms_importSnapshot (const charx cref, const charx snapshot, charxx
—newCref) ;

9.3.54 initialize

Initializes a composite model.

oms_status_enu_t oms_initialize (const charx cref);

9.3.55 instantiate

Instantiates a given composite model.

oms_status_enu_t oms_instantiate (const charx cref);

9.3.56 list

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

oms_status_enu_t oms_list (const char+ cref, char*x contents);

9.3.57 listUnconnectedConnectors

Lists all unconnected connectors of a given system.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

oms_status_enu_t oms_listUnconnectedConnectors (const charx cref, char** contents);

9.3. OMSimulatorLib 129

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.58 loadSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

oms_status_enu_t oms_loadSnapshot (const charx cref, const charx snapshot, charxx
—newCref) ;

9.3.59 newModel

Creates a new and yet empty composite model.

oms_status_enu_t oms_newModel (const char* cref);

9.3.60 removeSignalsFromResults

Removes all variables that match the given regex to the result file.

oms_status_enu_t oms_removeSignalsFromResults (const charx cref, const charx regex);

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

9.3.61 rename

Renames a model, system, or component.

oms_status_enu_t oms_rename (const char+ cref, const char+ newCref);

9.3.62 reset

Reset the composite model after a simulation run.

The FMUs go into the same state as after instantiation.

oms_status_enu_t oms_reset (const char+ cref);

9.3.63 setActivationRatio

Experimental feature for setting the activation ratio of FMUs for experimenting with multi-rate master algorithms.

oms_status_enu_t experimental_setActivationRatio (const char+ cref, int k);

9.3.64 setBoolean

Sets the value of a given boolean signal.

oms_status_enu_t oms_setBoolean (const charx cref, bool value);

130 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.65 setBusGeometry

oms_status_enu_t oms_setBusGeometry (const char+ bus, const ssd_connector_geometry_
—t* geometry);

9.3.66 setCommandLineOption

Sets special flags.

oms_status_enu_t oms_setCommandLineOption (const charx cmd);

Auvailable flags:
info: Usage: OMSimulator [Options] [Lua script] [FMU] [SSP file]
Options:
——addParametersToCSV=<arg> Export parameters to .csv file (true,
—[false])
—--alglLoopSolver=<arg> Specifies the alg. loop solver method,

— ([fixedpoint], kinsol) used for algebraic loops spanning over multiple,
—components.

—-clearAllOptions Reset all flags to default values

——deleteTempFiles=<bool> Deletes temp files as soon as they are
—no longer needed ([true], false)

——emitEvents=<bool> Specifies whether events should be
—emitted or not ([true], false)

——fetchAllVars=<arg> Workaround for certain FMUs that do not
—update all internal dependencies automatically

——help [-h] Displays the help text

——ignoreInitialUnknowns=<bool> Ignore the initial unknowns from the_
—modelDescription.xml (true, [falsel])

——inputExtrapolation=<bool> Enables input extrapolation using
—derivative information (true, [false])

——intervals=<int> [-1] Specifies the number of communication,
—points (arg > 1)

——logFile=<arg> [-1] Specifies the logfile (stdout is used,
—~if no log file is specified)

——logLevel=<int> 0 default, 1 debug, 2 debug+t+trace

--maxEventIteration=<int> Specifies the max. number of iterations,
—~for handling a single event

—-maxLoopIteration=<int> Specifies the max. number of iterations_

—for solving algebraic loops between system-level components. Internal algebraic,
—~loops of components are not affected.

——mode=<arg> [-m] Forces a certain FMI mode iff the FMU,
—provides cs and me (cs, [me])

——numProcs=<int> [-n] Specifies the max. number of processors,
—~to use (0U=auto, Il=default)

——progressBar=<bool> Shows a progress bar for the simulation,,
—progress in the terminal (true, [false])

—-realTime=<bool> Experimental feature for (soft) real-
—time co-simulation (true, [false])

—-—resultFile=<arg> [-r] Specifies the name of the output result,
—~file

——-setInputDerivatives=<bool> Deprecated; see '——inputExtrapolation’

—-—-skipCSVHeader=<arg> Skip exporting the scv delimiter in the
—header (true, [false]),

—--solver=<arg> Specifies the integration method (euler,
— [cvode])

——solverStats=<bool> Adds solver stats to the result file, e.
—~g. step size; not supported for all solvers (true, [false])

——startTime=<double> [-s] Specifies the start time

——stopTime=<double> [-t] Specifies the stop time

(continues on next page)

9.3. OMSimulatorLib 131

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

——-stripRoot=<bool> Removes the root system prefix from all
—exported signals (true, [false])

——suppressPath=<bool> Supresses path information in info_,
—messages; especially useful for testing ([true], false)

—-—tempDir=<arg> Specifies the temp directory

——timeout=<int> Specifies the maximum allowed time in,
—~seconds for running a simulation (0 disables)

—-—tolerance=<double> Specifies the relative tolerance

—-—-version [-V] Displays version information

——wallTime=<bool> Add wall time information for to the
—result file (true, [false])

—-workingDir=<arg> Specifies the working directory

——zeroNominal=<bool> Using this flag, FMUs with invalid

—nominal values will be accepted and the invalid nominal values will be replaced,
—with 1.0

9.3.67 setConnectionGeometry

oms_status_enu_t oms_setConnectionGeometry (const charx crefA, const charx crefB,
—const ssd_connection_geometry_t* geometry);

9.3.68 setConnectorGeometry

Set geometry information to a given connector.

oms_status_enu_t oms_setConnectorGeometry (const charx cref, const ssd_connector_
—geometry_tx geometry);

9.3.69 setElementGeometry

Set geometry information to a given component.

oms_status_enu_t oms_setElementGeometry (const charx cref, const ssd_element_
—geometry_t* geometry);

9.3.70 setFixedStepSize

Sets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the
integrator step size in model exchange systems.

oms_status_enu_t oms_setFixedStepSize (const charx cref, double stepSize);

9.3.71 setinteger

Sets the value of a given integer signal.

oms_status_enu_t oms_setInteger (const charx cref, int value);

132 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.72 setlLogFile

Redirects logging output to file or std streams. The warning/error counters are reset.

nn

filename="" to redirect to std streams and proper filename to redirect to file.

oms_status_enu_t oms_setLogFile (const charx filename);

9.3.73 setlLoggingCallback

Sets a callback function for the logging system.

void oms_setLoggingCallback (void (*cb) (oms_message_type_enu_t type, const charx
—message)) ;

9.3.74 setLogginginterval

Set the logging interval of the simulation.

oms_status_enu_t oms_setLoggingInterval (const char* cref, double loggingInterval);

9.3.75 setLoggingLevel

Enables/Disables debug logging (logDebug and logTrace).
0 default, 1 default+debug, 2 default+debug+trace

void oms_setLoggingLevel (int logLevel);

9.3.76 setMaxLogFileSize

Sets maximum log file size in MB. If the file exceeds this limit, the logging will continue on stdout.

void oms_setMaxLogFileSize (const unsigned long size);

9.3.77 setReal

Sets the value of a given real signal.

oms_status_enu_t oms_setReal (const char+ cref, double value);

This function can be called in different model states:

* Before instantiation: setReal can be used to set start values or to define initial unknowns (e.g. parameters,
states). The values are not immediately applied to the simulation unit, since it isn't actually instantiated.

» After instantiation and before initialization: Same as before instantiation, but the values are applied imme-
diately to the simulation unit.

 After initialization: Can be used to force external inputs, which might cause discrete changes of continuous
signals.

9.3. OMSimulatorLib 133

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.78 setReallnputDerivative

Sets the first order derivative of a real input signal.

This can only be used for CS-FMU real input signals.

oms_status_enu_t oms_setReallnputDerivative (const charx cref, double value);

9.3.79 setResultFile

Set the result file of the simulation.

oms_status_enu_t oms_setResultFile (const charx cref, const charx filename, int
—bufferSize);

The creation of a result file is omitted if the filename is an empty string.

9.3.80 setSolver

Sets the solver method for the given system.

oms_status_enu_t oms_setSolver (const char+ cref, oms_solver_enu_t solver);

9.3.81 setStartTime

Set the start time of the simulation.

oms_status_enu_t oms_setStartTime (const char+ cref, double startTime);

9.3.82 setStopTime

Set the stop time of the simulation.

oms_status_enu_t oms_setStopTime (const charx cref, double stopTime);

9.3.83 setTLMBusGeometry

oms_status_enu_t oms_setTLMBusGeometry (const charx bus, const ssd_connector_
—geometry_tx geometry);

9.3.84 setTLMConnectionParameters

Simulates a composite model in its own thread.

oms_status_enu_t oms_setTLMConnectionParameters (const charx crefA, const charx
—crefB, const oms_tlm_connection_parameters_t~+ parameters);

134 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.85 setTLMPositionAndOrientation

Sets initial position and orientation for a TLM 3D interface.

oms_status_enu_t oms_setTLMPositionAndOrientation (cref, x1, x2, x3, All, Al2, Al3,
—~A21, A22, A23, A31, A32, A33);

9.3.86 setTLMSocketData

Sets data for TLM socket communication.

oms_status_enu_t oms_setTLMSocketData (const charx cref, const charx address, int
—managerPort, int monitorPort);

9.3.87 setTempDirectory

Set new temp directory.

oms_status_enu_t oms_setTempDirectory (const char* newTempDir);

9.3.88 setTolerance

Sets the tolerance for a given model or system.

oms_status_enu_t oms_setTolerance (const charx cref, double absoluteTolerance,
—double relativeTolerance);

Default values are /e-4 for both relative and absolute tolerances.

A tolerance specified for a model is automatically applied to its root system, i.e. both calls do exactly the same:

oms_setTolerance ("model", absoluteTolerance, relativeTolerance);
oms_setTolerance ("model.root", absoluteTolerance, relativeTolerance);

Component, e.g. FMUs, pick up the tolerances from there system. That means it is not possible to define different
tolerances for FMUs in the same system right now.

In a strongly coupled system (oms_system_sc), the relative tolerance is used for CVODE and the absolute tolerance
is used to solve algebraic loops.

In a weakly coupled system (oms_system_wc), both the relative and absolute tolerances are used for the adaptive
step master algorithms and the absolute tolerance is used to solve algebraic loops.

9.3.89 setVariableStepSize

Sets the step size parameters for methods with stepsize control.

oms_status_enu_t oms_getVariableStepSize (const charx cref, doublex initialStepSize,
— doublex minimumStepSize, doublex maximumStepSize);

9.3. OMSimulatorLib 135

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.3.90 setWorkingDirectory

Set a new working directory.

oms_status_enu_t oms_setWorkingDirectory (const charx newWorkingDir) ;

9.3.91 simulate

Simulates a composite model.

oms_status_enu_t oms_simulate (const char* cref);

9.3.92 simulate_realtime

Experimental feature for (soft) real-time simulation.

oms_status_enu_t experimental_ simulate_realtime (const charx ident);

9.3.93 stepUntil

Simulates a composite model until a given time value.

oms_status_enu_t oms_stepUntil (const charx cref, double stopTime);

9.3.94 terminate

Terminates a given composite model.

oms_status_enu_t oms_terminate (const char+ cref);

9.4 OMSimulatorLua

This is a shared library that provides a Lua interface for the OMSimulatorLib library.

oms_setTempDirectory ("./temp/")
oms_newModel ("model™)
oms_addSystem ("model.root", oms_system_sc)

-— instantiate FMUs
oms_addSubModel ("model .root.systeml", "FMUs/Systeml.fmu")
oms_addSubModel ("model.root.system2", "FMUs/System2.fmu")

—— add connections
oms_addConnection ("model.root.systeml.y", "model.root.system2.u")
oms_addConnection ("model.root.system2.y", "model.root.systeml.u")

-— simulation settings

oms_setResultFile ("model", "results.mat")
oms_setStopTime ("model", 0.1)
oms_setFixedStepSize ("model.root", le-4)

oms_instantiate ("model")
oms_setReal ("model.root.systeml.x_start", 2.5)

(continues on next page)

136 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

oms_initialize ("model™)
oms_simulate ("model™)
oms_terminate ("model")
oms_delete ("model™)

9.4.1 addBus

Adds a bus to a given component.

status = oms_addBus (cref)

9.4.2 addConnection

Adds a new connection between connectors A and B. The connectors need to be specified as fully qualified com-

ponent references, e.g., "model.system.component.signal".

status = oms_addConnection (crefA, crefB)

The two arguments crefA and crefB get swapped automatically if necessary.

9.4.3 addConnector

Adds a connector to a given component.

status = oms_addConnector (cref, causality, type)
The second argument "causality", should be any of the following,

oms_causality_input
oms_causality_output
oms_causality_parameter
oms_causality_bidir
oms_causality_undefined

The third argument "type", should be any of the following,

oms_signal_type_real
oms_signal_type_integer
oms_signal_type_boolean
oms_signal_type_string
oms_signal_type_enum
oms_signal_type_bus

9.4.4 addConnectorToBus

Adds a connector to a bus.

status = oms_addConnectorToBus (busCref, connectorCref)

9.4. OMSimulatorLua

137

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.4.5 addConnectorToTLMBus

Adds a connector to a TLM bus.

status = oms_addConnectorToTLMBus (busCref, connectorCref, type)

9.4.6 addExternalModel

Adds an external model to a TLM system.

status = oms_addExternalModel (cref, path, startscript)

9.4.7 addSignalsToResults

Add all variables that match the given regex to the result file.

status = oms_addSignalsToResults (cref, regex)

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*"
all variables.

9.4.8 addSubModel

Adds a component to a system.

can be used to hit

status = oms_addSubModel (cref, fmuPath)

9.4.9 addSystem

Adds a (sub-)system to a model or system.

status = oms_addSystem(cref, type)

9.4.10 addTLMBus

Adds a TLM bus.

status = oms_addTLMBus (cref, domain, dimensions, interpolation)
The second argument "domain", should be any of the following,

oms_tlm_domain_input
oms_tlm_domain_output
oms_tlm domain_mechanical
oms_tlm domain_rotational
oms_tlm_domain_hydraulic
oms_tlm domain_electric

The fourth argument "interpolation", should be any of the following,
oms_tlm_no_interpolation

oms_tlm_coarse_grained
oms_tlm_fine_grained

138 Chapter 9

. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.4.11 addTLMConnection

Connects two TLM connectors.

status = oms_addTLMConnection (crefA, crefB, delay, alpha, linearimpedance,
—angularimpedance)

9.4.12 compareSimulationResults

This function compares a given signal of two result files within absolute and relative tolerances.

oms_compareSimulationResults (filenameA, filenameB, var, relTol, absTol)

The following table describes the input values:

Input Type Description

filenameA String Name of first result file to compare.
filenameB String Name of second result file to compare.
var String Name of signal to compare.

relTol Number Relative tolerance.

absTol Number Absolute tolerance.

The following table describes the return values:

Type Description
Integer 1 if the signal is considered as equal, 0 otherwise

9.4.13 copySystem

Copies a system.

status = oms_copySystem(source, target)

9.4.14 delete

Deletes a connector, component, system, or model object.

status = oms_delete (cref)

9.4.15 deleteConnection

Deletes the connection between connectors crefA and crefB.

status = oms_deleteConnection (crefA, crefB)

The two arguments crefA and crefB get swapped automatically if necessary.

9.4. OMSimulatorLua 139

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.4.16 deleteConnectorFromBus

Deletes a connector from a given bus.

status = oms_deleteConnectorFromBus (busCref, connectorCref)

9.4.17 deleteConnectorFromTLMBus

Deletes a connector from a given TLM bus.

status = oms_deleteConnectorFromTLMBus (busCref, connectorCref)

9.4.18 export

Exports a composite model to a SPP file.

status = oms_export (cref, filename)

9.4.19 exportDependencyGraphs

Export the dependency graphs of a given model to dot files.

status = oms_exportDependencyGraphs (cref, initialization, event, simulation)

9.4.20 exportSSMTemplate

Exports all signals that have start values of one or multiple FMUs to a SSM file that are read from modelDescrip-
tion.xml with a mapping entry. The mapping entry specifies a single mapping between a parameter in the source
and a parameter of the system or component being parameterized. The mapping entry contains two attributes
namely source and target. The source attribute will be empty and needs to be manually mapped by the users asso-
ciated with the parameter name defined in the SSV file, the target contains the name of parameter in the system or
component to be parameterized. The function can be called for a top level model or a certain FMU component. If
called for a top level model, start values of all FMUs are exported to the SSM file. If called for a component, start
values of just this FMU are exported to the SSM file.

status = oms_exportSSMTemplate (cref, filename)

9.4.21 exportSSVTemplate

Exports all signals that have start values of one or multiple FMUs to a SSV file that are read from modelDescrip-
tion.xml. The function can be called for a top level model or a certain FMU component. If called for a top level
model, start values of all FMUs are exported to the SSV file. If called for a component, start values of just this
FMU are exported to the SSV file.

status = oms_exportSSVTemplate (cref, filename)

140 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.4.22 exportSnapshot

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

contents, status = oms_exportSnapshot (cref)

9.4.23 faultlnjection

Defines a new fault injection block.

status = oms_faultInjection(cref, type, value)

type Description”
oms_fault_type_bias y = y.$original + faultValue
oms_fault_type_gain y = y.$original * faultValue
oms_fault_type_const y = faultValue

9.4.24 freeMemory

Free the memory allocated by some other API. Pass the object for which memory is allocated.

This function is neither needed nor available from the Lua interface.

9.4.25 getBoolean

Get boolean value of given signal.

value, status = oms_getBoolean (cref)

9.4.26 getFixedStepSize

Gets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the
integrator step size in model exchange systems.

stepSize, status = oms_setFixedStepSize (cref)

9.4.27 getinteger

Get integer value of given signal.

value, status = oms_getInteger (cref)

9.4. OMSimulatorLua 141

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.4.28 getModelState

Gets the model state of the given model cref.

modelState, status = oms_getModelState (cref)

9.4.29 getReal

Get real value.

value, status = oms_getReal (cref)

9.4.30 getSolver

Gets the selected solver method of the given system.

solver, status = oms_getSolver (cref)

9.4.31 getStartTime

Get the start time from the model.

startTime, status = oms_getStartTime (cref)

9.4.32 getStopTime

Get the stop time from the model.

stopTime, status = oms_getStopTime (cref)

9.4.33 getSystemType

Gets the type of the given system.

type, status = oms_getSystemType (cref)

9.4.34 getTime

Get the current simulation time from the model.

time, status = oms_getTime (cref)

142

Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.4.35 getTolerance

Gets the tolerance of a given system or component.

absoluteTolerance, relativeTolerance, status = oms_getTolerance (cref)

9.4.36 getVariableStepSize

Gets the step size parameters.

initialStepSize, minimumStepSize, maximumStepSize, status = oms_
—getVariableStepSize (cref)

9.4.37 getVersion

Returns the library's version string.

version = oms_getVersion ()

9.4.38 importFile

Imports a composite model from a SSP file.

cref, status = oms_importFile (filename)

9.4.39 importSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

newCref, status = oms_importSnapshot (cref, snapshot)

9.4.40 initialize

Initializes a composite model.

status = oms_initialize (cref)

9.4.41 instantiate

Instantiates a given composite model.

status = oms_instantiate (cref)

9.4. OMSimulatorLua 143

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.4.42 list

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

contents, status = oms_list (cref)

9.4.43 listUnconnectedConnectors

Lists all unconnected connectors of a given system.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

contents, status = oms_listUnconnectedConnectors (cref)

9.4.44 loadSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

newCref, status = oms_loadSnapshot (cref, snapshot)

9.4.45 newModel

Creates a new and yet empty composite model.

status = oms_newModel (cref)

9.4.46 removeSignalsFromResults

Removes all variables that match the given regex to the result file.

status = oms_removeSignalsFromResults (cref, regex)

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

9.4.47 rename

Renames a model, system, or component.

status = oms_rename (cref, newCref)

144 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.4.48 reset

Reset the composite model after a simulation run.

The FMUs go into the same state as after instantiation.

status = oms_reset (cref)

9.4.49 setActivationRatio

Experimental feature for setting the activation ratio of FMUs for experimenting with multi-rate master algorithms.

status =

experimental_setActivationRatio (cref, k)

9.4.50 setBoolean

Sets the value of a given boolean signal.

status = oms_setBoolean (cref, value)

9.4.51 setCommandLineOption

Sets special flags.

status = oms_setCommandLineOption (cmd)
Available flags:
info: Usage: OMSimulator [Options] [Lua script] [FMU] [SSP file]
Options:
——addParametersToCSV=<arg> Export parameters to .csv file (true,
— [false])

——alglLoopSolver=<arg>
— ([fixedpoint], kinsol)
—components.
—-clearAllOptions
——deleteTempFiles=<bool>
—no longer needed ([true], false)
-—emitEvents=<bool>
—emitted or not ([true], false)
——fetchAllvVars=<arg>

Specifies the alg. loop solver method,

used for algebraic loops spanning over multiple

Reset all flags to default values
Deletes temp files as soon as they are_

Specifies whether events should be

Workaround for certain FMUs that do not_,

—update all internal dependencies automatically

——help [-h]
——ignoreInitialUnknowns=<bool>
(true, [falsel])
——inputExtrapolation=<bool>
—derivative information (true, [false])
——intervals=<int> [-1]

(arg > 1)

—--logFile=<arg> [-1]

—~if no log file is specified)
——logLevel=<int>
-—-maxEventIteration=<int>

—for handling a single event
—-maxLoopIlteration=<int>

—modelDescription.xml

—points

—for solving algebraic loops between system-level components.

—loops of components are not affected.
——mode=<arg> [-m]
—provides cs and me (cs, [me])

Displays the help text
Ignore the initial unknowns from the

Enables input extrapolation using,,
Specifies the number of communication,
Specifies the logfile

(stdout is used,

0 default, 1 debug,
Specifies the max.

2 debug+trace
number of iterations,,

Specifies the max. number of iterations,

Internal algebraic,,

Forces a certain FMI mode iff the FMU_

(continues on next page)

9.4. OMSimulatorLua

145

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

——numProcs=<int> [-n] Specifies the max. number of processors,,
—~to use (0O=auto, Il=default)

——progressBar=<bool> Shows a progress bar for the simulation
—progress in the terminal (true, [false])

—-realTime=<bool> Experimental feature for (soft) real-
—time co-simulation (true, [false])

—-resultFile=<arg> [-r] Specifies the name of the output result,
—~file

—-setInputDerivatives=<bool> Deprecated; see '——inputExtrapolation’

—--skipCSVHeader=<arg> Skip exporting the scv delimiter in the,
—~header (true, [false]),

—--solver=<arg> Specifies the integration method (euler,
— [cvode])

——-solverStats=<bool> Adds solver stats to the result file, e.
—~g. step size; not supported for all solvers (true, [false])

——startTime=<double> [-s] Specifies the start time

——stopTime=<double> [-t] Specifies the stop time

——-stripRoot=<bool> Removes the root system prefix from all
—exported signals (true, [false])

——suppressPath=<bool> Supresses path information in info_,
—messages; especially useful for testing ([true], false)

——tempDir=<arg> Specifies the temp directory

——timeout=<int> Specifies the maximum allowed time in_
—seconds for running a simulation (0 disables)

—-—tolerance=<double> Specifies the relative tolerance

--version [-V] Displays version information

—-wallTime=<bool> Add wall time information for to the
—result file (true, [false])

—--workingDir=<arg> Specifies the working directory

——-zeroNominal=<bool> Using this flag, FMUs with invalid

—nominal values will be accepted and the invalid nominal values will be replaced,
—with 1.0

9.4.52 setFixedStepSize

Sets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the
integrator step size in model exchange systems.

status = oms_setFixedStepSize (cref, stepSize)

9.4.53 setinteger

Sets the value of a given integer signal.

status = oms_setInteger (cref, value)

9.4.54 setlLogFile

Redirects logging output to file or std streams. The warning/error counters are reset.

nn

filename="" to redirect to std streams and proper filename to redirect to file.

status = oms_setLogFile (filename)

146 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.4.55 setLogginginterval

Set the logging interval of the simulation.

status = oms_setLoggingInterval (cref, loggingInterval)

9.4.56 setlLogginglLevel

Enables/Disables debug logging (logDebug and logTrace).
0 default, 1 default+debug, 2 default+debug+trace

oms_setLoggingLevel (logLevel)

9.4.57 setMaxLogFileSize

Sets maximum log file size in MB. If the file exceeds this limit, the logging will continue on stdout.

oms_setMaxLogFileSize (size)

9.4.58 setReal

Sets the value of a given real signal.

status = oms_setReal (cref, wvalue)

This function can be called in different model states:

* Before instantiation: setReal can be used to set start values or to define initial unknowns (e.g. parameters,
states). The values are not immediately applied to the simulation unit, since it isn't actually instantiated.

 After instantiation and before initialization: Same as before instantiation, but the values are applied imme-
diately to the simulation unit.

 After initialization: Can be used to force external inputs, which might cause discrete changes of continuous
signals.

9.4.59 setReallnputDerivative

Sets the first order derivative of a real input signal.

This can only be used for CS-FMU real input signals.

status = oms_setReallnputDerivative (cref, value)

9.4.60 setResultFile

Set the result file of the simulation.

status = oms_setResultFile(cref, filename)
status = oms_setResultFile (cref, filename, bufferSize)

The creation of a result file is omitted if the filename is an empty string.

9.4. OMSimulatorLua 147

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.4.61 setSolver

Sets the solver method for the given system.

status = oms_setSolver (cref, solver)
solver Type Description
oms_solver_sc_explicit_euler sc-system Explicit euler with fixed step size
oms_solver_sc_cvode sc-system CVODE with adaptive stepsize
oms_solver_ wc_ma wc-system default master algorithm with fixed step size
oms_solver_wc_mav wc-system master algorithm with adaptive stepsize
oms_solver_wc_mav2 wc-system master algorithm with adaptive stepsize (double-step)

9.4.62 setStartTime

Set the start time of the simulation.

status = oms_setStartTime (cref, startTime)

9.4.63 setStopTime

Set the stop time of the simulation.

status = oms_setStopTime (cref, stopTime)

9.4.64 setTLMPositionAndOrientation

Sets initial position and orientation for a TLM 3D interface.

—A22, A23, A31l, A32, A33)

status = oms_setTLMPositionAndOrientation(cref, x1, x2, x3, All, Al2, Al3, A21,

9.4.65 setTLMSocketData

Sets data for TLM socket communication.

status = oms_setTLMSocketData (cref, address, managerPort, monitorPort)

9.4.66 setTempDirectory

Set new temp directory.

status = oms_setTempDirectory (newTempDir)

148

Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.4.67 setTolerance

Sets the tolerance for a given model or system.

status = oms_setTolerance (const char* cref, double tolerance)
status = oms_setTolerance (const charx cref, double absoluteTolerance, double
—~relativeTolerance)

Default values are /e-4 for both relative and absolute tolerances.

A tolerance specified for a model is automatically applied to its root system, i.e. both calls do exactly the same:

oms_setTolerance ("model", absoluteTolerance, relativeTolerance);
oms_setTolerance ("model.root", absoluteTolerance, relativeTolerance);

Component, e.g. FMUs, pick up the tolerances from there system. That means it is not possible to define different
tolerances for FMUs in the same system right now.

In a strongly coupled system (oms_system_sc), the relative tolerance is used for CVODE and the absolute tolerance
is used to solve algebraic loops.

In a weakly coupled system (oms_system_wc), both the relative and absolute tolerances are used for the adaptive
step master algorithms and the absolute tolerance is used to solve algebraic loops.

9.4.68 setVariableStepSize

Sets the step size parameters for methods with stepsize control.

status = oms_getVariableStepSize (cref, initialStepSize, minimumStepSize,
—maximumStepSize)

9.4.69 setWorkingDirectory

Set a new working directory.

status = oms_setWorkingDirectory (newWorkingDir)

9.4.70 simulate

Simulates a composite model.

status = oms_simulate (cref)

9.4.71 simulate _realtime

Experimental feature for (soft) real-time simulation.

status = experimental_simulate_realtime (ident)

9.4. OMSimulatorLua 149

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.4.72 stepUntil

Simulates a composite model until a given time value.

status = oms_stepUntil (cref, stopTime)

9.4.73 terminate

Terminates a given composite model.

status = oms_terminate (cref)

9.5 OMSimulatorPython

This is a shared library that provides a Python interface for the OMSimulatorLib library.

Installation using pip is recommended:

> pip3 install OMSimulator —--upgrade

from OMSimulator import OMSimulator

oms = OMSimulator ()

oms.setTempDirectory ("./temp/")

oms .newModel ("model™)
oms.addSystem("model.root", oms.system_sc)

instantiate FMUs
oms .addSubModel ("model.root.systeml", "FMUs/Systeml.fmu")
oms.addSubModel ("model.root.system2", "FMUs/System2.fmu")

add connections
oms.addConnection ("model.root.systeml.y
oms.addConnection ("model.root.system2.y", "model.root.systeml.u")

n
’

"model.root.system2.u")

simulation settings

oms.setResultFile ("model", "results.mat")
oms.setStopTime ("model", 0.1)
oms.setFixedStepSize ("model.root", le-4)

oms.instantiate ("model")
oms.setReal ("model.root.systeml.x_start", 2.5)

oms.initialize ("model™)
oms.simulate ("model™)
oms.terminate ("model")
oms.delete ("model™)

The python package also provides a more object oriented API. The following example is equivalent to the previous
one:

import OMSimulator as oms
oms.setTempDirectory ('./temp/")
model = oms.newModel ("model™)

root = model.addSystem('root', oms.Types.System.SC)

instantiate FMUs

(continues on next page)

150 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

root.addSubModel ('systeml',
root .addSubModel ('system2',

add connections

root.addConnection('systeml.
root.addConnection ('system2.

simulation settings

model.resultFile = 'results
model.stopTime = 0.1

model . fixedStepSize = le-4
model.instantiate ()

model.setReal ('root.systeml
#or system.setReal ('systeml

model.initialize ()
model.simulate ()
model.terminate ()
model.delete ()

'FMUs/Systeml.fmu')
'FMUs/System2.fmu')

y', 'system2.u')
y', 'systeml.u')

.mat'

2.5)
2.5)

.X_start',
.x_start',

9.5.1 addBus

Adds a bus to a given component.

status = oms.addBus (cref)

9.5.2 addConnection

Adds a new connection between connectors A and B. The connectors need to be specified as fully qualified com-
ponent references, e.g., "model.system.component.signal”.

status =

oms .addConnection (crefh,

crefB)

The two arguments crefA and crefB get swapped automatically if necessary.

9.5.3 addConnector

Adds a connector to a given component.

status =

The second argument

oms .
oms .
oms
oms
oms

input
output
.parameter
.bidir
.undefined
The

third argument "type",

oms.signal_type_real

oms.signal_type_integer
oms.signal_type_boolean
.signal_type_string
oms .
oms.signal_type_bus

oms
signal_type_enum

oms .addConnector (cref,

"causality",

causality,

should be any of the

type)

should be any of the following,

following,

9.5. OMSimulatorPython

151

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.5.4 addConnectorToBus

Adds a connector to a bus.

status = oms.addConnectorToBus (busCref, connectorCref)

9.5.5 addConnectorToTLMBus

Adds a connector to a TLM bus.

status = oms.addConnectorToTLMBus (busCref, connectorCref, type)

9.5.6 addExternalModel

Adds an external model to a TLM system.

status = oms.addExternalModel (cref, path, startscript)

9.5.7 addSignalsToResults

Add all variables that match the given regex to the result file.

status = oms.addSignalsToResults (cref, regex)

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

9.5.8 addSubModel

Adds a component to a system.

status = oms.addSubModel (cref, fmuPath)

9.5.9 addSystem

Adds a (sub-)system to a model or system.

status = oms.addSystem(cref, type)

9.5.10 addTLMBus

Adds a TLM bus.

status = oms.addTLMBus (cref, domain, dimensions, interpolation)
The second argument "domain", should be any of the following,

oms.tlm domain_input
oms.tlm_domain_output
oms.tlm_domain_mechanical
oms.tlm domain_rotational
oms.tlm_domain_hydraulic
oms.tlm _domain_electric

(continues on next page)

152 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

The fourth argument "interpolation", should be any of the following,

oms.default
oms.coarsegrained
oms.finegrained

9.5.11 addTLMConnection

Connects two TLM connectors.

status = oms.addTLMConnection (crefA, crefB, delay, alpha, linearimpedance,
—angularimpedance)

9.5.12 compareSimulationResults

This function compares a given signal of two result files within absolute and relative tolerances.

oms.compareSimulationResults (filenameA, filenameB, var, relTol, absTol)

The following table describes the input values:

Input Type Description

filenameA String Name of first result file to compare.
filenameB String Name of second result file to compare.
var String Name of signal to compare.

relTol Number Relative tolerance.

absTol Number Absolute tolerance.

The following table describes the return values:

Type Description
Integer 1 if the signal is considered as equal, 0 otherwise

9.5.13 copySystem

Copies a system.

status = oms.copySystem(source, target)

9.5.14 delete

Deletes a connector, component, system, or model object.

status = oms.delete (cref)

9.5. OMSimulatorPython 153

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.5.15 deleteConnection

Deletes the connection between connectors crefA and crefB.

status = oms.deleteConnection (crefA, crefB)

The two arguments crefA and crefB get swapped automatically if necessary.

9.5.16 deleteConnectorFromBus

Deletes a connector from a given bus.

status = oms.deleteConnectorFromBus (busCref, connectorCref)

9.5.17 deleteConnectorFromTLMBus

Deletes a connector from a given TLM bus.

status = oms.deleteConnectorFromTLMBus (busCref, connectorCref)

9.5.18 doStep

Simulates a macro step of the given composite model. The step size will be determined by the master algorithm
and is limited by the definied minimal and maximal step sizes.

status = oms.doStep (cref)

9.5.19 export

Exports a composite model to a SPP file.

status = oms.export (cref, filename)

9.5.20 exportDependencyGraphs

Export the dependency graphs of a given model to dot files.

status = oms.exportDependencyGraphs (cref, initialization, event, simulation)

9.5.21 exportSSMTemplate

Exports all signals that have start values of one or multiple FMUs to a SSM file that are read from modelDescrip-
tion.xml with a mapping entry. The mapping entry specifies a single mapping between a parameter in the source
and a parameter of the system or component being parameterized. The mapping entry contains two attributes
namely source and target. The source attribute will be empty and needs to be manually mapped by the users asso-
ciated with the parameter name defined in the SSV file, the target contains the name of parameter in the system or
component to be parameterized. The function can be called for a top level model or a certain FMU component. If
called for a top level model, start values of all FMUs are exported to the SSM file. If called for a component, start
values of just this FMU are exported to the SSM file.

status = oms.exportSSMTemplate (cref, filename)

154 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.5.22 exportSSVTemplate

Exports all signals that have start values of one or multiple FMUs to a SSV file that are read from modelDescrip-
tion.xml. The function can be called for a top level model or a certain FMU component. If called for a top level
model, start values of all FMUs are exported to the SSV file. If called for a component, start values of just this

FMU are exported to the SSV file.

status = oms.exportSSVTemplate (cref, filename)

9.5.23 exportSnapshot

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings

take care of the memory and the caller doesn't need to call free.

contents, status = oms.exportSnapshot (cref)

9.5.24 faultlnjection

Defines a new fault injection block.

status = oms.faultInjection(cref, type, value)

type Description”

oms_fault_type_bias y = y.$original + faultValue

oms_fault_type_gain y = y.$original * faultValue

oms_fault_type_const y = faultValue

9.5.25 freeMemory

Free the memory allocated by some other API. Pass the object for which memory is allocated.

oms . freeMemory (ob7j)

9.5.26 getBoolean

Get boolean value of given signal.

value, status = oms.getBoolean (cref)

9.5.27 getFixedStepSize

Gets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the

integrator step size in model exchange systems.

stepSize, status = oms.getFixedStepSize (cref)

9.5. OMSimulatorPython

155

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.5.28 getinteger

Get integer value of given signal.

value, status = oms.getInteger (cref)

9.5.29 getReal

Get real value.

value, status = oms.getReal (cref)

9.5.30 getResultFile

Gets the result filename and buffer size of the given model cref.

filename, bufferSize, status = oms.getResultFile (cref)

9.5.31 getSolver

Gets the selected solver method of the given system.

solver, status = oms.getSolver (cref)

9.5.32 getStartTime

Get the start time from the model.

startTime, status = oms.getStartTime (cref)

9.5.33 getStopTime

Get the stop time from the model.

stopTime, status = oms.getStopTime (cref)

9.5.34 getSubModelPath

Returns the path of a given component.

path, status = oms.getSubModelPath (cref)

156

Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.5.35 getSystemType

Gets the type of the given system.

type, status = oms.getSystemType (cref)

9.5.36 getTime

Get the current simulation time from the model.

time, status = oms.getTime (cref)

9.5.37 getTolerance

Gets the tolerance of a given system or component.

absoluteTolerance, relativeTolerance, status = oms.getTolerance (cref)

9.5.38 getVariableStepSize

Gets the step size parameters.

initialStepSize, minimumStepSize, maximumStepSize, status = oms.
—getVariableStepSize (cref)

9.5.39 getVersion

Returns the library's version string.

oms = OMSimulator ()
oms.getVersion ()

9.5.40 importFile

Imports a composite model from a SSP file.

cref, status = oms.importFile (filename)

9.5.41 importSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

newCref, status = oms.importSnapshot (cref, snapshot)

9.5. OMSimulatorPython 157

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.5.42 initialize

Initializes a composite model.

status = oms.initialize (cref)

9.5.43 instantiate

Instantiates a given composite model.

status = oms.instantiate (cref)

9.5.44 list

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings

take care of the memory and the caller doesn't need to call free.

contents, status = oms.list (cref)

9.5.45 listUnconnectedConnectors

Lists all unconnected connectors of a given system.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings

take care of the memory and the caller doesn't need to call free.

contents, status = oms.listUnconnectedConnectors (cref)

9.5.46 loadSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must

not be instantiated.

newCref, status = oms.loadSnapshot (cref, snapshot)

9.5.47 newModel

Creates a new and yet empty composite model.

status = oms.newModel (cref)

9.5.48 removeSignalsFromResults

Removes all variables that match the given regex to the result file.

status = oms.removeSignalsFromResults (cref, regex)

The second argument, i.e. regex, is considered as a regular expression (C++11).

all variables.

".*#"and "(.)*" can be used to hit

158

Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.5.49 rename

Renames a model, system, or component.

status = oms.rename (cref, newCref)

9.5.50 reset

Reset the composite model after a simulation run.

The FMUs go into the same state as after instantiation.

status = oms.reset (cref)

9.5.51 setBoolean

Sets the value of a given boolean signal.

status = oms.setBoolean (cref, value)

9.5.52 setCommandLineOption

Sets special flags.

status = oms.setCommandLineOption (cmd)
Available flags:
info: Usage: OMSimulator [Options] [Lua script] [FMU] [SSP file]
Options:
——addParametersToCSV=<arg> Export parameters to .csv file (true,
— [false])

——alglLoopSolver=<arg>
— ([fixedpoint], kinsol)
—components.
—-clearAllOptions
——deleteTempFiles=<bool>
—no longer needed ([true], false)
-—emitEvents=<bool>
—emitted or not ([true], false)
——fetchAllvVars=<arg>

Specifies the alg. loop solver method,

used for algebraic loops spanning over multiple

Reset all flags to default values
Deletes temp files as soon as they are_

Specifies whether events should be

Workaround for certain FMUs that do not_,

—update all internal dependencies automatically

——help [-h]
——ignoreInitialUnknowns=<bool>

—modelDescription.xml (true, [false])
——inputExtrapolation=<bool>

—derivative information (true, [false])

——intervals=<int> [-1]

(arg > 1)

—--logFile=<arg> [-1]

—~if no log file is specified)
——logLevel=<int>
-—-maxEventIteration=<int>

—for handling a single event
—-maxLoopIlteration=<int>

—points

—for solving algebraic loops between system-level components.

—loops of components are not affected.
——mode=<arg> [-m]
—provides cs and me (cs, [me])

Displays the help text
Ignore the initial unknowns from the

Enables input extrapolation using,,
Specifies the number of communication,
Specifies the logfile

(stdout is used,

0 default, 1 debug,
Specifies the max.

2 debug+trace
number of iterations,,

Specifies the max. number of iterations,

Internal algebraic,,

Forces a certain FMI mode iff the FMU_

(continues on next page)

9.5. OMSimulatorPython

159

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

——numProcs=<int> [-n] Specifies the max. number of processors,,
—~to use (0O=auto, Il=default)

——progressBar=<bool> Shows a progress bar for the simulation
—progress in the terminal (true, [false])

—-realTime=<bool> Experimental feature for (soft) real-
—time co-simulation (true, [false])

—-resultFile=<arg> [-r] Specifies the name of the output result,
—~file

—-setInputDerivatives=<bool> Deprecated; see '——inputExtrapolation’

—--skipCSVHeader=<arg> Skip exporting the scv delimiter in the,
—~header (true, [false]),

—--solver=<arg> Specifies the integration method (euler,
— [cvode])

——-solverStats=<bool> Adds solver stats to the result file, e.
—~g. step size; not supported for all solvers (true, [false])

——startTime=<double> [-s] Specifies the start time

——stopTime=<double> [-t] Specifies the stop time

——-stripRoot=<bool> Removes the root system prefix from all
—exported signals (true, [false])

——suppressPath=<bool> Supresses path information in info_,
—messages; especially useful for testing ([true], false)

——tempDir=<arg> Specifies the temp directory

——timeout=<int> Specifies the maximum allowed time in_
—seconds for running a simulation (0 disables)

—-—tolerance=<double> Specifies the relative tolerance

--version [-V] Displays version information

—-wallTime=<bool> Add wall time information for to the
—result file (true, [false])

—--workingDir=<arg> Specifies the working directory

——-zeroNominal=<bool> Using this flag, FMUs with invalid

—nominal values will be accepted and the invalid nominal values will be replaced,
—with 1.0

9.5.53 setFixedStepSize

Sets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the
integrator step size in model exchange systems.

status = oms.setFixedStepSize(cref, stepSize)

9.5.54 setinteger

Sets the value of a given integer signal.

status = oms.setInteger (cref, value)

9.5.55 setlLogFile

Redirects logging output to file or std streams. The warning/error counters are reset.

nn

filename="" to redirect to std streams and proper filename to redirect to file.

status = oms.setLogFile (filename)

160 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.5.56 setLogginginterval

Set the logging interval of the simulation.

status = oms.setLoggingInterval (cref, loggingInterval)

9.5.57 setlLogginglLevel

Enables/Disables debug logging (logDebug and logTrace).
0 default, 1 default+debug, 2 default+debug+trace

oms.setLoggingLevel (logLevel)

9.5.58 setMaxLogFileSize

Sets maximum log file size in MB. If the file exceeds this limit, the logging will continue on stdout.

oms.setMaxLogFileSize (size)

9.5.59 setReal

Sets the value of a given real signal.

status = oms.setReal (cref, wvalue)

This function can be called in different model states:

* Before instantiation: setReal can be used to set start values or to define initial unknowns (e.g. parameters,
states). The values are not immediately applied to the simulation unit, since it isn't actually instantiated.

 After instantiation and before initialization: Same as before instantiation, but the values are applied imme-
diately to the simulation unit.

 After initialization: Can be used to force external inputs, which might cause discrete changes of continuous
signals.

9.5.60 setReallnputDerivative

Sets the first order derivative of a real input signal.

This can only be used for CS-FMU real input signals.

status = oms.setReallnputDerivative (cref, value)

9.5.61 setResultFile

Set the result file of the simulation.

status = oms.setResultFile(cref, filename)
status = oms.setResultFile(cref, filename, bufferSize)

The creation of a result file is omitted if the filename is an empty string.

9.5. OMSimulatorPython 161

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.5.62 setSolver

Sets the solver method for the given system.

status = oms.setSolver (cref, solver)
solver Type Description
oms.solver_sc_explicit_euler sc-system Explicit euler with fixed step size
oms.solver_sc_cvode sc-system CVODE with adaptive stepsize
oms.solver_wc_ma wc-system default master algorithm with fixed step size
oms.solver_wc_mav wc-system master algorithm with adaptive stepsize
oms.solver_wc_mav2 wc-system master algorithm with adaptive stepsize (double-step)

9.5.63 setStartTime

Set the start time of the simulation.

status = oms.setStartTime (cref, startTime)

9.5.64 setStopTime

Set the stop time of the simulation.

status = oms.setStopTime (cref, stopTime)

9.5.65 setTempDirectory

Set new temp directory.

status = oms.setTempDirectory (newTempDir)

9.5.66 setTolerance

Sets the tolerance for a given model or system.

status = oms.setTolerance (const char* cref, double tolerance)
status = oms.setTolerance (const charx cref, double absoluteTolerance, double
—relativeTolerance)

Default values are /e-4 for both relative and absolute tolerances.

A tolerance specified for a model is automatically applied to its root system, i.e. both calls do exactly the same:

oms_setTolerance ("model", absoluteTolerance, relativeTolerance);
oms_setTolerance ("model .root", absoluteTolerance, relativeTolerance);

Component, e.g. FMUs, pick up the tolerances from there system. That means it is not possible to define different
tolerances for FMUs in the same system right now.

In a strongly coupled system (oms_system_sc), the relative tolerance is used for CVODE and the absolute tolerance
is used to solve algebraic loops.

In a weakly coupled system (oms_system_wc), both the relative and absolute tolerances are used for the adaptive
step master algorithms and the absolute tolerance is used to solve algebraic loops.

162 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.5.67 setVariableStepSize

Sets the step size parameters for methods with stepsize control.

status

oms.getVariableStepSize (cref, initialStepSize, minimumStepSize,
—maximumStepSize)

9.5.68 setWorkingDirectory

Set a new working directory.

status = oms.setWorkingDirectory (newWorkingDir)

9.5.69 simulate

Simulates a composite model.

status = oms.simulate (cref)

9.5.70 stepUntil

Simulates a composite model until a given time value.

status = oms.stepUntil (cref, stopTime)

9.5.71 terminate

Terminates a given composite model.

status = oms.terminate (cref)

Example: Pi

This example uses a simple Modelica model and FMI-based batch simulation to approximate the value of pi.

A Modelica model is used to calculate two uniform distributed pseudo-random numbers between O and 1 based
on a seed value and evaluates if the resulting coordinate is inside the unit circle or not.

model Circle

parameter Integer globalSeed = 30020 "global seed to initialize random number
—generator";

parameter Integer localSeed = 614657 "local seed to initialize random number
—generator";
Real x;
Real y;
Boolean inside = xxx + y*y < 1.0;
protected
Integer statel28[4];
algorithm
when initial () then
statel28 := Modelica.Math.Random.Generators.Xorshiftl28plus.
—~initialState(localSeed, globalSeed);
(x, statel28) := Modelica.Math.Random.Generators.Xorshiftl28plus.
—random(statel28);
(y, statel28) := Modelica.Math.Random.Generators.Xorshiftl128plus.

—random(statel28);

(continues on next page)

9.5. OMSimulatorPython 163

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

end when;
annotation (uses (Modelica (version="4.0.0")));
end Circle;

The model is then exported using the FMI interface and the generated FMU can then be used to run a million
simulations in just a few seconds.

Listing 9.1: Batch simulation of the simple Cirlce model with different
seed values. All OMSimulator-related comands are highlighted for con-
venience.

import math
import matplotlib.pyplot as plt
import OMSimulator as oms

redirect logging to file and limit the file size to 65MB
oms.setLogFile('pi.log', 65)

model = oms.newModel ('pi'")
root = model.addSystem('root', oms.Types.System.SC)
root.addSubModel ('circle', 'Circle.fmu')

model.resultFile = '"' # no result file
model.instantiate ()

results = list ()
inside = 0

MIN = 100
MAX = 1000000
for i in range (0, MAX+1):
if 1 > 0:
model .reset ()
model.setInteger ('root.circle.globalSeed', 1i)
model.initialize ()
if model.getBoolean("root.circle.inside"):
inside = inside + 1
if i >= MIN:
results.append(4.0+inside/1)
model.terminate ()
model.delete ()

plt.plot ([MIN, MAX], [math.pi, math.pi], 'r—-', range(MIN, MAX+1), results)
plt.xscale('log'")

plt.ylabel ('Approximation of pi')

plt.savefig('pi.png'")

The following figure shows the approximation of pi in relation to the number of samples.

164 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

3.20 A
3.18 A
‘& 3.16 -
(-
o
5 ww___ N a AN o
= 3.14 ~
E
>
S 3.12-
=)
<L
3.10 ~
3.08 ~
T T LR | T LR | T L | T LR
10? 10° 104 10° 108
Figure 9.1: Results of the above batch simulation which approximates the value of pi
9.5. OMSimulatorPython 165

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.6 OpenModelicaScripting

This is a shared library that provides a OpenModelica Scripting interface for the OMSimulatorLib library.

loadOMSimulator () ;

oms_setTempDirectory ("./temp/");

oms_newModel ("model™) ;

oms_addSystem ("model.root", OpenModelica.Scripting.oms_system.oms_system_sc);

// instantiate FMUs
oms_addSubModel ("model.root.systeml", "FMUs/Systeml.fmu");
oms_addSubModel ("model.root.system2", "FMUs/System2.fmu");

// add connections
oms_addConnection ("model.root.systeml.y", "model.root.system2.u");
oms_addConnection ("model.root.system2.y", "model.root.systeml.u");

// simulation settings

oms_setResultFile ("model", "results.mat");
oms_setStopTime ("model", 0.1);
oms_setFixedStepSize ("model.root", le—-4);

oms_instantiate ("model");
oms_setReal ("model.root.systeml.x_start", 2.5);

oms_initialize ("model");
oms_simulate ("model™) ;
oms_terminate ("model") ;
oms_delete ("model") ;
unloadOMSimulator () ;

9.6.1 addBus

Adds a bus to a given component.

status := oms_addBus (cref);

9.6.2 addConnection

Adds a new connection between connectors A and B. The connectors need to be specified as fully qualified com-
ponent references, e.g., "model.system.component.signal”.

status := oms_addConnection (crefA, crefB);

The two arguments crefA and crefB get swapped automatically if necessary.

9.6.3 addConnector

Adds a connector to a given component.

status := oms_addConnector (cref, causality, type);
The second argument "causality", should be any of the following,
"OpenModelica.Scripting.oms_causality.oms_causality_input"

"OpenModelica.Scripting.oms_causality.oms_causality_output"
"OpenModelica.Scripting.oms_causality.oms_causality_parameter"

(continues on next page)

166 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

"OpenModelica.Scripting.oms_causality.oms_causality_bidir"
"OpenModelica.Scripting.oms_causality.oms_causality_undefined"

The third argument type, should be any of the following,

"OpenModelica.Scripting.oms_signal_type.oms_signal_type_real"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_integer"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_boolean"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_string"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_enum"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_bus"

9.6.4 addConnectorToBus

Adds a connector to a bus.

status := oms_addConnectorToBus (busCref, connectorCref);

9.6.5 addConnectorToTLMBus

Adds a connector to a TLM bus.

status := oms_addConnectorToTLMBus (busCref, connectorCref, type);

9.6.6 addExternalModel

Adds an external model to a TLM system.

status := oms_addExternalModel (cref, path, startscript);

9.6.7 addSignalsToResults

Add all variables that match the given regex to the result file.

status := oms_addSignalsToResults (cref, regex);

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

9.6.8 addSubModel

Adds a component to a system.

status := oms_addSubModel (cref, fmuPath);

9.6. OpenModelicaScripting 167

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.6.9 addSystem

Adds a (sub-)system to a model or system.

status := oms_addSystem(cref, type);
The second argument type, should be any of the following,

"OpenModelica.Scripting.oms_system.oms_system_none"
"OpenModelica.Scripting.oms_system.oms_system_tlm"
"OpenModelica.Scripting.oms_system.oms_system_sc"
"OpenModelica.Scripting.oms_system.oms_system_wc"

9.6.10 addTLMBus

Adds a TLM bus.

status := oms_addTLMBus (cref, domain, dimensions, interpolation);
The second argument "domain", should be any of the following,

"OpenModelica.Scripting.oms_tlm_domain.oms_tlm_domain_input"
"OpenModelica.Scripting.oms_tlm _domain.oms_tlm_domain_output”
"OpenModelica.Scripting.oms_tlm_domain.oms_tlm_domain_mechanical"
"OpenModelica.Scripting.oms_tlm_domain.oms_tlm_domain_rotational"
"OpenModelica.Scripting.oms_tlm_domain.oms_tlm_domain_hydraulic"
"OpenModelica.Scripting.oms_tlm_domain.oms_tlm_domain_electric"

The fourth argument "interpolation", should be any of the following,

"OpenModelica.Scripting.oms_tlm_interpolation.oms_tlm_no_interpolation"
"OpenModelica.Scripting.oms_tlm_interpolation.oms_tlm_coarse_grained"

"OpenModelica.Scripting.oms_tlm_interpolation.oms_tlm_fine_grained"

9.6.11 addTLMConnection

Connects two TLM connectors.

status := oms_addTLMConnection(crefA, crefB, delay, alpha, linearimpedance,

—angularimpedance) ;

9.6.12 compareSimulationResults

This function compares a given signal of two result files within absolute and relative tolerances.

status := oms_compareSimulationResults (filenameA, filenameB, var, relTol,

absTol) ;

The following table describes the input values:

Input Type Description

filenameA String Name of first result file to compare.
filenameB String Name of second result file to compare.
var String Name of signal to compare.

relTol Number Relative tolerance.

absTol Number Absolute tolerance.

The following table describes the return values:

168 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Type Description

Integer 1 if the signal is considered as equal, O otherwise

9.6.13 copySystem

Copies a system.

status := oms_copySystem(source, target);

9.6.14 delete

Deletes a connector, component, system, or model object.

status := oms_delete (cref);

9.6.15 deleteConnection

Deletes the connection between connectors crefA and crefB.

status := oms_deleteConnection(crefhA, crefB);

The two arguments crefA and crefB get swapped automatically if necessary.

9.6.16 deleteConnectorFromBus

Deletes a connector from a given bus.

status := oms_deleteConnectorFromBus (busCref, connectorCref);

9.6.17 deleteConnectorFromTLMBus

Deletes a connector from a given TLM bus.

status := oms_deleteConnectorFromTLMBus (busCref, connectorCref);

9.6.18 export

Exports a composite model to a SPP file.

status := oms_export (cref, filename);

9.6.19 exportDependencyGraphs

Export the dependency graphs of a given model to dot files.

status := oms_exportDependencyGraphs (cref, initialization, event,

simulation);

9.6. OpenModelicaScripting

169

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.6.20 exportSnapshot

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

(contents, status) := oms_exportSnapshot (cref);

9.6.21 extractFMIKind

Extracts the FMI kind of a given FMU from the file system.

(kind, status) := oms_extractFMIKind (filename) ;

9.6.22 faultinjection

Defines a new fault injection block.

status := oms_faultInjection(cref, type, value);
The second argument type, can be any of the following described below

"OpenModelica.Scripting.oms_fault_type.oms_fault_type_bias"
"OpenModelica.Scripting.oms_fault_type.oms_fault_type_gain"
"OpenModelica.Scripting.oms_fault_type.oms_fault_type_const"

type Description”
oms_fault_type_bias y = y.$original + faultValue
oms_fault_type_gain y = y.$original * faultValue
oms_fault_type_const | y = faultValue

9.6.23 freeMemory

Free the memory allocated by some other API. Pass the object for which memory is allocated.

This function is not needed for OpenModelicaScripting Interface

9.6.24 getBoolean

Get boolean value of given signal.

(value, status) := oms_getBoolean (cref);

9.6.25 getFixedStepSize

Gets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the
integrator step size in model exchange systems.

(stepSize, status) := oms_setFixedStepSize (cref);

170 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.6.26 getinteger

Get integer value of given signal.

(value, status) := oms_getInteger (cref);

9.6.27 getModelState

Gets the model state of the given model cref.

(modelState, status) := oms_getModelState (cref);

9.6.28 getReal

Get real value.

(value, status) := oms_getReal (cref);

9.6.29 getSolver

Gets the selected solver method of the given system.

(solver, status) := oms_getSolver (cref);

9.6.30 getStartTime

Get the start time from the model.

(startTime, status) := oms_getStartTime (cref);

9.6.31 getStopTime

Get the stop time from the model.

(stopTime, status) := oms_getStopTime (cref);

9.6.32 getSubModelPath

Returns the path of a given component.

(path, status) := oms_getSubModelPath (cref);

9.6. OpenModelicaScripting 171

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.6.33 getSystemType

Gets the type of the given system.

(type, status) := oms_getSystemType (cref);

9.6.34 getTime

Get the current simulation time from the model.

(time, status) := oms_getTime (cref);

9.6.35 getTolerance

Gets the tolerance of a given system or component.

(absoluteTolerance, relativeTolerance, status) := oms_getTolerance (cref);

9.6.36 getVariableStepSize

Gets the step size parameters.

(initialStepSize, minimumStepSize, maximumStepSize, status) := oms_
—getVariableStepSize (cref);

9.6.37 getVersion

Returns the library's version string.

version := oms_getVersion();

9.6.38 importFile

Imports a composite model from a SSP file.

(cref, status) := oms_importFile (filename);

9.6.39 importSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

status := oms_importSnapshot (cref, snapshot);

172 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.6.40 initialize

Initializes a composite model.

status := oms_initialize(cref);

9.6.41 instantiate

Instantiates a given composite model.

status := oms_instantiate (cref);

9.6.42 list

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

(contents, status) := oms_list (cref);

9.6.43 listUnconnectedConnectors

Lists all unconnected connectors of a given system.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

(contents, status) := oms_listUnconnectedConnectors (cref);

9.6.44 loadSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

status := oms_loadSnapshot (cref, snapshot);

9.6.45 newModel

Creates a new and yet empty composite model.

status := oms_newModel (cref);

9.6.46 removeSignalsFromResults

Removes all variables that match the given regex to the result file.

status := oms_removeSignalsFromResults (cref, regex);

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

9.6. OpenModelicaScripting 173

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.6.47 rename

Renames a model, system, or component.

status := oms_rename (cref, newCref);

9.6.48 reset

Reset the composite model after a simulation run.

The FMUs go into the same state as after instantiation.

status := oms_reset (cref);

9.6.49 setBoolean

Sets the value of a given boolean signal.

status := oms_setBoolean (cref, value);

9.6.50 setCommandLineOption

Sets special flags.

status := oms_setCommandLineOption (cmd) ;
Available flags:
info: Usage: OMSimulator [Options] [Lua script] [FMU] [SSP file]
Options:
——addParametersToCSV=<arg> Export parameters to .csv file (true,
— [false])
——alglLoopSolver=<arg> Specifies the alg. loop solver method,

— ([fixedpoint], kinsol) used for algebraic loops spanning over multiple
—components.

—-clearAllOptions Reset all flags to default values

——deleteTempFiles=<bool> Deletes temp files as soon as they are_
—no longer needed ([true], false)

——emitEvents=<bool> Specifies whether events should be
—emitted or not ([true], false)

——fetchAllVars=<arg> Workaround for certain FMUs that do not
—update all internal dependencies automatically

——help [-h] Displays the help text

——ignoreInitialUnknowns=<bool> Ignore the initial unknowns from the_
—modelDescription.xml (true, [false])

——inputExtrapolation=<bool> Enables input extrapolation using,,
—derivative information (true, [false])

——intervals=<int> [-1] Specifies the number of communication,
—points (arg > 1)

——logFile=<arg> [-1] Specifies the logfile (stdout is used,
—~if no log file is specified)

——logLevel=<int> 0 default, 1 debug, 2 debugttrace

——-maxEventIteration=<int> Specifies the max. number of iterations_

—for handling a single event

—-maxLoopIlteration=<int> Specifies the max. number of iterations,
—for solving algebraic loops between system-level components. Internal algebraic,,
—loops of components are not affected.

——mode=<arg> [-m] Forces a certain FMI mode iff the FMU_
—provides cs and me (cs, [me])

(continues on next page)

174 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

——numProcs=<int> [-n] Specifies the max. number of processors,,
—~to use (0O=auto, Il=default)

——progressBar=<bool> Shows a progress bar for the simulation
—progress in the terminal (true, [false])

—-realTime=<bool> Experimental feature for (soft) real-
—time co-simulation (true, [false])

—-resultFile=<arg> [-r] Specifies the name of the output result,
—~file

—-setInputDerivatives=<bool> Deprecated; see '——inputExtrapolation’

—--skipCSVHeader=<arg> Skip exporting the scv delimiter in the,
—~header (true, [false]),

—--solver=<arg> Specifies the integration method (euler,
— [cvode])

——-solverStats=<bool> Adds solver stats to the result file, e.
—~g. step size; not supported for all solvers (true, [false])

——startTime=<double> [-s] Specifies the start time

——stopTime=<double> [-t] Specifies the stop time

——-stripRoot=<bool> Removes the root system prefix from all
—exported signals (true, [false])

——suppressPath=<bool> Supresses path information in info_,
—messages; especially useful for testing ([true], false)

——tempDir=<arg> Specifies the temp directory

——timeout=<int> Specifies the maximum allowed time in_
—seconds for running a simulation (0 disables)

—-—tolerance=<double> Specifies the relative tolerance

--version [-V] Displays version information

—-wallTime=<bool> Add wall time information for to the
—result file (true, [false])

—--workingDir=<arg> Specifies the working directory

——-zeroNominal=<bool> Using this flag, FMUs with invalid

—nominal values will be accepted and the invalid nominal values will be replaced,
—with 1.0

9.6.51 setFixedStepSize

Sets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the
integrator step size in model exchange systems.

status := oms_setFixedStepSize(cref, stepSize);

9.6.52 setinteger

Sets the value of a given integer signal.

status := oms_setInteger (cref, value);

9.6.53 setlLogFile

Redirects logging output to file or std streams. The warning/error counters are reset.

nn

filename="" to redirect to std streams and proper filename to redirect to file.

status := oms_setLogFile (filename);

9.6. OpenModelicaScripting 175

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.6.54 setLogginginterval

Set the logging interval of the simulation.

status := oms_setLoggingInterval (cref, loggingInterval);

9.6.55 setlLogginglLevel

Enables/Disables debug logging (logDebug and logTrace).
0 default, 1 default+debug, 2 default+debug+trace

oms_setLoggingLevel (logLevel) ;

9.6.56 setReal

Sets the value of a given real signal.

status := oms_setReal (cref, value);

This function can be called in different model states:

» Before instantiation: setReal can be used to set start values or to define initial unknowns (e.g. parameters,
states). The values are not immediately applied to the simulation unit, since it isn't actually instantiated.

» After instantiation and before initialization: Same as before instantiation, but the values are applied imme-
diately to the simulation unit.

 After initialization: Can be used to force external inputs, which might cause discrete changes of continuous
signals.

9.6.57 setReallnputDerivative

Sets the first order derivative of a real input signal.

This can only be used for CS-FMU real input signals.

status := oms_setReallnputDerivative (cref, value);

9.6.58 setResultFile

Set the result file of the simulation.

status := oms_setResultFile (cref, filename);
status := oms_setResultFile(cref, filename, bufferSize);

The creation of a result file is omitted if the filename is an empty string.

176 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.6.59 setSolver

Sets the solver method for the given system.

status :=

The second argument

"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.
"OpenModelica.

oms_setSolver (cref,

Scripting.
Scripting.
Scripting.
Scripting.
Scripting.
Scripting.
Scripting.
Scripting.
Scripting.
Scripting.
Scripting.

"solver"

oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.
oms_solver.

solver);

should be any of the following,

oms_solver_none"
oms_solver_sc_min"
oms_solver_sc_explicit_euler"
oms_solver_sc_cvode"
oms_solver_sc_max"
oms_solver_wc_min"
oms_solver_wc_ma"
oms_solver_wc_mav"
oms_solver_wc_assc"
oms_solver_wc_mav2"
oms_solver_wc_max"

9.6.60 setStartTime

Set the start time of the simulation.

status :=

oms_setStartTime (cref,

startTime) ;

9.6.61 setStopTime

Set the stop time of the simulation.

status :=

oms_setStopTime (cref,

stopTime) ;

9.6.62 setTLMPositionAndOrientation

Sets initial position and orientation for a TLM 3D interface.

status :=
—A22, A23,

A31,

A32,

oms_setTLMPositionAndOrientation (cref,
A33);

x1, x2, %3, All, Al2, Al3,

A21

[

9.6.63 setTLMSocketData

Sets data for TLM socket communication.

status :=

oms_setTLMSocketData (cref,

address, managerPort, monitorPort);

9.6. OpenModelicaScripting

177

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.6.64 setTempDirectory

Set new temp directory.

status := oms_setTempDirectory (newTempDir) ;

9.6.65 setTolerance

Sets the tolerance for a given model or system.

status := oms_setTolerance (const charx cref, double tolerance);
status := oms_setTolerance (const charx cref, double absoluteTolerance, double
—relativeTolerance);

Default values are /e-4 for both relative and absolute tolerances.

A tolerance specified for a model is automatically applied to its root system, i.e. both calls do exactly the same:

oms_setTolerance ("model", absoluteTolerance, relativeTolerance);
oms_setTolerance ("model .root", absoluteTolerance, relativeTolerance);

Component, e.g. FMUs, pick up the tolerances from there system. That means it is not possible to define different
tolerances for FMUs in the same system right now.

In a strongly coupled system (oms_system_sc), the relative tolerance is used for CVODE and the absolute tolerance
is used to solve algebraic loops.

In a weakly coupled system (oms_system_wc), both the relative and absolute tolerances are used for the adaptive
step master algorithms and the absolute tolerance is used to solve algebraic loops.

9.6.66 setVariableStepSize

Sets the step size parameters for methods with stepsize control.

status := oms_getVariableStepSize (cref, initialStepSize, minimumStepSize,
—maximumStepSize);

9.6.67 setWorkingDirectory

Set a new working directory.

status := oms_setWorkingDirectory (newWorkingDir);

9.6.68 simulate

Simulates a composite model.

status := oms_simulate (cref);

178 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.6.69 stepUntil

Simulates a composite model until a given time value.

status := oms_stepUntil (cref, stopTime);

9.6.70 terminate

Terminates a given composite model.

status := oms_terminate (cref);

9.7 Graphical Modelling

OMSimulator has an optional dependency to OpenModelica in order to utilize the graphical modelling editor
OMEdit. This feature requires to install the full OpenModelica tool suite, which includes OMSimulator. The
independent stand-alone version doesn't provide any graphical modelling editor.

See also FMI documentation.

&% OMEdit - OpenModelica Cennection Editor - O *
Fil= Edit view Simulation Debug OMSimulator Tools Help

BB

Libraries Browser

Filter Classes

OMEdit - OpenModel.. Connection Editor

Libraries

Recent Files Latest News

N t files found -
o recent s foun E» < January 31, 2019: OpenModelica 1.13.2 released

B> December 20, 2018: OpenModelica 1.13.0 released
B December 10, 2018: OpenModelica 1.13.0-dev betal released
£» Program OpenModelica Annual Workshop 2019

E» Deadline extended to Dec 2: CFP OpenModelica/MODPROD Wo|

% Droarams Annohadelics fonasl Wadechan 2010 b

1 »
‘ Clear Recent Files | | Reload | For more details visit our website www.openmodelica.org
Create New Modelica Class Open Model/Library File(s)
Messages Browser @E

All | Notifications Warnings = Errors

| & welcome | o Modeling = Plotting & Debugging

Figure 9.2: OMEdit MainWindow and Browsers.

9.7. Graphical Modelling 179

https://openmodelica.org/doc/OpenModelicaUsersGuide/latest/fmitlm.html

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.7.1 New OMSimulator Model

A new and empty OMSimulator model can be created from the OMSimulator menu item.

&% OMEdit - OpenModelica Cennection Editor

File Edit Vview Simulation Debug JeUEIGUIETGTR Tools Help
["- h H I,!1 B New OMSimulator Model Ctri+T
: - s Open OMSimulator Model(s)
Libraries Browser
Filter Classes w . .
——] OpenModel.. Connection Editor
N
»
= Latest News
He a
p— E» < January 31, 2019: OpenModelica 1.13.2 released
-
[3 B> December 20, 2018: OpenModelica 1.13.0 released
- B December 10, 2018: OpenModelica 1.13.0-dev betal released
Archived Simulations
£» Program OpenModelica Annual Workshop 2019
E» Deadline extended to Dec 2: CFP OpenModelica/MODPROD Wo|
B Draaram Ananhadalicn Annusl Wadechan 2010 =4
1 »
‘ Clear Recent Files | | Reload | For more details visit our website www.openmodelica.org
Create New Modelica Class Open Model/Library File(s)
Messages Browser @E
All | Notifications Warnings = Errors
Creates a new OMSimulator Model | & welcome | o4 Modeling = Plotting & Debugging

Figure 9.3: OMEdit: New OMSimulator Model

That will pop-up a dialog to enter the names of the model and the root system.

9.7.2 Add System

A weakly coupled system (co-simulation) can integrate strongly coupled system (model exchange). Therefore,
the weakly coupled system must to be selected from the Libraries Browser and the respective menu item can be

selected:

That will pop-up a dialog to enter the names of the new system.

9.7.3 Add SubModel

A sub-model is typically an FMU, but it also can be result file. In order to import a sub-model, the respective

system must be selected and the action can be selected from the menu bar:

That will pop-up a dialog to enter the names of the new sub-model.

180

Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

#® OMEdit - New OMSimulator Model >
New OMSimulator Model
Name: | |

Root System

Name: |Ront |

Type |Weakly Coupled - Connected Co-Simulation FMUs System -

Figure 9.4: OMEdit: New OMSimulator Model Dialog

&% OMEdit - OpenModelica Connection Editor - m] *
File Edit View Simulation Debug Tools Help
. 'j- s é @ E ‘,“ New OMSirlﬁu\ator Model cerl+T = v_.% * é r—:l <4_ .I_ 'J ..' -
. : . Open OMSimulater Model(s)
x4 x
Libraries : L | | h|
M m hede p Add Connector)
Root S= Add Bus
= Add TLM Bus
" Add SubMedel
@ Instantiate Model
~
Archived Simulations
1 » '
Messages Browser (=ES)
All Notifications Warnings = Errers
Adds the System i.e., FMI or TLM & welcome o4 Modeling s Platting [Debugging

Figure 9.5: OMEdit: Add System

&% OMEdit - Add System *
Add System
Name: || |

Type | Strongly Coupled - Connected Model-Exchange FMUs System -

Figure 9.6: OMEdit: Add System Dialog

9.7. Graphical Modelling 181

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

%, OMEdit - OpenModelica Connection Editor - m] x
File Edit WView Simulation Debug Tools Help
[% Lo L * New OMSimulator Model Crl+T | < B . L] =
FTeBR £~ . kA X 2 vul G - o (T
I Open OMSimulator Model(s)
Libraries Browser
i Add System A oA Root* M
Filter Classes
Libraries : B | | h|
hd Model =
— p* Add Connector
4= Add Bus
e Add TLM Bus
= Add SubModel
@ Instantiate Model
<
Archived Simulations
] »
Messages Browser @=
All | Notifications | Warnings | Errers
Adds the SubModel i.e., FMU or Table & welcome & Modeling =5 Plotting o Debugging
Figure 9.7: OMEdit: Add SubModel
aﬁ OMEdit - Add SubModel ¥
Name: | |
Path: | || Browse...

Figure 9.8: OMEdit: Add SubModel Dialog

182

Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

9.7.4 Simulate

Select the simulate item from the OMSimulator menu.

9.8 SSP Support

Composite models are imported and exported in the System Structure Description (SSD) format, which is part of
the System Structure and Parameterization (SSP) standard.

Bus connections are saved as annotations to the SSD file. Bus connectors are only allowed in weakly coupled and
strongly coupled systems. Bus connections can exist in any system type. Bus connectors are used to hide SSD
connectors and bus connections are used to hide existing SSD connections in the graphical user interface. It is not
required that all connectors referenced in a bus are connected. One bus may be connected to multiple other buses,
and also to SSD connectors.

The example below contains a root system with two subsystems, WC1 and WC2. Bus connector WC1 .bus1 is
connected to WC2 . bus2. Bus connector WC2 .bus?2 is also connected to SSD connector WC1 .C3.

<?xml version="1.0" encoding="UTF-8"?>
<ssd:SystemStructureDescription name="Test" version="Draft20180219">
<ssd:System name="Root">
<ssd:Elements>
<ssd:System name="WC2">
<ssd:Connectors>
<ssd:Connector name="C1" kind="input" type="Real"/>
<ssd:Connector name="C2" kind="output" type="Real"/>
</ssd:Connectors>
<ssd:Annotations>
<ssc:Annotation type="org.openmodelica">
<oms :Bus name="bus2">
<oms:Signals>
<oms:Signal name="C1"/>
<oms:Signal name="C2"/>
</oms:Signals>
</oms :Bus>
</ssc:Annotation>
</ssd:Annotations>
</ssd:System>
<ssd:System name="WC1">
<ssd:Connectors>
<ssd:Connector name="C1" kind="output" type="Real"/>
<ssd:Connector name="C2" kind="input" type="Real"/>
<ssd:Connector name="C3" kind="input" type="Real"/>
</ssd:Connectors>
<ssd:Annotations>
<ssc:Annotation type="org.openmodelica">
<oms :Bus name="busl">
<oms:Signals>
<oms:Signal name="C1"/>
<oms:Signal name="C2"/>
</oms:Signals>
</oms :Bus>
</ssc:Annotation>
</ssd:Annotations>
</ssd:System>
</ssd:Elements>
<ssd:Connections>
<ssd:Connection startElement="WC2" startConnector="C1"
endElement="WC1l" endConnector="Cl1"/>
<ssd:Connection startElement="WC2" startConnector="C2"
endElement="WC1l" endConnector="C2"/>

(continues on next page)

9.8. SSP Support 183

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

<ssd:Connection startElement="WC2" startConnector="C2"
endElement="WC1" endConnector="C3"/>
</ssd:Connections>
<ssd:Annotations>
<ssc:Annotation type="org.openmodelica">
<oms :Connections>
<oms:Connection startElement="WC1l" startConnector="busl"
endElement="WC2" endConnector="bus2"/>
<oms:Connection startElement="WC2" startConnector="bus2"
endElement="WC1" endConnector="C3"/>
</oms :Connections>
</ssc:Annotation>
</ssd:Annotations>
</ssd:System>
</ssd:SystemStructureDescription>

TLM systems are only allowed on top-level. SSD annotations are used to specify the system type inside the
ssd:SimulationInformation tag, as shown in the example below. Attributes ip, managerport and
monitorport defines the socket communication, used both to exchange data with external tools and with inter-
nal simulation threads.

<?xml version="1.0"?>
<ssd:System name="tlm">
<ssd:SimulationInformation>
<ssd:Annotations>
<ssd:Annotation type="org.openmodelica">
<oms : TlmMaster ip="127.0.1.1" managerport="11111" monitorport="11121"/>
</ssd:Annotation>
</ssd:Annotations>
</ssd:SimulationInformation>
<ssd:Elements>
<ssd:System name="weaklycoupled">
<ssd:SimulationInformation>
<ssd:FixedStepMaster description="oms-ma" stepSize="le-1" />
</ssd:SimulationInformation>
</ssd:System>
</ssd:Elements>
</ssd:System>

TLM connections are implemented without regular SSD connections. TLM connections are only allowed in TLM
systems. TLM connectors are only allowed in weakly coupled or strongly coupled systems. Both connectors and
connections are implemented as SSD annotations in the System tag.

The example below shows a TLM system containing two weakly coupled systems, wcl and wc2. System wcl
contains two TLM connectors, one of type 1D signal and one of type 1D mechanical. System wc?2 contains only a
1D signal type connector. The two 1D signal connectors are connected to each other in the TLM top-level system.

<?xml version="1.0"?>
<ssd:System name="tlm">
<ssd:Elements>
<ssd:System name="wc2">
<ssd:Connectors>
<ssd:Connector name="y" kind="input" type="Real" />
</ssd:Connectors>
<ssd:Annotations>
<ssd:Annotation type="org.openmodelica">
<oms :Bus name="bus2" type="tlm" domain="signal"
dimension="1" interpolation="none">
<oms:Signals>
<oms:Signal name="y" tlmType="value" />
</oms:Signals>

(continues on next page)

184 Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

</oms :Bus>
</ssd:Annotation>
</ssd:Annotations>
</ssd:System>
<ssd:System name="wcl">
<ssd:Connectors>
<ssd:Connector name="y" kind="output" type="Real" />
<ssd:Connector name="x" kind="output" type="Real" />
<ssd:Connector name="v" kind="output" type="Real" />
<ssd:Connector name="f" kind="input" type="Real" />
</ssd:Connectors>
<ssd:Annotations>
<ssd:Annotation type="org.openmodelica">
<oms :Bus name="busl" type="tlm" domain="signal"
dimension="1" interpolation="none">
<oms:Signals>
<oms:Signal name="y" tlmType="value" />
</oms:Signals>
</oms :Bus>
<oms :Bus name="bus2" type="tlm" domain="mechanical"
dimension="1" interpolation="none">
<oms:Signals>
<oms:Signal name="x" tlmType="state" />
<oms:Signal name="v" tlmType="flow" />
<oms:Signal name="f" tlmType="effort" />
</oms:Signals>
</oms :Bus>
</ssd:Annotation>
</ssd:Annotations>
</ssd:System>
</ssd:Elements>
<ssd:Annotations>
<ssd:Annotation type="org.openmodelica">
<oms :Connections>
<oms:Connection startElement="wcl" startConnector="busl"
endElement="wc2" endConnector="bus2"
delay="0.001000" alpha="0.300000"
linearimpedance="100.000000"
angularimpedance="0.000000" />
</oms :Connections>
</ssd:Annotation>
</ssd:Annotations>
</ssd:System>

Depending on the type of TLM bus connector (dimension, domain and interpolation), connectors need to be

assigned to different tlm variable types. Below is the complete list of supported TLM bus types and their respective
connectors.

1D signal

timType causality

"value" | input/output
1D physical (no interpolation)

timType causality

"state" output

"flow" output

"effort" | input

1D physical (coarse-grained interpolation)

9.8. SSP Support 185

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

1D physical (fine-grained interpolation)

3D physical (no interpolation)

timType causality
"state" output
"flow" output
"wave" input
"impedance" | input
timType causality
"state" output
"flow" output
"wavel" input
"wave2" input
"wave3" input
"waved" input
"wave5" input
"waveo" input
"waveT7" input
"wave8" input
"wave9" input
"wavelO" input
"timel" input
"time2" input
"time3" input
"timed" input
"timeb5" input
"timeo6" input
"time7" input
"time8" input
"time9" input
"timelO" input
"impedance" | input

186

Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

3D physical (coarse-grained interpolation)

timType causality
"statel" output
"state2" output
"state3" output
"Al1l" output
"Al2" output
"A13" output
"A21" output
"p22" output
"A23" output
"A31" output
"A32" output
"A33" output
"flowl" output
"flow2" output
"flow3" output
"flow4d" output
"flow5" output
"flowo" output
"effortl" | input
"effort2" | input
"effort3" | input
"effortd4" | input
"effort5" | input
"efforte" | input
timType causality
"statel" output
"state2" output
"state3" output
"Al1l" output
"Al2" output
"A13" output
"A21" output
"A22" output
"A23" output
"A31" output
"A32" output
"A33" output
"flowl" output
"flow2" output
"flow3" output
"flow4d" output
"flow5" output
"flowo" output
"wavel" input
"wavel" input
"wave3" input
"waved" input
"wave5" input
"waveo" input
"linearimpedance" input
"angularimpedance" | input

9.8. SSP Support

187

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

3D physical (fine-grained interpolation)

timType causality
"statel" output
"state2" output
"state3" output
"ALL" output
"Al2" output
"A13" output
"A21" output
"p22M output
"A23" output
"A3L" output
"A32" output
"A33" output
"flowl" output
"flow2" output
"flow3" output
"flow4" output
"flowb" output
"flowo" output
"wavel 1" input
"wavel_2" input
"wavel 3" input
"wavel_4" input
"wavel 5" input
"wavel_o6" input
"wavel2_ 1" input
"wave2_2" input
"wave2_3" input
"wavel2_4" input
"wave2_5" input
"wavel_6" input
"wave3_1" input
"wave3_ 2" input
"wave3_3" input
"wave3_ 4" input
"wave3_5" input
"wave3_6" input
"waved_1" input
"waved_ 2" input
"waved_3" input
"waved_4" input
"waved_5" input
"waved_6" input
"wave5_1" input
"wave5_2" input
"wave5_3" input
"wave5_4" input
"wave5_5" input
"wave5_6" input
"wave6_1" input
"wave6_2" input
"wave6_ 3" input
"waveb6_4" input

continues on next page

188

Chapter 9. OMSimulator

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Table 9.1 — continued from previous page

timType causality
"wave6_5" input
"waveb6_6" input
"wave7_1" input
"wave7_2" input
"wave7_ 3" input
"wave7_4" input
"wave7_5" input
"waveT7_6" input
"wave8_ 1" input
"wave8_2" input
"wave8_3" input
"wave8_4" input
"wave8_5" input
"wave8_6" input
"wave9_ 1" input
"wave9_2" input
"wave9_3" input
"wave9_4" input
"wave9_5" input
"wave9_6" input
"wavelO_1" input
"wavelO_ 2" input
"wavelO_3" input
"wavelO_ 4" input
"wavelO_5" input
"wavelO_6" input
"timel" input
"time2" input
"time3" input
"timed" input
"timeb5" input
"time6" input
"time7" input
"time8" input
"time9" input
"timelO" input
"linearimpedance" input
"angularimpedance" | input

9.8. SSP Support

189

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

190 Chapter 9. OMSimulator

CHAPTER
TEN

SYSTEM IDENTIFICATION

System Identification (OMSysldent) is part of the OpenModelica tool suite, but not bundled together with the
main OpenModelica distribution and thus must be fetched separately from its project site.

OMSysldent is a module for the parameter estimation for linear and nonlinear parametric dynamic models
(wrapped as FMUSs) on top of the OMSimulator APL. It uses the Ceres solver (http://ceres-solver.org/) for the
optimization task. The module provides a Python scripting API as well as an C API.

Note: Notice that this module was previously part of OMSimulator. It has been extracted out of the OMSimulator
project and reorganized as a separate project in September 2020. As of 2020-10-07 the project is working on Linux
but some more efforts are needed for migrating the Windows build and make the build and usage of the module
more convenient.

Version: a65a0ed

10.1 Examples

There are examples in the testsuite which use the scripting API, as well as examples which directly use the C API.

Below is a basic example from the testsuite (HelloWorld_cs_Fit.py) which uses the Python scripting API. It deter-
mines the parameters for the following "hello world" style Modelica model:

model HelloWorld

parameter Real a = -1;

parameter Real x_start = 1;

Real x(start=x_start, fixed=true);
equation

der (x) = ax*x;

end HelloWorld;

The goal is to estimate the value of the coefficent a and the initial value x_start of the state variable x. Instead of real
measurements, the script simply uses simulation data generated from the HelloWorld examples as measurement
data. The array data_time contains the time instants at which a sample is taken and the array data_x contains the
value of x that corresponds to the respective time instant.

The estimation parameters are defined by calls to function simodel.addParameter(..) in which the name of the
parameter and a first guess for the parameter's value is stated.

Listing 10.1: HelloWorld_cs_Fit.py

from OMSimulator import OMSimulator
from OMSysIdent import OMSysIdent
import numpy as np

oms = OMSimulator ()

oms.setLogFile ("HelloWorld_ cs_Fit_py.log")

(continues on next page)

191

https://github.com/OpenModelica/OMSysident
http://ceres-solver.org/
https://github.com/OpenModelica/OMSysIdent/tree/a65a0edc3bdeebb1341fb3af8d3f100a4c86507a

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

oms.setTempDirectory ("./HelloWorld cs_Fit_py/")

oms .newModel ("HelloWorld cs_Fit")
oms.addSystem("HelloWorld cs_Fit.root", oms.system_wc)
oms.setTolerance ("HelloWorld cs_Fit.root", le-5)

add FMU
oms .addSubModel ("HelloWorld_cs_Fit.root.HelloWorld", "../resources/HelloWorld.fmu")

create simodel for model
simodel = OMSysIdent ("HelloWorld cs_Fit")

simodel.describe ()

Data generated from simulating HelloWorld.mo for 1.0s with Euler and 0.1s step,

—size

kNumSeries = 1

kNumObservations = 11

data_time = np.array([0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 11)
inputvars = []

measurementvars = ["root.HelloWorld.x"]

data_x = np.array([l, 0.9, 0.8100000000000001, 0.7290000000000001, 0.6561, O.
—-5904900000000001, 0.5314410000000001, 0.4782969000000001, 0.43046721, O.
387420489, 0.34867844011)

simodel.initialize (kNumSeries, data_time, inputvars, measurementvars)
simodel.describe ()

simodel.addParameter ("root.HelloWorld.x_start", 0.5)
simodel.addParameter ("root.HelloWorld.a", -0.5)
simodel.addMeasurement (0, "root.HelloWorld.x", data_x)
simodel.describe ()

simodel.setOptions_max_num_iterations (25)
simodel.solve ("BriefReport")

status, state = simodel.getState()
print ('status: {0}; state: {1}').format (OMSysIdent.status_str (status),
—OMSysIdent.omsi_simodelstate_str (state))

status, startvaluel, estimatedvaluel = simodel.getParameter ("root.HelloWorld.a")
status, startvalue2, estimatedvalue2 = simodel.getParameter ("root.HelloWorld.x_
—start")

print ('HelloWorld.a startvaluel: {0}; estimatedvaluel: {1}'.format (startvaluel,
—estimatedvaluel))

print ('HelloWorld.x_start startvalue2: {0}; estimatedvaluelZ: {1}'.

—format (startvalue2, estimatedvaluel))

is_OKl = estimatedvaluel > -1.1 and estimatedvaluel < -0.9

is_OK2 = estimatedvalue?2 > 0.9 and estimatedvalue2 < 1.1

print ('HelloWorld.a estimation is OK: {0}'.format (is_OK1))

print ('HelloWorld.x_start estimation is OK: {0}'.format (is_OK2))

del simodel
oms.terminate ("HelloWorld_cs_ Fit")
oms.delete ("HelloWorld_cs_Fit")

Running the script generates the following console output:

iter cost cost_change |gradient| |step| tr _ratio tr_radius 1ls_
—iter iditer_time total_time
0 4.069192e-01 0.00e+00 2.20e+00 0.00e+00 0.00e+00 1.00e+04 (O
— 7.91e-03 7.93e-03
1 4.463938e-02 3.62e-01 4.35e-01 9.43e-01 8.91e-01 1.92e+04 1.
7.36e-03 1.53e-02

(continues on next page)

192 Chapter 10. System Identification

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

2 7.231043e-04 4.39%9e-02 5.16e-02 3.52e-01 9.85e-01 5.75e+04 1.
— 7.26e-03 2.26e-02
3 1.046555e-07 7.23e-04 4.74e-04 4.40e-02 1.00e+00 1.73e+05 1 .
— 7.31e-03 3.00e-02
4 2.192358e-15 1.05e-07 5.77e-08 6.05e-04 1.00e+00 5.18e+05 1 .
— 7.15e-03 3.71le-02
5 7.377320e-26 2.19e-15 2.05e-13 9.59e-08 1.00e+00 1.55e+06 1
— 7.42e-03 4.46e-02

Ceres Solver Report: Iterations: 6, Initial cost: 4.069192e-01, Final cost: 7.
—377320e-26, Termination: CONVERGENCE

Total duration for parameter estimation: 44msec.
Result of parameter estimation (check 'Termination' status above whether solver
—converged) :

HelloWorld_cs_Fit.root.HelloWorld.a(start=-0.5, +*estimatex=-1)
HelloWorld_cs_Fit.root.HelloWorld.x_start (start=0.5, *estimatex=1)

HelloWorld.a estimation is OK: True
HelloWorld.x_start estimation is OK: True
info: Logging information has been saved to "HelloWorld cs_Fit_py.log"

10.2 Python and C API

10.2.1 addinput

Add input values for external model inputs.

If there are several measurement series, all series need to be conducted with the same external inputs!

Python
Args:
var (str) Name of variable..
values (np.array) Array of input values for respective time instants in simodel.initialize().
Returns:
status (int) The C-API status code (oms_status_enu_t).
status = simodel.addInput (var, values)
C

oms_status_enu_t omsi_addInput (void* simodel, const charx var, const doublex
—values, size_t nValues);

10.2. Python and C API 193

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

10.2.2 addMeasurement

Add measurement values for a fitting variable.

Python
Args:
iSeries (int) Index of measurement series.
var (str) Name of variable..
values (np.array) Array of measured values for respective time instants in simodel.initialize().
Returns:
status (int) The C-API status code (oms_status_enu_t).
status = simodel.addMeasurement (iSeries, var, values)
C

oms_status_enu_t omsi_addMeasurement (void+ simodel, size_t iSeries, const char»
—var, const doublex values, size_t nValues);

10.2.3 addParameter

Add parameter that should be estimated.

PYTHON
Args:
var (str) Name of parameter.
startvalue (float) Start value of parameter.
Returns:
status (int) The C-API status code (oms_status_enu_t).
status = simodel.addParameter (var, startvalue)
C

oms_status_enu_t omsi_addParameter (voidx simodel, size_t iSeries, const charx var,
—const double* values, size_t nValues);

194 Chapter 10. System Identification

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

10.2.4 describe

Print summary of Sysldent model.

PYTHON

status = simodel.describe ()

Cc

’oms_status_enu_t omsi_describe (void* simodel);

10.2.5 freeSysldentModel

Unloads a model.

PYTHON

Not available in Python. Related external C function called by class destructor.

Cc

void omsi_freeSysIdentModel (voidx simodel) ;

10.2.6 getParameter

Get parameter that should be estimated.

PYTHON

Args:
var (str) Name of parameter.

Returns:
status (int) The C-API status code (oms_status_enu_t).
startvalue (float) Start value of parameter.

estimatedvalue (float) Estimated value of parameter.

status, startvalue, estimatedvalue = simodel.getParameter (var)

10.2. Python and C API 195

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Cc

oms_status_enu_t omsi_getParameter (void+ simodel, const charx var, doublex
—startvalue, doublex estimatedvalue);

10.2.7 getState

Get state of Sysldent model object.

PYTHON

Returns:
status (int) The C-API status code (oms_status_enu_t).

state (int) State of Sysldent model (omsi_simodelstate_t).

status, state = simodel.getState()

Cc

’oms_status_enu_t omsi_getState (voidx simodel, omsi_simodelstate_t* state);

10.2.8 initialize

This function initializes a given composite model. After this call, the model is in simulation mode.

PYTHON

Args:
nSeries (int) Number of measurement series.
time (numpy.array) Array of measurement/input time instants.
inputvars (list of str) List of names of input variables (empty list if none).
measurementvars (list of str) List of names of observed measurement variables.
Returns:

status (int) The C-API status code (oms_status_enu_t).

status = simodel.initalize (nSeries, time, inputvars, measurementvars)

Cc

oms_status_enu_t omsi_initialize (void* simodel, size_t nSeries, const double* time,
— size_t nTime, char constx constx inputvars, size_t nInputvars, char constx
—const+ measurementvars, size_t nMeasurementvars);

196 Chapter 10. System Identification

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

10.2.9 newSysldentModel

Creates an empty model for parameter estimation.

PYTHON

The corresponding Python function is the class constructor.
Args:

ident (str) Name of the model instance.
Returns:

simodel SysIdent model instance.

’simodel = OMSysIdent (ident) ‘

o

’void* omsi_newSysIdentModel (const charx ident); ‘

10.2.10 oms_status_str

Mapping of enum C-API status code (oms_status_enu_t) to string.

The C enum is reproduced below for convenience.

typedef enum ({
oms_status_ok,
oms_status_warning,
oms_status_discard,
oms_status_error,
oms_status_fatal,
oms_status_pending

} oms_status_enu_t;

PYTHON

Args:
status (int) The C-API status code.
Returns:
status_str (str) String representation of status code.

The range of values of status corresponds to the C enum (by implicit conversion). This is a static Python
method (@staticmethod).

status_str = oms_status_str (status)

10.2. Python and C API 197

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Cc

Not available.

10.2.11 omsi_simodelstate_str

Mapping of enum C-API state code (omsi_simodelstate_t) to string.

The C enum is reproduced below for convenience.

typedef enum {

omsi_simodelstate_constructed, //1< After omsi_newSysIdentModel
omsi_simodelstate_initialized, //!< After omsi_initialize
omsi_simodelstate_convergence, //!< After omsi_solve if Ceres minimizer,,

—returned with ceres::TerminationType::CONVERGENCE
omsi_simodelstate_no_convergence, //!< After omsi_solve if Ceres minimizer,,

—returned with ceres::TerminationType: :NO_CONVERGENCE
omsi_simodelstate_failure //1< After omsi_solve if Ceres minimizer,,

—returned with ceres::TerminationType: :FAILURE

} omsi_simodelstate_t;

PYTHON

Args:
state (int) State of Sysldent model.
Returns:
simodelstate_str (str) String representation of state code.

The range of values of state corresponds to the C enum (by implicit conversion). This is a static Python method
(@staticmethod).

simodelstate_str = omsi_simodelstate_str (state)

Cc

Not available.

10.2.12 setOptions_max_num_iterations

Set Ceres solver option Solver::Options::max_num_iterations.

PYTHON

Args:

max_num_iterations (int) Maximum number of iterations for which the solver should run (de-
fault: 25).

Returns:

status (int) The C-API status code (oms_status_enu_t).

status = simodel.setOptions_max_num_iterations (max_num_iterations)

198 Chapter 10. System Identification

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Cc

oms_status_enu_t omsi_setOptions_max_num_iterations (voidx simodel, size_t max_num_
—iterations);

10.2.13 solve

Solve parameter estimation problem.

PYTHON
Args:
reporttype (str) Print report and progress information after call to Ceres solver. Supported
report types: "", "BriefReport"”, "FullReport", where "" denotes no output.
Returns:
status (int) The C-API status code (oms_status_enu_t).
’status = simodel.solve (reporttype)
Cc

oms_status_enu_t omsi_solve (voidx simodel, const charx reporttype);

10.2. Python and C API 199

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

200 Chapter 10. System Identification

CHAPTER
ELEVEN

OPENMODELICA ENCRYPTION

The encryption module allows the library developers to encrypt their libraries for different platforms. Note that
you need a special version of OpenModelica with encryption support. Contact us if you want one.

11.1 Encrypting the Library

In order to encrypt the Modelica package call buildEncryptedPackage(TopLevelPackageName) from mos script or
from OMEdit right click the package in Libraries Browser and select Export Encrypted Package or select Export
> Export Encrypted Package from the menu.

All the Modelica files are encrypted and the whole library is zipped into a single file i.e., PackageName.mol. Note
that you can only encrypt Modelica packages saved in a folder structure. The complete folder structure remains
as it is. No encryption is done on the resource files.

11.2 Loading an Encrypted Library

To load the encrypted package call loadEncryptedPackage(EncryptedPackage.mol) from the mos script or from
OMEdit File > Load Encrypted Package.

11.3 Notes

* There is no license management and obfuscation of the generated code and files. However just a basic
encryption and decryption is supported along with full support for protection access annotation as defined
in Modelica specification 18.9. This means that anyone who has an OpenModelica version with encryption
support can encrypt or decrypt files.

* OpenModelica encryption is based on SEMLA (Safe/Superiour/Super Encryption of Modelica Libraries
and Artifacts) module from Modelon AB.

201

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

202 Chapter 11. OpenModelica Encryption

CHAPTER
TWELVE

OMNOTEBOOK WITH DRMODELICA AND DRCONTROL

This chapter covers the OpenModelica electronic notebook subsystem, called OMNotebook, together with the
DrModelica tutoring system for teaching Modelica, and DrControl for teaching control together with Modelica.
Both are using such notebooks.

12.1 Interactive Notebooks with Literate Programming

Interactive Electronic Notebooks are active documents that may contain technical computations and text, as well as
graphics. Hence, these documents are suitable to be used for teaching and experimentation, simulation scripting,
model documentation and storage, etc.

12.1.1 Mathematica Notebooks

Literate Programming [Knu84] is a form of programming where programs are integrated with documentation in
the same document. Mathematica notebooks [Wol96] is one of the first WYSIWYG (What-You-See-Is-What-
You-Get) systems that support Literate Programming. Such notebooks are used, e.g., in the MathModelica mod-
eling and simulation environment, see e.g. Figure 12.1 below and Chapter 19 in [Fri04].

12.1.2 OMNotebook

The OMNotebook software [Axe05][Fernstrom(06] is a new open source free software that gives an interactive
WYSIWYG realization of Literate Programming, a form of programming where programs are integrated with
documentation in the same document.

The OMNotebook facility is actually an interactive WY SIW YG realization of Literate Programming, a form of
programming where programs are integrated with documentation in the same document. OMNotebook is a simple
open-source software tool for an electronic notebook supporting Modelica.

A more advanced electronic notebook tool, also supporting mathematical typesetting and many other facilities, is
provided by Mathematica notebooks in the MathModelica environment, see Figure 12.1.

Process
- using Mathe

Figure 12.1: Examples of Mathematica notebooks in the MathModelica modeling and simulation environment.

203

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Traditional documents, e.g. books and reports, essentially always have a hierarchical structure. They are divided
into sections, subsections, paragraphs, etc. Both the document itself and its sections usually have headings as
labels for easier navigation. This kind of structure is also reflected in electronic notebooks. Every notebook
corresponds to one document (one file) and contains a tree structure of cells. A cell can have different kinds of
contents, and can even contain other cells. The notebook hierarchy of cells thus reflects the hierarchy of sections
and subsections in a traditional document such as a book.

12.2 DrModelica Tutoring System — an Application of OMNotebook

Understanding programs is hard, especially code written by someone else. For educational purposes it is essential
to be able to show the source code and to give an explanation of it at the same time.

Moreover, it is important to show the result of the source code’s execution. In modeling and simulation it is
also important to have the source code, the documentation about the source code, the execution results of the
simulation model, and the documentation of the simulation results in the same document. The reason is that the
problem solving process in computational simulation is an iterative process that often requires a modification of
the original mathematical model and its software implementation after the interpretation and validation of the
computed results corresponding to an initial model.

Most of the environments associated with equation-based modeling languages focus more on providing efficient
numerical algorithms rather than giving attention to the aspects that should facilitate the learning and teaching of
the language. There is a need for an environment facilitating the learning and understanding of Modelica. These
are the reasons for developing the DrModelica teaching material for Modelica and for teaching modeling and
simulation.

An earlier version of DrModelica was developed using the MathModelica (now Wolfram SystemModeler) envi-
ronment. The rest of this chapter is concerned with the OMNotebook version of DrModelica and on the OMNote-
book tool itself.

DrModelica has a hierarchical structure represented as notebooks. The front-page notebook is similar to a table
of contents that holds all other notebooks together by providing links to them. This particular notebook is the first
page the user will see (Figure 12.2).

In each chapter of DrModelica the user is presented a short summary of the corresponding chapter of the Modelica
book [Fri04]. The summary introduces some keywords, being hyperlinks that will lead the user to other notebooks
describing the keywords in detail.

Now, let us consider that the link “HelloWorld” in DrModelica Section is clicked by the user. The new HelloWorld
notebook (see Figure 12.3), to which the user is being linked, is not only a textual description but also contains one
or more examples explaining the specific keyword. In this class, HelloWorld, a differential equation is specified.

No information in a notebook is fixed, which implies that the user can add, change, or remove anything in a
notebook. Alternatively, the user can create an entirely new notebook in order to write his/her own programs or
copy examples from other notebooks. This new notebook can be linked from existing notebooks.

When a class has been successfully evaluated the user can simulate and plot the result, as previously depicted in
Figure 12.3 for the simple HelloWorld example model.

After reading a chapter in DrModelica the user can immediately practice the newly acquired information by
doing the exercises that concern the specific chapter. Exercises have been written in order to elucidate language
constructs step by step based on the pedagogical assumption that a student learns better “using the strategy of
learning by doing”. The exercises consist of either theoretical questions or practical programming assignments.
All exercises provide answers in order to give the user immediate feedback.

Figure 12.4 shows part of Chapter 9 of the DrModelica teaching material. Here the user can read about language
constructs, like algorithm sections, when-statements, and reinit equations, and then practice these constructs by
solving the exercises corresponding to the recently studied section.

Exercise 1 from Chapter 9 is shown in Figure 12.5. In this exercise the user has the opportunity to practice different
language constructs and then compare the solution to the answer for the exercise. Notice that the answer is not
visible until the Answer section is expanded. The answer is shown in Figure 12.6.

204 Chapter 12. OMNotebook with DrModelica and DrControl

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

E OMNotebook: DrModelica.onb®

File Edit Cel Format Insert ‘Window Help

Version 2006-04-11 |

DriModelic gmodetica Edition

Copyright: (o) Linképimng Universty, PELAR, 20032-2006, "Wiley-IEEE Press, Modelca &ssociation.
Contact: Openblodelica@ida lu.se; Opentdodelica Project web site:
www ida i sefprojects/Openbdodelica

Book web page: www mathcore com/driodelica; Book author: Peter Fritzson(@ida . se

Dillodelica Authors: (2003 wersion) Susanna Monemat, Eva-Lena Lengouist Sandeling Peter Fritzzon, Peter Bunus
Dillodelica Authors: (2005 and later updates): Peter Fritzson

This DrMedelica notebook has been developed to facilitate learning the Maodelica language as well as
praviding an introduction to abjeci-ariented madsling and sivudation. It is based on and is
supplemantary material to the Modelica book: Feter Fritzeon: "Frinciples of Object-Orientad
Modeling and Simulation with Modelica® {2004), 940 pages, Wiley-IEEE Fress, ISEN 0-471-471631.
Al af the examples and exercises in DrModelica and the page refersnces are from that book. Most aof
the text in DrModelica is alsa based on that boalk.

Detailed Copiright and Acknowledgment Information
Getting Started Using OMNotebook
OpenModelica commands

Berkeley license OpenModelica

1 A Quick Tour of Modelica
1.1 Getting Started - First Basic Examples

There 15 a long tradiion that the first sample program m any computer language 15 a trivial program
printing the string "Hello World" (p. 19 in Peter Fritzson's boolt). Since Modelica 15 an equation based
language, printing a string does not make much sence. Instead, our Helle World Modelica program solves
a trrval diferential equation. The second example shows how you can write a model that solvesz a

LDifferential Algebraic Equation System (p. 19). In the Van der Peol (p. 22) example declaration as well as

wutiahzation and prefix usage are shown i a shghtly more comphcated way.
1.2 Classes and Instances

In Modelica objects are created mmplicitly just by Declanng Instances of Classes (p. 26). Almost anything
m Modelica 15 a class, but there are some keywords for specific use of the clasz concept, called -

Ready

Figure 12.2: The front-page notebook of the OMNotebook version of the DrModelica tutoring system.

12.2. DrModelica Tutoring System — an Application of OMNotebook 205

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

File Edit Cell Format Insert Window Help

, W = o A =uUggvvsyrt it o

First Basic Class

1 HelloWorld

The program contains a declaration of a class called He11oWor1d with two fields and one equation. The first field
is the variable x which is initizlized to a start value 2 at the time when the simulation starts. The second field is the
wvariable a, which is a constant that is initialized to 2 at the beginning of the simulation. Such a constant is prefixed by
the keyword parameter in order to indicate that it is constant during simmlation but is a model parameter that can be
changed between simulations.

The Modelica program solves a trivial differential equation: x' = - a * x. The varable x is a state variable
that can change value over time. The x ' is the time derivative of x.

class HelloWorld

Real x(start = 1, fixed=true);
parameter Real a = 1;
equation
der(x) = - a * x;
end HelloWorld;
{Hellowaorld}

2 Simulation of HelloWorld

simulate(HelloWorld, startTime=0, stopTime=3)

record SimulationResult
resultFile = "HelloWorld_res.mat”,
messages =

end SimulationResult;

Plot the results.

plot(x)
[done]

Pan AutoScale | FitinView Save Print Grid | DetaledGrid | MoGrid [JLog¥ [JLog¥ Setup

Plot by OpenModelica
1
0.8
0.6
0.4
0.2 \
. T
0 1 —_——_—_—-—_——————_
0 0.5 1 1.5 2 2.3 3 3.5 4
time
Ready

Figure 12.3: The HelloWorld class simulated and plotted using the OMNotebook version of DrModelica.

206 Chapter 12. OMNotebook with DrModelica and DrControl

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Gl oMNotebook: drmodelica.onb -0 x|
File Edit el Format Insert window Help
Algorithms and Functions
Algorithins
In Modelica, algorithmic statements can only occur within Algontlun Sections (p. 285),
starting with the keyword algorithm. Smple Assicniment Statements (p. 287) is the
most common kind of statements in algorithm sections. There iz a gpecial form of
assignment statement that is only used when the right hand side containg a call to a
Function with Multiple Results (p. 287).
The for-Statement (alzo called for-loop) i a convenient way of expressing iteration (p.
288). When vsing the for-loop for iteration we must be able to express the range of
values over which the iteration variable should iterate in a closed form as an iteration
expression. For cazes where this iz not feasible there iz alzo a While-loop iteration
construct in Modelica (p. 290). For conditional expressions the if-Statement (p. 292) i
used. When-Statements (p. 293) are used to express acfions at event (nstanis and are
clozely related to when-equations. The Eemit (p. 296) statement can be uzed in
when-statements to define new values for contimous-time state variabies of a model at
an event.
The Agzert (p. 298) statement provides a convenient means for epecifying checks on
model validity within a model.
The most common uzage of Terminate (p. 298) iz to give more appropriate stopping
criteria for termmating a simulation than a fixed point in tiume.
Exercises J
Exercise 1
Exercise 2
Exercise 3
Exercise 4
Exercise S
Functions
The body of a Modelica function is a kind of algonthm section that containg procedural
algoritlunic code to be executed when the function iz Called (p. 300). Since a function is
a resfricted and enhanced kincd of clags. it iz nosgible to inherit an exigting fimction El
Ready 5

Figure 12.4: DrModelica Chapter on Algorithms and Functions in the main page of the OMNotebook version of
DrModelica.

12.2. DrModelica Tutoring System — an Application of OMNotebook 207

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(Ll oMNotebook: Exercisel.nb i]
File Edit Cell Format Insert Window Help

Exercise 1

Using Algorithm Sections

Wiite a finction, Sum, which calculates the sum of munbers, i an array of arbitrary size.

Write a finction, Ave rage, which calculates the average of numbers, in an array of arbitrary size. Average
should use make a function call to Sum.

|]

Write a class, LargestAverages, that has two arrays and calculates the average of each of them. Then it
cotnpares the averages and sets a vanable to true if the frst array 15 larger than the second and otherwise false.

|]

Answer]

Ready 7

Figure 12.5: Exercise 1 in Chapter 9 of DrModelica.

208 Chapter 12. OMNotebook with DrModelica and DrControl

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

] OMNotebook: Exercisel.nb®

File Edit el Format Insert ‘Window Help

[
Answer

Sum

function Sum
input Real[:] =x=;
output Beal sum;
algorithm
for 1 in l:size(x,l]) loop
sum := sum + x[1];
end for;

end Sum;

Average

function Average

input Real[:] x;

output Beal average;
protected

Feal sum;

algorithm

average := Sumix) / size(x, 1);
end Average;

LargestAverage

class LargestAverage
parameter Integer[:] &1 = {1, 2, 3, 4,
parameter Integer[:] AZ = {7, B, 9};
Real awverageil, averageli;
Boolean AlLargest({start = false);
algorithm

averageil := Average(il);
averagehZ = Average(AZ);
if awverageil > averagedZ then
AlLargest := true;
else
AlTargest := fal=e;
end if;

end Largestiverage;

Simulation of LargestAverage

St

simulate(Largestaverage);

vatiable &1L argest 15 false (= 0).

Ready

When we lool at the values m the wanables we see that A2 has the largest average (8) and therefore the

v L

Figure 12.6: The answer section to Exercise 1 in Chapter 9 of DrModelica.

12.2. DrModelica Tutoring System — an Application of OMNotebook

209

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

12.3 DrControl Tutorial for Teaching Control Theory

DrControl is an interactive OMNotebook document aimed at teaching control theory. It is included in the Open-
Modelica distribution and appears under the directory:

>>> getInstallationDirectoryPath() + "/share/omnotebook/drcontrol"
"«OPENMODELICAHOME»/share/omnotebook/drcontrol"

The front-page of DrControl resembles a linked table of content that can be used as a navigation center. The
content list contains topics like:

* Getting started

* The control problem in ordinary life
 Feedback loop

* Mathematical modeling

¢ Transfer function

* Stability

¢ Example of controlling a DC-motor
* Feedforward compensation

* State-space form

* State observation

* Closed loop control system.

* Reconstructed system

* Linear quadratic optimization

¢ Linearization

Each entry in this list leads to a new notebook page where either the theory is explained with Modelica examples
or an exercise with a solution is provided to illustrate the background theory. Below we show a few sections of
DrControl.

12.3.1 Feedback Loop

One of the basic concepts of control theory is using feedback loops either for neutralizing the disturbances from
the surroundings or a desire for a smoother output.

In Figure 12.7, control of a simple car model is illustrated where the car velocity on a road is controlled, first with
an open loop control, and then compared to a closed loop system with a feedback loop. The car has a mass m,
velocity y, and aerodynamic coefficient o. The is the road slope, which in this case can be regarded as noise.

Lets look at the Modelica model for the open loop controlled car:

my =u— ay —mg * sin(0)

model noFeedback
import SI = Modelica.SIunits;

SI.Velocity vy; // output signal without noise,_
—~theta = 0 —> v(t) = 0

SI.Velocity yNoise; // output signal with noise, L
—~theta <> 0 —> v(t) <> 0

parameter SI.Mass m = 1500;

parameter Real alpha = 200;

parameter SI.Angle theta = 5%3.141592/180;
parameter SI.Acceleration g = 9.82;
SI.Force u;

(continues on next page)

210 Chapter 12. OMNotebook with DrModelica and DrControl

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

File Edit Cell Format Insert Window Help

Feedback

One important method in designing control system is a feedback loop. It can be used to eliminate the
influence of noise or to decrease the output error.

| ¥

Regulator

1 Example

Assume that we want to control the speed of a car on the road. The car has a mass m, velocity y, and
aerodynamic coefficient a. The 8 is the road slope, which in this case can be regarded as noise.

my =u—ay —mgsin(d)
If we want a reference speed of 20 m/s for a car with m=1500 kg, a=250 Ns/m, 6=0 rad, how high should

the amplification factor be in the regulator?
Try with u = 250*r.

\.'itJ=mgsini9}l=U

rit)=20m/s

1.1 Open Loop

loadModel (Modelica)
true

model noFeedback
import 5I = Modelica.SIunits;

SI.Velocity y; // output signal without
noise, theta = 8 -> v(t) = 8
ST Velnritw wNnics- LY nntnut einnal with nnice

SN

Figure 12.7: Feedback loop.

12.3. DrControl Tutorial for Teaching Control Theory 211

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

SI.Velocity r=20;

equation
mxder (y) =u-alphaxy; // signal without noise
m+der (yNoise)=u-alphaxyNoise-mxg+sin (theta); // with noise
u = 250*r;

end noFeedback;

By applying a road slope angle different from zero the car velocity is influenced which can be regarded as noise in
this model. The output signal in Figure 12.8 is stable but an overshoot can be observed compared to the reference
signal. Naturally the overshoot is not desired and the student will in the next exercise learn how to get rid of this
undesired behavior of the system.

>>> loadModel (Modelica, {"3.2.3"})
true

>>> simulate (noFeedback, stopTime=100)
record SimulationResult

resultFile = "«DOCHOME»/noFeedback_res.mat",

simulationOptions = "startTime 0.0, stopTime = 100.0, numberOfIntervals =,
—~500, tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'noFeedback', options,
—= "', outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",

messages "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
4

timeFrontend = 0.17892565,
timeBackend = 0.00769326,
timeSimCode = 0.003819023,
timeTemplates = 0.157382894,
timeCompile = 0.847852929,
timeSimulation = 0.127474166,
timeTotal = 1.323335494

end SimulationResult;

Warning:

Warning: The initial conditions are not fully specified. For more information set -d=initialization. In OMEdit
Tools->Options->Simulation->Show additional information from the initialization process, in OMNotebook
call setCommandLineOptions("-d=initialization").

The closed car model with a proportional regulator is shown below:

u=Kx*(r—vy)
model withFeedback
import SI = Modelica.SIunits;
SI.Velocity y; // output signal with feedback,,
—~1link and without noise, theta = 0 -> v(t) = 0
SI.Velocity yNoise; // output signal with feedback,
—1link and noise, theta <> 0 —> v(t) <> 0

parameter SI.Mass m = 1500;
parameter Real alpha = 250;
parameter SI.Angle theta = 5%3.141592/180;
parameter SI.Acceleration g = 9.82;
SI.Force u;
SI.Force uNoise;
SI.Velocity r=20;
equation
mxder (y)=u-alphaxy;

(continues on next page)

212 Chapter 12. OMNotebook with DrModelica and DrControl

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

y ——
yNoise

60 80 100

Figure 12.8: Open loop control example.

(continued from previous page)

mxder (yNoise)=uNoise-alphaxyNoise-mxgxsin (theta);
u = 5000+ (r-y);
uNoise = 5000« (r-yNoise);

end withFeedback;

By using the information about the current level of the output signal and re-tune the regulator the output quantity
can be controlled towards the reference signal smoothly and without an overshoot, as shown in Figure 12.9.

In the above simple example the flat modeling approach was adopted since it was the fastest one to quickly obtain
a working model. However, one could use the object oriented approach and encapsulate the car and regulator
models in separate classes with the Modelica connector mechanism in between.

>>> loadModel (Modelica, {"3.2.3"})
true

>>> simulate (withFeedback, stopTime=10)
record SimulationResult

resultFile = "«DOCHOME»/withFeedback_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500,
— tolerance = le-06, method = 'dassl', fileNamePrefix = 'withFeedback', options =
—'"'", outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.4211091,
timeBackend = 0.002732245,
timeSimCode = 0.001032126,
timeTemplates 0.0030869¢6,
timeCompile = 0.412471169,
timeSimulation = 0.017233394,
timeTotal = 0.857777133

end SimulationResult;

Warning:

Warning: The initial conditions are not fully specified. For more information set -d=initialization. In OMEdit
Tools->Options->Simulation->Show additional information from the initialization process, in OMNotebook

12.3. DrControl Tutorial for Teaching Control Theory 213

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

call setCommandLineOptions("-d=initialization").

\/

yNoisé -

Figure 12.9: Closed loop control example.

12.3.2 Mathematical Modeling with Characteristic Equations

In most systems the relation between the inputs and outputs can be described by a linear differential equation.
Tearing apart the solution of the differential equation into homogenous and particular parts is an important tech-
nique taught to the students in engineering courses, also illustrated in Figure 12.10.

"y oy o"u ou
—_— —_— ... wy=bp——+...+bp_1— + b,
oin T gt Tty =0oga e F dmotg bt

Now let us examine a second order system:

Y+ ay+ay=1

model NegRoots

Real y;

Real der_y;

parameter Real al =

parameter Real a2 =
equation

der_y = der(y);

der (der_y) + alxder_y + a2+y = 1;
end NegRoots;

N W
~e

~

Choosing different values for a; and a, leads to different behavior as shown in Figure 12.11 and Figure 12.12.

In the first example the values of a; and a, are chosen in such way that the characteristic equation has negative
real roots and thereby a stable output response, see Figure 12.11.

>>> simulate (NegRoots, stopTime=10)
record SimulationResult

resultFile = "«DOCHOME»/NegRoots_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500,
— tolerance = le-06, method = 'dassl', fileNamePrefix = 'NegRoots', options = '', |,
—outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",

(continues on next page)

214 Chapter 12. OMNotebook with DrModelica and DrControl

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

File Edit Cell Format Insert Window Help

1.1

= . . L . = :J-I v (0]

Mathematical Modeling

In most systems the relation between the inputs and outputs can be approximated by a linear differential

equation.

n

dt™

where the coefficients a; and b; are constants. The above differential equation has a homogeneous and a

dan1 d

m d
vit) + aiﬁy(t) + et @, y(t) = by ult) + .+ bm_lgu(t]+bmu(t}

t

particular solution:

Y=yt ¥

The homogeneous solution where u is set to zero has the form:

where

Example

v = Crelat + o+ O elnt

AMta, At ta, A +a,=0

Consider the following model.

d? dt
E}-‘(ﬂ + 01?}-‘&) +ay(t) =1

Examine the behavior of the system for different values on a, and a,

Characteristic Equation with Negative Real Roots, 3=-1,-2

model negRoots

Real y;

Real der_y;

parameter Real al = 3;

parameter Real a2 = 2;
equation

der_y = der(y);
der(der_y) + al*der_y + a2*y = 1;
end negRoots;

{negRoots}

simulate(neaRoots.stopTime=101

Figure 12.10: Mathematical modeling with characteristic equation.

12.3. DrControl Tutorial for Teaching Control Theory

215

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

messages = "LOG_SUCCESS | info
—successfully without homotopy method.

LOG_SUCCESS |

n
’

info | The simulatio

timeFrontend = 0.07489511599999998,
timeBackend = 0.001560227,
timeSimCode = 0.000449002,
timeTemplates = 0.00287888,
timeCompile = 0.437338521,
timeSimulation = 0.015761563,
timeTotal = 0.53298536

end SimulationResult;

| The initialization finished

n finished successfully.

Warning:

call setCommandLineOptions("-d=initialization").

Warning: The initial conditions are not fully specified. For more information set -d=initialization. In OMEdit
Tools->Options->Simulation->Show additional information from the initialization process, in OMNotebook

0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1

0.05

10

Figure 12.11: Characteristic equation with real negative roots.

The importance of the sign of the roots in the characteristic equation is illustrated in Figure 12.11 and Figure

12.12, e.g., a stable system with negative real roots and an
in oscillations.

unstable system with positive imaginary roots resulting

model ImgPosRoots
Real vy;
Real der_y;

parameter Real al = -2;
parameter Real a2 = 10;
equation
der_y = der(y);
der (der_y) + alxder_y + a2xy = 1;

end ImgPosRoots;

>>> simulate (ImgPosRoots,
record SimulationResult

stopTime=10)

(continues on next page)

216 Chapter 12

. OMNotebook with DrModelica and DrControl

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

resultFile = "«DOCHOME»/ImgPosRoots_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500,
— tolerance = le-06, method = 'dassl', fileNamePrefix = 'ImgPosRoots', options = '
—', outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

"
’

timeFrontend = 0.073688453,
timeBackend 0.001491778,
timeSimCode 0.000491683,
timeTemplates = 0.002957688,
timeCompile = 0.43626639,
timeSimulation = 0.016740089,
timeTotal = 0.5317273309999999
end SimulationResult;

Warning:

Warning: The initial conditions are not fully specified. For more information set -d=initialization. In OMEdit
Tools->Options->Simulation->Show additional information from the initialization process, in OMNotebook
call setCommandLineOptions("-d=initialization").

1500 T T T T

1000

500 1

-500

-1000

_1500 1 1 1 1
0 2 4 6 8 10

Figure 12.12: Characteristic equation with imaginary roots with positive real part.

The theory and application of Kalman filters is also explained in the interactive course material.

In reality noise is present in almost every physical system under study and therefore the concept of noise is also
introduced in the course material, which is purely Modelica based.

12.3. DrControl Tutorial for Teaching Control Theory 217

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

File Edit Cell Format Insert Window Help

N | =B ' [I ||« | @
1 Example J B
Consider a tank system with the following transfer function }]
1 -
__A
G(s) = n T
sTT
What is the weight function? Can you plot the step response of the tank? }
1.1 Tank Transfer Function

loadModel (Modelica.Blocks)]

model Tank
Modelica.Blocks.Continuous.TransferFunction G(b={1/A},
a={1,1/T},y_start(fixed=true)=1/A);
Modelica.Blocks.Continuous.TransferFunction GStep(b={1/A}, a={1,1/T});
parameter Real T = 15;
parameter Real A = 5;
Real u = if (time > @ or time<@®) then @ else Modelica.Constants.inf;
Real uStep = if (time > @ or time<@) then 1 else 8;
equation
G.u = if time > © then 0 else 1e10;
GStep.u = uStep;
end Tank;

{Tank}
simulate(Tank, startTime=-1e-10, number0fIntervals=500, stopTime=10);]

plot({G.y,GStep.y})
true

Plot by OpenModelica

1.4
1.2
1 @Gy
0.8
0.6
0.4 @ GStep.y

0.2

0 2 4 6 8 10 Z
Ready Ln 8, Col1l

Figure 12.13: Step and pulse (weight function) response.

218 Chapter 12. OMNotebook with DrModelica and DrControl

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

File Edit Cell Format Inset Window Help

o M~ | = P @ ¥ : \'\’:‘/@

1 Kalman Filter

Often we don't have access to the internal states of a system and can only measure the outputs of the system and
have to reconstruct the state of the system based on these measurements. This is normally done with an observer.
The idea with an observer is that we feedback the difference of the measured output with the estimated output. If
the estiamtion is correct then the difference should be zero.

Another difficulty is that the measured quantities often contain disturbance, i.e. noise.

{f:Ai+Bu+e
J=Ct+v

Here are e denoting a disturbance in the input signal and v is a measurement error. The quality of the estimate can
be evalated by the difference

K(y(t) — cx(t) — Du(t))
By using this quantity as feedback we obtain the observer
£ = AZ() + Bu(t) + K(3(t) — €2 () — Du(t))

Now form the error as

=i
I
=
|
L)

The differential error is

e L e L -

Ready Ready

Figure 12.14: Theory background about Kalman filter.

File Edit Cell Format Inset Window Help

N = B e A =y« O

m

model KalmanFeedback

parameter Real A[:,size(A, 1)] = {{0,1},{1,0}} ;

parameter Real B([size(A, 1),:]1 = {{0},{1}};

parameter Real C[:,size(a, 1)] = {{1,0}};

parameter Real([2,1] K = [2.4;3.4];

parameter Real[l,2] L = [2.4,3.4];

parameter Real([:,:] ABL = A-B%L;

parameter Real[:,:] BL = B*L;

parameter Real([:,:] Z = zeros(size (ABL,2),size (ARC,1));

parameter Real[:,:] ARC = A-K*C;

parameter Real[:,:] Anew [0,1,0,0 ; -1.4, -3.4, 2.4,3.4; 0,0,-2.4,1;0,0,-2.4,0];
1
1

parameter Real[:,:] Bnew [07;1;0;0];

parameter Real[:,:] Fnew = [1;0;0;0];

stateSpaceNoise Kalman (stateSpace.A=Anew,stateSpace.B=Bnew, stateSpace.C=[1,0,0,0],
stateSpace.F = Fnew);

stateﬁpacaﬂ'oise noKalman;
end KalmanFeedback;

simulate (KalmanFeedback, stopTime=3)
[plot ({Kalman.stateSpace.y([1l],noKalman.stateSpace.y([1]})

true
Plot by OpenModelica

15
@ Kalman, stateSpace. y[1]

@ nokalman.stateSpace.y[1]

w

Ready n12,Col39 |

Figure 12.15: Comparison of a noisy system with feedback link in DrControl.

12.3. DrControl Tutorial for Teaching Control Theory 219

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

12.4 OpenModelica Notebook Commands

OMNotebook currently supports the commands and concepts that are described in this section.

12.4.1 Cells

Everything inside an OMNotebook document is made out of cells. A cell basically contains a chunk of data. That
data can be text, images, or other cells. OMNotebook has four types of cells: headercell, textcell, inputcell, and
groupcell. Cells are ordered in a tree structure, where one cell can be a parent to one or more additional cells. A
tree view is available close to the right border in the notebook window to display the relation between the cells.

¢ Textcell — This cell type is used to display ordinary text and images. Each textcell has a style that spec-

ifies how text is displayed. The cell’s style can be changed in the menu Format->Styles, example of
different styles are: Text, Title, and Subtitle. The Textcell type also has support for following links to
other notebook documents.

* Inputcell — This cell type has support for syntax highlighting and evaluation. It is intended to be used

for writing program code, e.g. Modelica code. Evaluation is done by pressing the key combina-
tion Shift+Return or Shift+Enter. All the text in the cell is sent to OMC (OpenModelica Com-
piler/interpreter), where the text is evaluated and the result is displayed below the inputcell. By
double-clicking on the cell marker in the tree view, the inputcell can be collapsed causing the result to
be hidden.

 Latexcell — This cell type has support for evaluation of latex scripts. It is intended to be mainly used for

writing mathematical equations and formulas for advanced documentation in OMNotebook. Each La-
texcell supports a maximum of one page document output.To evaluate this cell, latex must be installed
in your system.The users can copy and paste the latex scripts and start the evaluation.Evaluation is
done by pressing the key combination Shift+Return or Shift+Enter or the green color eval button
present in the toolbar. The script in the cell is sent to latex compiler, where it is evaluated and the
output is displayed hiding the latex source. By double-clicking on the cell marker in the tree view,the
latex source is displayed for further modification.

¢ Groupcell — This cell type is used to group together other cell. A groupcell can be opened or closed.

When a groupcell is opened all the cells inside the groupcell are visible, but when the groupcell is
closed only the first cell inside the groupcell is visible. The state of the groupcell is changed by the
user double-clicking on the cell marker in the tree view. When the groupcell is closed the marker is
changed and the marker has an arrow at the bottom.

12.4.2 Cursors

An OMNotebook document contains cells which in turn contain text. Thus, two kinds of cursors are needed for
positioning, text cursor and cell cursor:

* Textcursor — A cursor between characters in a cell, appearing as a small vertical line. Position the cur-

sor by clicking on the text or using the arrow buttons.

 Cellcursor — This cursor shows which cell currently has the input focus. It consists of two parts. The

main cellcursor is basically just a thin black horizontal line below the cell with input focus. The
cellcursor is positioned by clicking on a cell, clicking between cells, or using the menu item Cell-
>Next Cell or Cell->Previous Cell. The cursor can also be moved with the key combination Ctrl+Up
or Ctrl+Down. The dynamic cellcursor is a short blinking horizontal line. To make this visible, you
must click once more on the main cellcursor (the long horizontal line). NOTE: In order to paste cells
at the cellcursor, the dynamic cellcursor must be made active by clicking on the main cellcursor (the
horizontal line).

220

Chapter 12. OMNotebook with DrModelica and DrControl

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

12.4.3 Selection of Text or Cells

To perform operations on text or cells we often need to select a range of characters or cells.

¢ Select characters — There are several ways of selecting characters, e.g. double-clicking on a word,
clicking and dragging the mouse, or click followed by a shift-click at an adjacent positioin selects
the text between the previous click and the position of the most recent shift-click.

¢ Select cells — Cells can be selected by clicking on them. Holding down Ctrl and clicking on the cell
markers in the tree view allows several cells to be selected, one at a time. Several cells can be se-
lected at once in the tree view by holding down the Shift key. Holding down Shift selects all cells
between last selected cell and the cell clicked on. This only works if both cells belong to the same
groupcell.

12.4.4 File Menu

The following file related operations are available in the file menu:

* Create a new notebook — A new notebook can be created using the menu File->New or the key combi-
nation Ctrl+N. A new document window will then open, with a new document inside.

e Open a notebook — To open a notebook use File->Open in the menu or the key combination Ctrl+O.
Only files of the type .onb or .nb can be opened. If a file does not follow the OMNotebook format or the
FullForm Mathematica Notebook format, a message box is displayed telling the user what is wrong.
Mathematica Notebooks must be converted to fullform before they can be opened in OMNotebook.

* Save a notebook — To save a notebook use the menu item File->Save or File->Save As. If the notebook
has not been saved before the save as dialog is shown and a filename can be selected. OMNotebook
can only save in xml format and the saved file is not compatible with Mathematica. Key combination
for save is Ctrl+S and for save as Ctrl+Shift+S. The saved file by default obtains the file extension
.onb.

* Print — Printing a document to a printer is done by pressing the key combination Ctrl+P or using the
menu item File->Print. A normal print dialog is displayed where the usually properties can be changed.

e Import old document — Old documents, saved with the old version of OMNotebook where a different
file format was used, can be opened using the menu item File->Import->0Old OMNotebook file. Old
documents have the extension .xml.

» Export text — The text inside a document can be exported to a text document. The text is exported to
this document without almost any structure saved. The only structure that is saved is the cell structure.
Each paragraph in the text document will contain text from one cell. To use the export function, use
menu item File->Export->Pure Text.

e Close a notebook window — A notebook window can be closed using the menu item File->Close or the
key combination Ctrl+F4. Any unsaved changes in the document are lost when the notebook win-
dow is closed.

* Quitting OMNotebook — To quit OMNotebook, use menu item File->Quit or the key combination
Crtl+Q. This closes all notebook windows; users will have the option of closing OMC also. OMC
will not automatically shutdown because other programs may still use it. Evaluating the command
quit() has the same result as exiting OMNotebook.

12.4. OpenModelica Notebook Commands 221

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

12.4.5 Edit Menu

 Editing cell text — Cells have a set of of basic editing functions. The key combination for these are:
Undo (Ctrl+Z), Redo (Ctrl+Y), Cut (Ctrl+X), Copy (Ctrl+C) and Paste (Ctrl+V). These functions can
also be accessed from the edit menu; Undo (Edit->Undo), Redo (Edit->Redo), Cut (Edit->Cut), Copy
(Edit->Copy) and Paste (Edit->Paste). Selection of text is done in the usual way by double-clicking,
triple-clicking (select a paragraph), dragging the mouse, or using (Ctrl+A) to select all text within the
cell.

Cut cell — Cells can be cut from a document with the menu item Edit->Cut or the key combination
Ctrl+X. The cut function will always cut cells if cells have been selected in the tree view, otherwise
the cut function cuts text.

* Copy cell - Cells can be copied from a document with the menu item Edit->Copy or the key combina-
tion Ctrl+C. The copy function will always copy cells if cells have been selected in the tree view,
otherwise the copy function copy text.

¢ Paste cell — To paste copied or cut cells the cell cursor must be selected in the location where the cells
should be pasted. This is done by clicking on the cell cursor. Pasteing cells is done from the menu
Edit->Paste or the key combination Ctrl+V. If the cell cursor is selected the paste function will always
paste cells. OMNotebook share the same application-wide clipboard. Therefore cells that have been
copied from one document can be pasted into another document. Only pointers to the copied or cut
cells are added to the clipboard, thus the cell that should be pasted must still exist. Consequently a cell
can not be pasted from a document that has been closed.

 Find — Find text string in the current notebook, with the options match full word, match cell, search
within closed cells. Short command Ctrl+F.

* Replace — Find and replace text string in the current notebook, with the options match full word,
match cell, search+replace within closed cells. Short command Ctrl+H.

* View expression — Text in a cell is stored internally as a subset of HTML code and the menu item Edit-
>View Expression let the user switch between viewing the text or the internal HTML representation.
Changes made to the HTML code will affect how the text is displayed.

12.4.6 Cell Menu

* Add textcell — A new textcell is added with the menu item Cell->Add Cell (previous cell style) or the
key combination Alt+Enter. The new textcell gets the same style as the previous selected cell had.

* Add inputcell — A new inputcell is added with the menu item Cell->Add Inputcell or the key combina-
tion Ctrl+Shift+I.

* Add latexcell — A new latexcell is added with the menu item Cell->Add Latexcell or the key combina-
tion Ctrl+Shift+E.

* Add groupcell — A new groupcell is inserted with the menu item Cell->Groupcell or the key combina-
tion Ctrl+Shift+G. The selected cell will then become the first cell inside the groupcell.

* Ungroup groupcell — A groupcell can be ungrouped by selecting it in the tree view and using the menu
item Cell->Ungroup Groupcell or by using the key combination Ctrl+Shift+U. Only one groupcell at
a time can be ungrouped.

Split cell — Spliting a cell is done with the menu item Cell->Split cell or the key combination
Ctrl+Shift+P. The cell is splited at the position of the text cursor.

Delete cell - The menu item Cell->Delete Cell will delete all cells that have been selected in the tree
view. If no cell is selected this action will delete the cell that have been selected by the cellcursor.
This action can also be called with the key combination Ctrl+Shift+D or the key Del (only works
when cells have been selected in the tree view).

¢ Cellcursor — This cell type is a special type that shows which cell that currently has the focus. The cell
is basically just a thin black line. The cellcursor is moved by clicking on a cell or using the menu
item Cell->Next Cell or Cell->Previous Cell. The cursor can also be moved with the key combination
Ctrl+Up or Ctrl+Down.

222 Chapter 12. OMNotebook with DrModelica and DrControl

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

12.4.7 Format Menu

¢ Textcell — This cell type is used to display ordinary text and images. Each textcell has a style that spec-
ifies how text is displayed. The cells style can be changed in the menu Format->Styles, examples of
different styles are: Text, Title, and Subtitle. The Textcell type also have support for following links
to other notebook documents.

¢ Text manipulation — There are a number of different text manipulations that can be done to change the
appearance of the text. These manipulations include operations like: changing font, changing color
and make text bold, but also operations like: changing the alignment of the text and the margin in-
side the cell. All text manipulations inside a cell can be done on single letters, words or the entire
text. Text settings are found in the Format menu. The following text manipulations are available in
OMNotebook:

> Font family

> Font face (Plain, Bold, Italic, Underline)
> Font size

> Font stretch

> Font color

> Text horizontal alignment

> Text vertical alignment

> Border thickness

> Margin (outside the border)

> Padding (inside the border)

12.4.8 Insert Menu

* Insert image — Images are added to a document with the menu item Insert->Image or the key combina-
tion Ctrl+Shift+M. After an image has been selected a dialog appears, where the size of the image can
be chosen. The images actual size is the default value of the image. OMNotebook stretches the image
accordantly to the selected size. All images are saved in the same file as the rest of the document.

* Insert link — A document can contain links to other OMNotebook file or Mathematica notebook and to
add a new link a piece of text must first be selected. The selected text make up the part of the link that
the user can click on. Inserting a link is done from the menu Insert->Link or with the key combination
Ctrl+Shift+L. A dialog window, much like the one used to open documents, allows the user to choose
the file that the link refers to. All links are saved in the document with a relative file path so documents
that belong together easily can be moved from one place to another without the links failing.

12.4.9 Window Menu

e Change window — Each opened document has its own document window. To switch between those use
the Window menu. The window menu lists all titles of the open documents, in the same order as they
were opened. To switch to another document, simple click on the title of that document.

12.4. OpenModelica Notebook Commands 223

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

12.4.10 Help Menu

e About OMNotebook — Accessing the about message box for OMNotebook is done from the menu Help-
>About OMNotebook.

e About Qt — To access the message box for Qt, use the menu Help->About Qt.

e Help Text — Opening the help text (document OMNotebookHelp.onb) for OMNotebook can be done in
the same way as any OMNotebook document is opened or with the menu Help->Help Text. The menu
item can also be triggered with the key F1.

12.4.11 Additional Features

* Links — By clicking on a link, OMNotebook will open the document that is referred to in the link.

¢ Update link — All links are stored with relative file path. Therefore OMNotebook has functions that au-
tomatically updating links if a document is resaved in another folder. Every time a document is saved,
OMNotebook checks if the document is saved in the same folder as last time. If the folder has changed,
the links are updated.

¢ Evaluate whole Notebook — All the cells present in the Notebook can be evaluated in one step by press-
ing the red color evalall button in the toolbar. The cells are evaluated in the same order as they are in
the Notebook.However the latexcells cannot be evaluated by this feature.

* Evaluate several cells — Several inputcells can be evaluated at the same time by selecting them in the
treeview and then pressing the key combination Shift+Enter or Shift+Return. The cells are evalu-
ated in the same order as they have been selected. If a groupcell is selected all inputcells in that
groupcell are evaluated, in the order they are located in the groupcell.

* Moving and Reordering cells in a Notebook — 1t is possible to shift cells to a new position and change the
hierarchical order of the document.This can be done by clicking the cell and press the Up and Down
arrow button in the tool bar to move either Up or Down. The cells are moved one cell above or below.It
is also possible to move a cell directly to a new position with one single click by pressing the red color
bidirectional UpDown arrow button in the toolbar. To do this the user has to place the cell cursor to
a position where the selected cells must be moved. After selecting the cell cursor position, select the
cells you want to shift and press the bidirectional UpDown arrow button. The cells are shifted in the
same order as they are selected.This is especially very useful when shifting a group cell.

e Command completion — Inputcells have command completion support, which checks if the user is typ-
ing a command (or any keyword defined in the file commands.xml) and finish the command. If the user
types the first two or three letters in a command, the command completion function fills in the rest. To
use command completion, press the key combination Ctrl+Space or Shift+Tab. The first command that
matches the letters written will then appear. Holding down Shift and pressing Tab (alternative holding
down Ctrl and pressing Space) again will display the second command that matches. Repeated request
to use command completion will loop through all commands that match the letters written. When a
command is displayed by the command completion functionality any field inside the command that
should be edited by the user is automatically selected. Some commands can have several of these fields
and by pressing the key combination Ctrl+Tab, the next field will be selected inside the command. >
Active Command completion: Ctrl+Space / Shift+Tab > Next command: Ctrl+Space / Shift+Tab >
Next field in command: Ctrl+Tab’

¢ Generated plot — When plotting a simulation result, OMC uses the program Ptplot to create a plot.
From Ptplot OMNotebook gets an image of the plot and automatically adds that image to the out-
put part of an inputcell. Like all other images in a document, the plot is saved in the document file
when the document is saved.

¢ Stylesheet -OMNotebook follows the style settings defined in stylesheet.xml and the correct style is ap-
plied to a cell when the cell is created.

* Automatic Chapter Numbering — OMNotebook automatically numbers different chapter, subchapter,
section and other styles. The user can specify which styles should have chapter numbers and which

224 Chapter 12. OMNotebook with DrModelica and DrControl

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

level the style should have. This is done in the stylesheet.xml file. Every style can have a <chapter-
Level> tag that specifies the chapter level. Level O or no tag at all, means that the style should not have
any chapter numbering.

* Scrollarea — Scrolling through a document can be done by using the mouse wheel. A document can
also be scrolled by moving the cell cursor up or down.

 Syntax highlighter — The syntax highlighter runs in a separated thread which speeds up the loading of
large document that contains many Modelica code cells. The syntax highlighter only highlights when
letters are added, not when they are removed. The color settings for the different types of keywords
are stored in the file modelicacolors.xml. Besides defining the text color and background color of
keywords, whether or not the keywords should be bold or/and italic can be defined.

e Change indicator — A star (*) will appear behind the filename in the title of notebook window if the
document has been changed and needs saving. When the user closes a document that has some un-
saved change, OMNotebook asks the user if he/she wants to save the document before closing. If the
document never has been saved before, the save-as dialog appears so that a filename can be choosen
for the new document.

* Update menus — All menus are constantly updated so that only menu items that are linked to actions
that can be performed on the currently selected cell is enabled. All other menu items will be dis-
abled. When a textcell is selected the Format menu is updated so that it indicates the text settings for
the text, in the current cursor position.

12.5 References

Todo: Add these into extrarefs.bib and cite them somewhere

Eric Allen, Robert Cartwright, Brian Stoler. DrJava: A lightweight pedagogic environment for Java. In Proceed-
ings of the 33rd ACM Technical Symposium on Computer Science Education (SIGCSE 2002) (Northern Kentucky
— The Southern Side of Cincinnati, USA, February 27 — March 3, 2002).

Anders Fernstrom, Ingemar Axelsson, Peter Fritzson, Anders Sandholm, Adrian Pop. OMNotebook — Interactive
WYSIWYG Book Software for Teaching Programming. In Proc. of the Workshop on Developing Computer
Science Education — How Can It Be Done?. Linkdping University, Dept. Computer & Inf. Science, Linkdping,
Sweden, March 10, 2006.

Eva-Lena Lengquist-Sandelin, Susanna Monemar, Peter Fritzson, and Peter Bunus. DrModelica — A Web-Based
Teaching Environment for Modelica. In Proceedings of the 44th Scandinavian Conference on Simulation and
Modeling (SIMS’2003), available at www.scan-sims.org. Visteras, Sweden. September 18-19, 2003.

12.5. References 225

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

226 Chapter 12. OMNotebook with DrModelica and DrControl

CHAPTER
THIRTEEN

OPTIMIZATION WITH OPENMODELICA

The following facilities for model-based optimization are provided with OpenModelica:

* Builtin Dynamic Optimization with OpenModelica and IpOpt using dynamic optimization is the recom-
mended way of performing dynamic optimization with OpenModelica.

* Dynamic Optimization with OpenModelica and CasADi. Use this if you want to employ the = CasADi
tool for dynamic optimization.

* Classical Parameter Sweep Optimization using OMOptim. Use this if you have a static optimization
problem.

13.1 Builtin Dynamic Optimization with OpenModelica and IpOpt

Note: this is a very short preliminary decription which soon will be considerably improved.

OpenModelica provides builtin dynamic optimization of models by using the powerful symbolic machinery of the
OpenModelica compiler for more efficient and automatic solution of dynamic optimization problems.

The builtin dynamic optimization allows users to define optimal control problems (OCP) using the Modelica
language for the model and the optimization language extension called Optimica (currently partially supported) for
the optimization part of the problem. This is used to solve the underlying dynamic optimization model formulation
using collocation methods, using a single execution instead of multiple simulations as in the parameter-sweep
optimization described in section Parameter Sweep Optimization using OMOptim.

For more detailed information regarding background and methods, see [BOR+12][RBB+14]

13.2 Compiling the Modelica code

Before starting the optimization the model should be symbolically instantiated by the compiler in order to get a
single flat system of equations. The model variables should also be scalarized. The compiler frontend performs
this, including syntax checking, semantics and type checking, simplification and constant evaluation etc. are
applied. Then the complete flattened model can be used for initialization, simulation and last but not least for
model-based dynamic optimization.

The OpenModelica command optimize(ModelName) from OMShell, OMNotebook or MDT runs immediately
the optimization. The generated result file can be read in and visualized with OMEdit or within OMNotebook.

227

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

13.3 An Example

In this section, a simple optimal control problem will be solved. When formulating the optimization problems,
models are expressed in the Modelica language and optimization specifications. The optimization language spec-
ification allows users to formulate dynamic optimization problems to be solved by a numerical algorithm. It
includes several constructs including a new specialized class optimization, a constraint section, startTime, final-
Time etc. See the optimal control problem for batch reactor model below.

Create a new file named BatchReactor.mo and save it in you working directory. Notice that this model contains
both the dynamic system to be optimized and the optimization specification.

Once we have formulated the undelying optimal control problems, we can run the optimization by using OMShell,
OMNotebook, MDT, OMEdit using command line terminals similar to the options described below:

>>> setCommandLineOptions ("-g=Optimica");

Listing 13.1: BatchReactor.mo

model BatchReactor
Real x1(start =1, fixed=true, min=0, max=1);
Real x2(start =0, fixed=true, min=0, max=1);
input Real u(min=0, max=5);

equation
der (x1) = —(u+u”2/2)*x1;
der (x2) = u*xl;

end BatchReactor;

optimization nmpcBatchReactor (objective=-x2)
extends BatchReactor;
end nmpcBatchReactor;

>>> optimize (nmpcBatchReactor, numberOfIntervals=16, stopTime=1, tolerance=1le-8)
record SimulationResult

resultFile = "«DOCHOME»/nmpcBatchReactor_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOflIntervals = 16,
—tolerance = 1e-08, method = 'optimization', fileNamePrefix = 'nmpcBatchReactor', |,
—options = '', outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags,
—= ""I

messages = "LOG_SUCCESS | info | The initialization finished

—successfully without homotopy method.

Optimizer Variables

State[0] :x1(start = 1, nominal = 1, min = 0, max = 1, init = 1)
State[l]:x2 (start = 0, nominal = 1, min = 0, max = 1, init = 0)
Input[2]:u(start = 0, nominal = 5, min = 0, max = 5)

R R b b b b b b b I b b S b b b b I 2 b b b b I b b b I b b b b 2 2 b b S 2 b b b S 2 b b b 2 b b b b b b b S b b b S 2 b b b b b b b b 2 2 b e

This program contains Ipopt, a library for large-scale nonlinear optimization.

Ipopt is released as open source code under the Eclipse Public License (EPL).
For more information visit http://projects.coin-or.org/Ipopt

A AR AR A A AR A A A A A A AR A A A A A A A AR A A A AR A A A A A A A A A A AR A AR A AR I AR A A A A A A A hA A A A kA A A A A A A A A Kx kA kK

LOG_SUCCESS | info | The simulation finished successfully.

"
’

timeFrontend = 0.08918140200000001,
timeBackend = 0.005450273,
timeSimCode = 0.001535641,

(continues on next page)

228 Chapter 13. Optimization with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

timeTemplates = 0.004171144,
timeCompile = 0.459774773,
timeSimulation = 0.025039155,
timeTotal = 0.585287671

end SimulationResult;

The control and state trajectories of the optimization results:

3.5 T T

2.5

15

0 0.2 0.4

0.6

0.8 1

Figure 13.1: Optimization results for Batch Reactor model — input variables.

0.2

X1l ——
X2 —

0.6

0.8 1

Figure 13.2: Optimization results for Batch Reactor model — state variables.

13.3. An Example

229

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

13.4 Different Options for the Optimizer IPOPT

Table 13.1: New meanings of the usual simualtion options for Ipopt.

numberOfIntervals collocation intervals
startTime, stopTime time horizon
tolerance = le-8 e.g. le-8 solver tolerance
simflags all run/debug options

Table 13.2: New simulation options for Ipopt.

v LOG_IPOPT console output

-ipopt_hesse CONST,BFGS,NUM | hessian approximation
-ipopt_max_iter | number e.g. 10 maximal number of iteration for ipopt
externallnput.csv input guess

13.5 Dynamic Optimization with OpenModelica and CasADi

OpenModelica coupling with CasADi supports dynamic optimization of models by OpenModelica exporting
the optimization problem to CasADi which performs the optimization. In order to convey the dynamic system
model information between Modelica and CasADi, we use an XML-based model exchange format for differential-
algebraic equations (DAE). OpenModelica supports export of models written in Modelica and the Optimization
language extension using this XML format, while CasADi supports import of models represented in this format.
This allows users to define optimal control problems (OCP) using Modelica and Optimization language speci-
fications, and solve the underlying model formulation using a range of optimization methods, including direct
collocation and direct multiple shooting.

13.5.1 Compiling the Modelica code

Before exporting a model to XML, the model should be symbolically instantiated by the compiler in order to get
a single flat system of equations. The model variables should also be scalarized. The compiler frontend performs
this, including syntax checking, semantics and type checking, simplification and constant evaluation etc. are
applied. Then the complete flattened model is exported to XML code. The exported XML document can then be
imported to CasADi for model-based dynamic optimization.

The OpenModelica command translateModeIXML(ModelName) from OMShell, OMNotebook or MDT exports
the XML. The export XML command is also integrated with OMEdit. Select XML > Export XML the XML
document is generated in the current directory of omc. You can use the cd() command to see the current location.
After the command execution is complete you will see that a file ModeIName.xml has been exported.

Assuming that the model is defined in the modelName.mo, the model can also be exported to an XML code using
the following steps from the terminal window:

* Go to the path where your model file found

* Run command omc -g=Optimica --simCodeTarget=XML Model.mo

230 Chapter 13. Optimization with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

13.5.2 An example

In this section, a simple optimal control problem will be solved. When formulating the optimization problems,
models are expressed in the Modelica language and optimization specifications. The optimization language spec-
ification allows users to formulate dynamic optimization problems to be solved by a numerical algorithm. It
includes several constructs including a new specialized class optimization, a constraint section, startTime, final-
Time etc. See the optimal control problem for batch reactor model below.

Create a new file named BafchReactor.mo and save it in you working directory. Notice that this model contains
both the dynamic system to be optimized and the optimization specification.

>>> list (BatchReactor)
model BatchReactor

Real x1(start = 1, fixed = true, min = 0, max = 1);
Real x2(start = 0, fixed = true, min = 0, max = 1);
input Real u(min = 0, max = 5);

equation
der(xl) = —(u +u ~ 2 / 2) * x1;
der (x2) = u » x1;

end BatchReactor;

One we have formulated the undelying optimal control problems, we can export the XML by using OMShell,
OMNotebook, MDT, OMEdit or command line terminals which are described in Section XML Import to CasADi
via OpenModelica Python Script.

To export XML, we set the simulation target to XML:

>>> translateModelXML (BatchReactor)
"«DOCHOME»/BatchReactor.xml"

This will generate an XML file named BatchReactor.xml (Listing 13.2) that contains a symbolic representation of
the optimal control problem and can be inspected in a standard XML editor.

Listing 13.2: BatchReactor.xml

<?xml version="1.0" encoding="UTF-8"?>
<OpenModelicaModelDescription

xmlns:exp="https://github.com/JModelica/JModelica/tree/master/XML/daeExpressions.
—xsd"

xmlns:equ="https://github.com/JModelica/JModelica/tree/master/XML/daeEquations.
—xsd"

xmlns: fun="https://github.com/JModelica/JModelica/tree/master/XML/daeFunctions.
—xsd"

xmlns:opt="https://github.com/JModelica/JModelica/tree/master/XML/
—daeOptimization.xsd"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

fmiversion="1.0"

modelName="BatchReactor"

modelIdentifier="BatchReactor"

guid="{efb9%ec43-ea46-4849-9880-4e84e5b3df64}"

generationDateAndTime="2021-12-14T10:05:41"

variableNamingConvention="structured"

numberOfContinuousStates="2"

numberOfEventIndicators="0"

>

<VendorAnnotations>
<Tool name="OpenModelica Compiler OMCompiler v1.18.0-v1.18.0.38+ga767£054d8">
—</Tool>
</VendorAnnotations>

<ModelVariables>

(continues on next page)

13.5. Dynamic Optimization with OpenModelica and CasADi 231

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

<ScalarVariable name="x1" valueReference="0" variability="continuous"
—causality="internal" alias="noAlias">
<Real start="1.0" fixed="true" min="0.0" max="1.0" />
<QualifiedName>
<exp:QualifiedNamePart name="x1"/>
</QualifiedName>
<isLinearTimedVariables>
<TimePoint index="0" isLinear="true"/>
</isLinearTimedVariables>
<VariableCategory>state</VariableCategory>

</ScalarVariable>
<ScalarVariable name="x2" valueReference="1" variability="continuous"
—causality="internal" alias="noAlias">
<Real start="0.0" fixed="true" min="0.0" max="1.0" />
<QualifiedName>
<exp:QualifiedNamePart name="x2"/>
</QualifiedName>

<isLinearTimedVariables>
<TimePoint index="0" isLinear="true"/>
</isLinearTimedVariables>
<VariableCategory>state</VariableCategory>
</ScalarVariable>
<ScalarVariable name="der (x1)" valueReference="2" variability="continuous"
—causality="internal" alias="noAlias">
<Real />
<QualifiedName>
<exp:QualifiedNamePart name="x1"/>
</QualifiedName>
<isLinearTimedVariables>
<TimePoint index="0" isLinear="true"/>
</isLinearTimedVariables>
<VariableCategory>derivative</VariableCategory>
</ScalarVariable>

<ScalarVariable name="der (x2)" valueReference="3" variability="continuous"
—causality="internal" alias="noAlias">
<Real />
<QualifiedName>
<exp:QualifiedNamePart name="x2"/>
</QualifiedName>

<isLinearTimedVariables>
<TimePoint index="0" isLinear="true"/>
</isLinearTimedVariables>
<VariableCategory>derivative</VariableCategory>
</ScalarVariable>
<ScalarVariable name="u" valueReference="4" variability="continuous" |
—causality="input" alias="noAlias">
<Real min="0.0" max="5.0" />
<QualifiedName>
<exp:QualifiedNamePart name="u"/>
</QualifiedName>
<isLinearTimedVariables>
<TimePoint index="0" isLinear="true"/>
</isLinearTimedVariables>
<VariableCategory>algebraic</VariableCategory>
</ScalarVariable>
</ModelVariables>

<equ:BindingEquations>
</equ:BindingEquations>

(continues on next page)

232 Chapter 13. Optimization with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

<equ:DynamicEquations>
<equ:Equation>
<exp:Sub>
<exp:Der>
<exp:Identifier>
<exp:QualifiedNamePart name="x2"/>
</exp:Identifier>
</exp:Der>
<exp:Mul>
<exp:Identifier>
<exp:QualifiedNamePart name="u"/>
</exp:Identifier>
<exp:Identifier>
<exp:QualifiedNamePart name="x1"/>
</exp:Identifier>
</exp:Mul>
</exp:Sub>
</equ:Equation>
<equ:Equation>
<exp:Sub>
<exp:Der>
<exp:Identifier>
<exp:QualifiedNamePart name="x1"/>
</exp:Identifier>
</exp:Der>
<exp:Mul>
<exp:Sub>
<exp:Mul>
<exp:Realliteral>-0.5</exp:RealLiteral>
<exp:Pow>
<exp:Identifier>
<exp:QualifiedNamePart name="u"/>
</exp:Identifier>
<exp:Realliteral>2.0</exp:RealLiteral>
</exp:Pow>
</exp:Mul>
<exp:Identifier>
<exp:QualifiedNamePart name="u"/>
</exp:Identifier>
</exp:Sub>
<exp:Identifier>
<exp:QualifiedNamePart name="x1"/>
</exp:Identifier>
</exp:Mul>
</exp:Sub>
</equ:Equation>
</equ:DynamicEquations>

<equ:InitialEquations>
<equ:Equation>
<exp:Sub>
<exp:Identifier>
<exp:QualifiedNamePart name="x1"/>
</exp:Identifier>
<exp:RealLiteral>1.0</exp:Realliteral>
</exp:Sub>
</equ:Equation>

<equ:Equation>
<exp:Sub>

(continues on next page)

13.5. Dynamic Optimization with OpenModelica and CasADi 233

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

<exp:Identifier>
<exp:QualifiedNamePart name="x2"/>
</exp:Identifier>
<exp:Realliteral>0.0</exp:Realliteral>
</exp:Sub>
</equ:Equation>
<equ:Equation>
<exp:Sub>
<exp:Identifier>
<exp:QualifiedNamePart name="x1"/>
</exp:Identifier>
<exp:Identifier>
<exp:QualifiedNamePart name="SSTART"/>
<exp:QualifiedNamePart name="x1"/>
</exp:Identifier>
</exp:Sub>
</equ:Equation>
<equ:Equation>
<exp:Sub>

</exp:Sub>
</equ:Equation>
<equ:Equation>

<exp:Sub>

</exp:Sub>
</equ:Equation>
<equ:Equation>
<exp:Sub>
<exp:Identifier>
<exp:QualifiedNamePart name="x2"/>
</exp:Identifier>
<exp:Identifier>
<exp:QualifiedNamePart name="SSTART"/>
<exp:QualifiedNamePart name="x2"/>
</exp:Identifier>
</exp:Sub>
</equ:Equation>
</equ:InitialEquations>

<fun:Algorithm>
</fun:Algorithm>

<fun:RecordsList>
</fun:RecordsList>

<fun:FunctionsList>
</fun:FunctionsList>

<opt:Optimization>
<opt :TimePoints>
<opt:TimePoint >
</opt :TimePoint>
</opt :TimePoints>
<opt:PathConstraints>
</opt :PathConstraints>
</opt:Optimization>

</OpenModelicaModelDescription>

234 Chapter 13. Optimization with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

13.5.3 XML Import to CasADi via OpenModelica Python Script

The symbolic optimal control problem representation (or just model description) contained in BatchReactor.xml
can be imported into CasADi in the form of the SymbolicOCP class via OpenModelica python script.

The SymbolicOCP class contains symbolic representation of the optimal control problem designed to be general
and allow manipulation. For a more detailed description of this class and its functionalities, we refer to the API
documentation of CasADi.

The following step compiles the model to an XML format, imports to CasADi and solves an optimization problem
in windows PowerShell:

1. Create a new file named BatchReactor.mo and save it in you working directory.
E.g. C:\OpenModelical.9.2\share\casadi\testmodel
1. Perform compilation and generate the XML file
a. Go to your working directory
E.g. cd C:\OpenModelical.9.2\share\casadi\testmodel
a. Go to omc path from working directory and run the following command
E.g. .\.\..\bin\omc +s -g=Optimica --simCodeTarget=XML BatchReactor.mo
3. Run defaultStart.py python script from OpenModelica optimization directory
E.g. Python.exe ..\share\casadi\scripts defaultStart.py BatchReactor.xml

The control and state trajectories of the optimization results are shown below:

Input State

A= |
45 — x1

13.6 Parameter Sweep Optimization using OMOptim

OMOptim is a tool for parameter sweep design optimization of Modelica models. By optimization, one should
understand a procedure which minimizes/maximizes one or more objective functions by adjusting one or more
parameters. This is done by the optimization algorithm performing a parameter swep, i.e., systematically adjusting
values of selected parameters and running a number of simulations for different parameter combinations to find a
parameter setting that gives an optimal value of the goal function.

OMOptim 0.9 contains meta-heuristic optimization algorithms which allow optimizing all sorts of models with
following functionalities:

* One or several objectives optimized simultaneously
* One or several parameters (integer or real variables)

However, the user must be aware of the large number of simulations an optimization might require.

13.6. Parameter Sweep Optimization using OMOptim 235

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

13.6.1 Preparing the Model

Before launching OMOptim, one must prepare the model in order to optimize it.

Parameters

An optimization parameter is picked up from all model variables. The choice of parameters can be done using the
OMOptim interface.

For all intended parameters, please note that:

¢ The corresponding variable is constant during all simulations. The OMOptim optimization in version
0.9 only concerns static parameters’ optimization i.e. values found for these parameters will be con-
stant during all simulation time.

* The corresponding variable should play an input role in the model i.e. its modification influences
model simulation results.

Constraints

If some constraints should be respected during optimization, they must be defined in the Modelica model itself.

For instance, if mechanical stress must be less than 5 N.m2, one should write in the model:

assert (mechanicalStress < 5, "Mechanical stress too high");

If during simulation, the variable mechanicalStress exceeds 5 N.m2, the simulation will stop and be considered
as a failure.

Objectives

As parameters, objectives are picked up from model variables. Objectives’ values are considered by the optimizer
at the final time.

13.6.2 Set problem in OMOptim

Launch OMOptim

OMOptim can be launched using the executable placed in OpenModelicalnstallationDirectory/bin/ OMOp-
tim/OMOptim.exe. Alternately, choose OpenModelica > OMOptim from the start menu.

Create a new project

To create a new project, click on menu File -> New project

Then set a name to the project and save it in a dedicated folder. The created file created has a .min extension. It
will contain information regarding model, problems, and results loaded.

236 Chapter 13. Optimization with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Load models

First, you need to load the model(s) you want to optimize. To do so, click on Add .mo button on main window or
select menu Model -> Load Mo file. ..

When selecting a model, the file will be loaded in OpenModelica which runs in the background.

While OpenModelica is loading the model, you could have a frozen interface. This is due to multi-threading
limitation but the delay should be short (few seconds).

You can load as many models as you want.
If an error occurs (indicated in log window), this might be because:
* Dependencies have not been loaded before (e.g. modelica library)
* Model use syntax incompatible with OpenModelica.
Dependencies

OMOptim should detect dependencies and load corresponding files. However, it some errors occur, please load
by yourself dependencies. You can also load Modelica library using Model->Load Modelica library.

When the model correctly loaded, you should see a window similar to Figure 13.3.

OMOptim =X

Filz Models Problem Display Tools About
Project | Optimization | OptCooling | Optimization result (3) | Optimization result | OptCooling result | OptCodir P

-

Project name : testLinearActuator
Project file C:/Documents and Settings/Sayah/Mes documents)MinesModCOptf TestLinear Actuator ftestLinearfctuatonmin

C:JDocuments and Settings)Sayah/Mes documentsiMines ModOptfModelicaTatal. mo
Loaded .ma files : C:jDocuments and Settings/Sayah/Mes documentsiMines/ModOptf TestLinearactuator [Linearactuaton mo

E?égﬁg

;5;&

{

Pt |
Hist

|

Models hierarchy

1

EODOBETDE

iig

Log

=1

Loading project (C:/Documents and Settings/Sayah/Mes documentsMines/ModOpt | TestLinear Actuator testlinearActuator.min) ...

Loading file : C:/Documents and Settings/SayahfMes documentsMinesModOptModelicaTokal, mo

Model loaded successfully™C:/Documents and Settings/SayahfMes documents/iMines/ModOpt/MadelicaTotal, ma"

Loading file : C:/Documents and Settings/SayahfMes documentsMinesModOpt) TestLinearActuator fLinearackuator. mo

Mode! loaded successfully™C:/Documents and Settings/SayahfMes documentsMines/ModOpt) TestLinearActuator [Linearactuator. mo”

Loading mode! file (C: fDocuments and SettingsfSayah/Mes documents/Mines/ModOpt | TestLinearAckuator/Models/LinearActuatorLinearActuatonmmo) ...
Loading model file (C: fDocuments and SettingsfSayahiMes

documents/MinesMaodOpt [TestLinear ActuatorModels/Madelica, Thermal FluidHeatFlow. Examples, SimpleCooling/testLinearActuatonmmo) ...

Problern "Optimization” added to project
Problem "OptCooling” added to project
Ciuniaablasals abull Lo O b

e e 2 e T

MO | OMC | Debug

Figure 13.3: OMOptim window after having loaded model.

13.6. Parameter Sweep Optimization using OMOptim 237

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Create a new optimization problem

Problem->Add Problem->Optimization

A dialog should appear. Select the model you want to optimize. Only Model can be selected (no Package,
Component, Block...).

A new form will be displayed. This form has two tabs. One is called Variables, the other is called Optimization.

 ouoptn e %)
Fle Models Problem Display Tools About
| Optimization resuk | OptCooling result | OptCocking resul (2)
* Electrical
Teons st sorsseyes [1 o Name " | value Description Datat
- Math LinearActustontonge | -
& Machanics S i - 2t ‘ 2 _
& Medis Unearfctuatortorgue fanga_b.phl o amperid |0 B .
; Slunits ' <| (>
Thermal LinearActustortorgae | bearing phi 0
| @ Utilties b Scanned variables . E]
& o LinesrActustorstepLy 0 'am ™ | Value | Desription | Datatype ScanMnimum | Scan M
® 1 t |
8 - A TIR 0
inertial
- springDamper2 LinearAcustonsteploffaer 0 , .
& Inertia2 LinearActuatoratep L height 0 [¢] C} 2]
borquel
® stepl el stan 0 Optimization objectives E]
ref . LinesrActustorspringDarmperZ v _rel o |
Narme = Description Direction H . .
o
: LinearActuator. sumDeviation - Minimize 0 SEIQCtEd ObJeCtlves
UnearActustorspringDamper phirel_stat 0
|[«] (2]
L Add mo Variables | Optimzation
Log 8 %
Loading pro]u:t :[Documents and Setti Opt{ TestLinearActustor testlinearAc in) ... =
uui'\g C ﬂ)a:unu'\tsx\d Suttrmeayduﬂas d\xumls,ﬂ“h’\eﬁiwﬂm:laicﬂdd mo
U mo”
Loading F‘ie o s hiMes d ol jp(lf\‘-ul i "o
Model lnaded successfully™C: Documents and Sett {ModOpt TestLineard
Loading model file (C:/Documents and Settings/Sayash/Mes doc [Mines ModOpt TestLir [ModelsfLinearActustor Lineardchustonmma) ...
Lwi\q moded file (C: /Documents and SQWSGM
Opt TestLi Models] Thermal. FhidHestFlow, Examples. SimgleCoolng i
Problem 'Optlnizahon added bo project
Problem "OptCookng” addad to ptcuef.t [v]
Droiect baadina o s i is. b 11, - 3y M ITs i » i Aebuisbor mink d
OMC Debug |

Figure 13.4: Forms for defining a new optimization problem.

List of Variables is Empty

If variables are not displayed, right click on model name in model hierarchy, and select Read variables.

Select Optimized Variables

To set optimization, we first have to define the variables the optimizer will consider as free i.e. those that it
should find best values of. To do this, select in the left list, the variables concerned. Then, add them to Optimized

variables by clicking on corresponding button (+).

For each variable, you must set minimum and maximum values it can take. This can be done in the Optimized
variables table.

238 Chapter 13. Optimization with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

SLaLeial apg

+ Thermal lineardctate
Uil Open folder '
- iinearA Reload model
+ - spri '
+- fixe Recompile model Read functions
t-idel Read variables '
+ - Iner .
- spri Read connections te
3 inet Set parameters... [Set parameters (e.g. finalTime, solver)
+ korg
+ stey v Dymola " Select simulator
ref OpenModelica te

sSUMoeyiacon
LinearActuatc

Figure 13.5: Selecting read variables, set parameters, and selecting simulator.

Select objectives

Objectives correspond to the final values of chosen variables. To select these last, select in left list variables

concerned and click + button of Optimization objectives table.
For each objective, you must:

¢ Set minimum and maximum values it can take. If a configuration does not respect these values, this
configuration won’t be considered. You also can set minimum and maximum equals to “-* : it will
then

* Define whether objective should be minimized or maximized.

This can be done in the Optimized variables table.

Select and configure algorithm

After having selected variables and objectives, you should now select and configure optimization algorithm. To
do this, click on Optimization tab.

Here, you can select optimization algorithm you want to use. In version 0.9, OMOptim offers three different
genetic algorithms. Let’s for example choose SPEA2Adapt which is an auto-adaptative genetic algorithm.

By clicking on parameters. .. button, a dialog is opened allowing defining parameters. These are:

 Population size: this is the number of configurations kept after a generation. If it is set to 50, your final
result can’t contain more than 50 different points.

* Off spring rate: this is the number of children per adult obtained after combination process. If it is set
to 3, each generation will contain 150 individual (considering population size is 50).

* Max generations: this number defines the number of generations after which optimization should stop.
In our case, each generation corresponds to 150 simulations. Note that you can still stop optimization
while it is running by clicking on stop button (which will appear once optimization is launched).
Therefore, you can set a really high number and still stop optimization when you want without losing
results obtained until there.

* Save frequency: during optimization, best configurations can be regularly saved. It allows to analyze
evolution of best configurations but also to restart an optimization from previously obtained results. A
Save Frequency parameter set to 3 means that after three generations, a file is automatically created
containing best configurations. These files are named iteraionl.sav, iteration2.sav and are store in
Temp directory, and moved to SolvedProblems directory when optimization is finished.

13.6. Parameter Sweep Optimization using OMOptim 239

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

* ReinitStdDev: this is a specific parameter of EAAdaptl. It defines whether standard deviation of vari-
ables should be reinitialized. It is used only if you start optimization from previously obtained con-
figurations (using Use start file option). Setting it to yes (1) will, in most of cases, lead to a spread
research of optimized configurations, forgetting parameters’ variations’ reduction obtained in previous
optimization.

Use start file

As indicated before, it is possible to pursue an optimization finished or stopped. To do this, you must enable Use
start file option and select file from which optimization should be started. This file is an iferation_.sav file created
in previous optimization. It is stored in corresponding SolvedProblems folder (iterationl0.sav corresponds to the
tenth generation of previous optimization).

Note that this functionality can only work with same variables and objectives. However, minimum, maxi-
mum of variables and objectives can be changed before pursuing an optimization.

Launch

You can now launch Optimization by clicking Launch button.

Stopping Optimization

Optimization will be stopped when the generation counter will reach the generation number defined in parameters.
However, you can still stop the optimization while it is running without loosing obtained results. To do this, click
on Stop button. Note that this will not immediately stop optimization: it will first finish the current generation.

This stop function is especially useful when optimum points do not vary any more between generations. This
can be easily observed since at each generation, the optimum objectives values and corresponding parameters are
displayed in log window.

13.6.3 Results

The result tab appear when the optimization is finished. It consists of two parts: a table where variables are
displayed and a plot region.

Obtaining all Variable Values

During optimization, the values of optimized variables and objectives are memorized. The others are not. To get
these last, you must recomputed corresponding points. To achieve this, select one or several points in point’s list
region and click on recompute.

For each point, it will simulate model setting input parameters to point corresponding values. All values of this
point (including those which are not optimization parameters neither objectives).

13.6.4 Window Regions in OMOptim GUI

240 Chapter 13. Optimization with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Model structure

log

Figure 13.6: Window regions in OMOptim GUI.

13.6. Parameter Sweep Optimization using OMOptim 241

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

242 Chapter 13. Optimization with OpenModelica

CHAPTER
FOURTEEN

PARAMETER SENSITIVITIES WITH OPENMODELICA

This section describes the use of OpenModelica to compute parameter sensitivities using forward sensitivity anal-
ysis together with the Sundials/IDA solver.

14.1 Single Parameter sensitivities with IDA/Sundials

14.1.1 Background

Parameter sensitivity analysis aims at analyzing the behavior of the corresponding model states w.r.t. model
parameters.

Formally, consider a Modelica model as a DAE system:
F(l’,ﬂb,y,p, t) =0 I(to) = IO(p)
where x(t) € R™ represent state variables, () € R™ represent state derivatives, y(t) € R* represent algebraic

variables, p € R™ model parameters.

For parameter sensitivity analysis the derivatives

ox
op
are required which quantify, according to their mathematical definition, the impact of parameters p on states z. In
the Sundials/IDA implementation the derivatives are used to evolve the solution over the time by:
. ox
S; =
Y Ops

14.1.2 An Example

This section demonstrates the usage of the sensitivities analysis in OpenModelica on an example. This module is
enabled by the following OpenModelica compiler flag:

>>> setCommandLineOptions ("--calculateSensitivities")
true

Listing 14.1: LotkaVolterra.mo

model LotkaVolterra
Real x(start=5, fixed=true),y(start=3, fixed=true);
parameter Real mul=5,mu2=2;
parameter Real lambdal=3, lambda2=1;

equation
0 = x* (mul-lambdal*y) - der(x);
0 = —yx (mu2 -lambda2xx) - der(y);

end LotkaVolterra;

243

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Also for the simulation it is needed to set IDA as solver integration method and add a further simulation flag
—-idaSensitivity to calculate the parameter sensitivities during the normal simulation.

>>> simulate (LotkaVolterra, method="ida", simflags="-idaSensitivity")
record SimulationResult

resultFile = "«DOCHOME»/LotkaVolterra_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOflIntervals = 500,
—tolerance = 1le-06, method = 'ida', fileNamePrefix = 'LotkaVolterra', options = '
', outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = '—
—idaSensitivity'",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
4

timeFrontend = 0.001181496,

timeBackend = 0.003507048,
timeSimCode = 0.001075567,
timeTemplates = 0.00339079,

timeCompile = 0.403741395,
timeSimulation = 0.016619311,
timeTotal = 0.429624422

end SimulationResult;

Now all calculated sensitivities are stored into the results mat file under the $Sensitivities block, where all currently
every top-level parameter of the Real type is used to calculate the sensitivities w.r.t. every state.

1.5 T T

T T
$Sensitivities.lambdal.x ——
1k $Sensitivities.lambdal.,y ——

itivities.lambda2.x
$Sensitivities.lambda2.y
0.5 | $Sensitivities.mul.x]
$Sensitivities.mully ——
0 $Sensitivities.mu2.x
$Sensitivities.mu2.y ——

Figure 14.1: Results of the sensitivities calculated by IDA solver.

244 Chapter 14. Parameter Sensitivities with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

45 Y /1

35 T

25 .

0.5 T

Figure 14.2: Results of the LotkaVolterra equations.

14.2 Single and Multi-parameter sensitivities with OMSens

OMSens is an OpenModelica sensitivity analysis and optimization module.

14.2.1 Installation

The core files of OMSens are provided as part of the OpenModelica installation. However, you still need to install
python and build OMSens with that python before using it. Follow the build/install instructions described on the
OMSens github page.

14.2.2 Usage

OMSens offers 3 flavors for parameter sensitivity analysis.
¢ Individual Sensitivity Analysis
* Used to analyze how a parameter affects a variable when perturbed on its own
* Multi-parameter Sweep
» Exploratory experimentation that sweeps the space of a set of parameters
* Vectorial Sensitivity Analysis
» Used to find the combination of parameters that maximizes/minimizes a state variable

As an example, we choose the Lotka-Volterra model that consists of a second-order nonlinear set of ordinary
differential equations. The system models the relationship between the populations of predators and preys in a
closed ecosystem.

model LotkaVolterra "This is the typical equation-oriented model"
parameter Real alpha=0.1 "Reproduction rate of prey";
parameter Real beta=0.02 "Mortality rate of predator per prey";
parameter Real gamma=0.4 "Mortality rate of predator";
parameter Real delta=0.02 "Reproduction rate of predator per prey";
parameter Real prey_pop_init=10 "Initial prey population";
parameter Real pred_pop_init=10 "Initial predator population";
Real prey_pop(start=prey_pop_init) "Prey population";
Real pred_pop (start=pred_pop_init) "Predator population";

initial equation
prey_pop = prey_pop_init;
pred_pop = pred_pop_init;

1922 SiAgle and Multi-parameter sensitivities with OMSens 245
der (prey_pop) = prey_popx (alpha-betaxpred_pop);
der (pred_pop) = pred_popx (deltaxprey_pop-gamma) ;

end LotkaVolterra;

https://github.com/OpenModelica/OMSens

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Individual Sensitivity Analysis

* Select Sensitivity Optimization > Run Sensitivity Analysis and Optimization from the menu. A window like
the one below should appear. Windows users should use the default python executable that comes with
OpenModelica installation i.e., they don't need to change the proposed python executable path. If you want
to use some other python installation then make sure that all the python dependencies are installed for that

python installation.

o't OMSens ? *

OMsens python backend folder:
C:/Program Files/OpenModelica 1, 18.0-dev-64bit/OMSens

Browse

Browse

Python executable:
C:/Program Files/OpenModelica 1. 18.0-dev-64bit/tools /msysmingwa<4/bin/python, exe

Individual Parameter Based Sensitivity Analysis
Multi-parameter Sweep

Vectorial Parameter Based Sensitivity Analysis

Load

Figure 14.3: OMSens window.

¢ Choose Individual Parameter Based Sensitivity Analysis and set up the simulation settings.

&4 Run Individual Sensitivity Analysis 7
Simulation Variables Parameters Perturbation Help
Model:
LotkaValterra
Model file:

C:fUsersfadeas31/Desktop/OMSensTest/LotkaVolterra.ma

Analysis results destination folder:

C:fUsersfadeas31/AppData /Local/ Temp/OpenModelica /[OMEditjomsens_resultsfindiv_results |Choose folder

Start time:
0.00 :
Stop time:
40.00 s

Run Analysis

Cancel

Figure 14.4: Run individual sensitivity analysis.

¢ Select variables.
¢ Select parameters.

* Choose the perturbation percentage and direction. Run the analysis.

246 Chapter 14. Parameter Sensitivities with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

o4 Run Individual Sensitivity Analysis ? >

Simulation Variables Parameters Perturbation Help

Variable analyze?
1 prey_pop

2 pred_pop

Figure 14.5: Individual sensitivity analysis variables.

&4 Run Individual Sensitivity Analysis 7 >

Simulation Variables Parameters Perturbation Help

Parameter Perturb?

1 alpha
2 beta
3 gamma
4 delta

5 prey_pop_initf]

& pred_pop_init[~]

Each selected parameter is perturbed in isolation, one at a time

Figure 14.6: Individual sensitivity analysis parameters.

14.2. Single and Multi-parameter sensitivities with OMSens 247

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

o4 Run Individual Sensitivity Analysis

Simulation Variables Parameters Perturbation Help

Perturbation (choose + or -): |+5.DU% o

Figure 14.7: Individual sensitivity analysis perturbation.

 After the analysis a dialog with results is shown. Open the heatmap corresponding to the relative sensitivity

index.

o4 Individual Sensitivity Analysis Results

Relative (REL) Root Mean Square (RMS)
Description: The REL index calculates the change of a state variable (at the end of a simulation)
" with and without a parameter perturbation (at the beginning of the simulation).
It can be used to rank parameters according to their impact on a state variable at a target final time.

Results: Matrix Heatmap State Variable IDs | |Parameter IDs

Results can be found in:

C:fUsersfadeas31/AppData/Local/Temp/OpenModelica /OMEdit/omsens_resultsfindiv_results/2020-10-02/11 29 17fresults

Open

Figure 14.8: Individual sensitivity analysis results.

* The heatmap shows the effect of each parameter on each variable in the form of (parameter,variable) cells.
As we can see, pred_pop was affected by the perturbation on every parameter but prey_pop presents a
negligible sensitivity to delta (P.3). Recall that this heatmap shows the effect on the variables at time 40 for

each perturbation imposed at time O.

248 Chapter 14. Parameter Sensitivities with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

o || & heatmap.png ? *
Shuréned Original N
1v2 =
prey-per ' 0.1980
2 W pred_pop
0.1782
0.1584
0.1386
0.1188
r 0.09%0
- F0.0792
o
- r 0.0594
Shortened Original
1 P& prey_pop_init l 0.0396
2 P5 pred_pop_init P.5
r 0.0198
3 P4 gamma
4 P3 delta r 0.0000
5 P2 beta
r—0.0198
5 P1 alpha
P.6 1
r—0.0396
r—0.0594
r—0.0792
A
P2 —0.0990
pred_pop prey_pop
1 prey_pop_init -0.02826.. 0.049630389 —0.1188
2 pred_pop_init 0.076250... -0.032406333 —0.1386
3 gamma -0.17020.. 0.040938175
4 delta -0.02826 . -0.0003522 P3 4 —0.1584
5 beta 0.025008... -0.032397362 —0.1782
6 alpha -0.19799... 0.074622318
—0.1980

Figure 14.9: Individual sensitivity analysis heatmap.

14.2. Single and Multi-parameter sensitivities with OMSens 249

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Multi-parameter Sweep

Now we would like to see what happens to pred_pop when the top 3 most influencing parameters are perturbed
at the same time. Repeat the first three steps from Individual Sensitivity Analysis but this time select Multi-
parameter Sweep.

* Choose to sweep alpha, gamma and pred_pop_init in a range of +5% from its default value and with 3
iterations (#iter) distributed equidistantly within that range. Run the sweep analysis.

oA Multiparameter Sweep ? >

Simulation Variables Farameters Help

Parameter Perturbation Type iter Sweep Range Fixed value
1 alpha Sweep * | 3| £5.00% = {l0.0000 =
7 beta None *| 3 0 £5.00% | 0.0000 =
3 delta None *| 3 0 £500% | 0.0000 =
4 gamma Sweep | 3 2 |£5.00% —| 0.0000 =
5 pred_pop_init Sweep * | 3| £5.00% = {l0.0000 =
6 prey_pop_init None *| 3 0 £5.00% | 0.0000 =

The total #iterations will be the product of the #iterations of all the parameters,

Cancel

Figure 14.10: Multi-parameter sweep parameters.

* The backend is invoked and when it completes the analysis the following results dialog is shown. Open the
plot for pred_pop.

* At time 40 the parameters perturbations with a higher predator population are all blue, but it’s not clear
which one. We need something more precise.

250 Chapter 14. Parameter Sensitivities with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

o4 Multiparameter Sweep Results ? >
Variables
Plots: pred_pop - Open

Results can be found in:

C:fUsersfadeas31/AppData /Local/ Temp/OpenModelica/OMEditjomsens_results/sweep_results/2020-10-02/13 34 25/results Open

Figure 14.11: Multi-parameter sweep results.

oA pred_pop.png ? *

—— (0)=0.10 [-5%] | (1)=0.38 [-5%] | (2)=9.50 [-5%]
—— (0)=0.10 [-5%] | (1)=0.38 [-5%] | (2)=10.00 [0%]

.) — (0)=0.10[-5%] | (1)=0.38 [-5%] | (2)=10.50 [+5%]
Sweeping Plot for model: LotkaVolterra —— (0)=0.10 [-5%] | (1)=0.40 [0%] | (2)=9.50 [-5%]

Plotting var: pred_pop

—— (0)=0.10 [-5%] | (1)=0.40 [0%] | (2)=10.00 [0%]
—— (0)=0.10 [-5%] | (1)=0.40 [0%] | (2)=10.50 [+5%]
—— (0)=0.10 [-5%] | (1)=0.42 [+5%] | (2)=9.50 [-5%]

17.5 —— (0)=0.10 [-5%] | (1)=0.42 [+5%] | {2)=10.00 [0%]
—— (0)=0.10 [-5%] | (1)=0.42 [+5%)] | (2)=10.50 [+5%]
15.0 (0)=0.10 [0%] | (1)=0.38 [-5%] | (2)=9.50 [-5%]
(0)=0.10 [0%] | (1)=0.38 [-5%] | (2)=10.00 [0%]
12.5 (0)=0.10 [0%] | (1)=0.38 [-5%] | (2)=10.50 [+5%]
10.0 (0)=0.10 [0%] | (1)=0.40 [0%] | (2)=9.50 [-5%]
: (0)=0.10 [0%] | (1)=0.40 [0%] | (2)=10.50 [+5%]
75 (0)=0.10 [0%] | (1)=0.42 [+5%] | (2)=9.50 [-5%]
(0)=0.10 [0%] | (1)=0.42 [+5%] | (2)=10.00 [0%]
5.0 (0)=0.10 [0%] | (1)=0.42 [+5%] | (2)=10.50 [+5%]
(0)=0.11 [+5%] | (1)=0.38 [-5%] | (2)=9.50 [-5%]
25 (0)=0.11 [+5%] | (1)=0.38 [-5%] | (2)=10.00 [0%]
. (0)=0.11 [+5%] | (1)=0.38 [-5%] | (2)=10.50 [+5%]
0.0 —— (0)=0.11 [+5%] | (1)=0.40 [0%] | (2)=9.50 [-5%]
= - a o = —— (0)=0.11 [+5%] | (1)=0.40 [0%] | (2)=10.00 [0%]
— N m = — (0)=0.11 [+5%] | (1)=0.40 [0%] | (2)=10.50 [+5%]
Time

—— (0)=0.11 [+5%] | (1)=0.42 [+5%] | (2)=9.50 [-5%]
—— (0)=0.11 [+5%] | (1)=0.42 [+5%] | (2)=10.00 [0%]
Swept parameters: — (0)=0.11 [+5%] | (1)=0.42 [+5%] | (2)=10.50 [+5%]
alpha (0), gamma (1), pred_pop_init (2) == ' STD_RUN
Constant perturbed parameters:

Figure 14.12: Multi-parameter sweep plot.

These results can be very informative but clearly the exhaustive exploration approach doesn't scale for more
parameters (#p) and more perturbation values (#v) (#v/#p simulations required).

14.2. Single and Multi-parameter sensitivities with OMSens 251

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Vectorial Sensitivity Analysis

Using the Vectorial optimization-based analysis (see below) we can request OMSens to find a combination of pa-
rameters that perturbs the most (i.e. minimize or maximize) the value of the target variable at a desired simulation

time.

For Vectorial Sensitivity Analysis repeat the first two steps from Individual Sensitivity Analysis but choose Vec-
torial Parameter Based Sensitivity Analysis.

Choose only alpha, delta and pred_pop_init to perturb.

ot Vectorial Parameter Based Sensitivity Analysis ? x

Simulation Parameters Optimization Help

Parameter Perturb?
1 alpha
2 beta]
3 gamma
4 delta]
5 prey_pop_init [
6 pred_pop_init

The parameters will be perturbed together to find the best combination of values,

Run analysis Cancel

Figure 14.13: Vectorial sensitivity analysis parameters.

Setup the optimization settings and run the analysis.

The Parameters tab in the results window shows the values found by the optimization routine that maximize
pred_pop at t=40 s.

The State Variable tab shows the comparison between the values of the variable in the standard run vs the
perturbed run at simulation time 40s.

If we simulate using the optimum values and compare it to the standard (unperturbed) run, we see that it
delays the bell described by the variable.

So far, we have only perturbed the top 3 parameters detected by the Individual Sensitivity method. Maybe
we can find a greater effect on the variable if we perturb all 6 parameters. Running a Sweep is not an option
as perturbing 6 parameters with 3 iterations each results in 3°=729 simulations. We run another Vectorial
Sensitivity Analysis instead but now choose to perturb all 6 parameters.

The parameters tab shows that the optimum value is found by perturbing all of the parameters to their
boundaries.

The State Variable tab shows that pred_pop can be increased by 98% when perturbing the 6 parameters as
opposed to 68% when perturbing the top 3 influencing parameters.

The plot shows again that the parameters found delay the bell-shaped curve, but with a stronger impact than
before.

252

Chapter 14. Parameter Sensitivities with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

o4 Vectorial Parameter Based Sensitivity Analysis 7 x
Simulation Parameters Optimization Help
Variable: prey_pop w | () Minimize (@) Maximize
Epsilon | 1.000000E-01 tlo<z<1)
Perturbation boundaries: |i:5.[JD‘3-’u S |

Fun analysis Cancel

Figure 14.14: Vectorial sensitivity analysis optimization.

ot Vectorial Analysis Results ? x
Parameters State Variable
Parameter Default Optimum Change (%)

1 pred_pop_init 10 10.5 5

2 gamma 0.4 038 -5

3 alpha 0.1 0.095 -5
Plot: Open
Stop time: 40
Results can be found in:
C:/Users/adeas31/AppData L ocal Temp/OpenModelica fOMEdit/omsens _resultsfvect_results/2020-10-05/13_50_51fresults Open

Figure 14.15: Vectorial sensitivity analysis parameters result.
253

14.2. Single and Multi-parameter sensitivities with OMSens

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

o4 Vectorial Analysis Results 7

Parameters State Variable

Variable Default Optimum Change (%)
pred_pop 3.3372093 56135614 68.271176

Flot: Open

Stop time: 40
Results can be found in:

C:/Uszers/adeas31/AppData/Local Temp/OpenModelica /{OMEdit/omsens _resultsfvect_results/2020-10-05/13_50_51fresults Open

Figure 14.16: Vectorial sensitivity analysis state variables.

of pred_pop.png ?

Comparison between Standard and Optimum runs
variable: pred_pop

17.5
15.0
12.5

10.0
—— STD_RUN

75 —— optimum

5.0

2.5

0.0

50
100
200
250
300

3 150

Time

Optimum values:
alpha=0.10, gamma=0.38, pred_pop_init=10.50

Figure 14.17: Vectorial sensitivity analysis plot.

254 Chapter 14. Parameter Sensitivities with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

o% Vectorial Parameter Based Sensitivity Analysis ? et

Simulation Parameters Optimization Help

Parameter Perturb?
1 alpha
2 beta
3 gamma
4 delta
5 prey_pop_init
& pred_pop_init

The parameters will be perturbed together to find the best combination of values.

Run analysis Cancel

Figure 14.18: Vectorial sensitivity analysis parameters.

o, Vectorial Analysis Results ? x

Parameters State Variable

Parameter Default Optimum Change (%) &

init; 10 9.5000001 | -4.9999992

2 pred_pop_init 10 10.5 5

3 gamma 04 0.32000006 -4.9999361
4 delta 0.02 0.019000003 -4.9999855
W
Plot: Open
Stop time: 40
Results can be found in:
C:/Users/adeas31/AppData/Local/Temp/OpenModelica /OMEditfomsens_resultsfvect_results/2020-10-05/14 2 48/results Open

Figure 14.19: Vectorial sensitivity analysis parameters result.

14.2. Single and Multi-parameter sensitivities with OMSens 255

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

oA Vectorial Analysis Results ? X

Parameters State Variable

Variable Default Optimum Change (%)
pred_pop 3.3372093 56135614 B8.271176

Plot: Open

Stop time: 40

Results can be found in:

C:fUsersfadeas31/AppData/Local Temp/OpenModelica/OMEditfomsens_results/vect_results/2020-10-05/13_50_51/results Open

Figure 14.20: Vectorial sensitivity analysis state variables.

256 Chapter 14. Parameter Sensitivities with OpenModelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

o4 pred_pop.png ? >
Comparison between Standard and Optimum runs
variable: pred_pop
17.5
15.0
12.5
10.0 .
—— STD RUN
75 —— optimum
5.0
2.5
0.0
o Qo o o o o o
LN o Ty o Tl o
—~ .|—| ™~ (| m
Time
Optimum values:
alpha=0.10, beta=0.02, gamma=0.38
delta=0.02, prey pop_init=9.50, pred_pop_init=10.50
Figure 14.21: Vectorial sensitivity analysis plot.
14.2. Single and Multi-parameter sensitivities with OMSens 257

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

258 Chapter 14. Parameter Sensitivities with OpenModelica

CHAPTER
FIFTEEN

PDEMODELICA1

PDEModelical is nonstandardised experimental Modelica language extension for 1-dimensional partial differen-
tial extensions (PDE).

It is enabled using compiler flag ——grammar=PDEModelica. Compiler flags may be set e.g. in OMEdit
(Tools->Options->Simulation->OMC Flags) or in the OpenModelica script using command

15.1 PDEModelical language elements

Let us introduce new PDEModelical language elements by an advection equation example model:

model Advection "advection equation"
parameter Real pi = Modelica.Constants.pi;

parameter DomainLineSegmentlD omega(L = 1, N = 100) "domain";
field Real u(domain = omega) "field";
initial equation
u = sin(2xpi*romega.x) "ICc";
equation
der (u) + pder(u,x) = 0 indomain omega "PDE";
u =0 indomain omega.left "BC";
u = extrapolateField(u) indomain omega.right "extrapolation";

end Advection;

Error:

[<interactive>:4:14-4:14:writable] Error: Missing token: SEMICOLON

The domain omega represents the geometrical domain where the PDE holds. The domain is defined using the
built-in record DomainLineSegment 1D. This record contains among others L — the length of the domain, N —
the number of grid points, x — the coordinate variable and the regions left, right and interior, representing
the left and right boundaries and the interior of the domain.

The field variable u is defined using a new keyword field. The domain is a mandatory attribute to specify the
domain of the field.

The indomain operator specifies where the equation containing the field variable holds. It is utilised in the initial
conditions (IC) of the fields, in the PDE and in the boundary conditions (BC). The syntax is

anEquation indomain aDomain.aRegion;

If the region is omitted, interior is the default (e.g. the PDE in the example above).

The IC of the field variable u is written using an expression containing the coordinate variable omega . x.

259

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

The PDE contains a partial space derivative written using the pder operator. Also the second derivative is allowed
(not in this example), the syntax is e.g. pder (u, x, x) . It is not necessary to specify the domain of coordinate
in pder (to write e.g. pder (u, omega.x), even though x is a member of omega.

15.2 Limitations

BCs may be written only in terms of variables that are spatially differentiated currently.

All fields that are spatially differentiated must have either BC or extrapolation at each boundary. This extrapolation
should be done automatically by the compiler, but this has not been implemented yet. The current workaround is
the usage of the extrapolateField () operator directly in the model.

If-equations are not spported yet, if-expressions must be used instead.

15.3 Viewing results

During translation field variables are replaced with arrays. These arrays may be plotted using array-plot or even
better using Array Parametric Plot (to plot x-coordinate versus a field).

260 Chapter 15. PDEModelica1

CHAPTER
SIXTEEN

MDT — THE OPENMODELICA DEVELOPMENT TOOLING ECLIPSE
PLUGIN

16.1 Introduction

The Modelica Development Tooling (MDT) Eclipse Plugin as part of OMDev — The OpenModelica Development
Environment integrates the OpenModelica compiler with Eclipse. MDT, together with the OpenModelica com-
piler, provides an environment for working with Modelica and MetaModelica development projects. This plugin
is primarily intended for tool developers rather than application Modelica modelers.

The following features are available:
* Browsing support for Modelica projects, packages, and classes
* Wizards for creating Modelica projects, packages, and classes
* Syntax color highlighting
* Syntax checking
* Browsing of the Modelica Standard Library or other libraries
¢ Code completion for class names and function argument lists
* Goto definition for classes, types, and functions

* Displaying type information when hovering the mouse over an identifier.

16.2 Installation

The installation of MDT is accomplished by following the below installation instructions. These instructions
assume that you have successfully downloaded and installed Eclipse (http://www.eclipse.org).

The latest installation instructions are available through the OpenModelica Trac.
1. Start Eclipse
Select Help->Software Updates->Find and Install... from the menu
Select ‘Search for new features to install” and click ‘Next’
Select ‘New Remote Site...’
Enter ‘MDT’ as name and http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/MDT as URL and click
‘0K’
Make sure ‘MDT"’ is selected and click ‘Finish’
In the updates dialog select the ‘MDT’ feature and click ‘Next’

ok »D

Read through the license agreement, select ‘I accept...” and click ‘Next’

Click ‘Finish’ to install MDT

v »® =N

261

http://www.eclipse.org
https://trac.openmodelica.org/MDT
http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/MDT

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

16.3 Getting Started

16.3.1 Configuring the OpenModelica Compiler
MDT needs to be able to locate the binary of the compiler. It uses the environment variable OPENMODELICA-
HOME to do so.

If you have problems using MDT, make sure that OPENMODELICAHOME is pointing to the folder where the
OpenModelica Compiler is installed. In other words, OPENMODELICAHOME must point to the folder that
contains the Open Modelica Compiler (OMC) binary. On the Windows platform it’s called omc.exe and on Unix
platforms it’s called omc.

16.3.2 Using the Modelica Perspective

The most convenient way to work with Modelica projects is to use to the Modelica perspective. To switch to
the Modelica perspective, choose the Window menu item, pick Open Perspective followed by Other... Select the
Modelica option from the dialog presented and click OK..

16.3.3 Selecting a Workspace Folder

Eclipse stores your projects in a folder called a workspace. You need to choose a workspace folder for this session,
see Figure 16.1.

16.3.4 Creating one or more Modelica Projects

To start a new project, use the New Modelica Project Wizard. It is accessible through File->New-> Modelica
Project or by right-clicking in the Modelica Projects view and selecting New->Modelica Project.

You need to disable automatic build for the project(s) (Figure 16.3).

Repeat the procedure for all the projects you need, e.g. for the exercises described in the MetaModelica users
guide: 01_experiment, 02a_expl, 02b_exp2, 03_assignment, 04a_assigntwotype, etc.

NOTE: Leave open only the projects you are working on! Close all the others!

16.3.5 Building and Running a Project

After having created a project, you eventually need to build the project (Figure 16.4).

The build options are the same as the make targets: you can build, build from scratch (clean), or run simulations
depending on how the project is setup. See Figure 16.5 for an example of how omc can be compiled (make omc
builds OMC).

16.3.6 Switching to Another Perspective

If you need, you can (temporarily) switch to another perspective, e.g. to the Java perspective for working with an
OpenModelica Java client as in Figure 16.7.

262 Chapter 16. MDT — The OpenModelica Development Tooling Eclipse Plugin

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

& Modelica - Eclipse

File Edit Mavigate Search Project Run Window Help

New Shift+Alt+N » |1 @& 4 ¥ !
Open File..

= | Refresh =5

Convert Line Delimiters To *

Switch Workspace r Other..
Restart

£ Import...
g Export...

Properties Alt+Enter

1 BouncingBall.mo [demo]
2 Absyn.mo [OpenModelica/OMCompiler/...]
2 MultiBall.mo [demo]

4 BouncingBall.mo [demo]

Exit

Figure 16.1: Eclipse Setup — Switching Workspace.

16.3. Getting Started 263

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Create a Modelica project

Create a Modelica project in the workspace.

Project name: | demo

l\'_?) Cancel Finish

Figure 16.2: Eclipse Setup — creating a Modelica project in the workspace.

264 Chapter 16. MDT — The OpenModelica Development Tooling Eclipse Plugin

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

¢ Modelica - Eclipse

File Edit Navigate Search Project Run Window Help

Close Project

B Build Al
Build Project
Build Working Set
Cle;

Build Automatically

» M BouncingBall.mo |
» M MultiBall.mo R pEl
¥ M VanDerPol.mo
(X| .project
b = Libraries
k Qg:v OpenModelica [OpenModelics

Figure 16.3: Eclipse Setup — disable automatic build for the projects.

¢ Modelica - Eclipse

File Edit MNavigate Search Project Run Window Help

Close Project

B euild Al
Build Project

Build Working Set

b & .externalToolBuilders

[T, | NN EAEY

Figure 16.4: Eclipse MDT — Building a project.

16.3. Getting Started 265

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Please input a value

omc

Cancel OK

Figure 16.5: Eclipse — building a project.

& console 8 L = g

X % B H@® - =
<terminated= make [Program] /usr/binfmake
B (T i ettt O
Jsusr/bin/make -f Makefile --no-print-directory -C Jhome/marsj/0OpenModelicas0MCompiler/
make[5]: Nothing to be done for 'all'.
Jusr/bins/make -T Makefile --no-print-directory -C shome/marsj/OpenModelicas0OMCompiler/
make[5]: Nothing to be done for 'all'.
susr/bin/make - Makefile Makefile.sources
make[4]: 'Makefile.sources' 1is up to date.
Jsusr/bin/make - Makefile interfaces INCLUDESOURCES=1
shomesmars]/0penModelicasbuild/binsomec +n=1 build/Absyn.stamp.mo.mos
Jusr/bins/make -T Makefile Makefile.depends INCLUDESOURCES=1
make[4]: 'Makefile.depends' 1is up to date.
susr/bins/make -T Makefile generate-files INCLUDESOURCES=1 INCLUDEDEPENDS=1
Jhomesmarsj/0penModelicasbuild/bin/omec +n=1 build/Absyn.stamp.mos
susr/bin/make - Makefile --no-print-directory install INCLUDESOURCES=1
clang -g -02 -fno-stack-protector -TPIC -I"/homesmars]j/0penModelicasbuild/includesomc/
clang -shared -Wl,-z,origin -W1, -rpath, '$0RIGIN/. . /1ib/x86_64-1linux-gnusomc' -W1, -rpat
test ! ".so0" = ".dylib" || install_name_tool -id @rpath/libOpenModelicaCompiler.dylib
clang build/_main.o -W1l,-z,origin -W1, -rpath, '$ORIGIN/../1ib/xB6_64-1linux-gnusomc' -Wl
cp -a build/OpenModelicaScriptingAPI.h /shomesmarsj/0penModelicasbuild/includesomcs/scri
cp -a buildfomc Shome/marsj/0penModelicas/builds/bins

Figure 16.6: Eclipse — building a project, resulting log.

266 Chapter 16. MDT — The OpenModelica Development Tooling Eclipse Plugin

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

& Modelica - Eclipse

File Edit MNavigate Searc Run Window Help
NNy B~ EE New Window : ¥
Editor b
Hide Toolbar
GE Modelica Proj X = 0O Open Perspective 3 1+ Debug
0% v Show View v+ BB Modelica

. . [
v [demo Customize Perspective..

Save Perspective As..

® BouncingBall.mo

» [V BouncingBall Reset Perspective...

b [MultiBallmo Close Perspective

» [VanDerPol.mo Close All Perspectives
[X] project Mavigation b
> =k Libraries Preferences

b Qg = OpenModelica [OpenModelic

Figure 16.7: Eclipse — Switching to another perspective — e.g. the Java Perspective.

16.3.7 Creating a Package

To create a new package inside a Modelica project, select File->New->Modelica Package. Enter the desired name
of the package and a description of what it contains. Note: for the exercises we already have existing packages.

16.3.8 Creating a Class

To create a new Modelica class, select where in the hierarchy that you want to add your new class and select
File->New->Modelica Class. When creating a Modelica class you can add different restrictions on what the class
can contain. These can for example be model, connector, block, record, or function. When you have selected
your desired class type, you can select modifiers that add code blocks to the generated code. ‘Include initial code
block’ will for example add the line ‘initial equation’ to the class.

16.3.9 Syntax Checking

Whenever a build command is given to the MDT environment, modified and saved Modelica (.mo) files are
checked for syntactical errors. Any errors that are found are added to the Problems view and also marked in the
source code editor. Errors are marked in the editor as a red circle with a white cross, a squiggly red line under the
problematic construct, and as a red marker in the right-hand side of the editor. If you want to reach the problem,
you can either click the item in the Problems view or select the red box in the right-hand side of the editor.

16.3. Getting Started 267

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

New Modelica Package

Modelica Package -

Create a new Modelica package.

Source folder: | PPC970 | | Browse...
Name: Core

Description: |This package contains the core stuff

[] is encapsulated package

Finish || Cancel

Figure 16.8: Creating a new Modelica package.

268 Chapter 16. MDT - The OpenModelica Development Tooling Eclipse Plugin

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

New Modelica Class

Modelica Class

Create a new Modelica class.

Source folder: | PPCO70/Core | | Browse...
Name: ALU
Type: block hd |

Modifiers: include initial equation block
[] is partial class

[l

Finish || Cancel

Figure 16.9: Creating a new Modelica class.

16.3. Getting Started 269

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Madelica - ALU.mo - Eclipse SDK
File Edit MNavigate Search Project SWT Hierarchy Run Window Help

o-Eeleeela]e oo (vt >

| % v =~
.

%’ Modeli... 2 = B8 ALU.ma = H
= =2 PPCO70 block ALU O n

~ i Core equation

B ALU.mo .

I package.mo | @ inital equation

El .project end ALU:
[+ =i System Library

i ~,
Console [£! Problems &2 = ¥ =0

2 errors, 0 warnings, 0 infos

Description Resource |In Folder Location
@ unexpected token ALU.mo PPCO970/Core line 5
@ unexpected token ALU.mo PPCO70/Core line 5

L4 NE3f{EN | D

Figure 16.10: Syntax checking.

270 Chapter 16. MDT - The OpenModelica Development Tooling Eclipse Plugin

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

16.3.10 Automatic Indentation Support

MDT currently has support for automatic indentation. When typing the Return (Enter) key, the next line is indented
correctly. You can also correct indentation of the current line or a range selection using CTRL+I or “Correct
Indentation” action on the toolbar or in the Edit menu.

16.3.11 Code Completion

MDT supports Code Completion in two variants. The first variant, code completion when typing a dot after a class
(package) name, shows alternatives in a menu. Besides the alternatives, Modelica documentation from comments
is shown if is available. This makes the selection easyer.

< Modelica - DCEngine.mo - Eclipse SDK
File Edit Refackor Mavigate Search Fun Project Window Help

A

L=_|'|_;:1._||.;| a1 %" ¥ | ¥ oo~

[t Modelica Projects 572 = B *DCERgine. mo oo
- Iﬁ- EngineSirmulation model DCEngine
+- [DCEngine.mo import Modelica.|
projeck i
- ; Standard Library equation 3 Blocks
S 3 Modsiica o B4 Constants
end DCEngine; £ Electrical
+--f3 Blocks
+- 4 Constants £ Teons
+- 8 Electrical £ Math
+-f Icons B3 Mechanics
-1 £ Math B3 sTunits
+ acos £ Thermal
+ asin
+ atan
+ atang
baselconl

Figure 16.11: Code completion when typing a dot.

The second variant is useful when typing a call to a function. It shows the function signature (formal param-
eter names and types) in a popup when typing the parenthesis after the function name, here the signature Real
sin(SI.Angle u) of the sin function:

16.3.12 Code Assistance on Identifiers when Hovering

When hovering with the mouse over an identifier a popup with information about the identifier is displayed. If the
text is too long, the user can press F2 to focus the popup dialog and scroll up and down to examine all the text. As
one can see the information in the popup dialog is syntax-highlighted.

16.3. Getting Started 271

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

= Modelica - DCEngine.mo - Eclipse SDK
File Edit Refactor Mavigate Search Fun Project Window Help

L=i|>'|_|:]_|l'=.='l o1 %," *‘{.‘l;' ’E:Zl'(::l'

[t Modelica Projects &2 = B *DCEngine, mo &4
=122 EngineSinmulation model DCEngine
+ DZEngine. ma import Modelica.Math. ¥;
= .project output Eeal x:
-2, Standard Library equation
= £ Madelica Real sin{51.Angle U} |
+- £ Blocks x = sin|
+- 3} Constants
+-H3 Electrical B .
- E3 Icons end DCEngine;

Figure 16.12: Code completion at a function call when typing left parenthesis.

B &'Java | @ Modelica

BouncingBall. mo I 23 = 0O

1- model MultiBall
2 BouncingBall balls[3];
3 en el

model BouncingBall "A simple bouncing ball"
parameter Real e 0.7 "coefTfTicient of restitution";
parameter Real g 9.81 "gravity acceleration";
Real h{start = 1) "height of ball";
Real v "velocity of ball";
Boolean Tlying(start = true) "true, if ball is flying";
Boolean impact;
Real v_new;
Integer Too;
equation
impact = h <= 0.0;

Press F2 to focus.,

Figure 16.13: Displaying information for identifiers on hovering.

272 Chapter 16. MDT — The OpenModelica Development Tooling Eclipse Plugin

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

16.3.13 Go to Definition Support
Besides hovering information the user can press CTRL+click to go to the definition of the identifier. When

pressing CTRL the identifier will be presented as a link and when pressing mouse click the editor will go to the
definition of the identifier.

16.3.14 Code Assistance on Writing Records

When writing records, the same functionality as for function calls is used. This is useful especially in MetaMod-
elica when writing cases in match constructs.

=2 & Java | B Modelica|

*Absyn.mo X = 7

end FuncT; -
462 algorithm

463 outArgs := match outArgs

464 case FUNCTIONARGS()

465 algorithm

466 outArgs.args := list(inFunc({arg, inArg) for arg in outArgs.args);

467 then

468 outArgs;
469 FOR_ITER _FARG(Exp exp, ReductionlterType iterType, Forlterators iterators)
470 case FOR_ITER_FARG(
471 algorithm

472 outArgs.exp := inFunc(outArgs.exp, inArg);

473 outArgs.iterators := list(traverseExpShallowlterator(it, inArg, inFunc
474 for it in outArgs.iterators);

475 then

476 outArgs;

478 end match;
479 end traverseExpShallowFuncArgs;

Figure 16.14: Code assistance when writing cases with records in MetaModelica.

16.3.15 Using the MDT Console for Plotting

16.3. Getting Started 273

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

¢ Modelica - Eclipse

File Edit MNavi

B &'Java [Modelical

[Modelica Projects = g BouncingBall. mo = g

1= model BouncingBall

2 parameter Real e=0.7 "coefficient of restitution";
parameter Real g=9.81 "gravity acceleration";

Real h(start=1) "height of ball";

Real v "wvelocity of ball";

Boolean flying(start=true) "true, 1f ball is flying";
Boolean impact;

Real v_new;

Integer foo;

2% ¥
> (M demo

equation
impact = h <= 8.8;
foo = if impact then 1 else 2;
der(v) = if flying then -g else @;
der(h) = v;
when {h <= 0.6 and v <= ©.8, impact} then
v_new = if edge(impact) then -e*pre(v) else 0;
flying = v_new > 0;
reinit(v, v_new);
end when;
5= Outline 2 v = 0
mmed DrimedinaDal1 .

An outline is not available.

[*! Problems & conscle 2 [JlBookmarks sgP

I
No consoles to display at this time. 1 Java Stack Trace Console
m2 2 Maven Console
B3 cvs
4 New Console View
MDT Consol

Figure 16.15: Activate the MDT Console.

274 Chapter 16. MDT — The OpenModelica Development Tooling Eclipse Plugin

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

[

File Edit P

4

=

[Ff Modelica Projects
B %
¥ (& demo
» [BouncingBall.mo
» [VanDerPol.mo
¥ project
b = Libraries

5= Outline

PR

L - 4

B ow
v BouncingBall

o g

fiying
foo

g

h

impact

o

o

v

v_new

roject Run Window Help
:#vﬁv%v:@q"v: = 2 e enta Bu e
:'3 & Java | BB Modelica |
B v BouncingBal.mo £ = g
- 1= model BouncingBall
2 parameter Real e=0.7 "coefficient of restitution";
3 parameter Real g=9.81 "gravity acceleration";
4 Real h(start=1) "height of ball";
5 Real v "velocity of ball";
3] Boolean flying(start=true) "true, if ball is flying";
7 Boolean impact;
8 Real v_new; - -
] Integer foo; File Options
10 Zoom | Pan || AutoScale | Fitin View »
equation
12 impact = h <= ©8.0; __
13 Too = 1T impact then 1 else 2;
der(v) = if flying then -g else 0; 1
5 der(h) = v; 08 35
0.6 5
17 when {h <= 0.0 and v <= 0.0,impact} then 0.4 4
18 v_new = if edge(impact) then -e*pre(v) else € p 3 \ /
flying = v_new > 0; V=
20 reinit{wv, v_new);
21 end when; 1] 0.5 1 15 2 25 3
] 22 time
D7 smel DoomecdinaDa11 .
-
|2 Problems B console __|].|E‘.:--:-I<m-arl<3 Progress IE™ =~ (| (]
OpenModelica Console
omc> simulate(BouncingBall, stopTime=3.8) =
record SimulationResult
resultFile = "/tmp/BouncingBall_res.mat",
simulationOptions = "startTime = 0.8, stopTime = 3.8, numberOfIntervals = 500, toler

W
'

messages
timeFrontend

0.010819273,

timeBackend = 0.801918553,
timeSimCode = 0.011109793,
timeTemplates = 0.Q007479943,
timeCompile = 1.035183591,

timeSimulation 0.013519222,
timeTotal 1.080146115

end SimulationResult;

omc> plot(h)

Figure 16.16: Simulation from MDT Console.

16.3. Getting Started

275

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

276 Chapter 16. MDT - The OpenModelica Development Tooling Eclipse Plugin

CHAPTER
SEVENTEEN

MDT DEBUGGER FOR ALGORITHMIC MODELICA

The algorithmic code debugger, used for the algorithmic subset of the Modelica language as well as the Meta-
Modelica language is described in Section The Eclipse-based Debugger for Algorithmic Modelica. Using this
debugger replaces debugging of algorithmic code by primitive means such as print statements or asserts which
is complex, time-consuming and error- prone. The usual debugging functionality found in debuggers for proce-
dural or traditional object-oriented languages is supported, such as setting and removing breakpoints, stepping,
inspecting variables, etc. The debugger is integrated with Eclipse.

17.1 The Eclipse-based Debugger for Algorithmic Modelica

The debugging framework for the algorithmic subset of Modelica and MetaModelica is based on the Eclipse
environment and is implemented as a set of plugins which are available from Modelica Development Tooling
(MDT) environment. Some of the debugger functionality is presented below. In the right part a variable value is
explored. In the top-left part the stack trace is presented. In the middle-left part the execution point is presented.

The debugger provides the following general functionalities:
* Adding/Removing breakpoints.
» Step Over — moves to the next line, skipping the function calls.
* Step In — takes the user into the function call.

¢ Step Return — complete the execution of the function and takes the user back to the point from where
the function is called.

* Suspend — interrupts the running program.

17.1.1 Starting the Modelica Debugging Perspective

To be able to run in debug mode, one has to go through the following steps:
* create a mos file
* setting the debug configuration
* setting breakpoints
* running the debug configuration

All these steps are presented below using images.

277

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

& Debug - trunk/Compiler/FrontEnd /Inst.mo - Eclipse SDK (=] 3]
File Edit Mavigate Search Project Run Window Help
J - (=] ‘ o1 J -0 -G - J [I J - - L b J Correct Indentation | Build project it ﬁDEhug >
%5 Debug 23 [7] | 2 TR | i = = O [t Variables 52 %o Ereakpomts} k5 | = =0
% moT coB [Modelica Developement Tooling (MOT) GDE] 2| _Name | Dedared Type | Value <
EJ@ MOT @ cache record<Env.Cache.CACHE> record<Env.Cache.CACHE
o Main Thread (stepping) @ e record<5CodeRestriction.R... record=<5Code.Restriction.
= instClassdef2 at Inst.mo: 3434 ¥ pre record<Prefix.Prefic NOPRE> | record <Prefix.Prefix NOPR
instClassdef at Inst.mo:3075 E % egs list<record<5Code Equatio... <2 items>
instClassIn__dispatch at Inst.mo:2140 = % [1] record«<5Code.Equation.EQ... record<5Code.Equation.E
instClassIn at Inst.mo: 1813 = % eEquation record<5Code.EEquation.E... | record<5Code.EEquation.t
instClass at Inst.mo: 1238 = & expleft record < Absyn Exp.CREF> record < Absyn.Bxp. CREF=
instProgram at Inst.mo: 1055 L E % compenentRe record<Absyn.Component... record<Absyn.Componen
instProgram at Inst.mo: 1085 # name String "
instantiate at Inst.mo:227 @ subscripts list<Any> <0 item>
= instantiate at Main.mo:698 LI E % expRight record<Absyn.Exp.CALL> record = Absyn.Exp. CALL>
- record<Absyn.Companent... recard<Absyn.Companen
nstmeo £2 Interactive.mo W QuotedFunctien.me " =0 @ functionArgs record<Absyn FunctionArg... record<Absyn.FunctionAr
normaldlgorithmLst = alg, initialBlgorithml | @ _mmme"‘t Option<Any> NONEQ
re,vis, , ,inst dims,impl,callscope,graph,csecs, instSingl ¥ % info record<AbsynInfoINFO> | record<Absyn.nfoINFO>
equation - - B & [2] record<SCode.Equation.EQ... record<S5Code.Equation.El
false = Util.getStatefulBoolean (stopInst); 1 = % eEquation record<5Code.EEquation.E.. | record<5Code.EEquation.
UnitParserExt.checkpoint () ; expleft record<Absyn.Exp.CREF> | record<Absyn.Exp.CREF> _|
//Debug.craceln (" Instclassdef for: " +& PrefixUtil.print @ expRight recc!rd‘cAbsyn‘E(p.CALLb record<Absyn.Bxp . CALL>
ci statel = ClassInf.trans(ci state, ClassInf.NEWDEE()): @ comment Option<Any> NONEQ
els = extractConstantPlusDeps (els,instSingleCref, {},class H @ info record<Absyn.Info INFO > record < Absyn.Info INFO=>
@ fileName String "Abs.mo"
/ split elements % lineNumberSt Integer 12
(cdefelts, extendsclasselts, extendselts, compelts) = splitE @ columnNumk Integer 3
@ lineNumberEr Integer 12
extendselts = SCodeUtil.addRedeclareAsElementsToExtends (e @ columnNumt Integer 17
- E @ buildTimes record<Absyn.TimeStamp.... record<Absyn. TimeStamp
4] | 3 ¥ lastBuildTi Real 0
@ lastEditTin Real 0
£ s) =
B Console 5 \ﬁ,TasksW [2¢ Pmb‘qu G Execu‘table;] = ¥ els list<record<SCode.Element... <2 items>
MDT GDB [Modelica Developement Tooling (MOT) GDB] C:\OpenModelica\trunk\testsuite \bootstrapping'main.exe || = < ci_state record<ClassInf. State,MOD... record«<ClassInf.State.MOL
] [B gH| &&=t B - 13 - El % path record<Absyn.PathIDENT> record<Absyn.PathIDENT
;l @ name String "Abs"
@ csets record<Connect. Sets. SETS> | record<Connect.Sets.SETS
= @ initalg list<Any> <0 item= =
K . [- | R =
[0 ‘ Writable Insert | 3494227 | OpenModeica C....8.01s Orline |

Figure 17.1: Debugging functionality.

Create mos file

In order to debug Modelica code we need to load the Modelica files into the OpenModelica Compiler. For this we

can write a small script file like this:

function HelloWorld
input Real r;
output Real o;

algorithm
o = 2 % r;

end HelloWorld;

>>> setCommandLineOptions ({"—-d=rml, noevalfunc"

{true, true}

>>> setCFlags (getCFlags ()
true

>>> HelloWorld(120.0)

+ _gn)

, "—-g=MetaModelica"})

So lets say that we want to debug HelloWorld.mo. For that we must load it into the compiler using the script file.
Put all the Modelica files there in the script file to be loaded. We should also initiate the debugger by calling the

starting function, in the above code HelloWorld (120.

0);

278

Chapter 17. MDT Debugger for Algorithmic Modelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Setting the debug configuration

While the Modelica perspective is activated the user should click on the bug icon on the toolbar and select Debug
in order to access the dialog for building debug configurations.

File Edit Mavigate Search Project Run FieldAssist Window Help

Ie3- | 30 - B)-8 1@ -

. " 7 1 10_petral

" %209 pamtrans
27 308 _pamded

o
i T’," 407_pam

lﬂﬁb .externalToolE

[+ [Functions.ma %% 5 05_advanced

- M Main.mo 'Tﬁ 5 04b_modassigntwotype

- M Types.mo Th 7 04a_sssigntwotype
K] .project T 8 03_assignment

IQ Functions.c
@ Functions.h
- |&| Functions.o

fr 9 01_experiment
'TT-’. 02a_expl

Functions.srz Debug As »

g Main.c
- e Organize Favorites...
- 1€ Main.h
- 5] Main.o
El Main.srz
@ Make.mk
| @ Makefile
README. txt
LB con ren e &
1| | =
5= Qutiine 53 =i
An autline is not available. problems | B console £4 Bookmarks | Progress |
<terminated > OMDey-MINGW [Program] C:\OMDev'\toolsimsysbinimake. exe
compiling. king in debug mode with LIBRMI=rml g and RML
lain -o Main.o Main.c

Figure 17.2: Accessing the debug configuration dialog.

To create the debug configuration, right click on the classification Modelica Development Tooling (MDT) GDB
and select New as in figure below. Then give a name to the configuration, select the debugging executable to
be executed and give it command line parameters. There are several tabs in which the user can select additional
debug configuration settings like the environment in which the executable should be run.

Note that we require Gnu Debugger (GDB) for debugging session. We must specify the GDB location, also we
must pass our script file as an argument to OMC.

Setting/Deleting Breakpoints

The Eclipse interface allows to add/remove breakpoints. At the moment only line number based breakpoints are
supported. Other alternative to set the breakpoints is; function breakpoints.

Starting the debugging session and enabling the debug perspective

17.1.2 The Debugging Perspective

The debug view primarily consists of two main views:
 Stack Frames View

e Variables View

The stack frame view, shown in the figure below, shows a list of frames that indicates how the flow had moved
from one function to another or from one file to another. This allows backtracing of the code. It is very much
possible to select the previous frame in the stack and inspect the values of the variables in that frame. However,
it is not possible to select any of the previous frame and start debugging from there. Each frame is shown as
<function_name at file_name:line_number>.

The Variables view shows the list of variables at a certain point in the program, containing four colums:

17.1. The Eclipse-based Debugger for Algorithmic Modelica 279

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

&= Modelica - HelloWorld /Script.mos - Eclipse SDK =10 1[
File Edit Mavigate Search Project Run Window Help
| i = [|3 -@ -~ |- |5 - - <+ - | comectindentation | Buld project I %5 Debug »
(i Modelica Projects 53 = B[Heloworamo [FIEE R =g
i |
N
& Debug Configurations _I
T 00_sim _ R
BT 01_exq Create. manage. and run configurations
LI 02ae RunorDebug a MetaModelica program
Clo2b_e
1T 03_syr
T 04_as: |j 5% ‘ =] }:5 T Name: INew_cnnﬁguraﬁon
g g:j} |t‘.'pe filter text Main . B Sou-ce] = Comorq -3 Env'ronmmﬂ
_m
CTo6ad | il Cic++ Application . - - — w e —
£ 07 o E ClC++ Attach to Application Program: |C.\ODeﬂModella\trunk\bul\d\bm\omc.eke orkspace. .. ystem...
o nﬂ;:a\ [E] €/C++ Postmortem Debugger Werk directory: | C:\Users\adeas3 1 workspaceMDT \HelloWorld Workspace... | File System...
T 09_pai ~[E] € ++Remote Application GDB path: I${Enu_uar:DMDEV}\tz:oIs\'ningw\,bin\gdb.ExE Workspace... | File System...
7 10.pa | % DSFPDA Application
T 11_pe 4@ Eclipse Application
2 Hellow [£] GDE Hardware Debugging = Debug € source: files
He -] Java Applet
ol [T Java Application Arguments:
[He Ju Uit SCRIPT.mos|
B He Jt Unit Plug-n Test
(€ He [Launch Group
[£) He 7% Modelica Developement Tooling (MOT)
&4 He ?’ﬁ Modelica Developement Tooling (MDT) GDE
(£ He A% MOT Debugger Test _"LI
2 He e Mew_configuration
He 7 standard Modelica Test - =08
- @ 0SGi Framework
— &% Push Down Automata
o” Outline & E Remote Java Application
{8 Snapshot Album
Apply. | Rewert
Filter matched 21 of 21 items
® Debug I Close |

0~ | Writable | Insert | 1:1 | OpenModelica C....8.0 is Online J

Figure 17.3: Creating the Debug Configuration.

& Modehca - Main.mo - Eclipse SDK H =181
Fie £91 Navgate Sewch Projct Run Fedasmsst Wedow Heb
Jri~ i @ls |- 0-Q- |8 |4 =] ® @[l G - | Comectindentaton 13| 3 Modeien »
- == =
i} Mosesa Prajecs £ Bl 2 ran0 NG o
> 1-package Main =
externaTooBuiders A[;.ﬂl’(l:ll'.l;

function
input list
2 algorithm

trings arg;

matchcontinue arg
cass (n_striz_]

U mans

B Mansrz
& Make. i
& Makefie

Lo BN BN W ¥T=0

R R|wbl 28 -r5-=0
~dogCmaPort=2796 <boReph/ <dogt: <bgSign 0

Double click on the

ruler to set/delete
breakpoints

| witacie rsert 11 |80 Ooenivodeicn Compler 1.4.318 Orine | [

Figure 17.4: Setting/deleting breakpoints.

280 Chapter 17. MDT Debugger for Algorithmic Modelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

& Modebca - Mainmo - Ecipse SDK =181
te Search Project Run Faidissst Window e
| B #)| ® | @] r o v - | Comctindentaton EETY =
- =n
“package Hain -

matohoontinue arg
cass (n_striz_]

L.

U] manexe
(€ Manh
B Maro
B Man.srz
@ Make i
i Maketie

B & Men m%mss Bockmares | Progress | = X %|ublB-3
B-F manfstcsring> ag) experment [Toglng (MOT]] C: MetaModebca'0)], exe dogCmcPort= 2796 chgReplyPort= 1747 dogEventPert= 1738 ~bgSignaPori=1799 10
o irrport Functions; \ e

Click and select the
debug configuration.
The debugging will start.

| Writabie Tnsert 11 P8 Ooeriiadeicn Compler 1.4.318 Orire | [T

Figure 17.5: Starting the debugging session.

£ Modelica - Main.mo - Eclipse SDK

File Edit Mavigate Search Project Run Fieldassist ‘Window Help
ji-ele s 0-a-

[t Modelica Projects &2

I3 & 8 e = JCorTectIndentaﬁon

[EEE] 1_experiment

J/fimport Types;

import Functions;

= function main
input list<String> arg;
algorithm

matchoontinue erg
cage (n_str::_)

local
""" 120 08_pamded Integer i, mn; — . n - 2
..... 51 09_pamtrane String str, n_str; L das) |
""" 1 10_petrol equation
_____ B documeritation / This kind of launch is configured to open the Debug perspective when it
_____ BT ete suspends.
This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint
management,
Do you want to open this perspective now?
= == T A, . [~ Remember my decision
o= Outline &3 B w4 w T | _I
- Yes Mo
=] m Main Problems | B Console 52 Bookmar|
-F mainlist<String> arg) 01_experiment [Modelica Developement ‘remme—rrerrrr—ererrergrrrrerme—mmrrey e - -

i @ import Functions;

Figure 17.6: Eclipse will ask if the user wants to switch to the debugging perspective.

17.1. The Eclipse-based Debugger for Algorithmic Modelica 281

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

¢ Name — the variable name.

* Declared Type — the Modelica type of the variable.

¢ Value — the variable value.

e Actual Type — the mapped C type.

By preserving the stack frames and variables it is possible to keep track of the variables values. If the value of
any variable is changed while stepping then that variable will be highlighted yellow (the standard Eclipse way of
showing the change).

=181 x]
Fie 4 Refocor PUVGEIE SMCh Prolct Run FedAsst Vindow Hep
i e a0 -Q- [™ © P - | Comectindentaton | %5 Debug >
(%5 Debug 52 % 5 (e i 7 O] 0 varaties 1 Breakpons| & = t K- —0
 §R 01_expenment (Modelca Developement Toolng (MOT)] Hame | vakie |
=i mot B % ayg strng st
B M e strrg
= Main.main (ine: 17, 5°: 7)
o Crbnionguninome arpo Metabodeica 0 _mmermentiman. exe <boCmon=3050 <ogRenPoglt 3051 ChgEvenPort=3052 &
| Ja | K1}
j 1 0%a_sssgriwatyoe
B 0% _modassgntmotype
167 05_advanced
1B 05_OMCAnaCorba
& 07_pam
167 08_pamded
T o9_pamtrans
B 10_petred
18] documentation
B etc
_'IJ
e = L ==
B console S&\Eaﬂsl&mlngl 5 W & 4 3 - [m
01_eaperment [Moceh oo e taoebca 10]_g e ~RgCmdPort=3050

',.wﬁg

Browse variables here.

Use the buttons to step.

Also there 1s a tab with

breakpoints.
o or
17: 47 8 Ooerodaien Comoler 1.4.318 Orine I | Er—rETTT—
Figure 17.7: The debugging perspective.
282 Chapter 17. MDT Debugger for Algorithmic Modelica

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

& Debug - Mainumo - Edipse SDK =18l =
Fle Edt Refactor Navigale Search Project Fun Feidassst Window Heb
|- = i -0 - Q- | E & @@ B -Gl By o || Comet indentotin 5[g »
1 pebug Rl 0 7 000 vacisties 12 Breskpoints| =
2 BB 01_experment [Modeics Developement Toolng MOT]) Hiame [vak I G;P\mml
Bt T B % ag string bst & 1vn
B Man thread (steooing) B @ st sng
= Main_main (ine: 17, 5°: 7)
vl Cobrlevgwint 01 ! exe ol it dogRenPortmi081 : -
| |

[Man.mo 22

iopachaige Main

7 input listeScring> arg:
algoriths

10 matchoontinue arg
oass (n_stEii_
local

Intage

Sring

.4 LI

01 gxperiment [Tosing (MOT]] Cbncpgninhose adrpal 01 excd

Switch between Debug 3
and Modelica Perspective

Figure 17.8: Switching between perspectives.

17.1. The Eclipse-based Debugger for Algorithmic Modelica 283

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

284 Chapter 17. MDT Debugger for Algorithmic Modelica

CHAPTER
EIGHTEEN

MODELICA PERFORMANCE ANALYZER

A common problem when simulating models in an equation-based language like Modelica is that the model may
contain non-linear equation systems. These are solved in each time-step by extrapolating an initial guess and
running a non-linear system solver. If the simulation takes too long to simulate, it is useful to run the performance
analysis tool. The tool has around 5~25% overhead, which is very low compared to instruction-level profilers
(30x-100x overhead). Due to being based on a single simulation run, the report may contain spikes in the charts.

When running a simulation for performance analysis, execution times of user-defined functions as well as linear,
non-linear and mixed equation systems are recorded.

To start a simulation in this mode, turn on profiling with the following command line flag >>>
setCommandLineOptions("--profiling=all")

The generated report is in HTML format (with images in the SVG format), stored in a file modelname_prof.html,
but the XML database and measured times that generated the report and graphs are also available if you want to
customize the report for comparison with other tools.

Below we use the performance profiler on the simple model A:

model ProfilingTest
function £
input Real r;

output Real o = sin(r);

end £f;

String s = "abc";

Real x = f(x) "This is x";

Real y(start=1);

Real zl1 = cos(z2);

Real z2 = sin(zl);
equation

der (y) = time;

end ProfilingTest;

We simulate as usual, after setting the profiling flag:

>>> setCommandLineOptions ("--profiling=blocks+html")
true

>>> simulate (ProfilingTest)

record SimulationResult

resultFile = "«DOCHOME»/ProfilingTest_res.mat",
simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOflIntervals = 500,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'ProfilingTest', options =
—''", outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",
messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.
Warning: empty y range [3:3], adjusting to [2.97:3.03]
Warning: empty y range [3:3], adjusting to [2.97:3.03]
Warning: empty y range [2:2], adjusting to [1.98:2.02]
Warning: empty y range [2:2], adjusting to [1.98:2.02]
Warning: empty y range [3:3], adjusting to [2.97:3.03]

(continues on next page)

285

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

Warning: empty y range [3:3], adjusting to [2.97:3.03]

stdout | info | Time measurements are stored in ProfilingTest_prof.
—html (human-readable) and ProfilingTest_prof.xml (for XSL transforms or more
—~details)

"
’

timeFrontend = 0.0005369470000000001,

timeBackend = 0.006483741,

timeSimCode = 0.001236069,

timeTemplates = 0.014643726,

timeCompile = 0.421771954,

timeSimulation = 0.058881951,

timeTotal = 0.503636873
end SimulationResult;
"Warning: There are nonlinear iteration variables with default zero start
—attribute found in NLSJacO. For more information set —-d=initialization. In_,
—OMEdit Tools->Options—>Simulation->Show additional information from the
—initialization process, in OMNotebook call setCommandLineOptions (\"-
—d=initialization\").
Warning: The initial conditions are not fully specified. For more information set -
—d=initialization. In OMEdit Tools->Options—->Simulation->Show additional,,
—information from the initialization process, in OMNotebook call

—setCommandLineOptions (\"-d=initialization\").

"

18.1 Profiling information for ProfilingTest

18.1.1 Information

All times are measured using a real-time wall clock. This means context switching produces bad worst-case
execution times (max times) for blocks. If you want better results, use a CPU-time clock or run the command
using real-time priviliges (avoiding context switches).

Note that for blocks where the individual execution time is close to the accuracy of the real-time clock, the
maximum measured time may deviate a lot from the average.

For more details, see ProfilingTest_prof.xml.

18.1.2 Settings

Name Value

Integration method | dassl

Output format mat

Output name ProfilingTest_res.mat
Output size 24.0 kB

Profiling data ProfilingTest_prof.data
Profiling size 0B

286 Chapter 18. Modelica Performance Analyzer

ProfilingTest_prof.xml
ProfilingTest_res.mat
ProfilingTest_prof.data

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

18.1.3 Summary

Task Time Fraction
Pre-Initialization 0.000115 | 5.89%
Initialization 0.000142 | 7.27%
Event-handling 0.000000 | 0.00%
Creating output file 0.000141 | 7.22%
Linearization NaN%
Time steps 0.001222 | 62.60%
Overhead 0.000126 | 6.45%
Unknown NaN NaN%
Total simulation time | 0.001952 | 100.00%

18.1.4 Global Steps

Steps | Total Fractio | Average Time Max Time | Deviati
Time n on
| 499 0.001222 | 62.60% | 2.44889 7795591 18e- | 0.00004 16.58x
IGraph thumbna il 06 3044
999|
18.1.5 Measured Function Calls
Name Callg Time Frac- | Max De-
tio Time viati
on
Profil 1512| 0.00001 | 0.92% | 0.00000 | 28.02
IGraph thumbna il functio n funOllGraph .roﬁ v X
X X ingTest .f 7869 0343
thumbna il count functio n fun0|
18.1.6 Measured Blocks
Name Calls Time Frac- Max Deviati
tio Time on
n
: #eq0 | 7 0.00008 4.37% | 0.00008 6.01
IGraph thumbna il eqOIll Graph thumbna > <wed 5240 v 5343 X
il count eqOl T
#eql | 4 0.00000 0.08% 0.00000 3.12
IGraph thumbna il eql1lGraph 1>\< cd Y635 " | Less X
thumbna il count eq11l -
<#eql | 1006| 0.00042 21.84% | 0.00001 26.86
(Graph thumbna il eq19liGraph | o .~ 6375 ’| 06 X
thumbna il count eq19I -
Y <#eq2 | 1508 0.00048 24.74% | 0.00002 68.26
(Graph thumbna il eq21iGraph | .50 3012 *| 2154 X
thumbna il count eq21| -
18.1. Profiling information for ProfilingTest 287

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

Equations
Name | Variables
eq0
eql
eq2 s
eq3 2
eq4
eqs S <#var0>
eqo6 S <#var0>"__
eq7 S <#var0>__
eq8 S <#varQ>"__
eq9 zl
eql0
eqll x
eql2
eql3 z2
eql4
eqls <#var0>"__
eql6 S <#tvarO>"
eql7 S <#var0>"__
eql8 S <#tvarO>"
eql9 zl
€q20
eq2l X
eq22 der(y)
eq23
Variables
Name | Comment
y
der(y)
X This is x
zl
2
s

This report was generated by OpenModelica on 2021-12-14 10:06:10.

18.2 Genenerated JSON for the Example

Listing 18.1: ProfilingTest_prof.json

{

"name":"ProfilingTest",
"prefix":"ProfilingTest",
"date":"2021-12-14 10:06:10",
"method":"dass1l",

"outputFormat":"mat",
"outputFilename":"ProfilingTest_res.mat",

(continues on next page)

288 Chapter 18. Modelica Performance Analyzer

http://openmodelica.org

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

"outputFilesize":24581,

"overheadTime":0.000127224,

"preinitTime":0.000115439,

"initTime":0.00014219,

"eventTime": 0,

"outputTime":0.000141389,

"jacobianTime":4.53827e-06,

"totalTime":0.00195194,

"totalStepsTime":2.2369%e-06,

"totalTimeProfileBlocks":0.000996263,

"numStep":499,

"maxTime" :4.3043904e-05,

"functions": [
{"name":"ProfilingTest.f","ncall":1512, "time":0.000017869, "maxTime":0.000000343}
]I

"profileBlocks": [

{"id":0, "ncall":7, "time":0.000085240, "maxTime":0.000085343},

{"id":11, "ncall":4, "time":0.000001635, "maxTime":0.000001686},

{"id":19, "ncall":1006, "time":0.000426375, "maxTime" :0.000011806},

{"id":21, "ncall":1508, "time":0.000483012, "maxTime":0.000022184}

1
}

18.3 Using the Profiler from OMEdit

When running a simulation from OMEdit, it is possible to enable profiling information, which can be combined
with the transformations browser.

General = Output | Simulation Flags

Model Setup File (Optional): | Browse... |
Initialization Method (Optional): | |
Optimization Method (Optional): | |
Equation System Initialization File (Optional): | | Browse... | |:
Equation System Initialization Time (Optional): |

Clock (Optional): | =
Linear Solver (Optional): | |
Non Linear Solver (Optional): | - | T
Linearization Time (Optional): :T;cis

Output Variables (Optional): blocks+html

- T
Profiling (enable performance measurements)

[CPU Time
Enable All warnings

-

[] save simulation settings inside model [Simulate J | Cancel |

Figure 18.1: Setting up the profiler from OMEdit.

When profiling the DoublePendulum example from MSL, the following output in Figure 18.2 is a typical result.

18.3. Using the Profiler from OMEdit 289

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

This information clearly shows which system takes longest to simulate (a linear system, where most of the time
overhead probably comes from initializing LAPACK over and over).

[Equations Browser | [Defines
Index Type Equation Executions Max time | Time Fraction = ||~ |Variable =
876 regular linear, size 2 4602 0.000199 0.0582 86.2% i damper.a_rel

836 regular (assignment) revolute2.R_rel.T[2,2] = cos(revolute2.phi) 1534 8.25e-05 0.000491 0.728% revolute2.frame_b.f[2]
-837 regular (assignment) revolute2.R_rel.T[2,1] =-sin{revolute2.phi) 1534 7.29e-05 0.000422 0.625%

841 regular (assignment) boxBody1.frame_...[2,1] =-sin(damper.phi_rel) 1534 7.1e-05 0.000395 0.585%

840 regular (assignment) boxBody1.frame_...T[2,2] = cos(damper.phi_rel) 1534 7.08e-05 0.000361 0.535%

839 regular (assignment) revolute2.R_rel.T[1,1] = cos(revolute2.phi) 1534 7.33e-05 0.000303 0.449%

842 regular (assignment) boxBody1.frame_b.R.T[1,2] = sin(damper.phi_rel) 1534 7.45e-05 0.000303 0.449%

838 regular (assignment) revolute2.R_rel.T[1,2] = sin(revolute2.phi) 1534 7.11e-05 0.0003 0.444%

849 regular (assignment) boxBody1.frame_...T[1,1] = cos(damper.phi_rel) 1534 7.29e-05 0.000286 0.424%

827 regular (assignment) revolute1.tau = (-damper.d) * revolutel.w 1534 6.84e-05 0.000274 0.406%

Figure 18.2: Profiling results of the Modelica standard library DoublePendulum example, sorted by execution

time.

290

Chapter 18. Modelica Performance Analyzer

http://www.netlib.org/lapack/

CHAPTER
NINETEEN

SIMULATION IN WEB BROWSER

OpenModelica can simulate in a web browser on a client computer by model code being compiled to efficient
Javacript code.

For more information, see https://github.com/tshort/openmodelica-javascript

Below used on the MSL MultiBody RobotR3.fullRobot example model.

=

2 it tshet githubaoy md e imdpad i Thodelica D = B &
BsEaf0&aYing %

-8 - #® - Page~ Safety~ Tools= @ - 8 H @3

OpenModelica simulation example

Modelica Mechanics MulliBody Examples. Systerns. RobotR3 fullRobot

Smulalion Meizhed. Time: 0040

Mode]
S0 B, S 16
— ——
CHapun ilesrvals S
_—l=
ok [l A} —
§ ——
E -t ——
1 ¥ _,—I
J
J
—
Comments
Thes similation moded & from a od MM MR A ANt K Samiialing Eeaancal heamal, S macnanca
Syshoms. Of flidk wats useddl o compile this moded o C Then F wials e foocompile e C oo o JavaScripl

o mons indoemation on compiing Openiodelica bo tavaSorpt, see her

The usér mlerace was ceaed in mdped. Ses Mo Mechancs. Mullilody, Examgs ol 5 for the
ke O for IS e

291

https://github.com/tshort/openmodelica-javascript

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

& hipe/shon.githubuo/ mdpad,/ mdpad MmiTModalica D=Bd

S AN&Ying

Wr B - = = Page= Safety~ Toals~ @ - 8 N

OpenModelica simulation example
Maodelica Mechanics MultiBody. Examples. Systems, RobotR 3. fullRobot

Simulaton finshed e D040

Model Resuls
Figt variabi
Shop e 5o eeChankcs riw w
Cupul inlervals
Tolerance 0,000
1
16
) 0.2]

292 Chapter 19. Simulation in Web Browser

CHAPTER
TWENTY

INTEROPERABILITY — C AND PYTHON

Below is information and examples about the OpenModelica external C interfaces, as well as examples of Python
interoperability.

20.1 Calling External C functions

The following is a small example (ExternalLibraries.mo) to show the use of external C functions:

model Externallibraries

function ExternalFuncl
input Real x;
output Real y;
external y=ExternalFuncl_ext (x) annotation (Library="ExternalFuncl.o",
—LibraryDirectory="modelica://ExternallLibraries", Include="#include \
—"ExternalFuncl.h\"");
end ExternalFuncl;

function ExternalFunc2
input Real x;
output Real y;
external "C" annotation(Library="ExternalFunc2", LibraryDirectory="modelica://
—Externallibraries");
end ExternalFunc2;

Real x(start=1.0, fixed=true), y(start=2.0, fixed=true);
equation

der (x) =—ExternalFuncl (x);

der (y) =—ExternalFunc2 (y) ;
end Externallibraries;

Error:

[<interactive>:1:1-1:0:writable] Error: Variable currentSimulationResult not found in scope <global scope>.

These C (.c) files and header files (.h) are needed (note that the headers are not needed since OpenModelica will
generate the correct definition if it is not present; using the headers it is possible to write C-code directly in the
Modelica source code or declare non-standard calling conventions):

Listing 20.1: ExternalFuncl.c

double ExternalFuncl_ext (double x)
{

double res;

res = x+t2.0*x*x;

(continues on next page)

293

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

return res;

Listing 20.2: ExternalFuncl.h

double ExternalFuncl_ext (double) ;

Listing 20.3: ExternalFunc2.c

double ExternalFunc?2 (double x)
{
double res;
res = (x-1.0)*(x+2.0);
return res;

The following script file ExternalLibraries.mos will perform everything that is needed, provided you have gcc
installed in your path:

>>> system(getCompiler () + " —-c -o ExternalFuncl.o ExternalFuncl.c")
0

>>> gystem(getCompiler () + " -c -o ExternalFunc2.o ExternalFunc2.c")
0

>>> system("ar rcs libExternalFunc2.a ExternalFunc2.o")

0

>>> gsimulate (ExternallLibraries)
record SimulationResult

resultFile = "«DOCHOME»/ExternalLibraries_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOfIntervals = 500,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'Externallibraries',
—options = '', outputFormat = 'mat', variableFilter '.x', cflags = '', simflags,
—= ""I

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.001601434,
timeBackend = 0.032085621,
timeSimCode = 0.001231099,
timeTemplates = 0.032582834,
timeCompile = 0.834512968,
timeSimulation = 0.044883105,
timeTotal = 0.947049917

end SimulationResult;

And plot the results:

20.2 Calling external Python Code from a Modelica model

The following calls external Python code through a very simplistic external function (no data is retrieved from the
Python code). By making it a dynamically linked library, you might get the code to work without changing the
linker settings.

function pyRunString

input String s;
external "C" annotation(Include="
#include <Python.h>

(continues on next page)

294 Chapter 20. Interoperability — C and Python

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

2 T T T T
X
1.8 y il
16 -
14 -
12 F -

Figure 20.1: Plot generated by OpenModelica+gnuplot

(continued from previous page)

void pyRunString (const char =*str)
{
Py_SetProgramName (\"pyRunString\"); /* optional but recommended x/
Py_Initialize();
PyRun_SimpleString(str);
Py_Finalize();
}
")

end pyRunString;

model CallExternalPython
algorithm
pyRunString ("
print 'Python says: simulation time',"+String(time)+"
")

end CallExternalPython;

>>> system("python-config --cflags > pycflags")

0

>>> system("python-config —-ldflags > pyldflags")

0

>>> pycflags := stringReplace (readFile ("pycflags™),"\n","");
>>> pyldflags := stringReplace (readFile ("pyldflags"),"\n","");
>>> setCFlags (getCFlags () tpycflags)

true

>>> setLinkerFlags (getLinkerFlags () tpyldflags)

true

>>> simulate (CallExternalPython, stopTime=2)
record SimulationResult

resultFile = "«DOCHOME»/CallExternalPython_res.mat",
simulationOptions = "startTime = 0.0, stopTime = 2.0, numberOfIntervals = 500,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'CallExternalPython',
—options = '', outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags,
messages = "Python says: simulation time 0
Python says: simulation time 0
LOG_SUCCESS | info | The initialization finished successfully without_,
homat o mat =
e B T

(continues on next page)

20.2. Calling external Python Code from a Modelica model 295

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

Python says: simulation time 2
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.000963497,
timeBackend = 0.007961854000000001,
timeSimCode 0.0921499509999999,
timeTemplates = 0.142270299,
timeCompile = 1.011634004,
timeSimulation = 0.08408285,
timeTotal = 1.339267928

end SimulationResult;

20.3 Calling OpenModelica from Python Code

This section describes a simple-minded approach to calling Python code from OpenModelica. For a description
of Python scripting with OpenModelica, see OMPython — OpenModelica Python Interface.

The interaction with Python can be perfomed in four different ways whereas one is illustrated below. Assume that
we have the following Modelica code:

Listing 20.4: CalledbyPython.mo

model CalledbyPython
Real x(start=1.0), y(start=2.0);
= 2

parameter Real Db .0;
equation

der (x) = -bxy;

der (y) = x;

end CalledbyPython;

In the following Python (.py) files the above Modelica model is simulated via the OpenModelica scripting inter-
face:

Listing 20.5: PythonCaller.py

#!/usr/bin/python

import sys,os

global newb = 0.5
execfile('CreateMosFile.py")
os.popen(r"omc CalledbyPython.mos") .read()
execfile ('RetrResult.py')

Listing 20.6: CreateMosFile.py

#!/usr/bin/python

mos_file = open('CalledbyPython.mos','w', 1)

mos_file.write('loadFile ("CalledbyPython.mo");\n")

mos_file.write ('setComponentModifierValue (CalledbyPython,b, $Code (="+str (newb)+"));\
—n')

mos_file.write('simulate (CalledbyPython, stopTime=10);\n")

mos_file.close ()

Listing 20.7: RetrResult.py

#!/usr/bin/python

def zeros(n): #
vec = [0.0]
for i in range(int(n)-1): vec = vec + [0.0]

(continues on next page)

296 Chapter 20. Interoperability — C and Python

OpenModelica User’s Guide, Release v1.18.0-38-ga767f054d8

(continued from previous page)

return vec
res_file = open("CalledbyPython_res.plt",'r',1)
line = res_file.readline ()
size = int(res_file.readline () .split('=")[1])
time = zeros(size)
y = zeros (size)
while line != ['DataSet: time\\n']:
line = res_file.readline() .split (', ") [0:1]
for j in range (int(size)):
time[j]l=float (res_file.readline () .split (', ") [0])
while line != ['DataSet: y\\n']:
line=res_file.readline () .split (', ") [0:1]
for j in range(int (size)):
y[jl=float (res_file.readline () .split (', ") [1])
res_file.close()