OpenModelica User’s Guide
Release v1.16.1-5-gc01d479¢c53

Open Source Modelica Consortium

Nov 30, 2020

1 Introduction

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
221
222
2.23
2.24
2.25
2.26
227
2.28
2.29

3.1
3.2

4.1
4.2

System Overview
Interactive Session with Examples
Summary of Commands for the Interactive Session Handler
Running the compiler from command line

OMEdit — OpenModelica Connection Editor

Starting OMEdit
MainWindow & Browsers
Perspectives oL
FileMenu.
EditMenu
ViewMenu,
SimulationMenu
DebugMenu
SSPMenu
Sensitivity Optimization Menu
ToolsMenu
HelpMenu

Modeling a Model
Simulating a Model

2DPlotting oo
Re-simulating a Model
3D Visualization
Animation of Realtime FMUs
Interactive Simulation
How to Create User Defined Shapes — Icons
Global head section in documentation
Options i
__OpenModelica_commandLineOptions Annotation
__OpenModelica_simulationFlags Annotation
Debugger L.
Editing Modelica Standard Library
State Machines
Using OMEdit as Text Editor
Temporary Directory, Log Files and Working Directory

2D Plotting
Example,
Plot Command Interface

Solving Modelica Models
Integration Methods
DAE Mode Simulation

CONTENTS

10

11

12

13

14

15

4.3 Initialization o e e e e e e e e e e

Debugging
5.1 The Equation-based Debugger
5.2 The Algorithmic Debugger L e

Generating Graph Representations for Models

FMI and TLM-Based Simulation and Co-simulation of External Models

7.1 Functional Mock-up Interface -FMI L. oo,
7.2 Transmission Line Modeling (TLM) Based Co-Simulation
7.3 Composite Model Editing of External Models

OMSimulator

8.1 Introduction e e
82 OMSImulator e e e e e
83 OMSimulatorLib e e
84 OMSimulatorLua e e
8.5 OMSimulatorPython L e
8.6 OpenModelicaScripting L e e e e e
8.7 Graphical Modelling L e
8.8 SSP Supporto e e e e e e e e e

System Identification
0.1 Examples e e e
9.2 Pythonand CAPL e e e

OpenModelica Encryption

10.1 Encryptingthe Library o e e
10.2 Loading an Encrypted Library 0 0 e e e
103 NOES . . o v o o o e e e e e e e e e e e e

OMNotebook with DrModelica and DrControl

11.1 Interactive Notebooks with Literate Programming
11.2 DrModelica Tutoring System — an Application of OMNotebook
11.3 DrControl Tutorial for Teaching Control Theory
11.4 OpenModelica Notebook Commands
11.5 References

Optimization with OpenModelica

12.1 Builtin Dynamic Optimization with OpenModelicaand IpOpt
12.2 Compiling the Modelicacode e
123 AnExample e e e e e
12.4 Different Options for the Optimizer IPOPT
12.5 Dynamic Optimization with OpenModelicaand CasADi
12.6 Parameter Sweep Optimization using OMOptim

Parameter Sensitivities with OpenModelica
13.1 Single Parameter sensitivities with IDA/Sundials 0.,
13.2 Single and Multi-parameter sensitivities with OMSens

PDEModelical

14.1 PDEModelical language elements
142 Limitations ot e e e e e e e e e e e e
14.3 Viewingresults o o e e e e e e e e e e e e

MDT - The OpenModelica Development Tooling Eclipse Plugin

15.1 Introduction i e e e e e e
15.2 Installation e e e e e e
15.3 Getting Started L. e e e e e e e e e e e

79
79
82

87

89
89
92
92

107
107
107
109
124
140
156
173
177

185
185
187

195
195
195
195

197
197
198
204
214
219

221
221
221
222
224
224
229

237
237
239

253
253
254
254

16

17

18

19

20

21

22

MDT Debugger for Algorithmic Modelica
16.1

Modelica Performance Analyzer
17.1 Profiling information for ProfilingTest
17.2 Genenerated JSON for the Example
17.3 Using the Profiler from OMEdit

Simulation in Web Browser

Interoperability — C and Python
19.1 Calling External C functions

19.2 Calling external Python Code from a Modelica model

19.3 Calling OpenModelica from Python Code

OpenModelica Python Interface and PySimulator
20.1 OMPython — OpenModelica Python Interface

20.2 Enhanced OMPython Features
20.3 PySimulator

OMMatlab — OpenModelica Matlab Interface
21.1 Features of OMMatlab
21.2 Test Commands
21.3 WorkDirectory

21.4 BuildModel
21.5
21.6
21.7
21.8 Usage of setMethods
21.9 Advanced Simulation
21.10 Linearization
21.11 Usage of Linearization methods

OMJulia — OpenModelica Julia Scripting
22.1 Features of OMJulia
22.2 Test Commands
22.3 WorkDirectory

224 BuildModelo oL
22.5 Standard get methods
22.6 Usage of getMethods
22.7 Standard set methods
22.8 Usage of setMethods
22.9 Advanced Simulation
22.10 Linearization
22.11 Usage of Linearization methods
22.12 Sensitivity Analysis
22.13 Usage

23 Jupyter-OpenModelica

24

25

Scripting API
24.1 OpenModelica Scripting Commands
24.2 Simulation Parameter Sweep
24.3 Examples

Package manager
25.1 Installing packages
25.2 How the package index works

The Eclipse-based Debugger for Algorithmic Modelica

271
271

279
280
282
283

285

287
287
289
290

293
293
296
300

301
301
301
303
303
303
303
305
306
306
307
307

309
309
309
311
311
311
311
313
313
313
314
314
314
315

317

26

27

28

29

30

31

32

OpenModelica Compiler Flags

20.1 OPHONS . . v v v vt e e e e e e e e e e e e e e e e e e e
26.2 Debugflags L. e e e e e e e
26.3 Flags for Optimization Modules L e

Small Overview of Simulation Flags
27.1 OpenModelica (C-runtime) Simulation Flags

Technical Details
28.1 The MATv4 Result File Format e i e e e e

DataReconciliation

29.1 Defining DataReconciliation Problem in OpenModelica
29.2 DataReconcilation Support with Scripting Interface
29.3 DataReconciliation Supportin OMEdit o L
29.4 DataReconcilation Results L

Frequently Asked Questions (FAQ)

30.1 OpenModelica General L e
30.2 OMNOteboOK o e e e e e e
30.3 OMDeyv - OpenModelica Development Environment

Major OpenModelica Releases

31.1 Release Notes for OpenModelica 1.16.0
31.2 Release Notes for OpenModelica 1.15.0 o o s
31.3 Release Notes for OpenModelica 1.14.0 i it i e
31.4 Release Notes for OpenModelica 1.13.0 o i
31.5 Release Notes for OpenModelica 1.12.0
31.6 Release Notes for OpenModelica 1.11.0
31.7 Release Notes for OpenModelica 1.10.0 o o i
31.8 Release Notes for OpenModelica 1.9.4 i it
31.9 Release Notes for OpenModelica 1.9.3 e
31.10 Release Notes for OpenModelica 1.9.2
31.11 Release Notes for OpenModelica 1.9.1
31.12 Release Notes for OpenModelica 1.9.0
31.13 Release Notes for OpenModelica 1.8.1
31.14 OpenModelica 1.8.0, November 2011 ettt e e
31.15 OpenModelica 1.7.0, April 2011 o . . o e
31.16 OpenModelica 1.6.0, November 2010 o
31.17 OpenModelica 1.5.0, July 2010 o o e
31.18 OpenModelica 1.4.5, January 2009 L e
31.19 OpenModelica 1.4.4, Feb 2008 0 e e e e e e e e e
31.20 OpenModelica 1.4.3,June 2007 o . i i e e e e e e e
31.21 OpenModelica 1.4.2, October 2006 i e
31.22 OpenModelica 1.4.1,June 2006 L e e
31.23 OpenModelica 1.4.0, May 2006 o 0 i i i e e
31.24 OpenModelica 1.3.1, November 2005 0 0 i it e e e e

Contributors to OpenModelica

32.1 OpenModelica Contributors 2015 e
32.2 OpenModelica Contributors 2014 e e e e e
32.3 OpenModelica Contributors 2013 e e e e e
32.4 OpenModelica Contributors 2012 e
32.5 OpenModelica Contributors 2011 o e
32.6 OpenModelica Contributors 2010 o e
32.7 OpenModelica Contributors 2009 e e e e e
32.8 OpenModelica Contributors 2008 e e e e e
32.9 OpenModelica Contributors 2007 e
32.10 OpenModelica Contributors 2006 o o e e e e e

32.11 OpenModelica Contributors 2005 o e 492

32.12 OpenModelica Contributors 2004 o 0 i e e e e e e 493
32.13 OpenModelica Contributors 2003 oo e e e 493
32.14 OpenModelica Contributors 2002 e 494
32.15 OpenModelica Contributors 2001 e 494
32.16 OpenModelica Contributors 2000 494
32.17 OpenModelica Contributors 1999 e e 494
32.18 OpenModelica Contributors 1998 e e 495
Bibliography 497
Index 499

Vi

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

Generated on 2020-11-30 at 12:26
Open Source Modelica Consortium

Copyright © 1998-CurrentYear, Open Source Modelica Consortium (OSMC), c/o Linkdpings universitet, Depart-
ment of Computer and Information Science, SE-58183 Link&ping, Sweden

All rights reserved.

THIS PROGRAM IS PROVIDED UNDER THE TERMS OF GPL VERSION 3 LICENSE OR THIS OSMC
PUBLIC LICENSE (OSMC-PL). ANY USE, REPRODUCTION OR DISTRIBUTION OF THIS PROGRAM
CONSTITUTES RECIPIENT'S ACCEPTANCE OF THE OSMC PUBLIC LICENSE OR THE GPL VERSION
3, ACCORDING TO RECIPIENTS CHOICE.

The OpenModelica software and the OSMC (Open Source Modelica Consortium) Public License (OSMC-PL)
are obtained from OSMC, either from the above address, from the URLs: https://www.openmodelica.org or http:
/lwww.ida.liu.se/projects/OpenModelica, and in the OpenModelica distribution. GNU version 3 is obtained from:
http://www.gnu.org/copyleft/gpl.html.

This program is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, EXCEPT AS EXPRESSLY SET FORTH
IN THE BY RECIPIENT SELECTED SUBSIDIARY LICENSE CONDITIONS OF OSMC-PL.

See the full OSMC Public License conditions for more details.

This document is part of OpenModelica: https://www.openmodelica.org
Contact: OpenModelica@ida.liu.se

Modelica® is a registered trademark of the Modelica Association, https://www.Modelica.org
Mathematica® is a registered trademark of Wolfram Research Inc, http://www.wolfram.com

This users guide provides documentation and examples on how to use the OpenModelica system, both for the
Modelica beginners and advanced users.

CONTENTS 1

https://www.openmodelica.org
http://www.ida.liu.se/projects/OpenModelica
http://www.ida.liu.se/projects/OpenModelica
http://www.gnu.org/copyleft/gpl.html
https://www.openmodelica.org
mailto:OpenModelica@ida.liu.se
https://www.Modelica.org
http://www.wolfram.com

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The 0penM°de"cq system described in this document has both short-term and long-term goals:

The short-term goal is to develop an efficient interactive computational environment for the Modelica lan-
guage, as well as a rather complete implementation of the language. It turns out that with support of
appropriate tools and libraries, Modelica is very well suited as a computational language for development
and execution of both low level and high level numerical algorithms, e.g. for control system design, solving
nonlinear equation systems, or to develop optimization algorithms that are applied to complex applications.

The long-term goal is to have a complete reference implementation of the Modelica language, including
simulation of equation based models and additional facilities in the programming environment, as well
as convenient facilities for research and experimentation in language design or other research activities.
However, our goal is not to reach the level of performance and quality provided by current commercial
Modelica environments that can handle large models requiring advanced analysis and optimization by the
Modelica compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a Modelica
environment include but are not limited to the following:

Development of a complete formal specification of Modelica, including both static and dynamic semantics.
Such a specification can be used to assist current and future Modelica implementers by providing a semantic
reference, as a kind of reference implementation.

Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as modeling problems that require extensions such as partial
differential equations, enlarged scope for discrete modeling and simulation, etc.

Language design to improve abstract properties such as expressiveness, orthogonality, declarativity, reuse,
configurability, architectural properties, etc.

Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by gen-
erating code for parallel hardware.

Improved debugging support for equation based languages such as Modelica, to make them even easier to
use.

Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.
Visualization and animation techniques for interpretation and presentation of results.

Application usage and model library development by researchers in various application areas.

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be submit-
ted to the Modelica Association for consideration regarding possible inclusion in the official Modelica standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and function
parts of Modelica to be executed interactively, as well as equation models and Modelica functions to be compiled
into efficient C code. The generated C code is combined with a library of utility functions, a run-time library, and
a numerical DAE solver.

https://openmodelica.org

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

1.1 System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1.1.

MDT Eclipse Plugir

Editor/Browser

GraphicalModel
Editor/Browser

3
OMODfi Interactive t
ptim sessionhandler
Optimization —— Mo-gee)l(téglitor
Subsystem
OMNotebook _
DrModelica Execution Model_lca
Model Editor Compiler
Modelica
Debugger

Figure 1.1: The architecture of the OpenModelica environment. Arrows denote data and control flow. The inter-
active session handler receives commands and shows results from evaluating commands and expressions that are
translated and executed. Several subsystems provide different forms of browsing and textual editing of Modelica
code. The debugger currently provides debugging of an extended algorithmic subset of Modelica.

The following subsystems are currently integrated in the OpenModelica environment:

* An interactive session handler, that parses and interprets commands and Modelica expressions for evalua-
tion, simulation, plotting, etc. The session handler also contains simple history facilities, and completion of
file names and certain identifiers in commands.

A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing definitions
of classes, functions, and variables. Such definitions can be predefined, user-defined, or obtained from
libraries. The compiler also includes a Modelica interpreter for interactive usage and constant expression
evaluation. The subsystem also includes facilities for building simulation executables linked with selected
numerical ODE or DAE solvers.

An execution and run-time module. This module currently executes compiled binary code from translated
expressions and functions, as well as simulation code from equation based models, linked with numerical
solvers. In the near future event handling facilities will be included for the discrete and hybrid parts of the
Modelica language.

Eclipse plugin editor/browser. The Eclipse plugin called MDT (Modelica Development Tooling) provides
file and class hierarchy browsing and text editing capabilities, rather analogous to previously described
Emacs editor/browser. Some syntax highlighting facilities are also included. The Eclipse framework has
the advantage of making it easier to add future extensions such as refactoring and cross referencing support.

OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor, compared
to the more advanced Mathematica notebooks available in MathModelica. This basic functionality still
allows essentially the whole DrModelica tutorial to be handled. Hierarchical text documents with chapters
and sections can be represented and edited, including basic formatting. Cells can contain ordinary text
or Modelica models and expressions, which can be evaluated and simulated. However, no mathematical
typesetting facilities are yet available in the cells of this notebook editor.

Graphical model editor/browser OMEdit. This is a graphical connection editor, for component based model
design by connecting instances of Modelica classes, and browsing Modelica model libraries for reading and
picking component models. The graphical model editor also includes a textual editor for editing model class
definitions, and a window for interactive Modelica command evaluation.

Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

* Optimization subsystem OMOptim. This is an optimization subsystem for OpenModelica, currently for
design optimization choosing an optimal set of design parameters for a model. The current version has a
graphical user interface, provides genetic optimization algorithms and Pareto front optimization, works in-
tegrated with the simulators and automatically accesses variables and design parameters from the Modelica
model.

* Dynamic Optimization subsystem. This is dynamic optimization using collocation methods, for Model-
ica models extended with optimization specifications with goal functions and additional constraints. This
subsystem is integrated with in the OpenModelica compiler.

* Modelica equation model debugger. The equation model debugger shows the location of an error in the
model equation source code. It keeps track of the symbolic transformations done by the compiler on the
way from equations to low-level generated C code, and also explains which transformations have been done.

* Modelica algorithmic code debugger. The algorithmic code Modelica debugger provides debugging for an
extended algorithmic subset of Modelica, excluding equation-based models and some other features, but in-
cluding some meta-programming and model transformation extensions to Modelica. This is a conventional
full-feature debugger, using Eclipse for displaying the source code during stepping, setting breakpoints, etc.
Various back-trace and inspection commands are available. The debugger also includes a data-view browser
for browsing hierarchical data such as tree- or list structures in extended Modelica.

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenModelica environment,
called OMShell — the OpenModelica Shell). Most of these examples are also available in the OMNotebook with
DrModelica and DrControl UsersGuideExamples.onb as well as the testmodels in:

>>> getInstallationDirectoryPath() + "/share/doc/omc/testmodels/"
"«OPENMODELICAHOME»/share/doc/omc/testmodels/"

The following commands were run using OpenModelica version:

>>> getVersion ()
"OMCompiler v1.16.1-v1.16.1.5+gc01d479c53"

1.2.1 Starting the Interactive Session

The Windows version which at installation is made available in the start menu as OpenModelica->OpenModelica
Shell which responds with an interaction window:

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be stored in
the variable x. The value of the expression is returned.

>>> x = 1:12
{1,2,3,4,5,6,7,8,9,10,11,12}

1.2.2 Using the Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one can make load classes and execute
commands. Here we give a few example sessions.

1.2. Interactive Session with Examples 5

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

Example Session 1

>>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type
{A}

>>> instantiateModel (A)

nmn

"[<interactive>:1:9-1:23:writable] Error: Type mismatch in binding t = 1.5
—expected subtype of Integer, got type Real.

Error: Error occurred while flattening model A

n

[

Example Session 2

If you do not see the error-message when running the example, use the command getErrorString ().

model C
Integer a;
Real b;
equation
der (a) b; // der(a) is illegal since a is not a Real number
der (b) = 12.0;
end C;

>>> instantiateModel (C)

nn

Error:
[<interactive>:5:3-5:13:writable] Error: Argument 'a’ to der has illegal type Integer, must be a subtype of Real.

Error: Error occurred while flattening model C

1.2.3 Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly giving the
command:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—bubblesort.mo")
true

The function bubblesort is called below to sort the vector x in descending order. The sorted result is returned to-
gether with its type. Note that the result vector is of type Real[:], instantiated as Real[12], since this is the declared
type of the function result. The input Integer vector was automatically converted to a Real vector according to
the Modelica type coercion rules. The function is automatically compiled when called if this has not been done
before.

>>> bubblesort (x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

>>> bubblesort ({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

6 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

1.2.4 Trying the system and cd Commands

It is also possible to give operating system commands via the system utility function. A command is provided as
a string argument. The example below shows the system utility applied to the UNIX command cat, which here
outputs the contents of the file bubblesort.mo to the output stream when running omc from the command-line.

>>> gystem("cat '"+getInstallationDirectoryPath()+"/share/doc/omc/testmodels/
—bubblesort.mo' > bubblesort.mo")
0

function bubblesort

input Real[:] x;

output Real[size(x,1)] y;
protected

Real t;
algorithm

Yy T X

for i in l:size(x,1l) loop

for j in 1l:size(x,1) loop
if y[i] > yI[J] then

t o= ylil;
y[i] = y[31;
yI[3l = t;
end if;
end for;
end for;

end bubblesort;

Note: The output emitted into stdout by system commands is put into log-files when running the CORBA-based
clients, not into the visible GUI windows. Thus the text emitted by the above cat command would not be returned,
which is why it is redirected to another file.

A better way to read the content of files would be the readFile command:

>>> readFile ("bubblesort.mo")
function bubblesort

input Real[:] x;

output Real[size(x,1)] vy;
protected

Real t;
algorithm

y 1= X

for i in 1l:size(x,1) loop

for j in 1l:size(x,1) loop
if y[i] > y[Jj] then

t o= ylil;
yl[il = y[3];
yI[3l = t;
end if;
end for;
end for;

end bubblesort;

The system command only returns a success code (0 = success).

>>> sgystem("dir")

0

>>> system("Non-existing command")
127

Another built-in command is cd, the change current directory command. The resulting current directory is returned
as a string.

1.2. Interactive Session with Examples 7

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

>>> dir:=cd ()

"«DOCHOME»"

>>> cd("source")

"«DOCHOME»/source"

>>> cd(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/")
"/var/lib/jenkins/ws/OpenModelica_maintenance_vl.16/build/share/doc/omc/testmodels"
>>> cd(dir)

"«DOCHOME»"

1.2.5 Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also can be done through the File->Load
Modelica Library menu item:

>>> loadModel (Modelica)
true

We also load a file containing the decmotor model:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/dcmotor.mo
<y ")

true

Note:

Notification: demotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

It is simulated:

>>> gimulate (dcmotor, startTime=0.0, stopTime=10.0)
record SimulationResult

resultFile = "«DOCHOME»/dcmotor_ res.mat",

simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500,
— tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'dcmotor', options = '', |
—outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.322873474,

timeBackend = 0.01215542,
timeSimCode = 0.003171429,
timeTemplates = 0.005321741,

timeCompile = 0.4499888249999999,
timeSimulation = 0.020338386,
timeTotal = 0.813982476

end SimulationResult;

Note:

Notification: demotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

‘We list the source code of the model:

>>> list (dcmotor)
model dcmotor

(continues on next page)

8 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

(continued from previous page)

import Modelica.Electrical.Analog.Basic;

Basic.Resistor resistorl (R = 10);

Basic.Inductor inductorl(L = 0.2, i.fixed = true);

Basic.Ground groundl;

Modelica.Mechanics.Rotational.Components.Inertia load(J = 1, phi.fixed = true, w.
—~fixed = true);

Basic.EMF emfl(k = 1.0);

Modelica.Blocks.Sources.Step stepl;

Modelica.Electrical.Analog.Sources.SignalVoltage signalVoltagel;

equation

connect (stepl.y, signalVoltagel.v);
connect (signalVoltagel.p, resistorl.p);
connect (resistorl.n, inductorl.p);
connect (inductorl.n, emfl.p);
connect (emfl.flange, load.flange_a);
connect (signalVoltagel.n, groundl.p);
connect (groundl.p, emfl.n);
annotation (

uses (Modelica (version = "3.2.2")));

end dcmotor;

‘We test code instantiation of the model to flat code:

>>> instantiateModel (dcmotor)
class dcmotor

Real resistorl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of
—the two pins (= p.v — n.v)";

Real resistorl.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from_
—pin p to pin n";

Real resistorl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real resistorl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing_
—into the pin";

Real resistorl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real resistorl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing,
—into the pin";

parameter Boolean resistorl.useHeatPort = false "=true, if heatPort is enabled";

parameter Real resistorl.T(quantity = "ThermodynamicTemperature", unit = "K",
—displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = resistorl.T_
—ref "Fixed device temperature if useHeatPort = false";

Real resistorl.LossPower (quantity = "Power", unit = "W") "Loss power leaving_
—component via heatPort";

Real resistorl.T_heatPort (quantity = "ThermodynamicTemperature", unit = "K", |
—~displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) "Temperature
—of heatPort";

parameter Real resistorl.R(quantity = "Resistance", unit = "Ohm", start = 1.0) =
—10.0 "Resistance at temperature T_ref";

parameter Real resistorl.T_ref (quantity = "ThermodynamicTemperature", unit = "K",
— displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = 300.15
—"Reference temperature”;

parameter Real resistorl.alpha(quantity = "LinearTemperatureCoefficient", unit =
—"1/K") = 0.0 "Temperature coefficient of resistance (R_actual = Rx (1 + alphax* (T_
—heatPort - T_ref))";

Real resistorl.R_actual (quantity = "Resistance", unit = "Ohm") "Actual_
—resistance = Rx (1l + alphax (T_heatPort - T_ref))";

Real inductorl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of
—the two pins (= p.v - n.v)";

Real inductorl.i(quantity = "ElectricCurrent", unit = "A", start = 0.0, fixed =
—true) "Current flowing from pin p to pin n";

Real inductorl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_

pin";

(continues on next page)

1.2. Interactive Session with Examples 9

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

(continued from previous page)

Real inductorl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing,
—into the pin";

Real inductorl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real inductorl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing,
—into the pin";

parameter Real inductorl.L(quantity = "Inductance", unit = "H", start = 1.0) = 0.
—2 "Inductance";

Real groundl.p.v(quantity = "ElectricPotential"”, unit = "V") "Potential at the
—pin";

Real groundl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into_
—the pin";

Real load.flange_a.phi (quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real load.flange_a.tau(quantity = "Torque", unit = "N.m") "Cut torque in the_
—~flange";

Real load.flange_b.phi (quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real load.flange_b.tau(quantity = "Torque", unit = "N.m") "Cut torque in the_
—flange";

parameter Real load.J(quantity = "MomentOfInertia", unit = "kg.m2", min = 0.0,
—~start = 1.0) = 1.0 "Moment of inertia";

parameter enumeration (never, avoid, default, prefer, always) load.stateSelect =
—StateSelect.default "Priority to use phi and w as states";

Real load.phi(quantity = "Angle", unit = "rad", displayUnit = "deg", fixed =
—true, stateSelect = StateSelect.default) "Absolute rotation angle of component";

Real load.w(quantity = "AngularVelocity", unit = "rad/s", fixed = true, |
—stateSelect = StateSelect.default) "Absolute angular velocity of component (=_
—der (phi))";

Real load.a(quantity = "AngularAcceleration", unit = "rad/s2") "Absolute angular,,
—acceleration of component (= der(w))";

parameter Boolean emfl.useSupport = false "= true, if support flange enabled,
—otherwise implicitly grounded";

parameter Real emfl.k(quantity = "ElectricalTorqueConstant", unit = "N.m/A", |
—~start = 1.0) = 1.0 "Transformation coefficient";

Real emfl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop between_
—the two pins";

Real emfl.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from
—positive to negative pin";

Real emfl.phi (quantity = "Angle", unit = "rad", displayUnit = "deg") "Angle of
—shaft flange with respect to support (= flange.phi - support.phi)";

Real emfl.w(quantity = "AngularVelocity", unit = "rad/s") "Angular velocity of |
—~flange relative to support";

Real emfl.tau(quantity = "Torque", unit = "N.m") "Torque of flange";

Real emfl.tauElectrical (quantity = "Torque", unit = "N.m") "Electrical torque";

Real emfl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";

Real emfl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into_,
—the pin";

Real emfl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";

Real emfl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into_
—the pin";

Real emfl.flange.phi (quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real emfl.flange.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange
— 7

protected Real emfl.internalSupport.tau(quantity = "Torque", unit = "N.m") = -

—emfl.tau "External support torque
—where InternalSupport is used;

(must be computed via torque balance in model_,
= flange.tau)";

protected Real emfl.internalSupport.phi(quantity = "Angle", unit = "rad",
—displayUnit = "deg") "External support angle (= flange.phi)";
protected Real emfl.internalSupport.flange.phi (quantity = "Angle", unit = "rad", |
displayvUnit = "deg") "Ahesolute rotation ancle of flange™:
e N N 7 (continues on next page)
10 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

(continued from previous page)

protected Real emfl.internalSupport.flange.tau(quantity = "Torque", unit = "N.m
—") "Cut torque in the flange";

protected parameter Real emfl.fixed.phiO (quantity = "Angle", unit = "rad",
—displayUnit = "deg") = 0.0 "Fixed offset angle of housing";

protected Real emfl.fixed.flange.phi (quantity = "Angle", unit = "rad",
—displayUnit = "deg") "Absolute rotation angle of flange";

protected Real emfl.fixed.flange.tau(quantity = "Torque", unit = "N.m") "Cut_

—torque in the flange";

Real stepl.y "Connector of Real output signal";

parameter Real stepl.offset = 0.0 "Offset of output signal y";

parameter Real stepl.startTime (quantity = "Time", unit = "s") = 0.0 "Output vy =
—~offset for time < startTime";

parameter Real stepl.height = 1.0 "Height of step";

Real signalVoltagel.p.v(quantity = "ElectricPotential", unit = "V") "Potential,
—at the pin";

Real signalVoltagel.p.i(quantity = "ElectricCurrent"”, unit = "A") "Current
—flowing into the pin";

Real signalVoltagel.n.v(quantity = "ElectricPotential”, unit = "V") "Potential
—at the pin";

Real signalVoltagel.n.i(quantity = "ElectricCurrent"”, unit = "A") "Current
—~flowing into the pin";

Real signalVoltagel.v(unit = "V") "Voltage between pin p and n (= p.v — n.v) as,
—input signal";

Real signalVoltagel.i(quantity = "ElectricCurrent", unit = "A") "Current flowing,,
—from pin p to pin n";
equation

assert (1.0 + resistorl.alpha * (resistorl.T_heatPort - resistorl.T_ref) >= le-15,
— "Temperature outside scope of model!");

resistorl.R_actual = resistorl.R % (1.0 + resistorl.alpha * (resistorl.T_
—heatPort - resistorl.T_ref));

resistorl.v = resistorl.R_actual % resistorl.i;

resistorl.LossPower = resistorl.v * resistorl.i;

resistorl.v = resistorl.p.v - resistorl.n.v;

0.0 = resistorl.p.i + resistorl.n.i;

resistorl.i = resistorl.p.i;

resistorl.T_heatPort = resistorl.T;

inductorl.L * der (inductorl.i) = inductorl.v;

inductorl.v = inductorl.p.v - inductorl.n.v;

0.0 = inductorl.p.i + inductorl.n.i;

inductorl.i = inductorl.p.i;

groundl.p.v = 0.0;

load.phi = load.flange_a.phi;

load.phi = load.flange_b.phi;

load.w = der (load.phi);

load.a = der(load.w);

load.J * load.a = load.flange_a.tau + load.flange_b.tau;
emfl.internalSupport.flange.tau = emfl.internalSupport.tau;
emfl.internalSupport.flange.phi = emfl.internalSupport.phi;
emfl.fixed.flange.phi = emfl.fixed.phiO;

emfl.v = emfl.p.v - emfl.n.v;

0.0 = emfl.p.i + emfl.n.i;

emfl.i = emfl.p.1i;

emfl.phi = emfl.flange.phi - emfl.internalSupport.phi;
emfl.w = der(emfl.phi);

emfl.k « emfl.w = emfl.v;

emfl.tau = (-emfl.k) » emfl.i;

emfl.tauElectrical = -emfl.tau;

emfl.tau = emfl.flange.tau;

stepl.y = stepl.offset + (if time < stepl.startTime then 0.0 else stepl.height);
signalVoltagel.v = signalVoltagel.p.v - signalVoltagel.n.v;
0.0 = signalVoltagel.p.i + signalVoltagel.n.i;

(continues on next page)

1.2. Interactive Session with Examples 11

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

(continued from previous page)

signalVoltagel.i = signalVoltagel.p.i;
resistorl.p.i + signalVoltagel.p.i = 0.0;
resistorl.n.i + inductorl.p.i = 0.0;
inductorl.n.i + emfl.p.i = 0.0;
groundl.p.i + emfl.n.i + signalVoltagel.n.i = 0.0;
load.flange_a.tau + emfl.flange.tau = 0.0;
load.flange_b.tau = 0.0;
emfl.fixed.flange.tau + emfl.internalSupport.flange.tau = 0.0;
emfl.fixed.flange.phi = emfl.internalSupport.flange.phi;
signalVoltagel.v = stepl.y;
resistorl.p.v = signalVoltagel.p.v;
inductorl.p.v = resistorl.n.v;
emfl.p.v = inductorl.n.v;
emfl.flange.phi = load.flange_a.phi;
emfl.n.v = groundl.p.v;
emfl.n.v = signalVoltagel.n.v;
end dcmotor;

Note:

Notification: decmotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

We plot part of the simulated result:

T
loadw —
load.phi

35

0.5]

Figure 1.2: Rotation and rotational velocity of the DC motor

12 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

1.2.6 The val() function

The val(variableName,time) scription function can be used to retrieve the interpolated value of a simulation result
variable at a certain point in the simulation time, see usage in the BouncingBall simulation below.

1.2.7 BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica
keywords have been bold-faced by hand for better readability):

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")
true

>>> list (BouncingBall)
model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";
Real v (fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";
Boolean impact;
Real v_new(fixed = true);
Integer foo;
equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der (v) = if flying then -g else 0;
der (h) = v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new = if edge (impact) then -e » pre(v) else 0;
flying = v_new > 0O;
reinit (v, v_new);
end when;
end BouncingBall;

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos (Modelica script)
file sim_BouncingBall.mos that contains these commands:

>>> writeFile("sim_BouncingBall.mos", "

loadFile (getInstallationDirectoryPath() + \"/share/doc/omc/testmodels/
—BouncingBall.mo\");

simulate (BouncingBall, stopTime=3.0);

/* plot ({h, flying}); =/
")
true
>>> runScript ("sim_BouncingBall.mos")
"true
record SimulationResult

resultFile = \"«DOCHOME»/BouncingBall_res.mat\",

simulationOptions = \"startTime = 0.0, stopTime = 3.0, numberOfIntervals = 500,
— tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'BouncingBall', options =
—''", outputFormat = 'mat', variableFilter = '.%', cflags = '', simflags = ''\",

messages = \"LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.
\"I

timeFrontend = 0.004043098,

timeBackend = 0.00381491¢6,

timeSimCode = 0.001096108,

timeTemplates = 0.003037895,

(continues on next page)

1.2. Interactive Session with Examples 13

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

(continued from previous page)

timeCompile = 0.427304048,

timeSimulation = 0.02487839,

timeTotal = 0.4642851969999999
end SimulationResult;

"

model Switch
Real v;
Real i;
Real i1l;
Real itot;
Boolean open;
equation
itot = 1i + 1i1;
if open then
v = 0;
else
i = 0;
end if;
1 - 11 = 0;
1 - v -1 = 0;
open = time >= 0.5;
end Switch;

>>> simulate (Switch, startTime=0, stopTime=1)
record SimulationResult

resultFile = "«DOCHOME»/Switch_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOflIntervals = 500,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'Switch', options = "',
—outputFormat = 'mat', variableFilter '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.004200906,

timeBackend = 0.00644558,
timeSimCode = 0.001128098,
timeTemplates = 0.004127543,

timeCompile = 0.41534272,
timeSimulation = 0.029746923,
timeTotal = 0.461118136

end SimulationResult;

Retrieve the value of itot at time=0 using the val(variableName, time) function:

>>> val (itot, 0)
1.0

Plot itot and open:

We note that the variable open switches from false (0) to true (1), causing itot to increase from 1.0 to 2.0.

14 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2 T T T T .
itot
open
15 F b
1
0.5 i
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Figure 1.3: Plot when the switch opens
1.2.8 Clear All Models
Now, first clear all loaded libraries and models:
>>> clear ()
true
List the loaded models — nothing left:
>>> list ()
nmnn
1.2.9 VanDerPol Model and Parametric Plot
We load another model, the VanDerPol model (or via the menu File->Load Model):
>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/VanDerPol.
—mo")
true
It is simulated:
>>> simulate (VanDerPol, stopTime=80)
record SimulationResult
resultFile = "«DOCHOME»/VanDerPol_res.mat",
simulationOptions = "startTime = 0.0, stopTime = 80.0, numberOfIntervals = 500,
— tolerance = le-06, method = 'dassl', fileNamePrefix = 'VanDerPol', options = "'
— outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",
messages = "LOG_SUCCESS | info | The initialization finished
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
4

timeFrontend = 0.003783416,
timeBackend = 0.001920079,
timeSimCode .000544242,
timeTemplates = 0.002481918,
timeCompile = 0.4159287549999999,

0
0

(continues on next page)

1.2. Interactive Session with Examples 15

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

(continued from previous page)

timeSimulation = 0.026197015,
timeTotal = 0.4509579379999999
end SimulationResult;

It is plotted:

>>> plotParametric("x","y")

2.5 T T T T T T T

2 b
15

1k
0.5

> 0+

-0.5
1k
-1.5

2+

_25 | | | | | | |

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

Figure 1.4: VanDerPol plotParametric(x,y)

Perform code instantiation to flat form of the VanDerPol model:

>>> instantiateModel (VanDerPol)
class VanDerPol "Van der Pol oscillator model"
Real x(start = 1.0, fixed = true);
Real y(start = 1.0, fixed = true);
parameter Real lambda = 0.3;
equation
der (x) = y;
der (y) = lambda =
end VanDerPol;

(1.0 — x ~ 2.0) » vy — %x;

1.2.10 Using Japanese or Chinese Characters

Japenese, Chinese, and other kinds of UniCode characters can be used within quoted (single quote) identifiers, see

for example the variable name to the right in the plot below:

16

Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

File Edit Special

Plot by OpenModelica
1.0f i i 1 &= =

g.8r }

0.6 }

0.0

0,0 0.3 1.0 1.2 2.0 2.2

1.2.11 Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation at each line into OMShell requires
copy-paste as one operation from another document):

>>> k := 0;

>>> for 1 in 1:1000 loop
k := k + 1i;

end for;

>>> k

500500

A nested loop summing reals and integers:

>>> g := 0.0;
>>> h := 5;
>>> for i in {23.0,77.12,88.23} loop
for j in 1i:0.5:(i+1l) loop
g =g+ 3J;
g := g+ h / 2;
end for;
h :=h + g;
end for;

By putting two (or more) variables or assignment statements separated by semicolon(s), ending with a variable,
one can observe more than one variable value:

>>> h; g
1997.45
1479.09

A for-loop with vector traversal and concatenation of string elements:

>>> j.="";
>>> 1lst := {"Here ", "are ","some ","strings."};
>>> g = "";

>>> for i in lst loop

(continues on next page)

1.2. Interactive Session with Examples 17

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

(continued from previous page)

s := s + 1ij
end for;
>>> 5

"Here are some strings."

Normal while-loop with concatenation of 10 "abc " strings:

>>> g:="";
>>> i:=1;
>>> while i<=10 loop
s:="abc "+s;
i:=1i+1;
end while;
>>> 3
"abc abc abc abc abc abc abc abc abc abc "

A simple if-statement. By putting the variable last, after the semicolon, its value is returned after evaluation:

>>> if 5>2 then a := 77; end if; a
77

An if-then-else statement with elseif"

>>> if false then

a := 5;
elseif a > 50 then
b:= "test"; a:= 100;
else
a:=34;
end if;

Take a look at the variables a and b:

>>> a;b
100
"test"

1.2.12 Variables, Functions, and Types of Variables

Assign a vector to a variable:

>>> ga:=1:5
{1,2,3,4,5}

Type in a function:

function mySqr
input Real x;
output Real y;

algorithm
ViI=X*X;

end mySqr;

Call the function:

>>> b:i=mySqr (2)
4.0

Look at the value of variable a:

18 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

>>> a
{1,2,3,4,5}

Look at the type of a:

>>> typeOf (a)
"Integer[5]"

Retrieve the type of b:

>>> typeOf (b)
"Real "

What is the type of mySqr? Cannot currently be handled.

>>> typeOf (mySqgr)

List the available variables:

>>> listVariables ()
{b,a,s,1lst,i,h,g,k,currentSimulationResult}

Clear again:

>>> clear ()
true

1.2.13 Getting Information about Error Cause

Call the function getErrorString() in order to get more information about the error cause after a simulation failure:

>>> getErrorString()

1.2.14 Alternative Simulation Output Formats

There are several output format possibilities, with mat being the default. plt and mat are the only formats that
allow you to use the val() or plot() functions after a simulation. Compared to the speed of plt, mat is roughly 5
times for small files, and scales better for larger files due to being a binary format. The csv format is roughly twice
as fast as plt on data-heavy simulations. The plt format allocates all output data in RAM during simulation, which
means that simulations may fail due applications only being able to address 4GB of memory on 32-bit platforms.
Empty does no output at all and should be by far the fastest. The csv and plt formats are suitable when using an
external scripts or tools like gnuplot to generate plots or process data. The mat format can be post-processed in
MATLAB or Octave.

>>> simulate (...
>>> simulate (...

(
(
(
(

outputFormat="mat")
outputFormat="csv")
outputFormat="plt")
outputFormat="empty")

>>> simulate (...
>>> simulate (...

~ S~ S~ 0~

It is also possible to specify which variables should be present in the result-file. This is done by using POSIX
Extended Regular Expressions. The given expression must match the full variable name (* and $ symbols are
automatically added to the given regular expression).

/l Default, match everything

>>> simulate (... , variableFilter=".x")

1.2. Interactive Session with Examples 19

http://www.mathworks.com/products/matlab
http://www.gnu.org/software/octave/
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

/I match indices of variable myVar that only contain the numbers using combinations

/1 of the letters 1 through 3

’>>> simulate (... , variableFilter="myVar\\\[[1-3]7*\\\1")

// match x or y or z

’>>> simulate (... , variableFilter="x|y|z")

1.2.15 Using External Functions

See Chapter Interoperability — C and Python for more information about calling functions in other programming
languages.

1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support

Faster simulations on multi-core computers can be obtained by using a new OpenModelica feature that auto-
matically partitions the system of equations and schedules the parts for execution on different cores using shared-
memory OpenMP based execution. The speedup obtained is dependent on the model structure, whether the system
of equations can be partitioned well. This version in the current OpenModelica release is an experimental ver-
sion without load balancing. The following command, not yet available from the OpenModelica GUI, will run a
parallel simulation on a model:

>>> omc —d=openmp model.mo

1.2.17 Loading Specific Library Version

There exist many different versiosn of Modelica libraries which are not compatible. It is possible to keep mul-
tiple versions of the same library stored in the directory given by calling getModelicaPath(). By calling load-
Model(Modelica,{"3.2"}), OpenModelica will search for a directory called "Modelica 3.2" or a file called "Mod-
elica 3.2.mo". Itis possible to give several library versions to search for, giving preference for a pre-release version
of a library if it is installed. If the searched version is "default", the priority is: no version name (Modelica), main
release version (Modelica 3.1), pre-release version (Modelica 3.1Beta 1) and unordered versions (Modelica Spe-
cial Release).

The loadModel command will also look at the uses annotation of the top-level class after it has been loaded. Given
the following package, Complex 1.0 and ModelicaServices 1.1 will also be loaded into the AST automatically.

package Modelica
annotation (uses (Complex (version="1.0"),
ModelicaServices (version="1.1")));

end Modelica;

>>> clear ()
true

Packages will also be loaded if a model has a uses-annotation:

model M
annotation (uses (Modelica (version="3.2.1")));
end M;

>>> instantiateModel (M)
class M
end M;

20 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

Note:
Notification: Automatically loaded package Modelica 3.2.1 due to uses annotation.
Notification: Automatically loaded package Complex 3.2.1 due to uses annotation.

Notification: Automatically loaded package ModelicaServices 3.2.1 due to uses annotation.

Packages will also be loaded by looking at the first identifier in the path:

>>> instantiateModel (Modelica.Electrical.Analog.Basic.Ground)
class Modelica.Electrical.Analog.Basic.Ground "Ground node"

Real p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
Real p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin
=";
equation
p.v = 0.0;
p-i = 0.0;

end Modelica.Electrical.Analog.Basic.Ground;

Note:
Notification: Automatically loaded package Complex 3.2.3 due to uses annotation.
Notification: Automatically loaded package ModelicaServices 3.2.3 due to uses annotation.

Notification: Automatically loaded package Modelica default due to uses annotation.

1.2.18 Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application programming interface) is described
which returns information about models and/or allows manipulation of models. Calls to these functions can be
done interactively as below, but more typically by program clients to the OpenModelica Compiler (OMC) server.
Current examples of such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the OMEdit graphic
model editor, etc. This API is untyped for performance reasons, i.e., no type checking and minimal error checking
is done on the calls. The results of a call is returned as a text string in Modelica syntax form, which the client has
to parse. An example parser in C++ is available in the OMNotebook source code, whereas another example parser
in Java is available in the MDT Eclipse plugin.

Below we show a few calls on the previously simulated BouncingBall model. The full documentation on this API
is available in the system documentation. First we load and list the model again to show its structure:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo");
>>> list (BouncingBall)
model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";
Real v (fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";
Boolean impact;
Real v_new(fixed = true);
Integer foo;

equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der(v) = if flying then -g else 0;
der (h) = v;

when {h <= 0.0 and v <= 0.0, impact} then

(continues on next page)

1.2. Interactive Session with Examples 21

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

(continued from previous page)

v_new = if edge (impact) then -e * pre(v) else 0;
flying = v_new > 0;
reinit (v, v_new);
end when;
end BouncingBall;

Different kinds of calls with returned results:

>>> getClassRestriction (BouncingBall)
"model"

>>> getClassInformation (BouncingBall)
("model","", false, false, false, "/var/lib/jenkins/ws/OpenModelica_maintenance_v1.16/

—build/share/doc/omc/testmodels/BouncingBall .mo", false,1,1,23,17,{}, false, false,"
_’", n ", false, n ")

>>> isFunction (BouncingBall)

false

>>> existClass (BouncingBall)

true

>>> getComponents (BouncingBall)

{{Real,e,"coefficient of restitution", "public", false, false, false, false,
—"parameter", "none", "unspecified",{}},{Real,qg,"gravity acceleration", "public",
—false, false, false, false, "parameter", "none", "unspecified",{}}, {Real,h,
—"height of ball", "public", false, false, false, false, "unspecified", "none",
—"unspecified", {}}, {Real,v,"velocity of ball", "public", false, false, false,
—false, "unspecified", "none", "unspecified", {}}, {Boolean,flying,"true, if ball
—~is flying", "public", false, false, false, false, "unspecified", "none",
—"unspecified", {}}, {Boolean, impact,"", "public", false, false, false, false,
—"unspecified", "none", "unspecified", {}}, {Real,v_new,"", "public", false, false,
—~false, false, "unspecified", "none", "unspecified",{}}, {Integer, foo,"",
— false, false, false, false, "unspecified", "none", "unspecified",{}}}
>>> getConnectionCount (BouncingBall)

0

>>> getInheritanceCount (BouncingBall)
0

>>> getComponentModifierValue (BouncingBall,e)
IIO.7II

>>> getComponentModifierNames (BouncingBall, "e")

{}

>>> getClassRestriction (BouncingBall)

"model"

>>> getVersion() // Version of the currently running OMC
"OMCompiler v1.16.1-v1.16.1.5+gc01d479c53"

"public",

1.2.19 Quit OpenModelica

Leave and quit OpenModelica:

>>> quit ()

22 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

1.2.20 Dump XML Representation

The command dumpXMLDAE dumps an XML representation of a model, according to several optional parame-
ters.

dumpXMLDAE(modelnamel ,asInSimulationCode=<Boolean>] [filePrefix=<String>] [,storeln-
Temp=<Boolean>] [,addMathMLCode =<Boolean>])

This command dumps the mathematical representation of a model using an XML representation, with optional
parameters. In particular, asInSimulationCode defines where to stop in the translation process (before dumping the
model), the other options are relative to the file storage: filePrefix for specifying a different name and storeInTemp
to use the temporary directory. The optional parameter addMathMLCode gives the possibility to don't print the
MathML code within the xml file, to make it more readable. Usage is trivial, just: addMathMLCode=true/false
(default value is false).

1.2.21 Dump Matlab Representation

The command export dumps an XML representation of a model, according to several optional parameters.
exportDAEtoMatlab(modelname);

This command dumps the mathematical representation of a model using a Matlab representation. Example:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> exportDAEtoMatlab (BouncingBall)

"The equation system was dumped to Matlab file:BouncingBall_imatrix.m"

% Adjacency Matrix

o)

% number of rows: 6

IM={{3,6},{1,{"if", "true','=='" {3}, {},}},{{"1f", 'true','==" {4},{},}}, {5}, {2, {"1if
—', 'edge (impact)"' {3}, {5},}},{4,2}};

VL = {'foo','v_new', "impact', 'flying','v', 'h'};

EgStr = {'impact = h <= 0.0;"',"'"foo = if impact then 1 else 2;','der(v) = if flying,
—then -g else 0.0;','der(h) = v;','when {h <= 0.0 and v <= 0.0, impact} then v_
—new = 1f edge (impact) then (-e) * pre(v) else 0.0; end when;', 'when {h <= 0.0,
—and v <= 0.0, impact} then flying = v_new > 0.0; end when;'};

OldEgStr={'class BouncingBall',' parameter Real e = 0.7 "coefficient of

—restitution";',' parameter Real g = 9.81 "gravity acceleration";',' Real
—h(start = 1.0, fixed = true) "height of ball";',' Real v (fixed = true)
—"velocity of ball";',' Boolean flying(start = true, fixed = true) "true, if
—ball is flying";',' Boolean impact;',' Real v_new(fixed = true);"',"' Integer,,
—~foo; ', 'equation', ' impact = h <= 0.0;"'," foo = if impact then 1 else 2;','
—der(v) = if flying then -g else 0.0;"'," der(h) = v;',"' when {h <= 0.0 and v <=_
—0.0, impact} then',' v_new = if edge (impact) then (-e) x pre(v) else 0.0;',"' _
— flying = v_new > 0.0;"'," reinit (v, v_new);',' end when;','end BouncingBall;

Y

1.2. Interactive Session with Examples 23

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

1.3 Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in the interactive session hander.

simulate(modelname) Translate a model named modelname and simulate it.

simulate(modelnamel startTime=<Real>][,stopTime=<Real>][,numberOflntervals
=<Integer>][,outputlnterval=<Real>][,method=<String>]
[,tolerance=<Real>][,fixedStepSize=<Real>]

[,outputFormat=<String>]) Translate and simulate a model, with optional start time, stop time, and optional
number of simulation intervals or steps for which the simulation results will be computed. More intervals will
give higher time resolution, but occupy more space and take longer to compute. The default number of intervals
is 500. It is possible to choose solving method, default is “dassl”, “euler” and “rungekutta” are also available.
Output format “mat” is default. “plt” and “mat” (MATLAB) are the only ones that work with the val() command,
“csv” (comma separated values) and “empty” (no output) are also available (see section Alternative Simulation
Output Formats).

plot(vars) Plot the variables given as a vector or a scalar, e.g. plot({x1,x2}) or plot(x1).

plotParametric(var!, var2) Plot var2 relative to varl from the most recently simulated model, e.g. plotParamet-
ric(x,y).

cd() Return the current directory.

cd(dir) Change directory to the directory given as string.

clear() Clear all loaded definitions.

clearVariables() Clear all defined variables.

dumpXMLDAE(modelname, ...) Dumps an XML representation of a model, according to several optional param-
eters.

exportDAEtoMatlab(name) Dumps a Matlab representation of a model.

instantiateModel(modelname)Performs code instantiation of a model/class and return a string containing the flat
class definition.

list() Return a string containing all loaded class definitions.
list(modelname) Return a string containing the class definition of the named class.
listVariables() Return a vector of the names of the currently defined variables.

loadModel(classname) Load model or package of name classname from the path indicated by the environment
variable OPENMODELICALIBRARY.

loadFile(str) Load Modelica file (.mo) with name given as string argument str.
readFile(str) Load file given as string str and return a string containing the file content.
runScript(str) Execute script file with file name given as string argument str.

system(str) Execute str as a system(shell) command in the operating system; return integer success value. Output
into stdout from a shell command is put into the console window.

timing(expr) Evaluate expression expr and return the number of seconds (elapsed time) the evaluation took.
typeOf(variable) Return the type of the variable as a string.

saveModel(str,modelname) Save the model/class with name modelname in the file given by the string argument
str.

val(variable,timePoint) Return the (interpolated) value of the variable at time timePoint.
help() Print this helptext (returned as a string).

quit() Leave and quit the OpenModelica environment

24 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

1.4 Running the compiler from command line

The OpenModelica compiler can also be used from command line, in Windows cmd.exe or a Unix shell. The fol-
lowing examples assume omc is on the PATH; if it is not, you can run C: \OpenModelica 1.16.0\build\
bin\omc.exe or similar (depending on where you installed OpenModelica).

1.4.1 Example Session 1 — obtaining information about command line parame-
ters

$ omc —--help

OpenModelica Compiler OMCompiler v1.16.1-v1.16.1.5+gc01d479c53
Copyright © 2019 Open Source Modelica Consortium (OSMC)
Distributed under OMSC-PL and GPL, see www.openmodelica.org

Usage: omc [Options] (Model.mo | Script.mos) [Libraries | .mo-files]
* Libraries: Fully qualified names of libraries to load before processing Model or
—~Script.

Documentation is available in the built-in package OpenModelica.Scripting or
online <https://build.openmodelica.org/Documentation/OpenModelica.Scripting.html>.

1.4.2 Example Session 2 — create an TestModel.mo file and run omc on it

model TestModel
parameter Real x = 1;
end TestModel;

$ omc TestModel.mo

class TestModel
parameter Real x = 1.0;

end TestModel;

1.4.3 Example Session 3 — create a mos-script and run omc on it

loadModel (Modelica) ;

getErrorString();

simulate (Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum);
getErrorString();

$ omc TestScript.mos
true
nn
record SimulationResult

resultFile = "/var/lib/jenkins/ws/OpenModelica_maintenance_vl.16/doc/
—UsersGuide/source/Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum_res.
—mat",

simulationOptions = "startTime = 0.0, stopTime = 5.0, numberOfIntervals = 500,
—~tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'Modelica.Mechanics.
—MultiBody.Examples.Elementary.Pendulum', options = '', outputFormat = 'mat',
—variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished
—successfully without homotopy method.

LOG_SUCCESS | info | The simulation finished successfully.

"
’

timeFrontend = 0.657373612,

(continues on next page)

1.4. Running the compiler from command line 25

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

(continued from previous page)

timeBackend = 0.4418612790000001,
timeSimCode = 0.032700618,
timeTemplates = 0.025266843,

timeCompile = 0.6286011069999999,
timeSimulation = 0.058816203,
timeTotal = 1.84474577

end SimulationResult;

In order to obtain more information from the compiler one can use the command line options --
showErrorMessages -d=failtrace when running the compiler:

$ omc —--showErrorMessages —-d=failtrace TestScript.mos
InstFunction.getRecordConstructorFunction failed for OpenModelica.Scripting.
—loadModel

- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE ()>].<Prefix.NOPRE ()>.Modelica,,
—env: <global scope>

— Static.elabCref failed: Modelica in env: <global scope>

- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE ()>].<Prefix.NOPRE ()>.Modelica_,
—env: <global scope>

[/var/lib/jenkins/ws/OpenModelica_maintenance_vl.16/0OMCompiler/Compiler/BackEnd/
—ExpressionSolve.mo:216:9-216:210:writable] Error: Internal error Failed to solve,
—~\"world.z_label.cylinders[3].r[1l] = world.z_label.cylinders([2].r[1]\" w.r.t. \
—"world.z_label.R_lines[2,1]\"
[/var/lib/Jjenkins/ws/OpenModelica_maintenance_vl.16/0MCompiler/Compiler/BackEnd/
—ExpressionSolve.mo:216:9-216:210:writable] Error: Internal error Failed to solve
—\"world.z_label.cylinders[3].r[2] = world.z_label.cylinders([2].r[2]\" w.r.t. \
—"world.z_label.R_lines[2,2]\"
[/var/lib/jenkins/ws/OpenModelica_maintenance_vl.16/0MCompiler/Compiler/BackEnd/
—ExpressionSolve.mo:216:9-216:210:writable] Error: Internal error Failed to solve,
—\"world.z_label.cylinders([3].r[3] = world.z_label.cylinders[2].r[3]\" w.r.t. \
—"world.z_label.R _lines([2,3]\"

n

26 Chapter 1. Introduction

CHAPTER
TWO

OMEDIT — OPENMODELICA CONNECTION EDITOR

OMEdit — OpenModelica Connection Editor is the new Graphical User Interface for graphical model editing in
OpenModelica. It is implemented in C++ using the Qt graphical user interface library and supports the Modelica
Standard Library that is included in the latest OpenModelica installation. This chapter gives a brief introduction
to OMEdit and also demonstrates how to create a DCMotor model using the editor.

OMEdit provides several user friendly features for creating, browsing, editing, and simulating models:
* Modeling — Easy model creation for Modelica models.
* Pre-defined models — Browsing the Modelica Standard library to access the provided models.
 User defined models — Users can create their own models for immediate usage and later reuse.

* Component interfaces — Smart connection editing for drawing and editing connections between model in-
terfaces.

* Simulation — Subsystem for running simulations and specifying simulation parameters start and stop time,
etc.

* Plotting — Interface to plot variables from simulated models.

2.1 Starting OMEdit

A splash screen similar to the one shown in Figure 2.1 will appear indicating that it is starting OMEdit. The
executable is found in different places depending on the platform (see below).

2.1.1 Microsoft Windows
OMEdit can be launched wusing the executable placed in OpenModelicalnstallationDirec-

tory/bin/OMEdit/OMEdit.exe. Alternately, choose OpenModelica > OpenModelica Connection Editor from the
start menu in Windows.

2.1.2 Linux

Start OMEdit by either selecting the corresponding menu application item or typing “OMEdit” at the shell or
command prompt.

27

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

OMEdit

—
. L L
{

Figure 2.1: OMEdit Splash Screen.

2.1.3 Mac OS X

The default installation is /Application/MacPorts/OMEdit.app.

2.2 MainWindow & Browsers

The MainWindow contains several dockable browsers,
e Libraries Browser
¢ Documentation Browser
* Variables Browser
* Messages Browser
Figure 8.1 shows the MainWindow and browsers.

The default location of the browsers are shown in Figure 8.1. All browsers except for Message Browser can
be docked into left or right column. The Messages Browser can be docked into top or bottom areas. If you
want OMEdit to remember the new docked position of the browsers then you must enable Preserve User's GUI
Customizations option, see section General.

28 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

o OMEdit - OpenModelica Connection Editor = B

File Edit View Simulation FMI Export Tools Help
BB 9%

FwHB - @Heee \OHNOTH
Libraries Browser Documentation Browser @ X

& X
|Search Classes | \ < Previous | [Next

v

Libraries

4 E OpenModelica

3 D MeodelicaServices
> . Complex

b P7%2] Modelica

[o ModelicaReference

Variables Browser g X

|Find Variables | ¥

Variables Value

£ >
F X

X:108.62 ¥:-16.90 o Modeling 8

Figure 2.2: OMEdit MainWindow and Browsers.

2.2. MainWindow & Browsers 29

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.2.1 Filter Classes

To filter a class click Edit > Filter Classes or press keyboard shortcut Ctrl+Shift+F. The loaded Modelica classes
can be filtered by typing any part of the class name.

2.2.2 Libraries Browser

To view the Libraries Browser click View > Windows > Libraries Browser. Shows the list of loaded Modelica
classes. Each item of the Libraries Browser has right click menu for easy manipulation and usage of the class. The
classes are shown in a tree structure with name and icon. The protected classes are not shown by default. If you
want to see the protected classes then you must enable the Show Protected Classes option, see section General.

2.2.3 Documentation Browser

Displays the HTML documentation of Modelica classes. It contains the navigation buttons for moving forward
and backward. It also contains a WYSIWYG editor which allows writing class documentation in HTML format.
To view the Documentation Browser click View > Windows > Documentation Browser.

Documentation Browser n
» - 5 L)
info rev hadr e
. ~
Modelica

Modelica Standard Library - Version 3.2.2

Information

Package Modelica® is a standardized and free package that is developed together with the Modelica® language from the Modelica
Association, see https://'www.Modelica.org. It is also caled Modelica Standard Library. It provides model components in many dormains
that are based on standardired interface definitions. Some typical examples are shown in the next figure:

l‘f‘?’ ambient
5, Did 00 I®
;{H : e

e I |

L]
AIMC1

cormvection

For an introduction, have especialy a look at:

* Overview provides an overview of the Modelica Standard Library inside the User's Guide.
¢ Release Motes summarizes the changes of new versions of this package.

¢ Contact lists the contributors of the Modelica Standard Library.

+ The Examples packages in the various libraries, demonstrate how to use the components of the corresponding sublibrary.

This version of the Modelica Standard Library consists of

« 1600 models and blocks, and
« 1350 functions

that are directly usable {= number of public, non-partial classes). It is fully compliant to Modelica Specification Version 3.2 Revision 2 and it
has heen tested with Madelica tanls fram different vendars.

Figure 2.3: Documentation Browser.

30 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.2.4 Variables Browser

The class variables are structured in the form of the tree and are displayed in the Variables Browser. Each variable
has a checkbox. Ticking the checkbox will plot the variable values. There is a find box on the top for filtering the
variable in the tree. The filtering can be done using Regular Expression, Wildcard and Fixed String. The complete
Variables Browser can be collapsed and expanded using the Collapse All and Expand All buttons.

The browser allows manipulation of changeable parameters for Re-simulating a Model. Tt also displays the unit
and description of the variable.

The browser also contains the slider and animation buttons. These controls are used for variable graphics and
schematic animation of models i.e., DynamicSelect annotation. They are also used for debugging of state ma-
chines. Open the Diagram Window for animation. It is only possible to animate one model at a time. This is
achieved by marking the result file active in the Variables Browser. The animation only read the values from the
active result file. It is possible to simulate several models. In that case, the user will see a list of result files in
the Variables Browser. The user can switch between different result files by right clicking on the result file and
selecting Set Active in the context menu.

Variables Browser g X

|FiItE|' Variables o

|:| Casze Sensitive Regular Expression o
Expand All Collapse All

Simulation Time Unit g -

“ ’ II Time:| 0.0 Speed:| 1~
)

Variables Value Display Unit Description
=] @ Meodelica.E...huaCircuit
=1
C F Capacitance
[] derfv) 0.014557 km2...-1.g der(Voltage drop of...pins (= p.v - nv))
i 0.14557 A Current flowing from pin p to pin n
n

Yoltage drop of the... pins (= p.v - nw)

[=Y = I =

= T &1 & M

= =] ra
(=9

=
=
[=]

Figure 2.4: Variables Browser.

2.2. MainWindow & Browsers 31

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.2.5 Messages Browser

Shows the list of errors. Following kinds of error can occur,
* Syntax
e Grammar
e Translation
* Symbolic
¢ Simulation
e Scripting

See section Messages for Messages Browser options.

2.3 Perspectives

The perspective tabs are loacted at the bottom right of the MainWindow:
* Welcome Perspective
* Modeling Perspective
* Plotting Perspective

* Debugging Perspective

2.3.1 Welcome Perspective

The Welcome Perspective shows the list of recent files and the list of latest news from https://www.openmodelica.
org. See Figure 2.5. The orientation of recent files and latest news can be horizontal or vertical. User is allowed
to show/hide the latest news. See section General.

2.3.2 Modeling Perspective

The Modeling Perpective provides the interface where user can create and design their models. See Figure 2.6.

The Modeling Perspective interface can be viewed in two different modes, the tabbed view and subwindow view,
see section General.

2.3.3 Plotting Perspective

The Plotting Perspective shows the simulation results of the models. Plotting Perspective will automatically
become active when the simulation of the model is finished successfully. It will also become active when user
opens any of the OpenModelica’s supported result file. Similar to Modeling Perspective this perspective can also
be viewed in two different modes, the tabbed view and subwindow view, see section General.

2.3.4 Debugging Perspective

The application automatically switches to Debugging Perpective when user simulates the class with algorithmic
debugger. The prespective shows the list of stack frames, breakpoints and variables.

32 Chapter 2. OMEdit — OpenModelica Connection Editor

https://www.openmodelica.org
https://www.openmodelica.org

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

ot OMEdit - OpenModelica Connection Editor — O *

File Edit View Sirmulation FMI Export Debug Git Tools Help

JeBB - l@meee/\® -EH|GQf X |-

Libraries Browser A X

|Filter Classes | ¥ ~t

OMEdit - OpenModelica Connection Editor

Libraries

> E OpenModelica

> [] ModelicaServices

Recent Files Latest News
> . Complex
> @ Meodelica E:> C:/OpenModelica/OMCompiler/Exan ED’ February &, 2017: OpenMeodelica 1.11.0 released
’ 0 ModelicaReference E:> C:/Users/adeas31/Desktop/Connecto ED’ January 17, 2017: OpenModelica 1.11 Beta3 released

E:> C:/Users/adeas31/Desktop/PhotoVolt December 20, 2016: OpenMeodelica 1.11 Beta2 released

E:> C:/Users/adeas31/Desktop/OmcOmc Movernber 22, 2016 OpenModelica 1.9.7 released

E:> C:/Users/adeas31/Desktop/Folder/pa March 16, 2016 OpenModelica 1.9.6 released

February 18, 2016: OpenModelica 1.9.4 beta2 released

EC}’ March 9, 2016: OpenModelica 1.9.4 released
ED’ Program OpenModelica Annual Workshop 2016

Clear Recent Files Reload | For more details visit our website www.openmodelica.or

oo oty e

t Welcome oﬁ Modeling s Plotting *» Debugging

Figure 2.5: OMEdit Welcome Perspective.

2.3. Perspectives 33

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

ot OMEdit - OpenModelica Connection Editor — O *
File Edit View Sirmulation FMI Export Debug Git Tools Help

teBB @oee \® -E-| QP9 X5
Libraries Browser T x| o4 DCMotor™® 8
[Fiter Classes | @ |.|.. A=) ‘szble |Mode| |Diagram View ‘DCI\"Iotor ‘DCI'\"Iotor |Une: 1,Cal: 0 ‘ h|
Libraries
@ OpenModelica
D ModelicaServices
. Complex
P72 Modelica
o MeodelicaReference

[

¥:-124.07 ¥:-32.34 t Welcome gﬁ Modeling ﬁ Plotting ‘» Debugging

Figure 2.6: OMEdit Modeling Perspective.

34 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

ot OMEdit - OpenModelica Connection Editor - [Plot: 1] — O *,
IZ Eile Edit View Simulation FM| Export Debug Git Tools Help - &8 X
FeBB @O0 \® -E| Q][R]X 5
Libraries Browser @ %' Zoom Pan | AutoScale = FitinView Save | Print | Grid | Detailed Grid || Variables Browser g X
|Filter Classes | ¥ |Filter Variables | &
Libraries emf.phi [deg] Simulation Time Linit l:l

E OpenMeodelica 0 __\\\\- Variables Value
[] ModelicaServices E‘M
. Complex -1 = emf

P72 Modelica [dertph) -03403

-3 fined
o MaodelicaReference b flange
E DCMotor] i -0.53350
-3

internalSupport

[k 1.0

-4 n
\ P
5] [phi -7.23033
] v -0.3403
1 \ Cw -0.3403
-6 groundl
] \ inductorl
74 inertial
] resistor]
" 1 S S S . A signalvoltagel
0 0.2 0.4 0.6 0.8 1 stepl
time [s] ‘ N

¥:-138.55 ¥:-43.45 t Welcome oﬁ Modeling m Flotting ‘ Debugging

Figure 2.7: OMEdit Plotting Perspective.

2.3. Perspectives 35

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

% OMEdit - OpenModelica Connection Editor — O X
File Edit View Simulation FMI Export Debug Git Tools Help
[[=3 9 o]
FeBA Heee \PHOTHE < EH-©-2-9 X5~
Libraries Browser & X Stack Frames Browser & X BreakPoints Browser & X | Locals Browser F X
5 io Il W] 2 2 [y <[souvedotb_mvent[ire i Nome Type vaue
))) ® 5 C/Users/..dByTwo.mo inValue Real 0
L ~
Libraries Function Line File outValue Real 4.1445)
E OpenModelica E’> getV.yTwo 35 C:/Users/adeas31/De...eMultipliedByTwo.mo
D ModelicaServices Simul...ion_1 5 C:/Users/adeas31/De.../SimulationModel.mo
Simu..ns_ 0 33 :/Users/adeas31/App...ulaticnModel_12jac.h
. Complex ; ; r . ‘h - -
Simul...tions 43 C:/Users/adeas31/App...ulationModel_12jac.h
@ Modelica fumb_ finn hd
o ModelicaReference E getValueMultipliedByTwo [5¢]
m DCMotor |I'I o&o |Wr1'tzble |Function |Text\ﬁew |getVaIueMuIﬁp|iedByTwo C:/Use.. Two.mo | Line: 5, Col: 0 | ﬁ|
getValueM.. liedByTwo 1 function getValueMultipliedByTwo
M| SimulationModel 2 input Real inValue;
3 output Eeal outValue:;
1 algorithm
® S outValue := inValue * 2;
&8 end getValueMultipliedByTwo;
£ >
4.1445230292290475e-316
Qutput Browser [4
Debugger CLI QOutput Browser
¥: -95,10 i 105.72 t Welcome oﬁ Modeling ﬂ Plotting ‘ Debugging

Figure 2.8: OMEdit Debugging Perspective.

36

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.4 File Menu

New Modelica Class - Creates a new Modelica class.
Open Model/Library File(s) - Opens the Modelica file or a library.

Open/Convert Modelica File(s) With Encoding - Opens the Modelica file or a library with a specific encod-
ing. It is also possible to convert to UTF-8.

Load Library - Loads a Modelica library. Allows the user to select the library path assuming that the path
contains a package.mo file.

Load Encrypted Library - Loads an encrypted library. see OpenModelica Encryption

Open Result File(s) - Opens a result file.

Open Transformations File - Opens a transformational debugger file.

New Composite Model - Creates a new composite model.

Open Composite Model(s) - Loads an existing composite model.

Load External Model(s) - Loads the external models that can be used within composite model.
Open Directory - Loads the files of a directory recursively. The files are loaded as text files.
Save - Saves the class.

Save As - Save as the class.

Save Total - Saves the class and all the classes it uses in a single file. The class and its dependencies can
only be loaded later by using the loadFile() API function in a script. Allows third parties to reproduce an
issue with a class without worrying about library dependencies.

Import

FMU - Imports the FMU.

FMU Model Description - Imports the FMU model description.

From OMNotbook - Imports the Modelica models from OMNotebook.

Ngspice netlist - Imports the ngspice netlist to Modelica code.

"Export"

To Clipboard - Exports the current model to clipboard.

Image - Exports the current model to image.

FMU - Exports the current model to FMU.

Read-only Package - Exports a zipped Modelica library with file extension .mol
Encrypted Package - Exports an encrypted package. see OpenModelica Encryption
XML - Exports the current model to a xml file.

Figaro - Exports the current model to Figaro.

To OMNotebook - Exports the current model to a OMNotebook file.

System Libraries - Contains a list of system libraries.

Recent Files - Contains a list of recent files.

Clear Recent Files - Clears the list of recent files.

Print - Prints the current model.

Quit - Quit the OpenModelica Connection Editor.

2.4.

File Menu 37

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.5 Edit Menu

* Undo - Undoes the last change.
* Redo - Redoes the last undone change.

e Filter Classes - Filters the classes in Libraries Browser. see Filter Classes

2.6 View Menu

* Toolbars - Toggle visibility of toolbars.

» Windows - Toggle visibility of windows.

* Close Window - Closes the current model window.

* Close All Windows - Closes all the model windows.

* Close All Windows But This - Closes all the model windows except the current.

* Cascade Windows - Arranges all the child windows in a cascade pattern.

* Tile Windows Horizontally - Arranges all child windows in a horizontally tiled pattern.
e Tile Windows Vertically - Arranges all child windows in a vertically tiled pattern.
* Toggle Tab/Sub-window View - Switches between tab and subwindow view.

* Grid Lines - Toggle grid lines of the current model.

* Reset Zoom - Resets the zoom of the current model.

e Zoom In - Zoom in the current model.

e Zoom Out - Zoom out the current model.

2.7 Simulation Menu

* Check Model - Checks the current model.

* Check All Models - Checks all the models of a library.

* Instantiate Model - Instantiates the current model.

* Simulation Setup - Opens the simulation setup window.

o Instantiate SSP Model - Instantiates the current SSP model.
* Simulate - Simulates the current model.

o Simulate with Transformational Debugger - Simulates the current model and opens the transformational
debugger.

* Simulate with Algorithmic Debugger - Simulates the current model and opens the algorithmic debugger.

* Simulate with Animation - Simulates the current model and open the animation.

38 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.8 Debug Menu

* Debug Configurations - Opens the debug configurations window.

* Attach to Running Process - Attaches the algorithmic debugger to a running process.

2.9 SSP Menu

New SSP Model - Creates a new SSP model.

Open SSP Model(s) - Opens the SSP model(s).

* Add System - Adds the system to a model.

Add/Edit Icon - Add/Edit the system/submodel icon.

* Delete Icon - Deletes the system/submodel icon.

Add Connector - Adds a connector to a system/submodel.

Add Bus - Adds a bus to a system/submodel.
Add TLM Bus - Adds a TLM bus to a system/submodel.
Add SubModel - Adds a submodel to a system.

2.10 Sensitivity Optimization Menu

* Run Sensitivity Analysis and Optimization - Runs the sensitivity analysis and optimization.

2.11 Tools Menu

* OpenModelica Compiler CLI - Opens the OpenModelica Compiler command line interface window.

* OpenModelica Command Prompt - Opens the OpenModelica Command Prompt (Only available on Win-
dows).

* Open Working Directory - Opens the current working directory.
* Open Terminal - Runs the terminal command set in General.

* Options - Opens the options window.

2.12 Help Menu

* OpenModelica Users Guide - Opens the OpenModelica Users Guide.

* OpenModelica Users Guide (PDF) - Opens the OpenModelica Users Guide (PDF).

* OpenModelica System Documentation - Opens the OpenModelica System Documentation.

* OpenModelica Scripting Documentation - Opens the OpenModelica Scripting Documentation.

* Modelica Documentation - Opens the Modelica Documentation.

* OMSimulator Users Guide - Opens the OMSimulator Users Guide.

* OpenModelica TLM Simulator Documentation - Opens the OpenModelica TLM Simulator Documentation.

About OMEdit - Shows the information about OpenModelica Connection Editor.

2.8. Debug Menu 39

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.13 Modeling a Model

2.13.1 Creating a New Modelica Class

Creating a new Modelica class in OMEdit is rather straightforward. Choose any of the following methods,
* Select File > New Modelica Class from the menu.
* Click on New Modelica Class toolbar button.
* Click on the Create New Modelica Class button available at the left bottom of Welcome Perspective.

¢ Press Ctrl+N.

2.13.2 Opening a Modelica File

Choose any of the following methods to open a Modelica file,
* Select File > Open Model/Library File(s) from the menu.
* Click on Open Model/Library File(s) toolbar button.
* Click on the Open Model/Library File(s) button available at the right bottom of Welcome Perspective.
¢ Press Ctrl+O.
(Note, for editing Modelica system files like MSL (not recommended), see Editing Modelica Standard Library)

2.13.3 Opening a Modelica File with Encoding

Select File > Open/Convert Modelica File(s) With Encoding from the menu. It is also possible to convert files to
UTF-8.

2.13.4 Model Widget

For each Modelica class one Model Widget is created. It has a statusbar and a view area. The statusbar contains
buttons for navigation between the views and labels for information. The view area is used to display the icon,
diagram and text layers of Modelica class. See Figure 2.9.

2.13.5 Adding Component Models

Drag the models from the Libraries Browser and drop them on either Diagram or Icon View of Model Widget.

2.13.6 Making Connections

In order to connect one component model to another the user first needs to enable the connect mode ('<:) from
the toolbar.

Move the mouse over the connector. The mouse cursor will change from arrow cursor to cross cursor. To start
the connection press left button and move while keeping the button pressed. Now release the left button. Move
towards the end connector and click when cursor changes to cross cursor.

40 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

oA DCMotor* %]
II-IE € | writable | Model | Diagram View | C:/Users/adeas31/Desktop/DCmotor.mo Line: 1, Col: 0 | &
~
resistor 1 inductorl
sepl
4 oo
=
»)ﬁ
z
+ 5
[| [
startTime=startTime
groundl
w
< >

Figure 2.9: Model Widget showing the Diagram View.

2.13. Modeling a Model 41

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.14 Simulating a Model

The simulation process in OMEdit is split into three main phases:

1. The Modelica model is translated into C/C++ code. The model is first instantiated by the frontend, which
turns it into a flat set of variables, parameters, equations, algorithms, and functions. The backend then
analyzes the mathematical structure of the flat model, applies symbolic simplifications and determines how
the equations can be solved efficiently. Finally, based on this information, model-specific C/C++ code is
generated. This part of the process can be influenced by setting Translation Flags (a.k.a. Command Line
Options), e.g. deciding which kind of structural simplifications should be performed during the translation
phase.

2. The C/C++ code is compiled and linked into an executable simulation code. Additional C/C++ compiler
flags can be given to influence this part of the process, e.g. by setting compiler optimizations such as —03.
Since multiple C/C++ source code files are generated for a given model, they are compiled in parallel by
OMEdit, exploiting the power of multi-core CPUs.

3. The simulation executable is started and produces the simulation results in a .mat or .csv file. The runtime
behaviour can be influenced by Simulation Flags, e.g. by choosing specific solvers, or changing the output
file name. Note that it it possible to re-simulate a model multiple times, changing parameter values from the
Variables Browser and/or changing some Simulation Flags. In this case, only Phase 3. is repeated, skipping
Phases 1. and 2., which enables much faster iterations.

The simulation options for each model are stored inside the OMEdit data structure. They are set according to the
following sequence,

* Each model has its own translation and simulation options.

* If the model is opened for the first time then the translation and simulation options are set to defaults, that
can be customized in Tools | Options | Simulation.

* experiment,__ OpenModelica_commandLineOptionsand__ OpenModelica_simulationFlags
annotations are applied if the model contains them.

e After that all the changes done via Simulation Setup window for a certain model are pre-
served for the whole session. If you want to use the same settings in future sessions then
you should store them inside experiment, OpenModelica_commandLineOptions, and
__OpenModelica_simulationFlags annotations.

The OMEdit Simulation Setup can be launched by,
* Selecting Simulation > Simulation Setup from the menu. (requires a model to be active in ModelWidget)
¢ Clicking on the Simulation Setup toolbar button. (requires a model to be active in ModelWidget)

* Right clicking the model from the Libraries Browser and choosing Simulation Setup.

2.14.1 General

 Simulation Interval

e Start Time — the simulation start time.

e Stop Time — the simulation stop time.

* Number of Intervals — the simulation number of intervals.

¢ Interval — the length of one interval (i.e., stepsize)

* Integration
e Method — the simulation solver. See section Integration Methods for solver details.
* Tolerance — the simulation tolerance.
* Jacobian - the jacobian method to use.

DASSL/IDA Options

* Root Finding - Activates the internal root finding procedure of dassl.

42 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

* Restart After Event - Activates the restart of dassl after an event is performed.
e Initial Step Size
* Maximum Step Size
* Maximum Integration Order
C/C++ Compiler Flags (Optional) — the optional C/C++ compiler flags.
Number of Processors — the number of processors used to build the simulation.
Build Only — only builds the class.
Launch Transformational Debugger — launches the transformational debugger.
Launch Algorithmic Debugger — launches the algorithmic debugger.

Launch Animation — launches the 3d animation window.

2.14.2 Interactive Simulation

Simulate with steps (makes the interactive simulation synchronous; plots nicer curves at the expense of
performance)

Simulation server port

2.14.3 Translation Flags

2.14.4 Simulation Flags

Model Setup File (Optional) — specifies a new setup XML file to the generated simulation code.
Initialization Method (Optional) — specifies the initialization method.

Equation System Initialization File (Optional) — specifies an external file for the initialization of the model.
Equation System Initialization Time (Optional) — specifies a time for the initialization of the model.

Clock (Optional) — the type of clock to use.

Linear Solver (Optional) — specifies the linear solver method.

Non Linear Solver (Optional) — specifies the nonlinear solver.

Linearization Time (Optional) — specifies a time where the linearization of the model should be performed.

Output Variables (Optional) — outputs the variables a, b and c at the end of the simulation to the standard
output.

Profiling — creates a profiling HTML file.

CPU Time — dumps the cpu-time into the result file.

Enable All Warnings — outputs all warnings.

Logging (Optional)

stdout - standard output stream. This stream is always active, can be disabled with -lv=-stdout
assert - This stream is always active, can be disabled with -lv=-assert
LOG_DASSL - additional information about dassl solver.
LOG_DASSL_STATES - outputs the states at every dassl call.
LOG_DEBUG - additional debug information.

LOG_DSS - outputs information about dynamic state selection.
LOG_DSS_JAC - outputs jacobian of the dynamic state selection.
LOG_DT - additional information about dynamic tearing.

LOG_DT_CONS - additional information about dynamic tearing (local and global constraints).

2.14

. Simulating a Model 43

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

LOG_EVENTS - additional information during event iteration.
LOG_EVENTS_V - verbose logging of event system.

LOG_INIT - additional information during initialization.

LOG_IPOPT - information from Ipopt.

LOG_IPOPT_FULL - more information from Ipopt.

LOG_IPOPT_JAC - check jacobian matrix with Ipopt.
LOG_IPOPT_HESSE - check hessian matrix with Ipopt.
LOG_IPOPT_ERROR - print max error in the optimization.

LOG_JAC - outputs the jacobian matrix used by dassl.

LOG_LS - logging for linear systems.

LOG_LS_V - verbose logging of linear systems.

LOG_NLS - logging for nonlinear systems.

LOG_NLS_V - verbose logging of nonlinear systems.
LOG_NLS_HOMOTOPY - logging of homotopy solver for nonlinear systems.
LOG_NLS_JAC - outputs the jacobian of nonlinear systems.
LOG_NLS_JAC_TEST - tests the analytical jacobian of nonlinear systems.
LOG_NLS_RES - outputs every evaluation of the residual function.
LOG_NLS_EXTRAPOLATE - outputs debug information about extrapolate process.
LOG_RES_INIT - outputs residuals of the initialization.

LOG_RT - additional information regarding real-time processes.
LOG_SIMULATION - additional information about simulation process.
LOG_SOLVER - additional information about solver process.
LOG_SOLVER_V - verbose information about the integration process.
LOG_SOLVER_CONTEXT - context information during the solver process.
LOG_SOTI - final solution of the initialization.

LOG_STATS - additional statistics about timer/events/solver.
LOG_STATS_V - additional statistics for LOG_STATS.

LOG_SUCCESS - This stream is always active, can be disabled with -lv=-LOG_SUCCESS.
LOG_UTIL.

LOG_ZEROCROSSINGS - additional information about the zerocrossings.
Additional Simulation Flags (Optional) — specify any other simulation flag.

2.14.5 Output

Output Format — the simulation result file output format.

Single Precision - Output results in single precision (only for mat output format).
File Name Prefix (Optional) — the name is used as a prefix for the output files.
Result File (Optional) - the simulation result file name.

Variable Filter (Optional)

Protected Variables — adds the protected variables in result file.

Equidistant Time Grid — output the internal steps given by dassl instead of interpolating results into an
equidistant time grid as given by stepSize or numberOfIntervals

44

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

e Store Variables at Events — adds the variables at time events.

* Show Generated File — displays the generated files in a dialog box.

2.14.6 Archived Simulations

Shows the list of simulations already finished or running. Double clicking on any of them opens the simulation
output window.

2.15 2D Plotting

Successful simulation of model produces the result file which contains the instance variables that are candidate for
plotting. Variables Browser will show the list of such instance variables. Each variable has a checkbox, checking
it will plot the variable. See Figure 2.7. To get several plot windows tiled horizontally or vertically use the menu
items Tile Windows Horizontally or Tile Windows Vertically under View Menu.

2.15.1 Types of Plotting

The plotting type depends on the active Plot Window. By default the plotting type is Time Plot.

Time Plot

Plots the variable over the simulation time. You can have multiple Time Plot windows by clicking on New Plot

Window toolbar button (|Z).

Plot Parametric

Draws a two-dimensional parametric diagram, between variables x and y, with y as a function of x. You can have

multiple Plot Parametric windows by clicking on the New Plot Parametric toolbar button (I@).

Array Plot

Plots an array variable so that the array elements' indexes are on the x-axis and corresponding elements' values are
on the y-axis. The time is controlled by the slider above the variable tree. When an array is present in the model,
it has a principal array node in the variable tree. To plot this array as an Array Plot, match the principal node. The
principal node may be expanded into particular array elements. To plot a single element in the Time Plot, match

the element. A new Array Plot window is opened using the New Array Plot Window toolbar button (|L").

Array Parametric Plot
Plots the first array elements' values on the x-axis versus the second array elements' values on the y-axis. The time
is controlled by the slider above the variable tree. To create a new Array Parametric Plot, press the New Array

Parametric Plot Window toolbar button (| i), then match the principle array node in the variable tree view to be
plotted on the x-axis and match the principle array node to be plotted on the y-axis.

2.15. 2D Plotting 45

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

Diagram Window

Shows the active ModelWidget as a read only diagram. You can only have one Diagram Window. To show it click

on Diagram Window toolbar button (di).

2.16 Re-simulating a Model

The Variables Browser allows manipulation of changeable parameters for re-simulation. After changing the pa-

rameter values user can click on the re-simulate toolbar button (9), or right click the model in Variables Browser
and choose re-simulate from the menu.

2.17 3D Visualization

Since OpenModelica 1.11 , OMEdit has built-in 3D visualization, which replaces third-party libraries (such as
Modelica3D) for 3D visualization.

2.17.1 Running a Visualization

The 3d visualization is based on OpenSceneGraph. In order to run the visualization simply right click the class in
Libraries Browser an choose “Simulate with Animation” as shown in Figure 2.10.

&% OMEdit - OpenModelica Connection Editor - [DoublePendulum] — O
% File Edit View Simulation FMI Export Debug Tools Help - & x
f 9 L3 -
Ed =1~ Heee \PHOTHE < EQOY -EH- 9> [X- T~
Libraries Browser g x |II-I o’& E o | Writable | Model | Diagram View | Modelim.Memanics.MuIﬁBody.Examples.EIemeniary.Dou| | Line: 1, Col: 0 | |
|Sea|'ch Classes $ I
A
Libraries G‘i Open Class
D ModelicaServices o View Documentation
Complex Save Total
= .
@ Modelica E Instantiate Model
o UsersGuide 9 Check Model
Blocks @) Check All Models
ComplexBlocks i) Simulate Ctrl+B boxBodyl Rudfi=2 boxBody2
@ StateGraph # Simulate with Transformational Debugger] I I-—-I] I
@] Electrical # Simulate with Algorithmic Debugger r={05. 0.0} cm0n r={05, 0,0}
Magnetic 0 Simulate with Animation
=] Mechanics S| Simulation Setup
=] a MultiBody W Duplicate
.
o UsersGuide B Export FMU
World S Export XML
e E] Examples B Export Figaro
= Elementa
E] 4 Update Bindings
o DoublePendulum
» DoublePenduluminitTip
| ForceAndTorque
p v
2 FreeBody o
Simulates the Modelica class with Animation ¥:-89.44 ¥:-53.85 t Welcome di Modeling & Plotting [4 Debugging

Figure 2.10: OMEdit Simulate with Animation.

One can also run the visualization via Simulation > Simulate with Animation from the menu.

When simulating a model in animation mode, the flag +d=visxml is set. Hence, the compiler will generate a
scene description file _visual.xml which stores all information on the multibody shapes. This scene description

46 Chapter 2. OMEdit — OpenModelica Connection Editor

https://github.com/OpenModelica/Modelica3D

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

references all variables which are needed for the animation of the multibody system. When simulating with
+d=visxml, the compiler will always generate results for these variables.

2.17.2 Viewing a Visualization

After the successful simulation of the model, the visualization window will show up automatically as shown in
Figure 2.11.

ot OMEdit - OpenModelica Connection Editor =NECN X
File Edit View Simulation FMI Export Debug Tools Help
j.ln-';. .." @O\GD\O\ \\ODOT” v il i Q»E» :-L.'»
Libraries Browser g x | £5) Modelica. Mechanics. MultiBody. Examples. Elementary. . DoublePendulum_res.mat [E£J | Variables Browser g x
|FilterCIasses | '.,; " ’ II D T [s]: Speed: 1 = (._—‘:\ /‘_“:\ |Fi|tel' Variables |
Libraries i Simulation Time Unit E]
= ?":’J Modelica Variables : Valu
o UsersGuide BoxMBzc:jic...endulum
|E] Blocks 3 b boxBody2
:EE]: ComplexBlocks f::sii;
EJ+CE StateGraph revolute?
Eﬂ{ Electrical werld
r>t|]1 Magnetic
= :""II: Mechanics *
5] " MultiBody
o UsersGuide
World
= :’: Examples
=] P Ele..ary
(») D.m
! Do in T 4 | m 3
¥:17.97 ¥: 15.25 | t Welcome | cﬁ Modeling | 5 Flotting | ‘ Debugging

Figure 2.11: OMEdit 3D Visualization.

The animation starts with pushing the play button. The animation is played until stopTime or until the pause
button is pushed. By pushing the previous button, the animation jumps to the initial point of time. Points of time
can be selected by moving the time slider or by inserting a simulation time in the 7ime-box. The speed factor of
animation in relation to realtime can be set in the Speed-dialog. Other animations can be openend by using the
open file button and selecting a result file with a corresping scene description file.

The 3D camera view can be manipulated as follows:

Operation Key Mouse Action
Move Closer/Further none Wheel

Move Closer/Further Right Mouse Hold Up/Down
Move Up/Down/Left/Right | Middle Mouse Hold Move Mouse
Move Up/Down/Left/Right | Left and Right Mouse Hold | Move Mouse
Rotate Left Mouse Hold Move Mouse
Shape context menu Right Mouse + Shift

Predefined views (Isometric, Side, Front, Top) can be selected and the scene can be tilted by 90° either clock or
anticlockwise with the rotation buttons.

2.17. 3D Visualization 47

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.17.3 Additional Visualization Features

The shapes that are displayed in the viewer can be selected with shift + right click. If a shape is selected, a context
menu pops up that offers additional visualization features

2 shape
Reset Transparency and Texture [Make Shape Invisible

' |€ Change Transparency

Change Color

&
.. Apply Check Texture
£ Apply Customn Texture

Remove Texure

The following features can be selected:

Menu Description

Change Transparency | The shape becomes either transparent or intransparent.

Make Shape Invisible | The shape becomes invisible.

Change Color A color dialog pops up and the color of the shape can be set.

Apply Check Texture A checked texture is applied to the shape.

Apply Custom Texture | A file selection dialog pops up and an image file can be selected as a texture.

Remove Texture

Removes the current texture of the shape.

48

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.18 Animation of Realtime FMUs

Instead of a result file, OMEdit can load Functional Mock-up Units to retrieve the data for the animation of
multibody systems. Just like opening a mat-file from the animation-plotting view, one can open an FMU-file.
Necessarily, the FMU has to be generated with the +d=visxml flag activated, so that a scene description file is
generated in the same directory as the FMU. Currently, only FMU 1.0 and FMU 2.0 model exchange are supported.
When choosing an FMU, the simulation settings window pops up to choose solver and step size. Afterwards, the
model initializes and can be simulated by pressing the play button.

2.18.1 Interactive Realtime Animation of FMUs

FMUs can be simulated with realtime user interaction. A possible solution is to equip the model with an inter-
action model from the Modelica_DeviceDrivers library (https://github.com/modelica/Modelica_DeviceDrivers).
The realtime synchronization is done by OMEdit so no additional time synchronization model is necessary.

&t OMEdit - OpenModelica Connection Editor l‘:' E] éj
File Edit View Simulation FMI Expot Debug Git Tools Help

s8R oo \PHOTREK 5- O9E »%-9- 7

Libraries Browser 8 x di DoublePendulum_interactive™ @ |

Filter Classes _I N *@]E o ‘Writable |Mode\ |Diagram View |DoubIePendqum_interacﬁve |D:fProgramminngPENMODELICA...ub\ePendqum_inheracﬁve.mo | |

-

Libraries

@ OpenModelica
i)

ModelicaReference

[=]

MeodelicaServices

(3]

Complex

Modelica

/3

Medelica_...ceDrivers

- i nl
Modelica...chronous +1

~5
'

(3]

m

positionl
1

| tWelmme | oﬁMUdeIing | gPlotﬁng | I‘\Debugging

2.18. Animation of Realtime FMUs 49

https://github.com/modelica/Modelica_DeviceDrivers

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.19 Interactive Simulation

Warning: Interactive simulation is an experimental feature.

Interactive simulation is enabled by selecting interactive simulation in the simulation setup.

There are two main modes of execution: asynchronous and synchronous (simulate with steps). The difference is
that in synchronous (step mode), OMEdit sends a command to the simulation for each step that the simulation
should take. The asynchronous mode simply tells the simulation to run and samples variables values in real-time;
if the simulation runs very fast, fewer values will be sampled.

When running in asynchronous mode, it is possible to simulate the model in real-time (with a scaling factor just
like simulation flag -7z, but with the ability to change the scaling factor during the interactive simulation). In the
synchronous mode, the speed of the simulation does not directly correspond to real-time.

2.20 How to Create User Defined Shapes - Icons

Users can create shapes of their own by using the shape creation tools available in OMEdit.

 Line Tool — Draws a line. A line is created with a minimum of two points. In order to create a line, the user
first selects the line tool from the toolbar and then click on the Icon/Diagram View; this will start creating a
line. If a user clicks again on the Icon/Diagram View a new line point is created. In order to finish the line
creation, user has to double click on the Icon/Diagram View.

* Polygon Tool — Draws a polygon. A polygon is created in a similar fashion as a line is created. The only
difference between a line and a polygon is that, if a polygon contains two points it will look like a line and
if a polygon contains more than two points it will become a closed polygon shape.

* Rectangle Tool — Draws a rectangle. The rectangle only contains two points where first point indicates the
starting point and the second point indicates the ending the point. In order to create rectangle, the user
has to select the rectangle tool from the toolbar and then click on the Icon/Diagram View, this click will
become the first point of rectangle. In order to finish the rectangle creation, the user has to click again on the
Icon/Diagram View where he/she wants to finish the rectangle. The second click will become the second
point of rectangle.

* Ellipse Tool — Draws an ellipse. The ellipse is created in a similar way as a rectangle is created.
e Text Tool — Draws a text label.
* Bitmap Tool — Draws a bitmap container.

The shape tools are located in the toolbar. See Figure 2.12.

The user can select any of the shape tools and start drawing on the Icon/Diagram View. The shapes created on the
Diagram View of Model Widget are part of the diagram and the shapes created on the Icon View will become the
icon representation of the model.

For example, if a user creates a model with name testModel and add a rectangle using the rectangle tool and a
polygon using the polygon tool, in the Icon View of the model. The model’s Modelica Text will appear as follows:

model testModel

annotation (Icon (graphics = {Rectangle(rotation = 0, lineColor = {0,0,255},
—~fillColor = {0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern.
—None, lineThickness = 0.25, extent = {{ -64.5,88},{63, —-22.5}}),Polygon(points =
—{{ -47.5, -29.5},{52.5, -29.5},{4.5, -86},{ -47.5, -29.5}}, rotation = 0,
—~lineColor = {0,0,255}, fillColor = {0,0,255}, pattern = LinePattern.Solid,
—~fillPattern = FillPattern.None, lineThickness = 0.25)1}));
end testModel;

In the above code snippet of testModel, the rectangle and a polygon are added to the icon annotation of the model.
Similarly, any user defined shape drawn on a Diagram View of the model will be added to the diagram annotation
of the model.

50 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

(Rectangle Tool (Text Tool >

\

(¢ Line Tool) A4—“WOHOEN —»(Bitmap Tool D

/N

(Polygon Tool) (¢ Ellipse Tool)

Figure 2.12: User defined shapes.

2.21 Global head section in documentation

If you want to use same styles or same JavaScript for the classes contained inside a package then you can de-
fine __ OpenModelica_infoHeader annotation inside the Documentation annotation of a package. For
example,

package P
model M
annotation (Documentation (info="<html>
Click here
</html>"));
end M;
annotation (Documentation (___OpenModelica_infoHeader="
<script type=\"text/javascript\">
function HelloWorld() {
alert (\"Hello World!'\")
}
</script>"));
end P;

In the above example model M does not need to define the javascript function HelloWorld. It is only defined
once at the package level using the __OpenModelica_infoHeader and then all classes contained in the
package can use it.

In addition styles and JavaScript can be added from file locations using Modelica URIs. Example:

package P
model M
annotation (Documentation (info="<html>
Click here
</html>"));
end M;
annotation (Documentation (___OpenModelica_infoHeader="
<script type=\"text/javascript\">
src=\"modelica://P/Resources/hello.js\">
t
</script>"));
end P;

Where the file Resources/hello. js then contains:

2.21. Global head section in documentation 51

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

function HelloWorld() {
alert ("Hello World!™);
}

2.22 Options

OMEdit allows users to save several options which will be remembered across different sessions of OMEdit. The
Options Dialog can be used for reading and writing the options.

2.22.1 General

* General

» Language — Sets the application language.

» Working Directory — Sets the application working directory. All files are generated in this directory.
* Toolbar Icon Size — Sets the size for toolbar icons.

* Preserve User’s GUI Customizations — If true then OMEdit will remember its windows and toolbars posi-
tions and sizes.

» Terminal Command — Sets the terminal command. When user clicks on Tools > Open Terminal then this
command is executed.

 Terminal Command Arguments — Sets the terminal command arguments.
* Hide Variables Browser — Hides the variable browser when switching away from plotting perspective.

* Activate Access Annotations — Activates the access annotations for the non-encrypted libraries. Access
annotations are always active for encrypted libraries.

* Create a model.bak-mo backup file when deleting a model
e Libraries Browser
* Library Icon Size — Sets the size for library icons.

* Max. Library Icon Text Length to Show — Sets the maximum text length that can be shown in the icon in
Libraries Browser.

* Show Protected Classes — If enabled then Libraries Browser will also list the protected classes.

* Show Hidden Classes — If enabled then Libraries Browser will also list the hidden classes. Ignores the
annotation(Protection(access = Access.hide))

* Enable Auto Save - Enables/disables the auto save feature.

* Auto Save interval — Sets the auto save interval value. The minimum possible interval value is 60 seconds.
* Welcome Page

* Horizontal View/Vertical View — Sets the view mode for welcome page.

» Show Latest News - If enabled then the latest news from https://openmodelica.org are shown.

* Optional Features

* Enable replaceable support - Enables/disables the replaceable support.

52 Chapter 2. OMEdit — OpenModelica Connection Editor

https://openmodelica.org

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.22.2 Libraries

 System Libraries — The list of system libraries that should be loaded every time OMEdit starts.

e Force loading of Modelica Standard Library — If true then Modelica and ModelicaReference will always
load even if user has removed them from the list of system libraries.

* Load OpenModelica library on startup — If true then OpenModelica package will be loaded when OMEdit
is started.

e User Libraries — The list of user libraries/files that should be loaded every time OMEdit starts.

2.22.3 Text Editor

* Format
* Line Ending - Sets the file line ending.
e Byte Order Mark (BOM) - Sets the file BOM.
* Tabs and Indentation
 Tab Policy — Sets the tab policy to either spaces or tabs only.
* Tab Size — Sets the tab size.
* Indent Size — Sets the indent size.
» Syntax Highlight and Text Wrapping
» Enable Syntax Highlighting — Enable/Disable the syntax highlighting.

* Enable Code Folding - Enable/Disable the code folding. When code folding is enabled multi-
line annotations are collapsed into a compact icon (a rectangle containing "...)"). A marker
containing a "+" sign becomes available at the left-side of the involved line, allowing the code
to be expanded/re-collapsed at will.

* Match Parentheses within Comments and Quotes — Enable/Disable the matching of parentheses
within comments and quotes.

» Enable Line Wrapping — Enable/Disable the line wrapping.
* Autocomplete
* Enable Autocomplete — Enables/Disables the autocomplete.
* Font
 Font Family — Shows the names list of available fonts. Sets the font for the editor.

e Font Size — Sets the font size for the editor.

2.22.4 Modelica Editor

* Preserve Text Indentation — If true then uses diffModelicaFileListings API call otherwise uses the OMC
pretty-printing.

e Colors
* Jtems — List of categories used of syntax highlighting the code.
¢ [tem Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22. Options 53

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.22.5 MetaModelica Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.6 CompositeModel Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.7 SSP Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.8 C/C++ Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.9 HTML Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.10 Graphical Views

* General

Modeling View Mode

Tabbed View/SubWindow View — Sets the view mode for modeling.
Default View

Icon View/DiagramView/Modelica Text View/Documentation View — If no preferredView annotation is
defined then this setting is used to show the respective view when user double clicks on the class in
the Libraries Browser.

— Move connectors together on both icon and diagram layers

* Graphics

54 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.22.11

Icon/Diagram View
* Extent
Left — Defines the left extent point for the view.
* Bottom — Defines the bottom extent point for the view.
% Right — Defines the right extent point for the view.
+ Top — Defines the top extent point for the view.
Grid
* Horizontal — Defines the horizontal size of the view grid.
* Vertical — Defines the vertical size of the view grid.
* Component

* Scale factor — Defines the initial scale factor for the component dragged on the view.

Preserve aspect ratio — If true then the component’s aspect ratio is preserved while scaling.

Simulation

e Simulation

L]

Matching Algorithm — sets the matching algorithm for simulation.
Index Reduction Method — sets the index reduction method for simulation.

Show additional information from the initialization process - prints the information from the
initialization process

Evaluate all parameters (faster simulation, cannot change them at runtime) - makes the simu-
lation more efficient but you have to recompile the model if you want to change the parameter
instead of re-simulate.

Enable analytical jacobian for non-linear strong components - enables analytical jacobian for
non-linear strong components without user-defined function calls.

Enable pedantic debug-mode, to get much more feedback

Enable parallelization of independent systems of equations (Experimental)
Enable old frontend for code generation

Enable data reconciliation

Additional Translation Flags — sets the translation flags see Options

Target Language — sets the target language in which the code is generated.
Target Build — sets the target build that is used to compile the generated code.
C Compiler — sets the C compiler for compiling the generated code.

CXX Compiler — sets the CXX compiler for compiling the generated code.

Ignore __OpenModelica_commandLineOptions annotation — if true then ignores the __ Open-
Modelica_commandLineOptions annotation while running the simulation.

Ignore __OpenModelica_simulationFlags annotation — if true then ignores the __OpenModel-
ica_simulationFlags annotation while running the simulation.

Enable new frontend use in OMC API (faster GUI response) - if true then uses the new frontend
in OMC API calls.

Display errors/warnings when instantiating the graphical annotations - if true then the er-
rors/warnings are shown when using OMC API for graphical annotations.

Save class before simulation — if true then always saves the class before running the simulation.

2.22. Options

55

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

* Switch to plotting perspective after simulation — if true then GUI always switches to plotting
perspective after the simulation.

* Close completed simulation output windows before simulation — if true then the completed sim-
ulation output windows are closed before starting a new simulation.

e Delete intermediate compilation files — if true then the files generated during the compilation
are deleted automatically.

e Delete entire simulation directory of the model when OMEdit is closed — if true then the entire
simulation directory is deleted on quit.

* Output
 Structured - Shows the simulation output in the form of tree structure.
* Formatted Text - Shows the simulation output in the form of formatted text.

* Display Limit - Sets the display limit for simulation output. A link to log file is shown once the
limit is reached.

2.22.12 Messages

¢ General

* Output Size - Specifies the maximum number of rows the Messages Browser may have. If there are more
rows then the rows are removed from the beginning.

* Reset messages number before simulation — Resets the messages counter before starting the simulation.

* Clear messages browser before checking, instantiation & simulation — If enabled then the messages browser
is cleared before checking, instantiation & simulation of model.

* Font and Colors

* Font Family — Sets the font for the messages.

* Font Size — Sets the font size for the messages.

* Notification Color — Sets the text color for notification messages.
» Warning Color — Sets the text color for warning messages.

* Error Color — Sets the text color for error messages.

2.22.13 Notifications

* Notifications
* Always quit without prompt — If true then OMEdit will quit without prompting the user.

* Show item dropped on itself message — If true then a message will pop-up when a class is dragged
and dropped on itself.

* Show model is partial and component is added as replaceable message — If true then a message
will pop-up when a partial class is added to another class.

* Show component is declared as inner message — If true then a message will pop-up when an
inner component is added to another class.

* Show save model for bitmap insertion message — If true then a message will pop-up when user
tries to insert a bitmap from a local directory to an unsaved class.

* Always ask for the dragged component name — If true then a message will pop-up when user
drag & drop the component on the graphical view.

» Always ask for what to do with the text editor error — If true then a message will always pop-up
when there is an error in the text editor.

* If new frontend for code generation fails

56 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

e Always ask for old frontend

» Try with old frontend once

Switch to old frontend permanently

* Keep using new frontend

2.22.14 Line Style

* Line Style

* Color — Sets the line color.

* Pattern — Sets the line pattern.

 Thickness — Sets the line thickness.

e Start Arrow — Sets the line start arrow.

* End Arrow — Sets the line end arrow.

e Arrow Size — Sets the start and end arrow size.

e Smooth — If true then the line is drawn as a Bezier curve.

2.22.15 Fill Style

« Fill Style
* Color — Sets the fill color.
* Pattern — Sets the fill pattern.

2.22.16 Plotting

* General

» Auto Scale — sets whether to auto scale the plots or not.

* Plotting View Mode

* Tabbed View/SubWindow View — Sets the view mode for plotting.
 Curve Style

* Pattern — Sets the curve pattern.

* Thickness — Sets the curve thickness.

* Variable filter

e Filter Interval - Delay in filtering the variables. Set the value to 0 if you don't want any delay.
» Font Size - sets the font size for plot window items

* Title

e Vertical Axis Title

* Vertical Axis Numbers

* Horizontal Axis Title

* Horizontal Axis Numbers

» Footer

e Legend

2.22. Options 57

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.22.17 Figaro

Figaro
Figaro Library — the Figaro library file path.
Tree generation options — the Figaro tree generation options file path.

Figaro Processor — the Figaro processor location.

2.22.18 Debugger

Algorithmic Debugger

GDB Path — the gnu debugger path

GDB Command Timeout — timeout for gdb commands.
GDB Output Limit — limits the GDB output to N characters.
Display C frames — if true then shows the C stack frames.

Display unknown frames — if true then shows the unknown stack frames. Unknown stack frames means
frames whose file path is unknown.

Clear old output on a new run — if true then clears the output window on new run.
Clear old log on new run — if true then clears the log window on new run.
Transformational Debugger

Always show Transformational Debugger after compilation — if true then always open the Transformational
Debugger window after model compilation.

Generate operations in the info xml — if true then adds the operations information in the info xml file.

2.22.19 FMI

Export
* Version
e 1.0 — Sets the FMI export version to 1.0
e 2.0 — Sets the FMI export version to 2.0
* Type
e Model Exchange — Sets the FMI export type to Model Exchange.
* Co-Simulation — Sets the FMI export type to Co-Simulation.

* Model Exchange and Co-Simulation — Sets the FMI export type to Model Exchange and Co-
Simulation.

e FMU Name — Sets a prefix for generated FMU file.

* Move FMU — Moves the generated FMU to a specified path.

* Platforms - list of platforms to generate FMU binaries.

* Model Description Filters - Sets the variable filter for model description file.

e Include Source Code - Sets if the exported FMU can contain source code. Model Description
Filter "blackBox" will override this, because black box FMUs do never contain their source
code.

Import

Delete FMU directory and generated model when OMEdit is closed - If true then the temporary FMU
directory that is created for importing the FMU will be deleted.

58

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.22.20 OMTLMSimulator

* General
* Path - path to OMTLMSimulator bin directory.
* Manager Process - path to OMTLMSimulator managar process.

* Monitor Process - path to OMTLMSimulator monitor process.

2.22.21 OMSimulator/SSP

* General
* Command Line Options - sets the OMSimulator command line options.

* Logging Level - OMSimulator logging level.

2.23 __OpenModelica_commandLineOptions Annotation

OpenModelica specific annotation to define the command line options needed to simulate the model. For example
if you always want to simulate the model with a specific matching algorithm and index reduction method instead
of the default ones then you can write the following code,

model Test

annotation (___OpenModelica_commandLineOptions = "--matchingAlgorithm=BFSB —-
—indexReductionMethod=dynamicStateSelection");
end Test;

The annotation is a space separated list of options where each option is either just a command line flag or a flag
with a value.

In OMEdit open the Simulation Setup and set the Translation Flags then in the bottom check Save translation
flags inside model i.e., __OpenModelica_commandLineOptions annotation and click on OK.

It you want to ignore this annotation then use setCommandLineOptions("--
ignoreCommandLineOptionsAnnotation=true"). In OMEdit Tools > Options > Simulation check Ignore
__OpenMaodelica_commandLineOptions annotation.

2.24 OpenModelica_simulationFlags Annotation

OpenModelica specific annotation to define the simulation options needed to simulate the model. For example if
you always want to simulate the model with a specific solver instead of the default DASSL and would also like to
see the cpu time then you can write the following code,

model Test
annotation (__OpenModelica_simulationFlags (s = "heun", cpu = "()"));
end Test;

The annotation is a comma separated list of options where each option is a simulation flag with a value. For flags
that doesn't have any value use () (See the above code example).

In OMEdit open the Simulation Setup and set the Simulation Flags then in the bottom check Save simulation flags
inside model i.e., __OpenModelica_simulationFlags annotation and click on OK.

If you want to ignore this annotation then use setCommandLineOptions("--
ignoreSimulationFlagsAnnotation=true"). In OMEdit Tools > Options > Simulation check Ignore __OpenMod-
elica_simulationFlags annotation.

2.23. _ OpenModelica_commandLineOptions Annotation 59

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.25 Debugger

For debugging capability, see Debugging.

2.26 Editing Modelica Standard Library

By default OMEdit loads the Modelica Standard Library (MSL) as a system library. System libraries are read-
only. If you want to edit MSL you need to load it as user library instead of system library. We don't recommend
editing MSL but if you really need to and understand the consequences then follow these steps,

e Go to Tools > Options > Libraries.

* Remove Modelica & ModelicaReference from list of system libraries.

* Uncheck force loading of Modelica Standard Library.

Add SOPENMODELICAHOME/lib/omlibrary/Modelica X.X/package.mo under user libraries.
* Restart OMEdit.

2.27 State Machines

2.27.1 Creating a New Modelica State Class

Follow the same steps as defined in Creating a New Modelica Class. Additionally make sure you check the State
checkbox.

Tl

,:,-!i OMEdit - Create New Modelica Class b

Mame: Statel

Spedalization: Model i

Extends (optional): Browse...

Insert in class (optional): Browse...
[] Partial

[] Encapsulated

State

K Cancel

Figure 2.13: Creating a new Modelica state.

60 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

2.27.2 Making Transitions

c—
In order to make a transition from one state to another the user first needs to enable the transition mode (—) from
the toolbar.

Move the mouse over the state. The mouse cursor will change from arrow cursor to cross cursor. To start the
transition press left button and move while keeping the button pressed. Now release the left button. Move towards
the end state and click when cursor changes to cross cursor.

A Create Transition dialog box will appear which allows you to set the transition attributes. Cancelling the dialog
will cancel the transition.

Double click the transition or right click and choose Edit Transition to modify the transition attributes.

2.27.3 State Machines Simulation

Support for Modelica state machines was added in the Modelica Language Specification v3.3. A subtle problem
can occur if Modelica v3.2 libraries are loaded, e.g., the Modelica Standard Library v3.2.2, because in this case
OMC automatically switches into Modelica v3.2 compatibility mode. Trying to simulate a state machine in
Modelica v3.2 compatibility mode results in an error. It is possible to use the OMC flag --std=latest in order to
ensure (at least) Modelica v3.3 support. In OMEdit this can be achieved by setting that flag in the Tools > Options
> Simulation dialog.

OMEdit - Options

General Simulation
& Libraries
E Text Editar Matching Algorithm: PFPlusExt >

Index Reduction Method: | dynamicStateSelection b

CompositeModel Editor Target Language: C e

C/C++ Editor

Target Compiler: gec ~
E HTML Editor
,}ﬁ Graphical Views OMC Flags: —-std=latest | E
Simulation : . . .
[] 1gnore __openModelica_commandLineOptions annotation
‘{? Messages
5 e |:| Ignore __OpenModelica_simulationFlags annotation
o Notifications i i
* The changes will take effect after restart. OK Cancel

Figure 2.14: Ensure (at least) Modelica v3.3 support.

2.27.4 State Machines Debugger

Modelica state machines debugger is implemented as a visualization, which allows the user to run the state ma-
chines simulation as an animation.

A special Diagram Window is developed to visualize the active and inactive states. The active and inactive value
of the states are stored in the OpenModelica simulation result file. After the successful simulation, of the state
machine model, OMEdit reads the start, stop time values, and initializes the visualization controls accordingly.

The controls allows the easy manipulation of the visualization,
» Rewind — resets the visualization to start.

¢ Play — starts the visualization.

2.27. State Machines 61

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

&% OMEdit - OpenModelica Connection Editor - O *
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help
[| . . csv %
Ly s 1tht -
FPeBR 95 XPl-E a4 S Y &
Libraries Browser g x [X Plot : 1 B 4 Diagram %] Variables Browser 8 X
Filter Classes L4 A | [Filter Variables ¢
Libraries Simulation Time Unit s =
@ OpenModelica I
ModelicaServices
— D> I o] s]
. Complex
7] Modelica Variables Value Displ
o ModelicaReference Sta te 1 = @ (Active...erQuter
=] E SMGraphi...estCases i “
] m Dprevious(i] 42
. -
SimpleS.. tations smOf
m InnerQuter statel
. Maraninchi2003_2 state?
E Components true
m DeepHierarchy
v
£ > £ >
t Welcome oﬁ Modeling g Plotting ‘ Debugging

Figure 2.15: State machine debugger in OMEdit.

62

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

 Pause — pauses the visualization.

* Time — allows the user to jump at any specific time.
* Speed — speed of the visualization.

* Slider — controls the time.

The visualization is based on the simulation result file. All three formats of the simulation result file are supported
i.e., mat, csv and plt where mat is a matlab file format, csv is a comma separated file and plt is an ordered text file.

It is only possible to debug one state machine at a time. This is achieved by marking the result file active in the
Variables Browser. The visualization only read the values from the active result file. It is possible to simulate
several state machine models. In that case, the user will see a list of result files in the Variables Browser. The user
can switch between different result files by right clicking on the result file and selecting Set Active in the context
menu.

2.28 Using OMEdit as Text Editor

OMEdit can be be used as a Text editor. Currently support for editing MetaModelica,Modelica and C/C++ are
available with syntax highlighting and autocompletion of keywords and types. Additionaly the Modelica and
MetaModelica files are provided with autocompletion of code-snippets along with keywords and types. The users
can load the directory from file menu File > Open Directory. which opens the Directory structure in the Libraries-
browser.

% OMEdit - OpenMadelica Connection Editor - O X

Debug OMSimulator Git Tools Help
Ctri+N
Ctrl+O

File Edit View Simulation
j’ MNew Modelica Class
i Open Model/Library File(s)
Open/Convert Modelica File(s) With Encoding
Load Library
Load Encrypted Library
Open Result File(s)

Ctrl+Shift+O

Open Transformations File

New Composite Model
Open Composite Model(s)
Load External Maodel(s)

Open Directory

Save
Save As

Save Total

Import
Export

System Libraries

Recent Files
Clear Recent Files

Print...

Quit

rent Files
/OPENMODELICAGIT/Of, ~
-/OPENMODELICAGIT/Of
:/OPENMODELICAGIT/Og

:/Users/arupa54/Downloi
Ctrl+5S N

r Recent Files

Latest News

E:> b January 31, 2019: OpenModelica 1.13.2 released
£» December 20, 2018: OpenModelica 1.13.0 released
£» December 10, 2018: OpenModelica 1.13.0-dev.betal r

= Program OpenModelica Annual Workshop 2019 v

< >

Reload | For more details visit our website www.openmodelica.org

te New Modelica Class

» Browser

» ,7- History: | New Search

Open Model/Library File(s)

F x

All
Ctrl+P

-

or: ‘

v

Ctrl+Q

ern: ‘*

™ |

Search

Search Browser Messages Browser

Opens the directory

Ln: 439, Col: 20

t Welcome

ﬂ Flotting ‘ Debugging

g& Modeling

Figure 2.16: open-directory

After the directory is opened in the Libraries-browser, the users can expand the directory structure and click the
file which opens in the texteditor.

2.28. Using OMEdit as Text Editor 63

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

% OMEdit - OpenModelica Connection Editor - O XK
File Edit WView Simulation Debug OMSimulator Git Tools Help
. Ll LN — %]
FeBA Heee \NoHOTHE < - &- >% - & T W
Libraries Browser & x u\i BackendDAEUl.mo a
[Filter Classes | & = |Writab\e | C:/OPENMODELICAGIT/OpenModelica/OMCompiler/ Compiler/BackEnd/BackendDAEUtiL mo | |
Libraries ~ tl = Expression.typeof (el); ~
H@ ModelicaReference t2 = ComponentReference.creflastType (cr):
T[] Modelicaservices b = Expression.equalTypes (tl,t2):
1M complex wrongEgnsl = List.consOnTrue (not
HP% Modelica b, e,wrongEgns) ;]
. then (e,wrongEgnsl);
EI OMCompiler
3rdParty v
common else (inEqg, inEgs);
=17 compiler 439 end matchcontinue;
= ‘BackEnd end checkEguationSize;
& AdjacencyMatrixmo
£/ BackendDAEmo [Flpublic function checkAssertCondition "Succeds if
£/ BackendDAECreate.mo co:.)di:ion of assert is not constant false"
&/ BackendDAEEXT.mo input DAE.Exp cond; v
;;. BackendDAEFunc.mo S BT 8 x
&/ BackendDAEOptimize.mo
?; P * History: | New Search <
& BackendDAETransform.mo
BackendDAEUtil.mo Seope: o .
& BackendDump.mo
ey . Search for: | V‘
& BackendEquation.mo
&/ Backendinline.mo File Pattern: [~ >
;;. BackendVariable.mo Search
;;. BackendVarTransform.mo
;:‘!_' E?naryiree;rrlo V| Search Browser Messages Browser
Ln: 439, Col: 20 @ Welcome o Modeling Plotting @ Debugging

Figure 2.17: openfile in texteditor

2.28.1 Advanced Search

Support to search in OMEdit texteditor is available. The search browser can be enabled by selecting View >

Windows > Search browser or through shortcut keys (ctrl+h).

The users can start the search by loading the directory they want to search and fill in the text to be searched for

and file pattern if needed and click the search button.

After the search is completed the results are presented to the users in a separate window, The search results contains

the following
1) The name of the files where the searched word is matched

2) The line number and text of the matched word.

The users can click the line number or the matched text and it will automatically open the file in the texteditor and

move the cursor to matched line number of the text.

The users can perform multiple searches and go back to old search results using search histroy option.

64

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

Tl
Libraries Brov
Filter Classes
Libraries ﬁ

> lE Oper O\
> @ Moa: &,
» G Mode e\

File Edit View Simulation

g& OMEdit - OpenModelica Connection Editor

FMI Export Debug OMSimulator Git Tools Help

Toolbars v

Windows Y~ Libraries Browser

Toggle Tab/Sub-window View DTSR By
Variables Browser

Grid Lines 3D Viewer Browser

Reset Zoom Ctrl+0 ' Messages Browser

Zoom In Ctrl++ . Search Browser

Zoom Out Ctrl+- Stack Frames Browser

» . Complex
> @ Modelica

> OMCompiler

B C/OPENMODENCAGIT/C
£» C;/OpenPBS/OpenPBS/pz
E» C/Users/arupa54/AppDa
&

Clear Recent Files

Create New Modelica Class

BreakPoints Browser
Locals Browser
Output Browser
Debugger CLI

Close Window
Close All Windows
Close All Windows But This

Cascade Windows
Tile Windows Horizontally

lews

31, 2019: OpenModelica 1.13.2 released
F 20, 2018: OpenModelica 1.13.0 released

[10, 2018: OpenModelica 1.13.0-dev.beta released
W

>

For more details visit our website www.openmodelica.org

Open Model/Library File(s)

. Tile Windows Vertically g x
ke I_.' ,-_ History: | Mew Search
Scope: oMCompiler -
Search for: | V|
File Pattern: | * V|
Search
Messages Browser Search Browser
€ welcome &% Madeling &2 Plotting ‘ Debugging

Figure 2.18: Enable omedit search browser

2.29 Temporary Directory, Log Files and Working Directory

On Unix/Linux systems temporary directory is the path in the TMPDIR environment variable or /tmp if TMPDIR is
not defined appended with directory paths OpenModelica< USERNAME>/OMEdit so the complete path is usually
/tmp/OpenModelica< USERNAME>/OMEdit.

On Windows its the path in the TEMP or TMP environment variable appended with directory paths OpenModel-
ica/OMEdit so the complete path is usually %TEMP%/OpenModelica/OMEdit.

All the log files are always generated in the temporary directory. Choose Tools > Open Temporary Directory to
open the temporary directory.

By default the working directory has the same path as the temporary directory. You can change the working
directory from Tools > Options > General see section General.

For each simulation a new directory with the model name is created in the working directory and then all the
simulation intermediate and results files are generated in it.

2.29. Temporary Directory, Log Files and Working Directory

65

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

u& Bac..mo Y Messages Browser Search Browser

o%% OMEdit - OpenModelica Connection Editor — O X
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help
[(0 LN ; [—
J.h @O\G)\e\ \\’..T.” ' 0” =, ® *' wou | il »
Libraries Browser & x ﬁ.ﬁ BackendDump.mo B &% BackendDump.interface.mo [
IMI A ‘E ‘Wrﬂable ‘C:,I’OPENMDDEIJI:AG]T!OpenModeIica!{)MCompiIer!CompilerfbootfhuildeackendDump.interface.rrn ‘ a
Libraries ~ 14 ZH:I “
ﬂ OpenModelica 143|=| function dumpDAE
F|@ Modeli...erence 1 input BackendDAE.BackendDAE inDAE;
F10) Modeli...vices 1 guzputDigckendDAE.BackendDHE outDAE;
E. Complex g en Hmp .
i MOdehca_ 148 function dumpBackendDAE
=| = omcompiler 149 input BackendDAE.BackendDAE inBackendDAE;
3rdParty 150 input String heading:
commaon 151 - end dumpBackendDAE;
=]~ compiler 152
[=] © Backend 153 function dumpBackendDAEToModelica
ot Adj...mo 154 input BackendDAE.BackendDAE inBackendDAE; v
g& Bac...mo Search Browser F X
"& Bac..mo 2 '»'v'-' | History: |Mew Search -
p& Bac...mo
p& Bac...mo Scope: OMCompiler M
d‘i Bac..mo Search for: |dumpEackendDAEFoModeIica V|
p& Bac...mo
ﬂ& File Pattern: |*.mo V|
Bac...mo
g‘& Bac...mo Search
p& Bac...mo
p& Bac...mo

Figure 2.19: Start search in search browser

Ln: 153, Col: O tWeIcome Daﬁ Modeling a Plotting * Debugging

66 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

s8R

g& OMEdit - OpenModelica Connection Editor

File Edit View Simulation

O X

FMI Export Debug OMSimulator

@O\e\e\ \..

Git Tools Help

TR <=-K-O9%98 > - &- 7~ #-

»

Libraries Browser 8 x ‘,ﬁ BackendDump.mo (x| g& BackendDump.interface.mo a
M‘ ¥ |Wrilable | C:/OPENMODELICAGIT /OpenMadelica/OMCompiler/Compiler/boat/build/BackendDump.interface.mo | i.‘
Libraries ~ 150 { input String heading; (A
HE OpenModelica 15 end dumpBackendDAE;
+|@ Modeli...erence 15))
1) Modeli..rvices 153[= function dumpBackendDAEToModelica
B Complex 154 input BackendDAE.BackendDAE inBackendDAE;
7w dpl' 155 input String suffix;
oaelica 56 - end dumpBackendDAEToModelica;
El OMCompiler]
3rdParty 1 H—] function dumpEgSystem
common $ input BackendDAE.EgSystem inEgSystem;
[=] T compiler input String heading;
[=] © Backend - end dumpEgSystem;
& Adj..mo 162 | v
ﬁ Bac...mo Search Browser g x
Bac...mo
G& \’_ @ ﬁ} History: |Project-OMCompiler: dumpBackendDAEToModel -
Bac...mo -
E& Bac...mo Searched 1160 of 1160 files. Search Completed. 3 FOUND
ﬁ& Bac...mo
Cancel
ﬁf‘i Bac...mo
ﬁfg Bac...mo E| C,/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/boot/build/BackendDump.interface.mo ~
“& Bac...mo 153 function dumpBackendDAEToModelica
“& Bac..mo |156 end dumpBackendDAEToModelica;
".& Bac...mo |¢| C./OPENMODELICAGIT/OpenMaodelica/OMCompiler/Compiler/BackEnd/Backend Dump.mo i
d& Bac..mo | Messages Browser Search Browser
Ln: 156, Col: 0 tWEﬂCOme o't Modeling 5 Flotting “ Debugging
Figure 2.20: Search Results
2.29. Temporary Directory, Log Files and Working Directory 67

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

FeBB

g& OMEdit - OpenModelica Connection Editor

File Edit View Simulation

] X

FMI Export Debug OMSimulator Git Tools Help

rE@Eoeee \oHOTHE <= E- 99E > - &- 7~ ¥~

Libraries Browser X A BackendDump.mo (] o% Bsackendbump.interface.mo [X]
Filter Classes T | Writable |C:fDPENMDDEL'IEAG]'I',poenModelicafDMCompiler,fCompiler,fbaot,,’buildjliackendﬂump.interface.rno ‘ = ‘
Libraries - input String heading: ~
ﬂ OpenModelica end dumpBackendDAE;
Bﬂ Modeli...erence . .
FI) Modeii..rvices furllctlon dumpBackendDP;EToModel}ca
@ Complex input BackendDAE.BackendDAE inBackendDAE;
1P% Model input String suffix;
oaelica end dumpBackendDAEToModelica;
El OMCompiler
3rdParty function SisiHeERERR=S
common input BackendDAE.EgSystem inEqSystem;
[=] © compiler input String heading;
[=] © Backend end dumpEgSystem:
o4& Adj..mo v
d& Bac..mo Search Browser 8 x
Bac...mo
L} N — - -
ﬁ& Bac...mo L% G G History: |Project-OMCompiler: dumpEqSystem |
ﬁ& Bac...mo Searched 557 of 1160 Pr‘cqect-:)l'dComp\er' dumpBackendDAET oModelica 14 FOUND
ﬂ.& Bac...mo Froject-OMCompiler: dumpEqSystem
d& Bac...mo
6& Bac...mo EEI C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/boot/build/BackendDump.interface.mo ~
Bac...mo EE| C./OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/SynchronousFeatures.mo
d& Bac...mo Ezl C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/Resolveloops.ma
ﬁ& Bac...mo |:-| C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/OnRelaxation.mo ©
ﬁ& Bac..mo v | Messages Browser Search Browser

& Plotting & Debugging

Ln: 158, Col: 23 tWe\come a& Modeling

Figure 2.21: Search History

68

Chapter 2. OMEdit — OpenModelica Connection Editor

CHAPTER
THREE

2D PLOTTING

This chapter covers the 2D plotting available in OpenModelica via OMNotebook, OMShell and command line
script. The plotting is based on OMPIot application. See also OMEdit 2D Plotting.

3.1 Example

class HelloWorld

Real x(start = 1, fixed = true);
parameter Real a = 1;

equation
der (x) = — a * x;

end HelloWorld;

To create a simple time plot the above model HelloWorld is simulated. To reduce the amount of simulation data in
this example the number of intervals is limited with the argument numberOflIntervals=5. The simulation is started
with the command below.

>>> simulate (HelloWorld, outputFormat="csv", startTime=0, stopTime=4, |
—numberOfIntervals=5)
record SimulationResult

resultFile = "«DOCHOME»/HelloWorld_res.csv",

simulationOptions = "startTime = 0.0, stopTime = 4.0, numberOfIntervals = 5, |,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'HelloWorld', options = '',
— outputFormat = 'csv', variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.004848524,
timeBackend = 0.009827025000000001,
timeSimCode = 0.000864974,
timeTemplates = 0.002712908,
timeCompile = 0.409067038,
timeSimulation = 0.018933119,
timeTotal = 0.4463807369999999

end SimulationResult;

When the simulation is finished the file HelloWorld_res.csv contains the simulation data:

Listing 3.1: HelloWorld_res.csv

"time", "X", "der(x) n

0,1,-1
0.8,0.4493289092712475,-0.4493289092712475
1.6,0.2018973974273906,-0.2018973974273906
2.4,0.09071896372718975,-0.09071896372718975
3.2,0.04076293845066793,-0.04076293845066793

(continues on next page)

69

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

(continued from previous page)

4,0.01831609502171534,-0.01831609502171534
4,0.01831609502171534,-0.01831609502171534

Diagrams are now created with the new OMPlot program by using the following plot command:

0.8

0.6

04
03
0.2

0.1

0 1 1 1 1 1
0 0.5 1 1.5 2 2.5

Figure 3.1: Simple 2D plot of the HelloWorld example.

By re-simulating and saving results at many more points, for example using the default 500 intervals, a much
smoother plot can be obtained. Note that the default solver method dassl has more internal points than the output
points in the initial plot. The results are identical, except the detailed plot has a smoother curve.

>>> (O==system("./HelloWorld -override stepSize=0.008")
true

>>> res:=strtok (readFile ("HelloWorld res.csv"), "\n");
>>> res[end]
"4,0.01831609502171534,-0.01831609502171534"

0.8

0.6

0.4

03

0.1

Figure 3.2: Simple 2D plot of the HelloWorld example with a larger number of output points.

70

Chapter 3. 2D Plotting

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

3.2 Plot Command Interface

Plot command have a number of optional arguments to further customize the the resulting diagram.

>>> list (OpenModelica.Scripting.plot, interfaceOnly=true)
"function plot
input VariableNames vars \"The variables you want to plot\";
input Boolean externalWindow = false \"Opens the plot in a new plot window\";
input String fileName = \"<default>\" \"The filename containing the variables.
—<default> will read the last simulation result\";
input String title = \"\" \"This text will be used as the diagram title.\";

input String grid = \"detailed\" \"Sets the grid for the plot i.e simple,
—detailed, none.\";

input Boolean logX = false \"Determines whether or not the horizontal axis is_
—logarithmically scaled.\";
input Boolean logY = false \"Determines whether or not the vertical axis is_

—logarithmically scaled.\";

input String xLabel = \"time\" \"This text will be used as the horizontal label_
—in the diagram.\";

input String yLabel = \"\" \"This text will be used as the vertical label in the_
—~diagram.\";

input Real xRange[2]

{0.0, 0.0} \"Determines the horizontal interval that is_
—visible in the diagram. {0,0} will select a suitable range.\";

input Real yRange[2] = {0.0, 0.0} \"Determines the vertical interval that is,,
—visible in the diagram. {0,0} will select a suitable range.\";

input Real curveWidth = 1.0 \"Sets the width of the curve.\";

input Integer curveStyle = 1 \"Sets the style of the curve. SolidLine=1,
—DashLine=2, DotLine=3, DashDotLine=4, DashDotDotLine=5, Sticks=6, Steps=7.\";

input String legendPosition = \"top\" \"Sets the POSITION of the legend i.e left,
— right, top, bottom, none.\";

input String footer = \"\" \"This text will be used as the diagram footer.\";

input Boolean autoScale = true \"Use auto scale while plotting.\";

input Boolean forceOMPlot = false \"if true launches OMPlot and doesn't call
—callback function even if it is defined.\";

output Boolean success \"Returns true on success\";
end plot;"

3.2. Plot Command Interface 71

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

72 Chapter 3. 2D Plotting

CHAPTER
FOUR

SOLVING MODELICA MODELS

4.1 Integration Methods

By default OpenModelica transforms a Modelica model into an ODE representation to perform a simulation by
using numerical integration methods. This section contains additional information about the different integration
methods in OpenModelica. They can be selected by the method parameter of the simulate command or the -s

simflag.
The different methods are also called solver and can be distinguished by their characteristic:
* explicit vs. implicit
* order
* step size control
* multi step

A good introduction on this topic may be found in [CK06] and a more mathematical approach can be found in
[HNorsettW93].

4.1.1 DASSL

DASSL is the default solver in OpenModelica, because of a severals reasons. It is an implicit, higher order,
multi-step solver with a step-size control and with these properties it is quite stable for a wide range of models.
Furthermore it has a mature source code, which was originally developed in the eighties an initial description may
be found in [Pet82].

This solver is based on backward differentiation formula (BDF), which is a family of implicit methods for numer-
ical integration. The used implementation is called DASPK?2.0 (see”) and it is translated automatically to C by f2c
(see?).

The following simulation flags can be used to adjust the behavior of the solver for specific simulation problems:
Jjacobian, noRootFinding, noRestart, initialStepSize, maxStepSize, maxIntegrationOrder, noEquidistantTimeGrid.

4.1.2 IDA

The IDA solver is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic equa-
tion Solvers [HBG+05]. The implementation is based on DASPK with an extended linear solver interface, which
includes an interface to the high performance sparse linear solver KLU [DN10].

The simulation flags of DASSL are also valid for the IDA solver and furthermore it has the following IDA specific
flags: idaLsS, idaMaxNonLinlters, idaMaxConvFails, idaNonLinConvCoef, idaMaxErrorTestFails.

2 DASPK Webpage
3 Cdaskr source

73

https://cse.cs.ucsb.edu/software
https://github.com/wibraun/Cdaskr

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

4.1.3 CVODE

The CVODE solver is part of sundials: SUite of Nonlinear and DIfferential/ALgebraic equation Solvers
[HBG+05]. CVODE solves initial value problems for ordinary differential equation (ODE) systems with variable-
order, variable-step multistep methods.

In OpenModelica, CVODE uses a combination of Backward Differentiation Formulas (varying order 1 to 5) as
linear multi-step method and a modified Newton iteration with fixed Jacobian as non-linear solver per default.
This setting is advised for stiff problems which are very common for Modelica models. For non-stiff problems
an combination of an Adams-Moulton formula (varying order 1 to 12) as linear multi-step method together with a
fixed-point iteration as non-linear solver method can be choosen.

Both non-linear solver methods are internal functions of CVODE and use its internal direct dense linear solver
CVDense. For the Jacobian of the ODE CVODE will use its internal dense difference quotient approximation.

CVODE has the following solver specific flags: cvodeNonlinearSolverlteration, cvodeLinearMultistepMethod.

4.1.4 Basic Explicit Solvers

The basic explicit solvers are performing with a fixed step-size and differ only in the integration order. The
step-size is based on the numberOfIntervals, the startTime and stopTime parameters in the simulate command:

. stopTime — startTime
stepSize ~

numberOflntervals
e euler - order 1

¢ heun - order 2

* rungekutta - order 4

4.1.5 Basic Implicit Solvers

The basic implicit solvers are all based on the non-linear solver KINSOL from the SUNDIALS suite. The un-
derlining linear solver can be modified with the simflag -impRKLS. The step-size is determined as for the basic
explicit solvers.

 impeuler - order 1
* trapezoid - order 2

» imprungekutta - Based on Radau ITA and Lobatto IITA defined by its Butcher tableau where the order can
be adjusted by -impRKorder.

4.1.6 Experimental Solvers

The following solvers are marked as experimental, mostly because they are till now not tested very well.

* cvode - experimental implementation of SUNDIALS CVODE solver - BDF or Adams-Moulton method -
step size control, order 1-12

* rungekuttaSsc - Runge-Kutta based on Novikov (2016) - explicit, step-size control, order 4-5
* irksco - Own developed Runge-Kutta solver - implicit, step-size control, order 1-2
* symSolver - Symbolic inline solver (requires --symSolver) - fixed step-size, order 1

* symSolverSsc - Symbolic implicit inline Euler with step-size control (requires --symSolver) - step-size
control, order 1-2

* gss - A QSS solver

74 Chapter 4. Solving Modelica Models

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

4.2 DAE Mode Simulation

Beside the default ODE simulation, OpenModelica is able to simulate models in DAE mode. The DAE mode is
enabled by the flag --daeMode. In general the whole equation system of a model is passed to the DAE integrator,
including all algebraic loops. This reduces the amount of work that needs to be done in the post optimization
phase of the OpenModelica backend. Thus models with large algebraic loops might compile faster in DAE mode.

Once a model is compiled in DAE mode the simulation can be only performed with SUNDIALS/IDA integrator
and with enabled -daeMode simulation flag. Both are enabled automatically by default, when a simulation run is
started.

4.3 Initialization

To simulate an ODE representation of an Modelica model with one of the methods shown in Integration Methods
a valid initial state is needed. Equations from an initial equation or initial algorithm block define a desired initial
system.

4.3.1 Choosing start values

Only non-linear iteration variables in non-linear strong components require start values. All other start values will
have no influence on convergence of the initial system.

Use -d=initialization to show additional information from the initialization process. In OMEdit Tools->Options-
>Simulation->OMCFlags, in OMNotebook call setCommandLineOptions("-d=initialization")

model piston

Modelica.Mechanics.MultiBody.Parts.Fixed fixed1 annotation(Placement(visible = true, transforma-
tion(origin = {-80, 70}, extent = {{-10, -10}, {10, 10}}, rotation = 0)));

Modelica.Mechanics.MultiBody.Parts.Body bodyl(m = 1) annotation(Placement(visible = true, trans-
formation(origin = {30, 70}, extent = {{-10, -10}, {10, 10} }, rotation = 0)));

Modelica.Mechanics.MultiBody.Parts.Fixed Translation fixed Translation1(r = {0.3, 0, 0}) annotation(
Placement(visible = true, transformation(origin = {-10, 70}, extent = {{-10, -10}, {10, 10} }, rotation
=0));

Modelica.Mechanics.MultiBody.Parts.Fixed Translation fixedTranslation2(r = {0.8, 0, 0}) annotation(

Placement(visible = true, transformation(origin = {10, 20}, extent = {{-10, -10}, {10, 10} }, rotation
=-90)));

Modelica.Mechanics.MultiBody.Parts.Fixed fixed2(animation = false, r = {1.1, 0, 0}) annotation(
Placement(visible = true, transformation(origin = {70, -60}, extent = {{-10, -10}, {10, 10} }, rotation
= 180)));

Modelica.Mechanics.MultiBody.Parts.Body body2(m = 1) annotation(Placement(visible = true, trans-
formation(origin = {30, -30}, extent = {{-10, -10}, {10, 10} }, rotation = 0)));

inner Modelica.Mechanics.MultiBody.World world annotation(Placement(visible = true, transforma-
tion(origin = {-70, -50}, extent = {{-10, -10}, {10, 10} }, rotation = 0)));

Modelica.Mechanics.MultiBody.Joints.Prismatic prismatic(animation = true) annotation(
Placement(visible = true, transformation(origin = {30, -60}, extent = {{-10, -10}, {10, 10}},
rotation = 0)));

Modelica.Mechanics.MultiBody.Joints.RevolutePlanarLoopConstraint revolutePlanar annotation(
Placement(visible = true, transformation(origin = {-50, 70}, extent = {{-10, -10}, {10, 10} }, rotation

=0)));

4.2. DAE Mode Simulation 75

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

fixed1
fixedTranslation1
a b
| I
r={0.3, 0, 0} m
revolutePlanar m=1 kg
r={0,0,0} m 5
u o]
o
o @
=
= X
b, D
~ ¥ o
=N =
o o
=l 2
o o
3 | s | g
N
3
1
fpan)
o
o
o
world
Y

r={1.1, 0,0} m

fixed2

Figure 4.1: piston.mo

76 Chapter 4. Solving Modelica Models

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

Modelica.Mechanics.MultiBody.Joints.Revolute revolutel(a(fixed = false),phi(fixed = false), w(fixed = false)) annotatio
Placement(visible = true, transformation(origin = {10, 48}, extent = {{-10, -10}, {10, 10} }, rotation
=-90)));

Modelica.Mechanics.MultiBody.Joints.Revolute revolute2 annotation(Placement(visible = true, trans-
formation(origin = {10, -10}, extent = {{-10, -10}, {10, 10} }, rotation = -90)));

equation

connect(prismatic.frame_b, fixed2.frame_b) annotation(Line(points = {{40, -60}, {60, -60}, {60, -
60}, {60, -60}}, color = {95, 95, 95}));

connect(fixed1.frame_b, revolutePlanar.frame_a) annotation(Line(points = {{-70, 70}, {-60, 70}, {-
60, 70}, {-60, 70} }));

connect(revolutePlanar.frame_b, fixedTranslationl.frame_a) annotation(Line(points = {{-40, 70}, {-
20, 70}, {-20, 70}, {-20, 70} }, color = {95, 95, 95}));

connect(fixedTranslationl.frame_b, revolutel.frame_a) annotation(Line(points = {{0, 70}, {10, 70},
{10, 58}, {10, 58}}, color = {95, 95, 95}));

connect(revolutel.frame_b, fixedTranslation2.frame_a) annotation(Line(points = {{10, 38}, {10,
38}, {10, 30}, {10, 30}}, color = {95, 95, 95}));

connect(revolute2.frame_b, prismatic.frame_a) annotation(Line(points = {{10, -20}, {10, -20}, {10,
-60}, {20, -60}, {20, -60} }));

connect(revolute2.frame_b, body2.frame_a) annotation(Line(points = {{10,-20}, {10, -20}, {10, -30},
{20, -30}, {20, -30}}, color = {95, 95, 95}));

connect(revolute2.frame_a, fixedTranslation2.frame_b) annotation(Line(points = {{10, 0}, {10, 0},
{10, 10}, {10, 10}}, color = {95, 95, 95}));

connect(fixedTranslationl.frame_b, bodyl.frame_a) annotation(Line(points = {{0, 70}, {18, 70},
{18,701}, {20, 70} }));

end piston;

>>> setCommandLineOptions ("-d=initialization");

>>> buildModel (piston);

"Error: Failed to load package piston (default) using MODELICAPATH,
—«OPENMODELICAHOME»/1lib/omlibrary.

Error: Class piston not found in scope <TOP>.
"

Note how OpenModelica will inform the user about relevant and irrelevant start values for this model and for
which variables a fixed default start value is assumed. The model has four joints but only one degree of freedom,
so one of the joints revolutePlanar or prismatic must be initialized.

So, initializing phi and w of revolutePlanar will give a sensible start system.

model pistonInitialize
extends piston(revolutel.phi.fixed = true, revolutel.phi.start = -1.
true, revolutel.w.start = 5);

—221730476396031, revolutel.w.fixed =
equation

end pistonInitialize;

>>> getCommandLineOptions ("-d=initialization");

>>> simulate (pistonInitialize, stopTime=2.0);

"[<interactive>:2:3-2:136:writable] Error: Base class piston not found in scope,
—pistonInitialize.

Error: Error occurred while flattening model pistonInitialize

4.3. Initialization 77

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

Error: Unable to execute gnuplot directive

Traceback (most recent call last): File "/var/lib/jenkins/ws/OpenModelica_maintenance_v1.16/doc/UsersGuide/pource/sphinxcont
line 200, in run assert(omc.sendExpression('filterSimulationResults("%s", "%s", %s)" % (file-
name,csvfile,varstrquoted))) AssertionError

4.3.2 Homotopy Method

For complex start conditions OpenModelica can have trouble finding a solution for the initialization problem with
the default newton method.

Modelica offers the homotopy operator* to formulate actual and simplified expression for equations. OpenModel-
ica has different solvers available for non-linear systems. Initializing with homotopy on the first try is default if a
homotopy operator is used. It can be switched off with noHomotopyOnFirstTry. For more details on the homotopy
method see [openmodelica.org:doc-extra:ochel2013initialization].

Several compiler and simulation flags influence initialization with homotopy: --homotopyApproach,
-homAdaptBend, -homBacktraceStrategy, -homHEps, -homMaxLambdaSteps, -homMaxNewtonSteps,
-homMaxTries, -homNegStartDir, -homotopyOnFirstTry, -homTauDecFac, -homTauDecFacPredictor,
homTaulncFac, -homTaulncThreshold, -homTauMax, -homTauMin, -homTauStart, -ils.

4.3.3 References

4 Modelica Association, Modelica® - A Unified Object-Oriented Language for Systems Modeling Language Specification - Version 3.4,
2017

78 Chapter 4. Solving Modelica Models

CHAPTER
FIVE

DEBUGGING

There are two main ways to debug Modelica code, the transformations browser, which shows the transformations
OpenModelica performs on the equations. There is also a debugger for debugging of algorithm sections and
functions.

5.1 The Equation-based Debugger

This section gives a short description how to get started using the equation-based debugger in OMEdit.

5.1.1 Enable Tracing Symbolic Transformations

This enables tracing symbolic transformations of equations. It is optional but strongly recommended in order to
fully use the debugger. The compilation time overhead from having this tracing on is less than 1%, however, in
addition to that, some time is needed for the system to write the xml file containing the transformation tracing
information.

Enable -d=infoXmlOperations in Tools->Options->Simulation (see section Simulation) OR alternatively click on
the checkbox Generate operations in the info xml in Tools->Options->Debugger (see section Debugger) which
performs the same thing.

This adds all the transformations performed by OpenModelica on the equations and variables stored in the
model_info.xml file. This is necessary for the debugger to be able to show the whole path from the source
equation(s) to the position of the bug.

5.1.2 Load a Model to Debug

Load an interesting model. We will use the package Debugging.mo since it contains suitable, broken models to
demonstrate common errors.

5.1.3 Simulate and Start the Debugger

Select and simulate the model as usual. For example, if using the Debugging package, select the model Debug-
ging.Chattering.ChatteringEvents1. If there is an error, you will get a clickable link that starts the debugger. If the
user interface is unresponsive or the running simulation uses too much processing power, click cancel simulation
first.

79

https://github.com/OpenModelica/OMCompiler/blob/master/Examples/Debugging.mo

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

Running Simulation of Debugging.C hattering.C hatteringEvents1.
Please wait for a while.

IRNRNRNNNNNNNNNNRNEE

Cancel Simulation

™ OMEdit - Debugging.Chattering.ChatteringEvents1 Simulation Output - 0O &

Output Compilation]

Jtop/OpenModel ica /OMEd] ¢ /Debugging . Chattering . ChatteringEventsl -

port=50212 -logFormat=xml -w -1wv=LOG_ STATS
stdout | info | Chattering detected arcund time

0.500000005..0.500000995001 (100 state events in a row with a total time
delta less than the step size 0.002). This can be a performance
bottleneck. Use -1v LOG EVENTS for more information. The zZero-crossing

was: 2 > 0.0 D;e%g more

Figure 5.1: Simulating the model.

80 Chapter 5. Debugging

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

5.1.4 Use the Transformation Debugger for Browsing

The debugger opens on the equation where the error was found. You can browse through the dependencies
(variables that are defined by the equation, or the equation is dependent on), and similar for variables. The
equations and variables form a bipartite graph that you can walk.

If the -d=infoXmlOperations was used or you clicked the “generate operations” button, the operations performed
on the equations and variables can be viewed. In the example package, there are not a lot of operations because
the models are small.

Try some larger models, e.g. in the MultiBody library or some other library, to see more operations with several
transformation steps between different versions of the relevant equation(s). If you do not trigger any errors in a
model, you can still open the debugger, using File->Open Transformations File (model_info.json).

OMEdit - Transformational Debugger

& | /tmp/Openmodelica_marsj/OMEdit/Debugging.Chattering.ChatteringEvents1_infoxml

Variables | [Source Browser |
Variables Browser |[Defined In Equations | [Used In Equations | /home/marsj/trunk/testsuite/openmodelica,
Find Variables |inc» Type Equation Inc * Type Equation 1 within ;

"] Case Sensitive Regular Expression = |:2 initial (assignmen...0 else 1.0 |:3 initial (assignment)y=2.0%z £ Eiﬁﬁg?;eggﬂﬂsggn;Tﬁt

Expand All Collapse All 5 regular (assignmen...0 else 1.0 6 regular (assignment)y=2.0%z declarative models"

Variables ¥ Comment Line Location 2 package Chattering "Models
X 7 fhom...q. with chattering behaviour™
v 8 /hom...g. 5 model ChatteringEventsl

6 "Exhibits chattering
= 9 /hom...g. after t = 0.5, with
[variable Operations generated events”
: 7 Real x(start=1
Operations '
B fixed=true);
8 Real y;
Real z;
16 equation
11 z = if x > @ then -1
else 1;
12 y = 2%z;
13 der(x) =y;
(j v 14 annotation

Equations | (Documentation(info="<html>

Eauati B Defi) a 15 <p>After t = 8.5, chattering
quations Browser | [Defines | [Depends | Lakes place, due to the

Inc v+ Type Equation Variable ¥ | Variable M discontinuity in the right
1 initial (assignment) x=1.0 z Lx handtnde ?f the first

- . equation.</p>
2 !n!t!al (ass!gnment‘...o else 1.0 16 <p>Chattering can be
3 initial (assignment)y=2.0%z detected because lots of
4 initial (assignment) der(x) =y tightly spaced events are
5 & : . 0else 1.0 generated. The feedback to
e {assgnmen . the user should allow to
6 reqular (assignment)y=2.0%z identify the equation from
7 reqular (assignment) der(x) =y = = which the zero crossing
[Equation Operations | function that generates the
Operations events originates.</p>

17 </html=>"),
experiment (StopTime=1});

tsolved: z=if x> 0.0 then-1.0 else 1.0
18 end ChatteringEventsl;

original: z = if x > 0 then -1 else 1; => flattened: z = if x > 0.0 then -1.0 else 1.0;

24 model ChatteringEvents2
21 "Exhibits chattering
after t = 0.422, with

nenerated events" -

Figure 5.2: Transfomations Browser.

5.1. The Equation-based Debugger 81

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

5.2 The Algorithmic Debugger

This section gives a short description how to get started using the algorithmic debugger in OMEdit. See section
Simulation for further details of debugger options.

5.2.1 Adding Breakpoints

There are two ways to add the breakpoints,

* Click directly on the line number in Text View, a red circle is created indicating a breakpoint as shown in
Figure 5.3.

* Open the Algorithmic Debugger window and add a breakpoint using the right click menu of Breakpoints
Browser window.

g |
gi OMEdit - OpenModelica Connection Editor - [SimulationModel] l = Q
B Fle Edit View Simulaion FMI Export Tools Help NEE
FEHH 00 BQAQ WemNeEN[EQ9reS 8- 9 X »
Libraries Browser g X |II-I aﬁﬂ |Wriheab|e |Mode| ‘ Text View ‘ C:/Usersfadeas31/.. imulationModel. mo ‘ Line: 1, Col: 0 | i‘
L 1 model SimulationModel
+ Complex Beal =x=(start = 1);
1 7 Modelica Real y(start = 1);
o) algorithm
* ﬂ ModelicaReference [] x = getValueMulcipliedByTwo (x) ;
+ || ModelicaServices ¥ = X;
+ EI OpenModelica end SimulationModel;

|:|E| SimulationMaodel

getValueMultipliedByTwo

¥:-96.28 ¥: 100.83 €L welcome | o4 Modeling Plotting

Figure 5.3: Adding breakpoint in Text View.

5.2.2 Start the Algorithmic Debugger

You should add breakpoints before starting the debugger because sometimes the simulation finishes quickly and
you won’t get any chance to add the breakpoints.

There are four ways to start the debugger,
* Open the Simulation Setup and click on Launch Algorithmic Debugger before pressing Simulate.
 Right click the model in Libraries Browser and select Simulate with Algorithmic Debugger.
* Open the Algorithmic Debugger window and from menu select Debug-> Debug Configurations.

* Open the Algorithmic Debugger window and from menu select Debug-> Attach to Running Process.

82 Chapter 5. Debugging

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

5.2.3 Debug Configurations

If you already have a simulation executable with debugging symbols outside of OMEdit then you can use the
Debug->Debug Configurations option to load it.

The debugger also supports MetaModelica data structures so one can debug omc executable. Select omc exe-
cutable as program and write the name of the mos script file in Arguments.

.)
@& OMEdit - Debug Cenfigurations ﬂ

bk,
& New_configurationl Mame: |New_-:nnﬁguratinn1 |
Program: || | | Browse...
Working Directory: | | | Browse...
GOE Path: |C:,.’DMDEV,.’touIS,.’mingw,.'hin,.’gdb.E}(E | | Browse...
Arguments:
[Apply] [Reset]
[Save] [Saue &Debug] [Cancel]

Figure 5.4: Debug Configurations.

5.2.4 Attach to Running Process

If you already have a running simulation executable with debugging symbols outside of OMEdit then you can
use the Debug->Attach to Running Process option to attach the debugger with it. Figure 5.5 shows the Attach
to Running Process dialog. The dialog shows the list of processes running on the machine. The user selects the
program that he/she wish to debug. OMEdit debugger attaches to the process.

5.2. The Algorithmic Debugger 83

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

i ™
@& OMEdit - Attach to Running Pracess u

Attach to Process ID: |
| Filter Processes |
Process ID Mame : d
8760 AAM Updates Notifier.exe |—|

I 2164 AESTSr04.exe
2288 AppleMobileDeviceService.exe
3896 BT5tackServer.exe
1612 BT Tray.exe
7696 BluetocothHeadsetProxy.exe
7972 CCC.exe
7580 C55.55erviceManager.exe
6628 CamRecorder.exe
4960 CcrmExec.exe
588 CrRcService.exe
628 ConversionService.exe
1744 Cenceridae o
OK Refresh] [Cancel

Figure 5.5: Attach to Running Process.

84 Chapter 5. Debugging

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

5.2.5 Using the Algorithmic Debugger Window

Figure 5.6 shows the Algorithmic Debugger window. The window contains the following browsers,

* Stack Frames Browser — shows the list of frames. It contains the program context buttons like resume,
interrupt, exit, step over, step in, step return. It also contains a threads drop down which allows switching

between different threads.

* BreakPoints Browser — shows the list of breakpoints. Allows adding/editing/removing breakpoints.

* Locals Browser — Shows the list of local variables with values. Select the variable and the value will be
shown in the bottom right window. This is just for convenience because some variables might have long

values.

* Debugger CLI — shows the commands sent to gdb and their responses. This is for advanced users who want

to have more control of the debugger. It allows sending commands to gdb.

* Output Browser — shows the output of the debugged executable.

&% OMEdit - OpenModelica Connection Editor - [getValueMultipliedByTwo] — O *
E File Edit View Simulation Debug OMSimulator Git Tools Help - 8 X
W E * = 5/995 9 - &
JeB8R Heee \oHOTR < =K B % -
Libraries Browser & X Stack Frames Browser & X | BreakPoints Browser & X Locals Browser g X
Tinm ||'E R |Threads: 1 - |Sbo_._d1 Line File MName Type Value
)) ; ®5 C:/Users/ade...liedByTwo.mo inValue Real 0
L ~
Libraries Functon lne |Fe outValue Real 4.94065...5
SimulationModel [getValueMultipliedByTwo 5 C/Use.. Two
- F—Y - 3 an SUser. Mo ¥
getValueM...liedByTwo . SimulationM...aFunction 2 90 C: U_EI...H)C
|II-I oﬁ E o |Wr1'13ble |Funcﬁon |Te)rt\|"|ew |get\|‘alueMth'p|iedByTwo C:Nsers!a...edByTwo.mc| |
function getValusMultipliedByTwo
input Real inValue;
output EReal outValue;
algorithm
[I outValue := inValue * 2;
end getValusMultipliedByTwo;
£ >
a
Messages Browser & X OutputBrowser g X
all MNotifications Warnings Errors
Debugger CLI Qutput Browser
Ln: 5, Col: 0 t Welcome oﬂ Modeling ﬁ Flotting o Debugging
Figure 5.6: Algorithmic Debugger.
5.2. The Algorithmic Debugger 85

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

86 Chapter 5. Debugging

CHAPTER
SIX

GENERATING GRAPH REPRESENTATIONS FOR MODELS

The system of equations after symbolic transformation is represented by a graph. OpenModelica can generate
graph representations which can be displayed in the graph tool yed (http://www.yworks.com/products/yed). The
graph generation is activated with the debug flag

+d=graphml

Two different graphml- files are generated in the working directory. TaskGraph_model.graphml, showing the
strongly-connected components of the model and BipartiteGraph_CompleteDAE_model.graphml showing all
variables and equations. When loading the graphs with yEd, all nodes are in one place. Please use the various
layout algorithms to get a better overview.

¥ TaskGraph_Modelica.Electrical.Spice3 Examples.Coupledinductors.graphml - yEd - o X

File Edit View Layout Tools Grouping Windows Help
BEER2+REX 0N Q8 QR IR e i~ @ P .y

¥ BiartiteGrap. . tors.araphml = x |) TaskGraph_Mod...tors.graphml * x 4 b E §
| E:E_jij o |

- l@me
L bl

[Meighborhood | B Folder Contents | 1] Predecessors | [Successors

ﬂ" = General
Search Desaiption] « Number of Nodes 18
= | Grapn Number of Edges 14

[= Data
CriticalPath

i # CLi=(L2internal) -R3. FOR CLi
i # C2i = (L3.internal) -R5.i FOR C2.i
LLv =sineVoltage.v -RLvFOR LLv
L2.v = Clvinternal -R2.y FOR L2.v
L # L3.v = C2vinternal -R4.y FOR L3.v
- # RLv =RLR *Llintenal FORR1v
- # R2v =R2.R *L2intenal FORR2.v
- # R3.=Clvinternal /R3.R FORR3.i
- # R4y =R4R *L3internal FOR R4v
- # RS.i=C2vinternal /R5.R FOR RS
- # Torn linear System

Figure 6.1: A task-graph representation of a model in yEd

87

http://www.yworks.com/products/yed

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

J BipartiteGraph_CompleteDAE_Modelica Electrical Spice3.Examples.Coupledinductors.graphml - yEd
[File| Edit View Layout Tools Grouping Windows Help

BOED »RRE O~ QQ QR HTEerLEHm @ P

& Cverven Wil | Y wartiterap. tors graphml *_ x| “re
I Shape Hodes @ A
E]N'hhhdlﬂ]FldChet‘sl‘lé]Pd I=E | A A /= hd
leighborhoor older Conten redecessors uccessors ————
- & Fi "Properties View aRx
& ‘Structure View EES © General A
Search Description ~ Text 2
X 3%6.0
=] | Graph ~ ¥ 556.0
©# CLi=(L2iinternal) -R3.i Vidth 3”'
- # CLEVARIABLE(nit = "A") "Current flowing from pin p to pin n” type: Rez Height 0.0
- # Clvinternal:STATE(1){unit = V" protected = true) type: Real Al iulur 0 #fossse
C2i = (d3.internal) -R5.i Filcoors [5—
CLiVARIABLE(unit = "A") "Current flowing from pin p to pin n™ type: Rez e Calo W =000000
C2.vinternal:STATE(1)(unit = "V" protected = true) type: Real e
L1.ICP.di:VARTABLE(fow=false unit = "Afs") “di/dt" type: Real - hbel""e
LLICP.v +kLinductiveCouplePin1.v +k2.inductiveCouplePinL.v = 0.0 e
« [LICP.:VARTABLE(flow=true unit = V") type: Real |
LLL=LLICP.di=L1ly +LLICP.v :::jd‘g:“""d g:_
Liiinternal: STATE(1,L 1.1CP.di)(unit = "A"} type: Real v Color Wooooe v

J

Figure 6.2: A biparite graph representation of a model in yEd

88 Chapter 6. Generating Graph Representations for Models

CHAPTER
SEVEN

FMI AND TLM-BASED SIMULATION AND CO-SIMULATION OF
EXTERNAL MODELS

7.1 Functional Mock-up Interface - FMI

The new standard for model exchange and co-simulation with Functional Mockup Interface (FMI) allows export of
pre-compiled models, i.e., C-code or binary code, from a tool for import in another tool, and vice versa. The FMI
standard is Modelica independent. Import and export works both between different Modelica tools, or between
certain non-Modelica tools.

See also OMSimulator documentation.

7.1.1 FMI Export

To export the FMU use the OpenModelica command translateModelFMU(ModelName) from command line in-
terface, OMShell, OMNotebook or MDT. The export FMU command is also integrated with OMEdit. Select File
> Export > FMU the FMU package is generated in the current directory of omc. You can use the cd() command
to see the current location. You can set which version of FMI to export through OMEdit settings, see section FMI.

To export the bouncing ball example to an FMU, use the following commands:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> translateModelFMU (BouncingBall)

"«DOCHOME» /BouncingBall. fmu"

>>> system("unzip -1 BouncingBall.fmu | egrep -v 'sources|files' | tail -n+3
—grep -o '[A-Za-z._0-9/]%$' > BB.log")

0

After the command execution is complete you will see that a file BouncingBall.fmu has been created. Its contents
varies depending on the current platform. On the machine generating this documentation, the contents in Listing
7.1 are generated (along with the C source code).

Listing 7.1: BouncingBall FMU contents

binaries/

binaries/linux64/
binaries/linux64/BouncingBall.so
binaries/linux64/BouncingBall_FMU.libs
modelDescription.xml

A log file for FMU creation is also generated named ModelName_FMU.log. If there are some errors while creating
FMU they will be shown in the command line window and logged in this log file as well.

By default an FMU that can be used for both Model Exchange and Co-Simulation is generated. We support FMI
1.0 & FMI 2.0 for Model Exchange FMUs and FMI 2.0 for Co-Simulation FMUs.

89

http://www.fmi-standard.org
https://openmodelica.org/doc/OMSimulator/master/html/
https://build.openmodelica.org/Documentation/OpenModelica.Scripting.translateModelFMU.html
https://build.openmodelica.org/Documentation/OpenModelica.Scripting.cd.html

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

Currently the Co-Simulation FMU uses the forward Euler solver as default with root finding which does an
Euler step of communicationStepSize in fmi2DoStep. Events are checked for before and after the call to
fmi2GetDerivatives.

For FMI 2.0 for Co-Simulation OpenModelica can export an experimental implementation of SUNDIALS
CVODE (see') as internal integrator.

To export a Co-Simulation FMU with CVODE for the bouncing ball example use the following commands:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> setCommandLineOptions ("--fmiFlags=s:cvode")

true

>>> translateModelFMU (BouncingBall, version = "2.0", fmuType="cs")

"«DOCHOME»/BouncingBall.fmu"

>>> system("unzip -cgq BouncingBall.fmu resources/BouncingBall_flags.json >_
—BouncingBall_ flags.json")

0

The FMU BouncingBall.fmu will have a new file BouncingBall_flags.json in its resources directory. By manualy
changing its contant users can change the solver method without recompiling the FMU.

The BouncingBall_flags.json for this example is displayed in Listing 7.2.

Listing 7.2: BouncingBall FMI flags

For this to work OpenModelica will export all needed dependecies into the FMU if and only if the flag fmiFlags
was set. To have CVODE in a SourceCode FMU the user needs to add all sources for SUNDIALS manualy and
create a build script as well.

7.1.2 FMI Import

To import the FMU package use the OpenModelica command importFMU,

>>> list (OpenModelica.Scripting.importFMU, interfaceOnly=true)
function importFMU

input String filename "the fmu file name";

input String workdir = "<default>" "The output directory for imported FMU files.
—<default> will put the files to current working directory.";

input Integer loglevel = 3 "loglevel _nothing=0;loglevel_fatal=1;loglevel_error=2;
—loglevel_warning=3; loglevel_info=4;loglevel_verbose=5; loglevel_debug=6";

input Boolean fullPath = false "When true the full output path is returned
—otherwise only the file name.";

input Boolean debuglogging = false "When true the FMU's debug output is printed.
="

input Boolean generateInputConnectors = true "When true creates the input
—connector pins.";

input Boolean generateOutputConnectors = true "When true creates the output,
—connector pins.";

output String generatedFileName "Returns the full path of the generated file.";
end importFMU;

The command could be used from command line interface, OMShell, OMNotebook or MDT. The importFMU
command is also integrated with OMEdit. Select File > Import > FMU the FMU package is extracted in the
directory specified by workdir, since the workdir parameter is optional so if its not specified then the current
directory of omc is used. You can use the cd() command to see the current location.

! Sundials Webpage

920 Chapter 7. FMI and TLM-Based Simulation and Co-simulation of External Models

https://build.openmodelica.org/Documentation/OpenModelica.Scripting.cd.html
http://computation.llnl.gov/projects/sundials-suite-nonlinear-differential-algebraic-equation-solvers

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

The implementation supports FMI for Model Exchange 1.0 & 2.0 and FMI for Co-Simulation 1.0 stand-alone.
The support for FMI Co-Simulation is still under development.

The FMI Import is currently a prototype. The prototype has been tested in OpenModelica with several examples.
It has also been tested with example FMUs from FMUSDK and Dymola. A more complete version for FMI
Import will be released in the near future.

When importing the model into OMEdit, roughly the following commands will be executed:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> translateModelFMU (BouncingBall)

"«DOCHOME» /BouncingBall. fmu"

>>> imported_fmu_mo_file:=importFMU ("BouncingBall.fmu")
"BouncingBall_me_FMU.mo"

>>> loadFile (imported_fmu_mo_file)

true

The imported FMU can then be simulated like any normal model:

>>> gimulate (BouncingBall_me_FMU, stopTime=3.0)
record SimulationResult

resultFile = "«DOCHOME»/BouncingBall_me_FMU_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 3.0, numberOflIntervals = 500,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'BouncingBall_me_FMU',
—options = '', outputFormat = 'mat', variableFilter '.x', cflags = '', simflags,,
—= ”"l

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.021652026,
timeBackend = 0.009873609,
timeSimCode = 0.003642505,
timeTemplates = 0.014705097,
timeCompile = 0.4887304649999999,
timeSimulation = 0.051670823,
timeTotal = 0.590396053

end SimulationResult;

Figure 7.1: Height of the bouncing ball, simulated through an FMU.

7.1. Functional Mock-up Interface - FMI 91

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

7.2 Transmission Line Modeling (TLM) Based Co-Simulation

This chapter gives a short description how to get started using the TLM-Based co-simulation accessible via
OMEdit.

The TLM Based co-simulation provides the following general functionalities:
* Import and add External non-Modelica models such as Matlab/SimuLink, Adams, and BEAST models

e Import and add External Modelica models e.g. from tools such as Dymola or Wolfram SystemModeler,
etc.

 Specify startup methods and interfaces of the external model
* Build the composite models by connecting the external models
* Set the co-simulation parameters in the composite model

 Simulate the composite models using TLM based co-simulation

7.3 Composite Model Editing of External Models

The graphical composite model editor is an extension and specialization of the OpenModelica connection editor
OMEdit. A composite model is composed of several external sub-models including the interconnections between
these sub-models. External models are models which need not be in Modelica, they can be FMUs, or models
accessed by proxies for co-simulation and connected by TLM-connections. The standard way to store a composite
model is in an XML format. The XML schema standard is accessible from timModelDescription.xsd. Currently
composite models can only be used for TLM based co-simulation of external models.

7.3.1 Loading a Composite Model for Co-Simulation

To load the composite model, select File > Open Composite Model(s) from the menu and select composite-
model.xml.

OME(dit loads the composite model and show it in the Libraries Browser. Double-clicking the composite model
in the Libraries Browser will display the composite model as shown below in Figure 7.2.

7.3.2 Co-Simulating the Composite Model
There are two ways to start co-simulation:
¢ Click TLM Co-Simulation setup button (@}) from the toolbar (requires a composite model to be active

in ModelWidget)

* Right click the composite model in the Libraries Browser and choose TLM Co-Simulation setup from
the popup menu (see Figure 7.3)

The TLM Co-Simulation setup appears as shown below in Figure 7.4.

Click Simulate from the Co-simulation setup to confirm the co-simulation. Figure 7.5 will appears in which you
will be able to see the progress information of the running co-simulation.

The editor also provides the means of reading the log files generated by the simulation manager and monitor.
When the simulation ends, click Open Manager Log File or Open Monitor Log File from the co-simulation
progress bar to check the log files.

92 Chapter 7. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

ot OMEdit - OpenModelica Cennection Editor - [deublePendulum] — O *,
gﬁ Eile Edit View Simulation FM| Export Debug Git Tools Help - &8 X
(L0 LA L =+ G . r==1
feBR @oee \ONO -5 Q3 o m-
Libraries Browser g X |n% B |‘.I'.|'riizble ‘Diagram View ‘C:!SIG:,IH_MPIU...EPendqum.m| h‘ 3D Viewer Browser g X
Fite Clsses | ¢ <] | [Bionerc - | T
L
Libraries
L)
doublePendulum
|
Eukl e il
i
v
£ >
t Welcome gﬁ Modeling ﬂ Plotting ‘» Debuaaing

Figure 7.2: Composite Model with 3D View.

93

7.3. Composite Model Editing of External Models

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

ot OMEdit - OpenModelica Cennection Editor - [deublePendulum] — O *,
gﬁ Eile Edit View Simulation FM| Export Debug Git Tools Help - &8 X
[. LY -+ 4 (==
Ba =1 Heee \PHO 59 >9 0"
Libraries Browser g X |n% B |‘.I'.|'riizble ‘Diagram View ‘C:!SIG:,IH_MPIU...EPendqum.m| 5 ‘ 3D Viewer Browser g X
Filter Classes \ 4 [B s oy
| | ~ é;lsometnc |]
Libraries
</> doublePen
{4- Fetch Interface Data
< TLM Co-Simulation Setup
Unload Del
|
Eukl e il
i
W
£ >
Opens the TLM co-simulation setup t Welcome gﬁ Modeling ﬁ Plotting ‘» Debugging

Figure 7.3: Co-simulating and Fetching Interface Data of a composite model from the Popup Menu .

94 Chapter 7. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

ot OMEdit - TLM Co-Simulation Setup - doublePendulum ? >

TLM Co-Simulation Setup - doublePendul

TLM Flugin Path: |C:,."5HF,."TLMPIugin,|'bin | Browse...
TLM Manager
Manager Process: |C:/SKF/TLMPlugin/bin/tmmanager.exe Browse...
Server Port: 11111
Monitor Port: 12111

[] Debug Mode

TLM Monitor

Monitor Process: | C:/SKF/TLMPlugin/bin/ftmmaonitor. exe Browse...

Mumber Of Steps: |

Time Step Size:

[] Debug Mode

Show TLM Co-Simulation Output Window

Simulate Cancel

Figure 7.4: TLM Co-simulation Setup.

. Composite Model Editing of External Models 95

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

o't OMEdit - doublePendulum TLM Co-Simulation — O >

Running co-simulation using the doublePendulum composite model. Please wait for a while.

I TN

Manager Output Stop Manager | Open Manager Log File

tlm.config ~
timeEnd = 3

MaxTimeStep "<"= 0.0001000000

Writing caselIl doublePendulumZ and server name 130.Z3&.15%0.168:11111 to £file
tlm.config

Writing doublePendulumZ .mos

Writing doublePenduluml .mos

Starting COpenModelica

C: /OpenModelicabuild/ /bin/omc.exe doublePendulumZ mos

Starting COpenModelica

C: /OpenModelicasbuild/ /bin/omc.exe doublePenduluml .mos

W

Monitor Output Stop Manitor | | Open Maonitor Log File

C:/8FF/TLMPlugin/bin/tlmmonitor.exe 130.236.15%0.168:12111 C:/5EKF/TILMPlugin/HMetaModels/
CmoCmeDoublePendul umy/doublePendulum. xml

Figure 7.5: TLM Co-Simulation Progress.

96 Chapter 7. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

7.3.3 Plotting the Simulation Results

When the co-simulation of the composite model is completed successful, simulation results are collected and
visualized in the OMEdit plotting perspective as shown in Figure 7.6 and Figure 7.7. The Variables Browser
display variables that can be plotted. Each variable has a checkbox, checking it will plot the variable.

&t OMEdit - OpenModelica Connection Editor - [Plot: 1] - O >

IZEiIe Edit View Simulation FMI Export Debug Git Tools Help - 8 X

FeBB 98 Xioa/S

Libraries Browser g x Auto Scale | FitinView | Save | Print | Grid | Detsiled Grid Mo Grid > Variables Browser 8 X

|Filter Claszes | L4 |Fi|ter Variables
doublePendulum 1. tm.A{1, 1) [] doublePendulum1.tm. A{1,2) []

Libraries Simulation Time Unit |5 -

doublePendulum 17 Variables Ve ™
] - T

] = doublePendulum?

] = tlm

0.5] A0 1]

4 401,21 [-1

. RS

1 Oaen -

1 Oaea -

0 Oaea -

7 [HEERNIR

Oac2i-]

Oacan-

[C1F_tie[...1) [M]

[CIF _tie..2) [N]

[IF _tie...3) [N]

1M _tie... [Nm]

I M_tie... [Nm]

I M_tie... [Nm]

'
N
_l

0 0.5 1 1.5 2 2.5 3 [0meg...d/s] 5
time [s] . [10meag...d/s] N

t Welcome u!i Modeling ﬂ Plotting w Debugging

Figure 7.6: TLM Co-Simulation Results Plotting.

7.3.4 Preparing External Models

First step in co-simulation Modeling is to prepare the different external simulation models with TLM inter-
faces. Each external model belongs to a specific simulation tool, such as MATLAB/Simulink*, BEAST,
MSC/ADAMS, Dymola and Wolfram SystemModeler.

When the external models have all been prepared, the next step is to load external models in OMEdit by selecting
the File > Load External Model(s) from the menu.

OMEdit loads the external model and show it in the Libraries Browser as shown below in Figure 7.8.

7.3. Composite Model Editing of External Models 97

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

di OMEdit - OpenModelica Connection Editor - [doublePendulum.csv]

Eile Edit View Simulation FMI Export Debug Git Tools

TeBR 98 Xloa %

|Filter Classes |

Help

Filter Variables

Libraries

L)
doublePendulum

Simulation Time Unit | s

Libraries Browser & “ ’ II I Time [5]: Speed: gglsometnc v |3 | Variables Browser =

Variables
= és‘;' doublePendulum
= doublePendulum1
= tlm

ClAm -]
EEY !
C1A3) -]
HEERIG!
AR [
AR
CIAGD [
CIAG2 [
CIAGI [
[CIF tiel...1) [M]
[C]F tiel..2) [M]
[C]F tiel...2) [M]
I M_tie... [Mm]
I M _tie... [Nm]
I M _tie... [Nm]
[10Ormeg...d/s]

[10meq...d/s]
£ >

L

t Welcome

&i Modeling

ﬂ Plotting ‘ Debugging

Figure 7.7: TLM Co-Simulation Visualization.

98 Chapter 7. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

-
gﬁ OMEdit - CpenModelica Connection Editor

File Edit View Simulation FMI Export Tools Help

lThHlﬂ 0‘\6‘\9\

Libraries Browser B X
Search Classes o
Libraries

k> OpenModelica

P
[» ﬂ ModelicaReference

[ModelicaServices

k> i Complex

= A5 Modelica

chaftl
chaft?

TXT dgbb

Figure 7.8: External Models in OMEdit.

7.3. Composite Model Editing of External Models 99

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

7.3.5 Creating a New Composite Model

We will use the "Double pendulum" composite model which is a multibody system that consists of three sub-
models: Two OpenModelica Shaft sub-models (Shaftl and Shaft2) and one SKF/BEAST bearing sub-model
that together build a double pendulum. The SKF/BEAST bearing sub-model is a simplified model with only
three balls to speed up the simulation. Shaftl is connected with a spherical joint to the world coordinate system.
The end of Shaftl is connected via a TLM interface to the outer ring of the BEAST bearing model. The inner ring
of the bearing model is connected via another TLM interface to Shaft2. Together they build the double pendulum
with two shafts, one spherical OpenModelica joint, and one BEAST bearing.

To create a new composite model select File > New Composite Model from the menu.

Your new composite model will appear in the in the Libraries Browser once created. To facilitate the process of
textual composite modeling and to provide users with a starting point, the Text View (see Figure 7.9) includes the
composite model XML elements and the default simulation parameters.

&t OMEdit - OpenModelica Connection Editor - [CompositeModel1%] - O >
E File Edit View Simulation FMI Export Debug Tools Help - 8 X
reBB @oee \0 B0 X5
Libraries Browser g x ‘gﬁ E ‘Wrimble |Text\ﬂew ‘ |Line: 1, Col: 0 ‘ |
|Filter Classes | @ - -
1 <?xml version='l.0' encoding='UTF-8"'?>
Libraries <!—— The root node i=s the composite-model —->
-y <Model Name="CompositeModell™:>
CompositeModell «!'—— List of connected sub-models —->
<SubModels/>
<!-— List of TLM connections -->
<Connections/>
<!-— Parameters for the simmlation -->
<SimulationParams StartTime="0" StopTime="1"/>
</Model>

¥:-101.11 ¥: 105.89 t Welcome qli Modeling g Plotting w Debugging

Figure 7.9: New composite model text view.

100 Chapter 7. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

7.3.6 Adding Submodels

It is possible to build the double pendulum by drag-and-drop of each simulation model component (sub-model)
from the Libraries Browser to the Diagram View. To place a component in the Diagram View of the double
pendulum model, drag each external sub-model of the double pendulum (i.e. Shaftl, Shaft2, and BEAST bearing
sub-model) from the Libraries Browser to the Diagram View.

rd OMEdit - OpenModelica Connecticn Editor =HEC ﬂ&1
File Edit View Simulation FMI Export Tools Help
B 1=15 .oee N N=FH-E- Y
Libraries Browser » MetaModel 1= @]
|Search Classes | \ 4 @E |Wri13b|e Diagram View ‘ Line: 1, Cal: 0 | |
Libraries -
> IE OpenModelica
> o ModelicaReference
> |:| ModelicaServices
> Complex
> Muodelica shaft11 dgbb1 chaftzi
shaftl
shaft2
dgbb
MetaModell
I
4 }
X: 148.54 ¥:-16.01 & welcome | oA Modeling | B Plotting |

Figure 7.10: Adding sub-models to the double pendulum composite model.

7.3.7 Fetching Submodels Interface Data
To retrieve list of TLM interface data for sub-models, do any of the following methods:
¢ Click Fetch Interface Data button (<") from the toolbar (requires a composite model to be active in

ModelWidget)

* Right click the composite model in the Library Browser and choose Fetch Interface Data from the popup
menu (see Figure 7.3).

To retrieve list of TLM interface data for a specific sub-model,

* Right click the sub-model inside the composite model and choose Fetch Interface Data from the popup
menu.

Figure 7.11 will appear in which you will be able to see the progress information of fetching the interface data.

Once the TLM interface data of the sub-models are retrieved, the interface points will appear in the diagram view
as shown below in Figure 7.12.

7.3. Composite Model Editing of External Models 101

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

o4& OMEdit - Fetch Interface Data - MetaModel1 (P e

Fetching interface data for MetaModell. ..

| P . Cancel Fetch Again

Output

C:3WTIMPluginiyMetaModels\ testhshaftll>goto DONE

C:%wTIMPluginiyMetaModels\ testyshaftZl>goto DONE

C:Z\TIMFPlugin\wMetaModels\testyshaftilr»echo Done StartTLMOpenModelica
Done StartTIMOpenModelica

C:\TIMFlugin\wMetaModelsytestyshaftllr»echo Done StartTLMOpenModelica
Done StartTIMOpenModelica

1

Figure 7.11: Fetching Interface Data Progress.

7.3.8 Connecting Submodels

When the sub-models and interface points have all been placed in the Diagram View, similar to Figure 7.12, the

next step is to connect the sub-models. Sub-models are connected using the Connection Line Button ('<:) from
the toolbar.

To connect two sub-models, select the Connection Line Button and place the mouse cursor over an interface and
click the left mouse button, then drag the cursor to the other sub-model interface, and click the left mouse button
again. A connection dialog box as shown below in Figure 7.13 will appear in which you will be able to specify
the connection attributes.

Continue to connect all sub-models until the composite model Diagram View looks like the one in Figure 7.14
below.

7.3.9 Changing Parameter Values of Submodels

To change a parameter value of a sub-model, do any of the following methods:
* Double-click on the sub-model you want to change its parameter
* Right click on the sub-model and choose Attributes from the popup menu

The parameter dialog of that sub-model appears as shown below in Figure 7.15 in which you will be able to specify
the sub-models attributes.

102 Chapter 7. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

i Rl
% OMEdit - OpenModelica Cannection Editor . L= B

File Edit Wiew Simulation FMI Export Tools Help
rwHR Eee - \-5- 58 95
Libraries Browser ? X | A4 pendulum B8 |
|5E'-="":|'I Classes | v @E Writable | Diagram View | C:/TLMPlugin.. pendulum.xml | Line: 1, Col: 0 |
Libraries -
[OpenModelica
[MedelicaReference
> ModelicaServices
[Complex
[Modelica
<haftl shaftl dgbb1 shaft2
shaft2
dgbb
pendulum
'] b
X: 113.03 Y: 86.64 o4& Modeling
. 4

Figure 7.12: Fetching Interface Data.

7.3. Composite Model Editing of External Models 103

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

i
o& OMEdit - Connection Attributes (SRS

Connection Attributes

From: shaftl.dm
To: dgbb1.bIR. "cs1

Delay: | 1e-4
Fil 10000
Zfr: 100

|' Alpha: |0.2

[QK] | Cancel

L L

Figure 7.13: Sub-models Connection Dialog.

L Y
&t OMEdit - OpenModelica Connection Editor E‘Elg

File Edit Wiew Simulation FMI Expert Tools Help

EA71- 1" Eeee \OHO -E-H- 90

Libraries Browser 8 X | A pendulum x|

— = '_'4
|search Classes | @E ‘ Writable | Diagram View ‘ C:/TLMPlugin/MetaModels/test/pendulum. xmi ‘ Line: 1, Col: 0 | a ‘
Libraries -~

[> @ OpenMedelica

B o MeodelicaReference
[» D ModelicaServices
[. Complex

B @ Meodelica

4 »

Messages Browser g X

Figure 7.14: Connecting sub-models of the Double Pendulum Composite Model.

104 Chapter 7. FMI and TLM-Based Simulation and Co-simulation of External Models

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

.
o% OMEdit - SubModel Attributes -

Name: shaftl

Model File: shaftl.mo

Simulation Tool OpenModelica -
Start Command: startTLMOpenModelica

|| Exact Step Flag

Ok] | Cancel

Figure 7.15: Changing Parameter Values of Sub-models Dialog.

7.3.10 Changing Parameter Values of Connections

To change a parameter value of a connection, do any of the following methods:
* Double-click on the connection you want to change its parameter
* Right click on the connection and choose Attributes from the popup menu.

The parameter dialog of that connection appears (see Figure 7.13) in which you will be able to specify the con-
nections attributes.

7.3.11 Changing Co-Simulation Parameters
To change the co-simulation parameters, do any of the following methods:
| |
e Click Simulation Parameters button (to t) from the toolbar (requires a composite model to be active in

ModelWidget)

* Right click an empty location in the Diagram View of the composite model and choose Simulation Param-
eters from the popup menu (see Figure 7.16)

The co-simulation parameter dialog of the composite model appears as shown below in Figure 7.17 in which you
will be able to specify the simulation parameters.

7.3. Composite Model Editing of External Models 105

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

[-
{,ﬁ OMEdit - OpenModelica Connection Editor E@g

File Edit View Simulation FMI Export Tools Help

ITE » \\» E» v 9» tI}Hﬁ”

Libraries Browser g X | ot pendulum [
| search Classes | & @E Writable | Diagram View | C:/TLMP.Jum.xml | Line: 1, Col: 0 | /5
Libraries -
[P OpenModelica
B 0 ModelicaReference L
B [:] MoadelicaServices et e
k& - Complex
[@ Modelica o
M shaftl . Export as an Image
shaft2 Export to Clipboard

e = B Export to OMMNotebook .
" pendulum
Messages Browser | @& Print... Ctrl+P g X
—

v Simulation Parameters

Shows the Simulation Parar¥: -78.24 Y: 40,15 ‘:. Welcome di Madeling ﬂ Flotting |

Figure 7.16: Changing Co-Simulation Parameters from the Popup Menu.

-
o't OMEdit - Simulation Parameters - pendulum u

Simulation Parameters - pendulum

Start Time: |0.0

Stop Time: | 1.0
L [Save] | Cancel
L v

Figure 7.17: Changing Co-Simulation Parameters Dialog.

106 Chapter 7. FMI and TLM-Based Simulation and Co-simulation of External Models

CHAPTER
EIGHT

OMSIMULATOR

Version: v2.1.0-dev-230-g10c82c8

8.1 Introduction

The OMSimulator project is a FMI-based co-simulation tool that supports ordinary (i.e., non-delayed) and TLM
connections. It supports large-scale simulation and virtual prototyping using models from multiple sources utiliz-
ing the FMI standard. It is integrated into OpenModelica but also available stand-alone, i.e., without dependencies
to Modelica specific models or technology. OMSimulator provides an industrial-strength open-source FMI-based
modelling and simulation tool. Input/output ports of FMUs can be connected, ports can be grouped to buses, FMUs
can be parameterized and composed, and composite models can be exported according to the (preliminary) SSP
(System Structure and Parameterization) standard. Efficient FMI based simulation is provided for both model-
exchange and co-simulation. TLM-based tool connection is provided for a range of applications, e.g., Adams,
Simulink, Beast, Dymola, and OpenModelica. Moreover, optional TLM (Transmission Line Modelling) domain-
specific connectors are also supported, providing additional numerical stability to co-simulation. An external API
is available for use from other tools and scripting languages such as Python and Lua.

8.2 OMSimulator

OMSimulator is a command line wrapper for the OMSimulatorLib library.

8.2.1 OMSimulator Flags

A brief description of all command line flags will be displayed using OMSimulator --help:

info: Usage: OMSimulator [Options] [Lua script] [FMU] [SSP file]
Options:

——addParametersToCSV=<arg> Export parameters to .csv file (true,
— [false])

—-—-clearAllOptions Reset all flags to default values

——deleteTempFiles=<bool> Deletes temp files as soon as they are
—no longer needed ([true], false)

——emitEvents=<bool> Specifies whether events should be,
—emitted or not ([true], false)

——exportParametersInline=<arg> Export ParameterBindings inline with
—ssd file,

——fetchAllVars=<arg> Workaround for certain FMUs that do not
—update all internal dependencies automatically
—-help [-h] Displays the help text

——ignoreInitialUnknowns=<bool> Ignore the initial unknowns from the_
—modelDescription.xml (true, [false])

——inputExtrapolation=<bool> Enables input extrapolation using,
—derivative information (true, [false])
——intervals=<int> [-1] Specifies the number of communication,,

(continues on next page)

107

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

(continued from previous page)

—-logFile=<arg> [-1] Specifies the logfile (stdout is used,|
—1if no log file is specified)

—-logLevel=<int> 0 default, 1 debug, 2 debug+trace

—--maxEventIteration=<int> Specifies the max. number of iterations,
—for handling a single event

—-maxLooplteration=<int> Specifies the max. number of iterations,,

—for solving algebraic loops between system-level components. Internal algebraic,
—loops of components are not affected.

—--mode=<arg> [-m] Forces a certain FMI mode iff the FMU,,
—provides cs and me (cs, [mel])

——numProcs=<int> [-n] Specifies the max. number of processors,
—~to use (O=auto, Il=default)

—-—progressBar=<bool> Shows a progress bar for the simulation,
—progress in the terminal (true, [false])

——realTime=<bool> Experimental feature for (soft) real-
—time co-simulation (true, [false])

—--resultFile=<arg> [-r] Specifies the name of the output result

—-—-setInputDerivatives=<bool> Deprecated; see '—-—-inputExtrapolation'

—-skipCSVHeader=<arg> Skip exporting the scv delimiter in the
—header (true, [false]),

--solver=<arg> Specifies the integration method (euler,
— [cvode])

—-—-solverStats=<bool> Adds solver stats to the result file, e.
—g. step size; not supported for all solvers (true, [false])

——-startTime=<double> [-s] Specifies the start time

—-stopTime=<double> [-t] Specifies the stop time

—-stripRoot=<bool> Removes the root system prefix from all
—exported signals (true, [false])

——-suppressPath=<bool> Supresses path information in info
—messages; especially useful for testing (true, [false])

—-—tempDir=<arg> Specifies the temp directory

——timeout=<int> Specifies the maximum allowed time in,
—seconds for running a simulation (0 disables)

—-—tolerance=<double> Specifies the relative tolerance

—-—-version [-Vv] Displays version information

——wallTime=<bool> Add wall time information for to the,
—result file (true, [false])

—--workingDir=<arg> Specifies the working directory

To use flag 1ogLevel with option debug (-—1ogLevel=1) or debug+trace (-—1logLevel=2) one needs to
build OMSimulator with debug configuration enabled. Refer to the OMSimulator README on GitHub for further
instructions.

8.2.2 Examples

OMSimulator —--timeout 180 example.lua

108 Chapter 8. OMSimulator

https://github.com/OpenModelica/OMSimulator/blob/master/README.md

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

8.3 OMSimulatorLib

This library is the core of OMSimulator and provides a C interface that can easily be utilized to handle co-
simulation scenarios.

8.3.1 RunfFile

Simulates a single FMU or SSP model.

oms_status_enu_t oms_RunFile (const char+ filename);

8.3.2 addBus

Adds a bus to a given component.

oms_status_enu_t oms_addBus (const char+ cref);

8.3.3 addConnection

Adds a new connection between connectors A and B. The connectors need to be specified as fully qualified com-
ponent references, e.g., "model.system.component.signal”.

oms_status_enu_t oms_addConnection (const charx crefA, const charx crefB);

The two arguments crefA and crefB get swapped automatically if necessary.

8.3.4 addConnector

Adds a connector to a given component.

oms_status_enu_t oms_addConnector (const charx cref, oms_causality_enu_t causality,
—oms_signal_type_enu_t type);

8.3.5 addConnectorToBus

Adds a connector to a bus.

oms_status_enu_t oms_addConnectorToBus (const char* busCref, const charx
—connectorCref) ;

8.3.6 addConnectorToTLMBus

Adds a connector to a TLM bus.

oms_status_enu_t oms_addConnectorToTLMBus (const charx busCref, const charx
—connectorCref, const char xtype);

8.3. OMSimulatorLib 109

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

8.3.7 addExternalModel

Adds an external model to a TLM system.

oms_status_enu_t oms_addExternalModel (const charx cref, const charx path, const
—char+ startscript);

8.3.8 addSignalsToResults

Add all variables that match the given regex to the result file.

oms_status_enu_t oms_addSignalsToResults (const charx cref, const charx regex);

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

8.3.9 addSubModel

Adds a component to a system.

oms_status_enu_t oms_addSubModel (const char* cref, const charx fmuPath);

8.3.10 addSystem

Adds a (sub-)system to a model or system.

oms_status_enu_t oms_addSystem(const charx cref, oms_system_enu_t type);

8.3.11 addTLMBus

Adds a TLM bus.

oms_status_enu_t oms_addTLMBus (const char+ cref, oms_tlm domain_t domain, const
—int dimensions, const oms_tlm_interpolation_t interpolation);

8.3.12 addTLMConnection

Connects two TLM connectors.

oms_status_enu_t oms_addTLMConnection (const charx crefA, const charx crefB, double
—~delay, double alpha, double linearimpedance, double angularimpedance);

8.3.13 cancelSimulation_asynchronous

Cancels a running asynchronous simulation.

oms_status_enu_t oms_cancelSimulation_asynchronous (const charx cref);

110 Chapter 8. OMSimulator

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

8.3.14 compareSimulationResults

This function compares a given signal of two result files within absolute and relative tolerances.

int oms_compareSimulationResults (const charx filenameA, const charx filenameB,
—const charx var, double relTol, double absTol);

The following table describes the input values:

Input Type Description

filenameA String Name of first result file to compare.
filenameB String Name of second result file to compare.
var String Name of signal to compare.

relTol Number Relative tolerance.

absTol Number Absolute tolerance.

The following table describes the return values:

Type Description
Integer 1 if the signal is considered as equal, O otherwise

8.3.15 copySystem

Copies a system.

oms_status_enu_t oms_copySystem(const charx source, const charx target);

8.3.16 delete

Deletes a connector, component, system, or model object.

oms_status_enu_t oms_delete (const char+ cref);

8.3.17 deleteConnection

Deletes the connection between connectors crefA and crefB.

oms_status_enu_t oms_deleteConnection (const char+ crefA, const charx crefB);

The two arguments crefA and crefB get swapped automatically if necessary.

8.3.18 deleteConnectorFromBus

Deletes a connector from a given bus.

oms_status_enu_t oms_deleteConnectorFromBus (const charx busCref, const charx

—connectorCref) ;

8.3. OMSimulatorLib 111

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

8.3.19 deleteConnectorFromTLMBus

Deletes a connector from a given TLM bus.

oms_status_enu_t oms_deleteConnectorFromTLMBus (const charx busCref, const charx
—connectorCref) ;

8.3.20 export

Exports a composite model to a SPP file.

oms_status_enu_t oms_export (const charx cref, const charx filename);

8.3.21 exportDependencyGraphs

Export the dependency graphs of a given model to dot files.

oms_status_enu_t oms_exportDependencyGraphs (const charx cref, const charx
—initialization, const char* event, const char+ simulation);

8.3.22 exportSnapshot

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

oms_status_enu_t oms_exportSnapshot (const charx cref, charx* contents);

8.3.23 extractFMIKind

Extracts the FMI kind of a given FMU from the file system.

oms_status_enu_t oms_extractFMIKind (const charx filename, oms_fmi_kind_enu_t»*_
—kind) ;

8.3.24 faultinjection

Defines a new fault injection block.

oms_status_enu_t oms_faultInjection(const charx signal, oms_fault_type_enu_t
—faultType, double faultValue);

type Description”
oms_fault_type_bias y = y.$original + faultValue
oms_fault_type_gain y = y.$original * faultValue
oms_fault_type_const | y = faultValue

112 Chapter 8. OMSimulator

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

8.3.25 freeMemory

Free the memory allocated by some other API. Pass the object for which memory is allocated.

void oms_freeMemory (void+ obij);

8.3.26 getBoolean

Get boolean value of given signal.

oms_status_enu_t oms_getBoolean (const charx cref, boolx value);

8.3.27 getBus

Gets the bus object.

oms_status_enu_t oms_getBus (const charx cref, oms_busconnector_txx busConnector);

8.3.28 getComponentType

Gets the type of the given component.

oms_status_enu_t oms_getComponentType (const charx cref, oms_component_enu_t»* type);

8.3.29 getConnections

Get list of all connections from a given component.

oms_status_enu_t oms_getConnections (const charx cref, oms_connection_t#*#*x
—»connections);

8.3.30 getConnector

Gets the connector object of the given connector cref.

oms_status_enu_t oms_getConnector (const charx cref, oms_connector_txx connector);

8.3.31 getElement

Get element information of a given component reference.

oms_status_enu_t oms_getElement (const charx cref, oms_element_t+x element);

8.3. OMSimulatorLib 113

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

8.3.32 getElements

Get list of all sub-components of a given component reference.

oms_status_enu_t oms_getElements (const charx cref, oms_element_tx+x elements);

8.3.33 getFMUinfo

Returns FMU specific information.

oms_status_enu_t oms_getFMUInfo (const charx cref, const oms_fmu_info_tx*x fmulInfo);

8.3.34 getFixedStepSize

Gets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the
integrator step size in model exchange systems.

oms_status_enu_t oms_getFixedStepSize (const charx cref, doublex stepSize);

8.3.35 getinteger

Get integer value of given signal.

oms_status_enu_t oms_getInteger (const charx cref, intx value);

8.3.36 getModelState

Gets the model state of the given model cref.

oms_status_enu_t oms_getModelState (const charx cref, oms_modelState_enu_t«
—modelState) ;

8.3.37 getReal

Get real value.

oms_status_enu_t oms_getReal (const charx cref, doublex value);

8.3.38 getResultFile

Gets the result filename and buffer size of the given model cref.

oms_status_enu_t oms_getResultFile (const charx cref, charxx filename, intx
—bufferSize);

114 Chapter 8. OMSimulator

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

8.3.39 getSignalFilter

Gets the signal filter of the given model cref.

oms_status_enu_t oms_getSignalFilter (const charx cref, char*x regex);

8.3.40 getSolver

Gets the selected solver method of the given system.

oms_status_enu_t oms_getSolver (const charx cref, oms_solver_enu_tx solver);

8.3.41 getStartTime

Get the start time from the model.

oms_status_enu_t oms_getStartTime (const charx cref, doublex startTime);

8.3.42 getStopTime

Get the stop time from the model.

oms_status_enu_t oms_getStopTime (const charx cref, doublex stopTime);

8.3.43 getSubModelPath

Returns the path of a given component.

oms_status_enu_t oms_getSubModelPath (const charx cref, charx+ path);

8.3.44 getSystemType

Gets the type of the given system.

oms_status_enu_t oms_getSystemType (const charx cref, oms_system_enu_tx type);

8.3.45 getTLMBus

Gets the TLM bus objects of the given TLM bus cref.

oms_status_enu_t oms_getTLMBus (const char+ cref, oms_tlmbusconnector_t«*x
—tlmBusConnector);

8.3. OMSimulatorLib 115

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

8.3.46 getTLMVariableTypes

Gets the type of an TLM variable.

oms_status_enu_t oms_getTLMVariableTypes (oms_tlm_domain_t domain, const int |
—~dimensions, const oms_tlm_interpolation_t interpolation, char xxxtypes, char
—**+descriptions);

8.3.47 getTolerance

Gets the tolerance of a given system or component.

oms_status_enu_t oms_getTolerance (const charx cref, doublex absoluteTolerance,
—double* relativeTolerance);

8.3.48 getVariableStepSize

Gets the step size parameters.

oms_status_enu_t oms_getVariableStepSize (const charx cref, doublex initialStepSize,
— doublex minimumStepSize, doubler maximumStepSize);

8.3.49 getVersion

Returns the library's version string.

const charx oms_getVersion();

8.3.50 importFile

Imports a composite model from a SSP file.

oms_status_enu_t oms_importFile (const charx filename, charxx cref);

8.3.51 importSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

oms_status_enu_t oms_importSnapshot (const charx cref, const charx snapshot);

8.3.52 initialize

Initializes a composite model.

oms_status_enu_t oms_initialize (const charx cref);

116 Chapter 8. OMSimulator

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

8.3.53 instantiate

Instantiates a given composite model.

oms_status_enu_t oms_instantiate (const char* cref);

8.3.54 list

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

oms_status_enu_t oms_list (const char+ cref, char+x contents);

8.3.55 listUnconnectedConnectors

Lists all unconnected connectors of a given system.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

oms_status_enu_t oms_listUnconnectedConnectors (const charx cref, charxx contents);

8.3.56 loadSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must
not be instantiated.

oms_status_enu_t oms_loadSnapshot (const charx cref, const charx snapshot);

8.3.57 newModel

Creates a new and yet empty composite model.

oms_status_enu_t oms_newModel (const charx cref);

8.3.58 parseModelName

Parses the model name from a given SSD representation.

Memory is allocated for ident. The caller is responsible to free it using the C-API. The Lua and Python bindings
take care of the memory and the caller doesn't need to call free.

oms_status_enu_t oms_parseModelName (const charx contents, charxx cref);

8.3. OMSimulatorLib 117

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

8.3.59 removeSignalsFromResults

Removes all variables that match the given regex to the result file.

oms_status_enu_t oms_removeSignalsFromResults (const charx cref, const charx regex);

The second argument, i.e. regex, is considered as a regular expression (C++11). ".*" and "(.)*" can be used to hit
all variables.

8.3.60 rename

Renames a model, system, or component.

oms_status_enu_t oms_rename (const charx cref, const charx newCref);

8.3.61 reset

Reset the composite model after a simulation run.

The FMUs go into the same state as after instantiation.

oms_status_enu_t oms_reset (const char+ cref);

8.3.62 setActivationRatio

Experimental feature for setting the activation ratio of FMUs for experimenting with multi-rate master algorithms.

oms_status_enu_t experimental_ setActivationRatio (const charx cref, int k);

8.3.63 setBoolean

Sets the value of a given boolean signal.

oms_status_enu_t oms_setBoolean (const charx cref, bool value);

8.3.64 setBusGeometry

oms_status_enu_t oms_setBusGeometry (const charx bus, const ssd_connector_geometry_
—tx geometry);

8.3.65 setCommandLineOption

Sets special flags.

oms_status_enu_t oms_setCommandLineOption (const char* cmd);

Available flags:
info: Usage: OMSimulator [Options] [Lua script] [FMU] [SSP file]
Options:
——addParametersToCSV=<arg> Export parameters to .csv file (true,
— [false])
—--clearAllOptions Reset all flags to default values

(continues on next page)

118 Chapter 8. OMSimulator

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

(continued from previous page)

——deleteTempFiles=<bool>

—no longer needed ([true], false)
—-—emitEvents=<bool>
—emitted or not ([true], false)

——exportParametersInline=<arg>
—ssd file,
——fetchAllVars=<arg>

Deletes temp files as soon as they are_
Specifies whether events should be
Export ParameterBindings inline with

Workaround for certain FMUs that do not

—update all internal dependencies automatically

——help [-h]
——ignoreInitialUnknowns=<bool>

—modelDescription.xml (true, [false])
——inputExtrapolation=<bool>

(true, [false])

——intervals=<int> [-1]

(arg > 1)

—-—logFile=<arg> [-1]

—1if no log file is specified)
—-logLevel=<int>
——-maxEventIteration=<int>

—for handling a single event
—-maxLooplteration=<int>

—derivative information

—points

—for solving algebraic loops between system-level components.

—~loops of components are not affected.
——mode=<arg> [-m]
—provides cs and me (cs, [me])
——numProcs=<int> [-n]
(0O=auto, Il=default)
——progressBar=<bool>
—progress in the terminal (true,
—-realTime=<bool>

—to use

[false])

—~time co-simulation (true, [false])
—-—resultFile=<arg> [-r]
——-setInputDerivatives=<bool>
——-skipCSVHeader=<arg>

—header (true, [false]),

—--solver=<arg>
— [cvode])
—-—solverStats=<bool>
step size;
——startTime=<double>
—-stopTime=<double>
—-stripRoot=<bool>
—exported signals (true, [false])
——suppressPath=<bool>
especially useful for testing
——tempDir=<arg>
——timeout=<int>

—J.
[-s]
[-t]

—messages;

—seconds for running a simulation
—-—tolerance=<double>
——version [—-V]
—-wallTime=<bool>

—result file (true, [false])
—-workingDir=<arg>

not supported for all solvers

(true,

Displays the help text
Ignore the initial unknowns from the

Enables input extrapolation using,,
Specifies the number of communication
Specifies the logfile

(stdout is used,

0 default, 1 debug,
Specifies the max.

2 debug+ttrace
number of iterations,,

Specifies the max. number of iterations,,

Internal algebraic,,
Forces a certain FMI mode iff the FMU,,

Specifies the max. number of processors,,
Shows a progress bar for the simulation,
Experimental feature for (soft) real-

Specifies the name of the output result

Deprecated;
Skip exporting the scv delimiter in the

see '——inputExtrapolation'

Specifies the integration method (euler,
Adds solver stats to the result file, e.
(true, [false])

Specifies the start time

Specifies the stop time

Removes the root system prefix from all

Supresses path information in info
[false])

Specifies the temp directory

Specifies the maximum allowed time in,

(0 disables)

Specifies the relative tolerance
Displays version information

Add wall time information for to the,

Specifies the working directory

8.3. OMSimulatorLib

119

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

8.3.66 setConnectionGeometry

oms_status_enu_t oms_setConnectionGeometry (const charx crefA, const charx crefB,
—const ssd_connection_geometry_t* geometry);

8.3.67 setConnectorGeometry

Set geometry information to a given connector.

oms_status_enu_t oms_setConnectorGeometry (const charx cref, const ssd_connector_
—geometry_tx geometry);

8.3.68 setElementGeometry

Set geometry information to a given component.

oms_status_enu_t oms_setElementGeometry (const charx cref, const ssd_element_
—geometry_tx geometry);

8.3.69 setFixedStepSize

Sets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the
integrator step size in model exchange systems.

oms_status_enu_t oms_setFixedStepSize (const charx cref, double stepSize);

8.3.70 setinteger

Sets the value of a given integer signal.

oms_status_enu_t oms_setInteger (const charx cref, int value);

8.3.71 setLogFile

Redirects logging output to file or std streams. The warning/error counters are reset.

nn

filename="" to redirect to std streams and proper filename to redirect to file.

oms_status_enu_t oms_setLogFile (const charx filename);

8.3.72 setLoggingCallback

Sets a callback function for the logging system.

void oms_setLoggingCallback (void (xcb) (oms_message_type_enu_t type, const charx*

[

—message)) ;

120 Chapter 8. OMSimulator

OpenModelica User’s Guide, Release v1.16.1-5-gc01d479¢53

8.3.73 setLogginginterval

Set the logging interval of the simulation.

oms_status_enu_t oms_setLoggingInterval (const charx cref, double loggingInterval);

8.3.74 setLogginglLevel

Enables/Disables debug logging (logDebug and logTrace).
0 default, 1 default+debug, 2 default+debug+trace

void oms_setLoggingLevel (int logLevel);

8.3.75 setMaxLogFileSize

Sets maximum log file size in MB. If the file exceeds this limit, the logging will continue on stdout.

void oms_setMaxLogFileSize (const unsigned long size);

8.3.76 setReal

Sets the value of a given real signal.

oms_status_enu_t oms_setReal (const char+ cref, double value);

This function can be called in different model states:

* Before instantiation: setReal can be used to set start values or to define initial unknowns (e.g. parameters,
states). The values are not immediately applied to the simulation unit, since it isn’t actually instantiated.

 After instantiation and before initialization: Same as before instantiation, but the values are applied imme-
diately to the simulation unit.

 After initialization: Can be used to force external inputs, which m