OpenModelica User’s Guide
Release v1.19.0-dev-417-gd538fbe53e

Open Source Modelica Consortium

2023

CONTENTS

1 Introduction 3
1.1 System OVErview L o 0t e e e e e e e e e e e e e 4
1.2 Interactive Session with Examples o oo 5
1.3 Summary of Commands for the Interactive Session Handler 24
1.4 Running the compiler from command line 25

2 OMEdit - OpenModelica Connection Editor 27
2.1 Starting OMEdit o e e e 27
2.2 MainWindow & Browsers e 28
2.3 PErSpeCtiVES . . . v v i e 32
24 FileMenu. e e e 37
25 EditMenu e 38
2,6 ViewMenu e e e 38
2.7 Simulation Menuo e e e e e e 38
2.8 DebugMenu e e e e e e e e 39
29 SSPMenu e e 39
2.10 Sensitivity Optimization Menu o e 39
211 ToolsMenu L o e e e e e e e 39
212 Help Menu o e e e e e e e e e e e 39
2.13 ModelingaModel e e e e e e 40
2.14 Simulating aModel L e e e e 42
2,15 2D Plotting e e e e e 45
2.16 Re-simulatingaModel oL 47
2.17 3D Visualization e e e e e e 47
2.18 Animation of Realtime FMUs e 50
2.19 Interactive Simulation L e e 51
2.20 How to Create User Defined Shapes —Icons, 51
2.21 Global head section in documentation Lol e e e e e e e 52
222 OPHONS . . v v v ot e e e e e e e e e 53
2.23 __OpenModelica_commandLineOptions Annotationo v v v v v 60
2.24 __ OpenModelica_simulationFlags Annotation 61
225 Globaland Local Flags e 61
226 Debuggero e e 62
2.27 Editing Modelica Standard Library 62
228 State Machines e e e e 62
2.29 Using OMEditas Text Editor e e e e e 65
2.30 Temporary Directory, Log Files and Working Directory 67
231 HighDPISettings e e 69

3 2D Plotting 73
3.1 Example . . .o e e e e 73
3.2 Plot Command Interface e 75

4 Solving Modelica Models 77

10

11

12

13

4.1 Integration Methods e

42 DAE Mode Simulation e e e e e e e e e e e e e e
43 Initialization L e e e e e e e e e e e e e
4.4 Algebraic Solvers e e e e e
Debugging

5.1 The Equation-based Debugger
5.2 The Algorithmic Debugger e
Porting Modelica libraries to OpenModelica

6.1 Mapping of the library on the file system oL
6.2 Modifiers forarrays L. e e e e e e
6.3 Access to conditional componentsol oo e e
6.4 Access to classes defined in partial packages oL oL
6.5 Equality operator in algorithms e e
6.6 Public non-input non-output variables in functions 0oL
6.7 Subscripting of eXpressionso e
6.8 Incomplete specification of initial conditions Lo
6.9 Modelica_LinearSystems2 Library e

Generating Graph Representations for Models

FMI and TLM-Based Simulation and Co-simulation of External Models

8.1 Functional Mock-up Interface -FMI 0 o o
8.2 Transmission Line Modeling (TLM) Based Co-Simulation
8.3 Composite Model Editing of External Models

OMSimulator

9.1 Introduction e e e e e
0.2 OMSIMUIatoro e e e
9.3 OMSimulatorLib
9.4 OMSimulatorLua e
9.5 OMSimulatorPython e
9.6 OpenModelicaScripting L
9.7 Graphical Modelling e
0.8 SSPSupport e e e e e

System Identification
10.1 Exampleso o e e e
10.2 Pythonand C APL e e e e e e

OpenModelica Encryption

11.1 Encryptingthe Library o e
11.2 Loading an Encrypted Library 0 0 i e e e
I1.3 NOteS . . . v o o e e e e

OMNotebook with DrModelica and DrControl

12.1 Interactive Notebooks with Literate Programming
12.2 DrModelica Tutoring System — an Application of OMNotebook
12.3 DrControl Tutorial for Teaching Control Theory
12.4 OpenModelica Notebook Commands
12.5 References e

Optimization with OpenModelica

13.1 Builtin Dynamic Optimization with OpenModelicaand IpOpt
13.2 Compiling the Modelicacode e
13.3 AnExample e e e e e e e e
13.4 Different Options for the Optimizer IPOPT
13.5 Dynamic Optimization with OpenModelica and CasADi
13.6 Parameter Sweep Optimization using OMOptim

85
85
88

93
93
93
94
95
96
96
97
97
98

929

101
101
104
104

119
119
119
121
136
150
165
180
184

191
191
193

201
201
201
201

203
203
204
210
220
225

14

15

16

17

18

19

20

21

22

23

Parameter Sensitivities with OpenModelica
14.1 Single Parameter sensitivities with IDA/Sundials
14.2 Single and Multi-parameter sensitivities withOMSens

PDEModelical

15.1 PDEModelical language elements o o v i i i e e e
15.2 LIimitations o ot i e e e e e e e e e e e e e
153 Viewingresults

MDT - The OpenModelica Development Tooling Eclipse Plugin

16.1 Introduction e
16.2 Installation L e
16.3 Getting Started L e e e e e

MDT Debugger for Algorithmic Modelica
17.1 The Eclipse-based Debugger for Algorithmic Modelica.

Modelica Performance Analyzer

18.1 Profiling information for ProfilingTest L. .
18.2 Genenerated JSON for the Example
18.3 Using the Profiler from OMEdit

Simulation in Web Browser

Interoperability — C and Python

20.1 Calling External Cfunctions e
20.2 Calling external Python Code from a Modelicamodel
20.3 Calling OpenModelica from PythonCode

OpenModelica Python Interface and PySimulator

21.1 OMPython — OpenModelica Python Interface
21.2 Enhanced OMPython Features i
21.3 PySimulator e e e e e e e e e e e e e

OMMatlab — OpenModelica Matlab Interface

22.1 Featuresof OMMatlab e
222 TestCommands i e e e e e e e e e
223 WOrkDIrectory o o i e e e e e e e e e e e e e e
224 BuildModel L e
22.5 Standard get methods L L e e e e e
22.6 UsageofgetMethods e
2277 Standardsetmethods L. e
22.8 UsageofsetMethods o i e e e e e
229 Advanced Simulationl e e e e e e e
22.10 Linearization e
22.11 Usage of Linearization methods

OMJulia — OpenModelica Julia Scripting

23.1 Featuresof OMJulia e
232 TestCommands e e e e e e
23.3 WOrkDIrectory v o v i e e e e e e e e e e e e e e e e e
234 BuildModel L e e e e
23.5 Standard get methods L L e e e e e
23.6 Usageof getMethods L e e
2377 Standard setmethods L. L L e
23.8 UsageofsetMethods e
23.9 Advanced Simulation L e e e e
23.10 Linearizationo e e e e e e e e e e e e e e
23.11 Usage of Linearization methods
23.12 Sensitivity Analysiso e e e e e e

243
243
245

259
259
260
260

261
261
261
262

277
277

285
286
288
289

291

293
293
294
296

299
299
302
306

307
307
307
309
309
309
309
311
312
312
313
313

315
315
315
317
317
317
317
319
319
319
320
320
320

24

25

26

27

28

29

30

31

32

2313 USAZE . . v v e e e e e e e 321

Jupyter-OpenModelica 323
Scripting API 325
25.1 OpenModelica Scripting Commands Lo 325
25.2 Simulation Parameter SWeep e e e e e 403
253 Examples o e e e 403
Package manager 409
26.1 Installing packages L e e e e 409
26.2 How the package index works L 412
OpenModelica Compiler Flags 413
27.1 OPtONS . . v v o ot e e e e e e e e 413
27.2 Debugflags e 429
27.3 Flags for Optimization Modules o e e e 435
Small Overview of Simulation Flags 437
28.1 OpenModelica (C-runtime) Simulation Flags 437
Technical Details 445
29.1 The MATv4 Result File Format 445
DataReconciliation 447
30.1 Defining DataReconciliation Problem in OpenModelica 447
30.2 DataReconcilation Support with Scripting Interface, 449
30.3 DataReconciliation Supportin OMEdit 449
30.4 DataReconcilation Results oL e 453
Frequently Asked Questions (FAQ) 457
31.1 OpenModelicaGeneral i i i e e e e e e e e e e e 457
31.2 OMNOteboOK o o e e e e e e e e 457
31.3 OMDeyv - OpenModelica Development Environment 458
Major OpenModelica Releases 459
32.1 Release Notes for OpenModelica 1.20.0 459
32.2 Release Notes for OpenModelica 1.19.2 oo 460
32.3 Release Notes for OpenModelica 1.19.0 461
32.4 Release Notes for OpenModelica 1.18.1 462
32.5 Release Notes for OpenModelica 1.18.0 i 462
32.6 Release Notes for OpenModelica 1.17.0 o ittt 464
32.7 Release Notes for OpenModelica 1.16.5 466
32.8 Release Notes for OpenModelica 1.16.4 466
32.9 Release Notes for OpenModelica 1.16.0 i 467
32.10 Release Notes for OpenModelica 1.15.0 it e e 468
32.11 Release Notes for OpenModelica 1.14.0 vttt 468
32.12 Release Notes for OpenModelica 1.13.0 470
32.13 Release Notes for OpenModelica 1.12.0 470
32.14 Release Notes for OpenModelica 1.11.0 oo o o oo 472
32.15 Release Notes for OpenModelica 1.10.0 o o o i 474
32.16 Release Notes for OpenModelica 1.9.4 i i 475
32.17 Release Notes for OpenModelica 1.9.3 o 476
32.18 Release Notes for OpenModelica 1.9.2 o oo 4717
32.19 Release Notes for OpenModelica 1.9.1 e 478
32.20 Release Notes for OpenModelica 1.9.0 480
32.21 Release Notes for OpenModelica 1.8.1 i 483
32.22 OpenModelica 1.8.0, November 2011 i it 484
32.23 OpenModelica 1.7.0, April 2011 o . . e 485
32.24 OpenModelica 1.6.0, November 2010 e 486

32.25 OpenModelica 1.5.0, July 2010 o o e
32.26 OpenModelica 1.4.5, January 2009 e e e e e
32.27 OpenModelica 1.4.4, Feb 2008 0 e e e e e
32.28 OpenModelica 1.4.3, June 2007 L e
32.29 OpenModelica 1.4.2, October 2006 i it i
32.30 OpenModelica 1.4.1,June 2006 o e
32.31 OpenModelica 1.4.0, May 2006 i i i e e e e e e e e e
32.32 OpenModelica 1.3.1, November 2005 o i i it e e e e

33 Contributors to OpenModelica
33.1 OpenModelica Contributors 2015 o e e e e
33.2 OpenModelica Contributors 2014 o e e e e e e
33.3 OpenModelica Contributors 2013
33.4 OpenModelica Contributors 2012 o e e e e
33.5 OpenModelica Contributors 2011 e
33.6 OpenModelica Contributors 2010 o i e e e e
33.7 OpenModelica Contributors 2009 o e e e e e
33.8 OpenModelica Contributors 2008
33.9 OpenModelica Contributors 2007 e
33.10 OpenModelica Contributors 2006 o e
33.11 OpenModelica Contributors 2005 o e
33.12 OpenModelica Contributors 2004 0 i e e e e e e
33.13 OpenModelica Contributors 2003 oo e e e e
33.14 OpenModelica Contributors 2002 L e
33.15 OpenModelica Contributors 2001 e
33.16 OpenModelica Contributors 2000 e
33.17 OpenModelica Contributors 1999 e e
33.18 OpenModelica Contributors 1998 e

Bibliography

Index

Vi

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

Generated on 2023-06-16 at 12:28

Copyright © 1998-2023 Open Source Modelica Consortium (OSMC)
c/o Link&pings universitet, Department of Computer and Information Science
SE-58183 Linkoping, Sweden

(o). @

This work is licensed under a Creative Commons Attribution 4.0 International License.

This document is part of OpenModelica: https://www.openmodelica.org Contact: OpenModelica@ida.liu.se
Modelica® is a registered trademark of the Modelica Association, https://www.Modelica.org
Mathematica® is a registered trademark of Wolfram Research Inc, http://www.wolfram.com

This users guide provides documentation and examples on how to use the OpenModelica system, both for the
Modelica beginners and advanced users.

CONTENTS 1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.openmodelica.org
mailto:OpenModelica@ida.liu.se
https://www.Modelica.org
http://www.wolfram.com

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The 0penM°de"cq system described in this document has both short-term and long-term goals:

The short-term goal is to develop an efficient interactive computational environment for the Modelica lan-
guage, as well as a rather complete implementation of the language. It turns out that with support of
appropriate tools and libraries, Modelica is very well suited as a computational language for development
and execution of both low level and high level numerical algorithms, e.g. for control system design, solving
nonlinear equation systems, or to develop optimization algorithms that are applied to complex applications.

The long-term goal is to have a complete reference implementation of the Modelica language, including
simulation of equation based models and additional facilities in the programming environment, as well
as convenient facilities for research and experimentation in language design or other research activities.
However, our goal is not to reach the level of performance and quality provided by current commercial
Modelica environments that can handle large models requiring advanced analysis and optimization by the
Modelica compiler.

The long-term research related goals and issues of the OpenModelica open source implementation of a Modelica
environment include but are not limited to the following:

Development of a complete formal specification of Modelica, including both static and dynamic semantics.
Such a specification can be used to assist current and future Modelica implementers by providing a semantic
reference, as a kind of reference implementation.

Language design, e.g. to further extend the scope of the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as modeling problems that require extensions such as partial
differential equations, enlarged scope for discrete modeling and simulation, etc.

Language design to improve abstract properties such as expressiveness, orthogonality, declarativity, reuse,
configurability, architectural properties, etc.

Improved implementation techniques, e.g. to enhance the performance of compiled Modelica code by gen-
erating code for parallel hardware.

Improved debugging support for equation based languages such as Modelica, to make them even easier to
use.

Easy-to-use specialized high-level (graphical) user interfaces for certain application domains.
Visualization and animation techniques for interpretation and presentation of results.

Application usage and model library development by researchers in various application areas.

The OpenModelica environment provides a test bench for language design ideas that, if successful, can be submit-
ted to the Modelica Association for consideration regarding possible inclusion in the official Modelica standard.

The current version of the OpenModelica environment allows most of the expression, algorithm, and function
parts of Modelica to be executed interactively, as well as equation models and Modelica functions to be compiled
into efficient C code. The generated C code is combined with a library of utility functions, a run-time library, and
a numerical DAE solver.

https://openmodelica.org

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

1.1 System Overview

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1.1.

MDT Eclipse Plugir

Editor/Browser

GraphicalModel
Editor/Browser

3
OMODfi Interactive t
ptim sessionhandler
Optimization —— Mo-gee)l(téglitor
Subsystem
OMNotebook _
DrModelica Execution Model_lca
Model Editor Compiler
Modelica
Debugger

Figure 1.1: The architecture of the OpenModelica environment. Arrows denote data and control flow. The inter-
active session handler receives commands and shows results from evaluating commands and expressions that are
translated and executed. Several subsystems provide different forms of browsing and textual editing of Modelica
code. The debugger currently provides debugging of an extended algorithmic subset of Modelica.

The following subsystems are currently integrated in the OpenModelica environment:

* An interactive session handler, that parses and interprets commands and Modelica expressions for evalua-
tion, simulation, plotting, etc. The session handler also contains simple history facilities, and completion of
file names and certain identifiers in commands.

A Modelica compiler subsystem, translating Modelica to C code, with a symbol table containing definitions
of classes, functions, and variables. Such definitions can be predefined, user-defined, or obtained from
libraries. The compiler also includes a Modelica interpreter for interactive usage and constant expression
evaluation. The subsystem also includes facilities for building simulation executables linked with selected
numerical ODE or DAE solvers.

An execution and run-time module. This module currently executes compiled binary code from translated
expressions and functions, as well as simulation code from equation based models, linked with numerical
solvers. In the near future event handling facilities will be included for the discrete and hybrid parts of the
Modelica language.

Eclipse plugin editor/browser. The Eclipse plugin called MDT (Modelica Development Tooling) provides
file and class hierarchy browsing and text editing capabilities, rather analogous to previously described
Emacs editor/browser. Some syntax highlighting facilities are also included. The Eclipse framework has
the advantage of making it easier to add future extensions such as refactoring and cross referencing support.

OMNotebook DrModelica model editor. This subsystem provides a lightweight notebook editor, compared
to the more advanced Mathematica notebooks available in MathModelica. This basic functionality still
allows essentially the whole DrModelica tutorial to be handled. Hierarchical text documents with chapters
and sections can be represented and edited, including basic formatting. Cells can contain ordinary text
or Modelica models and expressions, which can be evaluated and simulated. However, no mathematical
typesetting facilities are yet available in the cells of this notebook editor.

Graphical model editor/browser OMEdit. This is a graphical connection editor, for component based model
design by connecting instances of Modelica classes, and browsing Modelica model libraries for reading and
picking component models. The graphical model editor also includes a textual editor for editing model class
definitions, and a window for interactive Modelica command evaluation.

Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

* Optimization subsystem OMOptim. This is an optimization subsystem for OpenModelica, currently for
design optimization choosing an optimal set of design parameters for a model. The current version has a
graphical user interface, provides genetic optimization algorithms and Pareto front optimization, works in-
tegrated with the simulators and automatically accesses variables and design parameters from the Modelica
model.

* Dynamic Optimization subsystem. This is dynamic optimization using collocation methods, for Model-
ica models extended with optimization specifications with goal functions and additional constraints. This
subsystem is integrated with in the OpenModelica compiler.

* Modelica equation model debugger. The equation model debugger shows the location of an error in the
model equation source code. It keeps track of the symbolic transformations done by the compiler on the
way from equations to low-level generated C code, and also explains which transformations have been done.

* Modelica algorithmic code debugger. The algorithmic code Modelica debugger provides debugging for an
extended algorithmic subset of Modelica, excluding equation-based models and some other features, but in-
cluding some meta-programming and model transformation extensions to Modelica. This is a conventional
full-feature debugger, using Eclipse for displaying the source code during stepping, setting breakpoints, etc.
Various back-trace and inspection commands are available. The debugger also includes a data-view browser
for browsing hierarchical data such as tree- or list structures in extended Modelica.

1.2 Interactive Session with Examples

The following is an interactive session using the interactive session handler in the OpenModelica environment,
called OMShell — the OpenModelica Shell). Most of these examples are also available in the OMNotebook with
DrModelica and DrControl UsersGuideExamples.onb as well as the testmodels in:

>>> getInstallationDirectoryPath() + "/share/doc/omc/testmodels/"
"«OPENMODELICAHOME»/share/doc/omc/testmodels/"

The following commands were run using OpenModelica version:

>>> getVersion ()
"OMCompiler v1.19.0-dev.417+gd538fbeb53e"

1.2.1 Starting the Interactive Session

The Windows version which at installation is made available in the start menu as OpenModelica->OpenModelica
Shell which responds with an interaction window:

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be stored in
the variable x. The value of the expression is returned.

>>> x = 1:12
{1,2,3,4,5,6,7,8,9,10,11,12}

1.2.2 Using the Interactive Mode

When running OMC in interactive mode (for instance using OMShell) one can make load classes and execute
commands. Here we give a few example sessions.

1.2. Interactive Session with Examples 5

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

Example Session 1

>>> model A Integer t = 1.5; end A; //The type is Integer but 1.5 is of Real Type
{A}
>>> instantiateModel (&)

nn

"[<interactive>:1:9-1:23:writable] Error: Type mismatch in binding t = 1.5

[

—expected subtype of Integer, got type Real.

n

Example Session 2

If you do not see the error-message when running the example, use the command getErrorString ().

model C
Integer a;
Real b;
equation
der(a) = b; // der(a) is illegal since a 1is not a Real number
der (b) 12.0;
end C;

>>> instantiateModel (C)
"class C
Integer a;

Real Db;

equation
der (/*Realx/(a)) = b;
der (b) = 12.0;

end C;

n

1.2.3 Trying the Bubblesort Function

Load the function bubblesort, either by using the pull-down menu File->Load Model, or by explicitly giving the
command:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—bubblesort.mo")
true

The function bubblesort is called below to sort the vector x in descending order. The sorted result is returned to-
gether with its type. Note that the result vector is of type Real[:], instantiated as Real[12], since this is the declared
type of the function result. The input Integer vector was automatically converted to a Real vector according to
the Modelica type coercion rules. The function is automatically compiled when called if this has not been done
before.

>>> bubblesort (x)
{12.0,11.0,10.0,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0}

Another call:

>>> bubblesort ({4,6,2,5,8})
{8.0,6.0,5.0,4.0,2.0}

6 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

1.2.4 Trying the system and cd Commands

It is also possible to give operating system commands via the system utility function. A command is provided as
a string argument. The example below shows the system utility applied to the UNIX command cat, which here
outputs the contents of the file bubblesort.mo to the output stream when running omc from the command-line.

>>> gystem("cat '"+getInstallationDirectoryPath()+"/share/doc/omc/testmodels/
—bubblesort.mo' > bubblesort.mo")
0

function bubblesort

input Real[:] x;

output Real[size(x,1)] y;
protected

Real t;
algorithm

Yy T X

for i in l:size(x,1l) loop

for j in 1l:size(x,1) loop
if y[i] > yI[J] then

t o= ylil;
y[i] = y[31;
yI[3l = t;
end if;
end for;
end for;

end bubblesort;

Note: The output emitted into stdout by system commands is put into log-files when running the CORBA-based
clients, not into the visible GUI windows. Thus the text emitted by the above cat command would not be returned,
which is why it is redirected to another file.

A better way to read the content of files would be the readFile command:

>>> readFile ("bubblesort.mo")
function bubblesort

input Real[:] x;

output Real[size(x,1)] vy;
protected

Real t;
algorithm

y 1= X

for i in 1l:size(x,1) loop

for j in 1l:size(x,1) loop
if y[i] > y[Jj] then

t o= ylil;
yl[il = y[3];
yI[3l = t;
end if;
end for;
end for;

end bubblesort;

The system command only returns a success code (0 = success).

>>> sgystem("dir")

0

>>> system("Non-existing command")
127

Another built-in command is cd, the change current directory command. The resulting current directory is returned
as a string.

1.2. Interactive Session with Examples 7

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

>>> dir:=cd ()

"«DOCHOME»"

>>> cd("source")

"«DOCHOME»/source"

>>> cd(getInstallationDirectoryPath() + "/share/doc/omc/testmodels/")
"/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/build/share/doc/omc/
—testmodels"

>>> cd(dir)

"«DOCHOME»"

1.2.5 Modelica Library and DCMotor Model

We load a model, here the whole Modelica standard library, which also can be done through the File->Load
Modelica Library menu item:

>>> loadModel (Modelica, {"3.2.3"})
true

We also load a file containing the dcmotor model:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/dcmotor.mo
:_)")

true

Note:

Notification: decmotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

It is simulated:

>>> simulate (dcmotor, startTime=0.0, stopTime=10.0)
record SimulationResult

resultFile = "«DOCHOME»/dcmotor_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 10.0, numberOfIntervals = 500,
— tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'dcmotor', options = '', |
—outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.367120039,
timeBackend = 0.021766407,
timeSimCode = 0.006453626000000001,
timeTemplates = 0.050100929,
timeCompile = 0.65242649,
timeSimulation = 0.022797131,
timeTotal = 1.120822211

end SimulationResult;

Note:

Notification: demotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

We list the source code of the model:

8 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

>>> list (dcmotor)
model dcmotor

import Modelica.Electrical.Analog.Basic;

Basic.Resistor resistorl (R 10);

Basic.Inductor inductorl(L = 0.2, 1i.fixed = true);

Basic.Ground groundl;

Modelica.Mechanics.Rotational.Components.Inertia load(J = 1, phi.fixed = true, w.
—~fixed = true);

Basic.EMF emfl(k = 1.0);

Modelica.Blocks.Sources.Step stepl;

Modelica.Electrical.Analog.Sources.SignalVoltage signalVoltagel;
equation

connect (stepl.y, signalVoltagel.v);

connect (signalVoltagel.p, resistorl.p);
connect (resistorl.n, inductorl.p);
(
(
(

connect (inductorl.n, emfl.p);
connect (emfl.flange, load.flange_a);
connect (signalVoltagel.n, groundl.p);
connect (groundl.p, emfl.n);
annotation (
uses (Modelica (version = "3.2.2")));
end dcmotor;

We test code instantiation of the model to flat code:

>>> instantiateModel (dcmotor)
class dcmotor

parameter Real resistorl.R(quantity = "Resistance", unit = "Ohm", start = 1.0) =
—10.0 "Resistance at temperature T_ref";

parameter Real resistorl.T_ref (quantity = "ThermodynamicTemperature", unit = "K",
— displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = 300.15
—"Reference temperature";

parameter Real resistorl.alpha(quantity = "LinearTemperatureCoefficient", unit =
—"1/K") = 0.0 "Temperature coefficient of resistance (R_actual = Rx (1 + alphax (T_

—heatPort — T_ref))";

Real resistorl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of
—the two pins (= p.v - n.v)";

Real resistorl.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from_
—pin p to pin n";

Real resistorl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real resistorl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing_
—into the pin";

Real resistorl.n.v(quantity = "ElectricPotential"”, unit = "V") "Potential at the_
—pin";

Real resistorl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing,
—into the pin";

final parameter Boolean resistorl.useHeatPort = false "=true, if heatPort is_
—enabled";

parameter Real resistorl.T(quantity = "ThermodynamicTemperature", unit = "K",
—~displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) = resistorl.T_
—ref "Fixed device temperature if useHeatPort = false";

Real resistorl.LossPower (quantity = "Power", unit = "W") "Loss power leaving_
—component via heatPort";

Real resistorl.T_heatPort (quantity = "ThermodynamicTemperature", unit = "K", |
—displayUnit = "degC", min = 0.0, start = 288.15, nominal = 300.0) "Temperature
—~of heatPort";

Real resistorl.R_actual (quantity = "Resistance", unit = "Ohm") "Actual,_
—resistance = Rx (1l + alphax (T_heatPort - T_ref))";

Real inductorl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop of |
—the two pins (= p.v - n.v)";

Real inductorl.i(quantity = "ElectricCurrent", unit = "A", start = 0.0, fixed =_

true)—Current—fiowingfrompimrp topimr 'y (continues on next page)

1.2. Interactive Session with Examples 9

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

(continued from previous page)

Real inductorl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real inductorl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing_
—into the pin";

Real inductorl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real inductorl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing
—into the pin";

parameter Real inductorl.L(quantity = "Inductance", unit = "H", start = 1.0) = 0.
—2 "Inductance";

Real groundl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the_
—pin";

Real groundl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into,
—the pin";

Real load.flange_a.phi (quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real load.flange_a.tau(gquantity = "Torque", unit = "N.m") "Cut torque in the_
—flange";

Real load.flange_b.phi(quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real load.flange_b.tau(quantity = "Torque", unit = "N.m") "Cut torque in the_
—flange";

parameter Real load.J(quantity = "MomentOfInertia", unit = "kg.m2", min = 0.0,
—start = 1.0) = 1.0 "Moment of inertia";

final parameter enumeration (never, avoid, default, prefer, always) load.
—stateSelect = StateSelect.default "Priority to use phi and w as states";

Real load.phi(quantity = "Angle", unit = "rad", displayUnit = "deg", fixed =
—true, stateSelect = StateSelect.default) "Absolute rotation angle of component";

Real load.w(quantity = "AngularVelocity", unit = "rad/s", fixed = true,
—stateSelect = StateSelect.default) "Absolute angular velocity of component (=
—der (phi))";

Real load.a(quantity = "AngularAcceleration", unit = "rad/s2") "Absolute angular,
—acceleration of component (= der(w))";

final parameter Boolean emfl.useSupport = false "= true, if support flange_
—enabled, otherwise implicitly grounded";

parameter Real emfl.k(quantity = "ElectricalTorqueConstant", unit = "N.m/A",
—~start = 1.0) = 1.0 "Transformation coefficient";

Real emfl.v(quantity = "ElectricPotential", unit = "V") "Voltage drop between_
—the two pins";

Real emfl.i(quantity = "ElectricCurrent", unit = "A") "Current flowing from,
—positive to negative pin";

Real emfl.phi (quantity = "Angle", unit = "rad", displayUnit = "deg") "Angle of |
—shaft flange with respect to support (= flange.phi - support.phi)";

Real emfl.w(quantity = "AngularVelocity", unit = "rad/s") "Angular velocity of
—flange relative to support";

Real emfl.tau(quantity = "Torque", unit = "N.m") "Torque of flange";

Real emfl.tauElectrical (quantity = "Torque", unit = "N.m") "Electrical torque";

Real emfl.p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";

Real emfl.p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into
—the pin";

Real emfl.n.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";

Real emfl.n.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into
—the pin";

Real emfl.flange.phi(quantity = "Angle", unit = "rad", displayUnit = "deg")
—"Absolute rotation angle of flange";

Real emfl.flange.tau(quantity = "Torque", unit = "N.m") "Cut torque in the flange
=";

protected parameter Real emfl.fixed.phiO (quantity = "Angle", unit = "rad",_
—displayUnit = "deg") = 0.0 "Fixed offset angle of housing";

protected Real emfl.fixed.flange.phi (quantity = "Angle", unit = "rad",
—displayUnit = "deg") "Absolute rotation angle of flange";

(continues on next page)

10 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

(continued from previous page)

protected Real emfl.fixed.flange.tau(quantity = "Torque", unit = "N.m") "Cut_
—torque in the flange";

protected Real emfl.internalSupport.tau(quantity = "Torque", unit = "N.m") = -
—emfl.tau "External support torque (must be computed via torque balance in model_
—where InternalSupport is used; = flange.tau)";

protected Real emfl.internalSupport.phi(quantity = "Angle", unit = "rad",
—displayUnit = "deg") "External support angle (= flange.phi)";

protected Real emfl.internalSupport.flange.phi (quantity = "Angle", unit = "rad",
—displayUnit = "deg") "Absolute rotation angle of flange";

protected Real emfl.internalSupport.flange.tau(quantity = "Torque", unit = "N.m
—") "Cut torque in the flange";

parameter Real stepl.height = 1.0 "Height of step";
Real stepl.y "Connector of Real output signal";
parameter Real stepl.offset = 0.0 "Offset of output signal y";

parameter Real stepl.startTime (quantity = "Time", unit = "s") = 0.0 "Output y =,
—~offset for time < startTime";

Real signalVoltagel.p.v(quantity = "ElectricPotential", unit = "V") "Potential,
—at the pin";

Real signalVoltagel.p.i(quantity = "ElectricCurrent"”, unit = "A") "Current,_

—flowing into the pin";

Real signalVoltagel.n.v(quantity = "ElectricPotential", unit = "V") "Potential
—at the pin";

Real signalVoltagel.n.i(quantity = "ElectricCurrent"”, unit = "A") "Current
—~flowing into the pin";

Real signalVoltagel.v(unit = "V") "Voltage between pin p and n (= p.v — n.v) as,
—input signal";

Real signalVoltagel.i(quantity = "ElectricCurrent", unit = "A") "Current flowing_

—from pin p to pin n";
equation
emfl.internalSupport.flange.phi = emfl.fixed.flange.phi;
stepl.y = signalVoltagel.v;
signalVoltagel.p.v = resistorl.p.v;
resistorl.n.v = inductorl.p.v;
inductorl.n.v = emfl.p.v;
emfl.flange.phi = load.flange_a.phi;
groundl.p.v = emfl.n.v;
groundl.p.v = signalVoltagel.n.v;
inductorl.p.i + resistorl.n.i = 0.0;
emfl.p.i + inductorl.n.i = 0.0;
load.flange_b.tau = 0.0;
emfl.flange.tau + load.flange_a.tau = 0.0;
emfl.internalSupport.flange.tau + emfl.fixed.flange.tau = 0.0;
signalVoltagel.p.1i + resistorl.p.i = 0.0;
signalVoltagel.n.i + emfl.n.i + groundl.p.i = 0.0;
assert (1.0 + resistorl.alpha * (resistorl.T_heatPort - resistorl.T_ref) >= le-15,
— "Temperature outside scope of model!");
resistorl.R_actual = resistorl.R % (1.0 + resistorl.alpha * (resistorl.T_
—heatPort - resistorl.T_ref));
resistorl.v = resistorl.R_actual *» resistorl.i;
resistorl.LossPower = resistorl.v * resistorl.i;
resistorl.T_heatPort = resistorl.T;
resistorl.v = resistorl.p.v - resistorl.n.v;
0.0 = resistorl.p.i + resistorl.n.i;
resistorl.i = resistorl.p.i;
inductorl.L % der (inductorl.i) = inductorl.v;
inductorl.v = inductorl.p.v - inductorl.n.v;
0.0 = inductorl.p.i + inductorl.n.i;
inductorl.i = inductorl.p.i;
groundl.p.v = 0.0;
load.phi = load.flange_a.phi;
load.phi = load.flange_b.phi;

(continues on next page)

1.2. Interactive Session with Examples 11

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

(continued from previous page)

load.w = der(load.phi);

load.a = der(load.w);

load.J % load.a = load.flange_a.tau + load.flange_b.tau;
emfl.fixed.flange.phi = emfl.fixed.phiO;
emfl.internalSupport.flange.tau = emfl.internalSupport.tau;
emfl.internalSupport.flange.phi = emfl.internalSupport.phi;
emfl.v = emfl.p.v — emfl.n.v;

0.0 = emfl.p.i + emfl.n.i;

emfl.i = emfl.p.1i;

emfl.phi = emfl.flange.phi - emfl.internalSupport.phi;
emfl.w = der (emfl.phi);

emfl.k » emfl.w = emfl.v;
emfl.tau = -emfl.k » emfl.i;
emfl.tauElectrical = -emfl.tau;

emfl.tau = emfl.flange.tau;
stepl.y = stepl.offset + (if time < stepl.startTime then 0.0 else stepl.height);
signalVoltagel.v = signalVoltagel.p.v - signalVoltagel.n.v;
0.0 = signalvVoltagel.p.i + signalVoltagel.n.i;
signalVoltagel.i = signalVoltagel.p.i;
end dcmotor;

Note:

Notification: dcmotor requested package Modelica of version 3.2.2. Modelica 3.2.3 is used instead which states
that it is fully compatible without conversion script needed.

We plot part of the simulated result:

T
load.w
load.phi

15 1

0.5]

Figure 1.2: Rotation and rotational velocity of the DC motor

12 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

1.2.6 The val() function

The val(variableName,time) scription function can be used to retrieve the interpolated value of a simulation result
variable at a certain point in the simulation time, see usage in the BouncingBall simulation below.

1.2.7 BouncingBall and Switch Models

We load and simulate the BouncingBall example containing when-equations and if-expressions (the Modelica
keywords have been bold-faced by hand for better readability):

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")
true

>>> list (BouncingBall)
model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";
Real v (fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";
Boolean impact;
Real v_new(fixed = true);
Integer foo;
equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der (v) = if flying then -g else 0;
der (h) = v;
when {h <= 0.0 and v <= 0.0, impact} then
v_new = if edge (impact) then -e » pre(v) else 0;
flying = v_new > 0O;
reinit (v, v_new);
end when;
end BouncingBall;

Instead of just giving a simulate and plot command, we perform a runScript command on a .mos (Modelica script)
file sim_BouncingBall.mos that contains these commands:

>>> writeFile("sim_BouncingBall.mos", "

loadFile (getInstallationDirectoryPath() + \"/share/doc/omc/testmodels/
—BouncingBall.mo\");

simulate (BouncingBall, stopTime=3.0);

/* plot ({h, flying}); =/
")
true
>>> runScript ("sim_BouncingBall.mos")
"true
record SimulationResult

resultFile = \"«DOCHOME»/BouncingBall_res.mat\",

simulationOptions = \"startTime = 0.0, stopTime = 3.0, numberOfIntervals = 500,
— tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'BouncingBall', options =
—''", outputFormat = 'mat', variableFilter = '.%', cflags = '', simflags = ''\",

messages = \"LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.
\"I

timeFrontend = 0.001075375,

timeBackend = 0.006253994000000001,

timeSimCode = 0.002232147,

timeTemplates = 0.00379111,

(continues on next page)

1.2. Interactive Session with Examples 13

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

(continued from previous page)

timeCompile = 0.766574784,
timeSimulation = 0.036375944,
timeTotal = 0.816443837

end SimulationResult;

"

model Switch
Real v;
Real i;
Real i1l;
Real itot;
Boolean open;
equation
itot = 1i + 1i1;
if open then
v = 0;
else
i = 0;
end if;
1 - 11 = 0;
1 - v -1 = 0;
open = time >= 0.5;
end Switch;

>>> simulate (Switch, startTime=0, stopTime=1)
record SimulationResult

resultFile = "«DOCHOME»/Switch_res.mat",

simulationOptions = "startTime = 0.0, stopTime = 1.0, numberOflIntervals = 500,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'Switch', options = "',
—outputFormat = 'mat', variableFilter '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.0008616510000000001,

timeBackend = 0.015873795,
timeSimCode = 0.003161962,
timeTemplates = 0.005818876000000001,

timeCompile = 0.745116694,

timeSimulation = 0.017006448,

timeTotal = 0.7879946480000001
end SimulationResult;

Retrieve the value of itot at time=0 using the val(variableName, time) function:

>>> val (itot, 0)
1.0

Plot itot and open:

We note that the variable open switches from false (0) to true (1), causing itot to increase from 1.0 to 2.0.

14 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2 T T T T .
itot
open
15 F b
1
0.5 i
0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Figure 1.3: Plot when the switch opens
1.2.8 Clear All Models
Now, first clear all loaded libraries and models:
>>> clear ()
true
List the loaded models — nothing left:
>>> list ()
nmnn
1.2.9 VanDerPol Model and Parametric Plot
We load another model, the VanDerPol model (or via the menu File->Load Model):
>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/VanDerPol.
—mo")
true
It is simulated:
>>> simulate (VanDerPol, stopTime=80)
record SimulationResult
resultFile = "«DOCHOME»/VanDerPol_res.mat",
simulationOptions = "startTime = 0.0, stopTime = 80.0, numberOfIntervals = 500,
— tolerance = le-06, method = 'dassl', fileNamePrefix = 'VanDerPol', options = "'
— outputFormat = 'mat', variableFilter = '.x', cflags = '', simflags = ''",
messages = "LOG_SUCCESS | info | The initialization finished
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
4

timeFrontend = 0.001145888,
timeBackend = 0.004497877,
timeSimCode .001461474,
timeTemplates = 0.010761827,
timeCompile = 0.662002142,

0
0

(continues on next page)

1.2. Interactive Session with Examples 15

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

(continued from previous page)

timeSimulation = 0.02933295,
timeTotal = 0.709388515
end SimulationResult;

It is plotted:

>>> plotParametric("x","y")

2.5 T T T T T T T T T

2 b -
15 1

1k -
0.5 1

> 0Fr .

-0.5
1k i
-1.5

2k i

2.5 ! ! ! ! ! ! ! ! !
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Figure 1.4: VanDerPol plotParametric(x,y)

Perform code instantiation to flat form of the VanDerPol model:

>>> instantiateModel (VanDerPol)
class VanDerPol "Van der Pol oscillator model"
Real x(start = 1.0, fixed = true);

Real y(start = 1.0, fixed = true);
parameter Real lambda = 0.3;
equation
der (x) = y;
der(y) = (-x) + lambda * (1.0 — x % x) * y;

end VanDerPol;

1.2.10 Using Japanese or Chinese Characters

Japenese, Chinese, and other kinds of UniCode characters can be used within quoted (single quote) identifiers, see
for example the variable name to the right in the plot below:

16 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

File Edit Special

Plot by OpenModelica
1.0f i i 1 &= =

g.8r }

0.6 }

0.0

0,0 0.3 1.0 1.2 2.0 2.2

1.2.11 Scripting with For-Loops, While-Loops, and If-Statements

A simple summing integer loop (using multi-line input without evaluation at each line into OMShell requires
copy-paste as one operation from another document):

>>> k := 0;

>>> for 1 in 1:1000 loop
k := k + 1i;

end for;

>>> k

500500

A nested loop summing reals and integers:

>>> g := 0.0;
>>> h := 5;
>>> for i in {23.0,77.12,88.23} loop
for j in 1i:0.5:(i+1l) loop
g =g+ 3J;
g := g+ h / 2;
end for;
h :=h + g;
end for;

By putting two (or more) variables or assignment statements separated by semicolon(s), ending with a variable,
one can observe more than one variable value:

>>> h; g
1997.45
1479.09

A for-loop with vector traversal and concatenation of string elements:

>>> j.="";
>>> 1lst := {"Here ", "are ","some ","strings."};
>>> g = "";

>>> for i in lst loop

(continues on next page)

1.2. Interactive Session with Examples 17

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

(continued from previous page)

s := s + 1ij
end for;
>>> 5

"Here are some strings."

Normal while-loop with concatenation of 10 "abc " strings:

>>> g:="";
>>> i:=1;
>>> while i<=10 loop
s:="abc "+s;
i:=1i+1;
end while;
>>> 3
"abc abc abc abc abc abc abc abc abc abc "

A simple if-statement. By putting the variable last, after the semicolon, its value is returned after evaluation:

>>> if 5>2 then a := 77; end if; a
77

An if-then-else statement with elseif"

>>> if false then

a := 5;
elseif a > 50 then
b:= "test"; a:= 100;
else
a:=34;
end if;

Take a look at the variables a and b:

>>> a;b
100
"test"

1.2.12 Variables, Functions, and Types of Variables

Assign a vector to a variable:

>>> ga:=1:5
{1,2,3,4,5}

Type in a function:

function mySqr
input Real x;
output Real y;

algorithm
ViI=X*X;

end mySqr;

Call the function:

>>> b:i=mySqr (2)
4.0

Look at the value of variable a:

18 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

>>> a
{1,2,3,4,5}

Look at the type of a:

>>> typeOf (a)
"Integer[5]"

Retrieve the type of b:

>>> typeOf (b)
"Real "

What is the type of mySqr? Cannot currently be handled.

>>> typeOf (mySqgr)

List the available variables:

>>> listVariables ()
{b,a,s,1lst,i,h,g,k,currentSimulationResult}

Clear again:

>>> clear ()
true

1.2.13 Getting Information about Error Cause

Call the function getErrorString() in order to get more information about the error cause after a simulation failure:

>>> getErrorString()

1.2.14 Alternative Simulation Output Formats

There are several output format possibilities, with mat being the default. plt and mat are the only formats that
allow you to use the val() or plot() functions after a simulation. Compared to the speed of plt, mat is roughly 5
times for small files, and scales better for larger files due to being a binary format. The csv format is roughly twice
as fast as plt on data-heavy simulations. The plt format allocates all output data in RAM during simulation, which
means that simulations may fail due applications only being able to address 4GB of memory on 32-bit platforms.
Empty does no output at all and should be by far the fastest. The csv and plt formats are suitable when using an
external scripts or tools like gnuplot to generate plots or process data. The mat format can be post-processed in
MATLAB or Octave.

>>> simulate (...
>>> simulate (...

(
(
(
(

outputFormat="mat")
outputFormat="csv")
outputFormat="plt")
outputFormat="empty")

>>> simulate (...
>>> simulate (...

~ S~ S~ 0~

It is also possible to specify which variables should be present in the result-file. This is done by using POSIX
Extended Regular Expressions. The given expression must match the full variable name (* and $ symbols are
automatically added to the given regular expression).

/l Default, match everything

>>> simulate (... , variableFilter=".x")

1.2. Interactive Session with Examples 19

http://www.mathworks.com/products/matlab
http://www.gnu.org/software/octave/
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

/I match indices of variable myVar that only contain the numbers using combinations

/1 of the letters 1 through 3

’>>> simulate (... , variableFilter="myVar\\\[[1-3]7*\\\1")

// match x or y or z

’>>> simulate (... , variableFilter="x|y|z")

1.2.15 Using External Functions

See Chapter Interoperability — C and Python for more information about calling functions in other programming
languages.

1.2.16 Using Parallel Simulation via OpenMP Multi-Core Support

Faster simulations on multi-core computers can be obtained by using a new OpenModelica feature that auto-
matically partitions the system of equations and schedules the parts for execution on different cores using shared-
memory OpenMP based execution. The speedup obtained is dependent on the model structure, whether the system
of equations can be partitioned well. This version in the current OpenModelica release is an experimental ver-
sion without load balancing. The following command, not yet available from the OpenModelica GUI, will run a
parallel simulation on a model:

>>> omc —d=openmp model.mo

1.2.17 Loading Specific Library Version

There exist many different versiosn of Modelica libraries which are not compatible. It is possible to keep mul-
tiple versions of the same library stored in the directory given by calling getModelicaPath(). By calling load-
Model(Modelica,{"3.2"}), OpenModelica will search for a directory called "Modelica 3.2" or a file called "Mod-
elica 3.2.mo". Itis possible to give several library versions to search for, giving preference for a pre-release version
of a library if it is installed. If the searched version is "default", the priority is: no version name (Modelica), main
release version (Modelica 3.1), pre-release version (Modelica 3.1Beta 1) and unordered versions (Modelica Spe-
cial Release).

The loadModel command will also look at the uses annotation of the top-level class after it has been loaded. Given
the following package, Complex 1.0 and ModelicaServices 1.1 will also be loaded into the AST automatically.

package Modelica
annotation (uses (Complex (version="1.0"),
ModelicaServices (version="1.1")));

end Modelica;

>>> clear ()
true

Packages will also be loaded if a model has a uses-annotation:

model M
annotation (uses (Modelica (version="3.2.1")));
end M;

>>> instantiateModel (M)
class M
end M;

20 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

Note:
Notification: Automatically loaded package Modelica 3.2.1 due to uses annotation.
Notification: Automatically loaded package Complex 3.2.1 due to uses annotation.

Notification: Automatically loaded package ModelicaServices 3.2.1 due to uses annotation.

Packages will also be loaded by looking at the first identifier in the path:

>>> instantiateModel (Modelica.Electrical.Analog.Basic.Ground)
class Modelica.Electrical.Analog.Basic.Ground "Ground node"

Real p.v(quantity = "ElectricPotential", unit = "V") "Potential at the pin";
Real p.i(quantity = "ElectricCurrent", unit = "A") "Current flowing into the pin
=";
equation
p.i = 0.0;
p.v = 0.0;

end Modelica.Electrical.Analog.Basic.Ground;

Note:
Notification: Automatically loaded package Complex 4.0.0 due to uses annotation.
Notification: Automatically loaded package ModelicaServices 4.0.0 due to uses annotation.

Notification: Automatically loaded package Modelica default due to uses annotation.

1.2.18 Calling the Model Query and Manipulation API

In the OpenModelica System Documentation, an external API (application programming interface) is described
which returns information about models and/or allows manipulation of models. Calls to these functions can be
done interactively as below, but more typically by program clients to the OpenModelica Compiler (OMC) server.
Current examples of such clients are the OpenModelica MDT Eclipse plugin, OMNotebook, the OMEdit graphic
model editor, etc. This API is untyped for performance reasons, i.e., no type checking and minimal error checking
is done on the calls. The results of a call is returned as a text string in Modelica syntax form, which the client has
to parse. An example parser in C++ is available in the OMNotebook source code, whereas another example parser
in Java is available in the MDT Eclipse plugin.

Below we show a few calls on the previously simulated BouncingBall model. The full documentation on this API
is available in the system documentation. First we load and list the model again to show its structure:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo");
>>> list (BouncingBall)
model BouncingBall
parameter Real e = 0.7 "coefficient of restitution";
parameter Real g = 9.81 "gravity acceleration";
Real h(fixed = true, start = 1) "height of ball";
Real v (fixed = true) "velocity of ball";
Boolean flying(fixed = true, start = true) "true, if ball is flying";
Boolean impact;
Real v_new(fixed = true);
Integer foo;

equation
impact = h <= 0.0;
foo = if impact then 1 else 2;
der(v) = if flying then -g else 0;
der (h) = v;

when {h <= 0.0 and v <= 0.0, impact} then

(continues on next page)

1.2. Interactive Session with Examples 21

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

(continued from previous page)

v_new = if edge (impact) then -e * pre(v) else 0;
flying = v_new > 0;
reinit (v, v_new);
end when;
end BouncingBall;

Different kinds of calls with returned results:

>>> getClassRestriction (BouncingBall)

"model"

>>> getClassInformation (BouncingBall)

("model","", false, false, false, "/var/lib/jenkinsl/ws/Modelica_Added-citation-

—metadata/build/share/doc/omc/testmodels/BouncingBall.mo", false, 1,1,23,17,{},
—~false, false,"","",false,"")

>>> isFunction (BouncingBall)

false

>>> existClass (BouncingBall)

true

>>> getComponents (BouncingBall)

{{Real, e, "coefficient of restitution", "public", false, false, false, false,
—"parameter", "none", "unspecified", {}},{Real, g, "gravity acceleration", "public
—", false, false, false, false, "parameter", "none", "unspecified", {}}, {Real, h,
—"height of ball", "public", false, false, false, false, "unspecified", "none",
—"unspecified", {}},{Real, v, "velocity of ball", "public", false, false, false,
—false, "unspecified", "none", "unspecified", {}},{Boolean, flying, "true, if |
—ball is flying", "public", false, false, false, false, "unspecified", "none",

—"unspecified", {}},{Boolean, impact, "", "public", false, false, false, false,
—"unspecified", "none", "unspecified", {}},{Real, v_new, "", "public", false,
—false, false, false, "unspecified", "none", "unspecified", {}},{Integer, foo, "",

— "public", false, false, false, false, "unspecified", "none", "unspecified", {}}}
>>> getConnectionCount (BouncingBall)

0

>>> getInheritanceCount (BouncingBall)

0

>>> getComponentModifierValue (BouncingBall,e)

llO.7ll

>>> getComponentModifierNames (BouncingBall, "e")

{}

>>> getClassRestriction (BouncingBall)

"model"

>>> getVersion() // Version of the currently running OMC
"OMCompiler v1.19.0-dev.417+gd538fbeb3e"

1.2.19 Quit OpenModelica

Leave and quit OpenModelica:

>>> quit ()

22 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

1.2.20 Dump XML Representation

The command dumpXMLDAE dumps an XML representation of a model, according to several optional parame-
ters.

dumpXMLDAE(modelnamel ,asInSimulationCode=<Boolean>] [filePrefix=<String>] [,storeln-
Temp=<Boolean>] [,addMathMLCode =<Boolean>])

This command dumps the mathematical representation of a model using an XML representation, with optional
parameters. In particular, asInSimulationCode defines where to stop in the translation process (before dumping the
model), the other options are relative to the file storage: filePrefix for specifying a different name and storeInTemp
to use the temporary directory. The optional parameter addMathMLCode gives the possibility to don't print the
MathML code within the xml file, to make it more readable. Usage is trivial, just: addMathMLCode=true/false
(default value is false).

1.2.21 Dump Matlab Representation

The command export dumps an XML representation of a model, according to several optional parameters.
exportDAEtoMatlab(modelname);

This command dumps the mathematical representation of a model using a Matlab representation. Example:

>>> loadFile (getInstallationDirectoryPath() + "/share/doc/omc/testmodels/
—BouncingBall.mo")

true

>>> exportDAEtoMatlab (BouncingBall)

"The equation system was dumped to Matlab file:BouncingBall_imatrix.m"

% Adjacency Matrix

o)

% number of rows: 6

IM={{3,6},{1,{"if", "true','=='" {3}, {},}},{{"1f", 'true','==" {4},{},}}, {5}, {2, {"1if
—', 'edge (impact)"' {3}, {5},}},{4,2}};

VL = {'foo','v_new', "impact', 'flying','v', 'h'};

EgStr = {'impact = h <= 0.0;"',"'"foo = if impact then 1 else 2;','der(v) = if flying,
—then -g else 0.0;','der(h) = v;','when {h <= 0.0 and v <= 0.0, impact} then v_
—new = 1f edge (impact) then (-e) * pre(v) else 0.0; end when;', 'when {h <= 0.0,
—and v <= 0.0, impact} then flying = v_new > 0.0; end when;'};

OldEgStr={'class BouncingBall',' parameter Real e = 0.7 "coefficient of

—restitution";',' parameter Real g = 9.81 "gravity acceleration";',' Real
—h(start = 1.0, fixed = true) "height of ball";',' Real v (fixed = true)
—"velocity of ball";',' Boolean flying(start = true, fixed = true) "true, if
—ball is flying";',' Boolean impact;',' Real v_new(fixed = true);"',"' Integer,,
—~foo; ', 'equation', ' impact = h <= 0.0;"'," foo = if impact then 1 else 2;','
—der(v) = if flying then -g else 0.0;"'," der(h) = v;',"' when {h <= 0.0 and v <=_
—0.0, impact} then',' v_new = if edge (impact) then -e x pre(v) else 0.0;',"' .
—~flying = v_new > 0.0;"'," reinit (v, v_new);',' end when;','end BouncingBall; "',

=ty

1.2. Interactive Session with Examples 23

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

1.3 Summary of Commands for the Interactive Session Handler

The following is the complete list of commands currently available in the interactive session hander.

simulate(modelname) Translate a model named modelname and simulate it.

simulate(modelnamel startTime=<Real>][,stopTime=<Real>][,numberOflntervals
=<Integer>][,outputlnterval=<Real>][,method=<String>]
[,tolerance=<Real>][,fixedStepSize=<Real>]

[,outputFormat=<String>]) Translate and simulate a model, with optional start time, stop time, and optional
number of simulation intervals or steps for which the simulation results will be computed. More intervals will
give higher time resolution, but occupy more space and take longer to compute. The default number of intervals
is 500. It is possible to choose solving method, default is “dassl”, “euler” and “rungekutta” are also available.
Output format “mat” is default. “plt” and “mat” (MATLAB) are the only ones that work with the val() command,
“csv” (comma separated values) and “empty” (no output) are also available (see section Alternative Simulation
Output Formats).

plot(vars) Plot the variables given as a vector or a scalar, e.g. plot({x1,x2}) or plot(x1).

plotParametric(var!, var2) Plot var2 relative to varl from the most recently simulated model, e.g. plotParamet-
ric(x,y).

cd() Return the current directory.

cd(dir) Change directory to the directory given as string.

clear() Clear all loaded definitions.

clearVariables() Clear all defined variables.

dumpXMLDAE(modelname, ...) Dumps an XML representation of a model, according to several optional param-
eters.

exportDAEtoMatlab(name) Dumps a Matlab representation of a model.

instantiateModel(modelname)Performs code instantiation of a model/class and return a string containing the flat
class definition.

list() Return a string containing all loaded class definitions.
list(modelname) Return a string containing the class definition of the named class.
listVariables() Return a vector of the names of the currently defined variables.

loadModel(classname) Load model or package of name classname from the path indicated by the environment
variable OPENMODELICALIBRARY.

loadFile(str) Load Modelica file (.mo) with name given as string argument str.
readFile(str) Load file given as string str and return a string containing the file content.
runScript(str) Execute script file with file name given as string argument str.

system(str) Execute str as a system(shell) command in the operating system; return integer success value. Output
into stdout from a shell command is put into the console window.

timing(expr) Evaluate expression expr and return the number of seconds (elapsed time) the evaluation took.
typeOf(variable) Return the type of the variable as a string.

saveModel(str,modelname) Save the model/class with name modelname in the file given by the string argument
str.

val(variable,timePoint) Return the (interpolated) value of the variable at time timePoint.
help() Print this helptext (returned as a string).

quit() Leave and quit the OpenModelica environment

24 Chapter 1. Introduction

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

1.4 Running the compiler from command line

The OpenModelica compiler can also be used from command line, in Windows cmd.exe or a Unix shell. The fol-
lowing examples assume omc is on the PATH; if it is not, you can run C: \OpenModelica 1.16.0\build\
bin\omc.exe or similar (depending on where you installed OpenModelica).

1.4.1 Example Session 1 — obtaining information about command line parame-
ters

$ omc —--help

OpenModelica Compiler OMCompiler v1.19.0-dev.417+gd538fbe53e
Copyright © 2019 Open Source Modelica Consortium (OSMC)
Distributed under OMSC-PL and GPL, see www.openmodelica.org

Usage: omc [Options] (Model.mo | Script.mos) [Libraries | .mo-files]
* Libraries: Fully qualified names of libraries to load before processing Model or
—~Script.

Documentation is available in the built-in package OpenModelica.Scripting or
online <https://build.openmodelica.org/Documentation/OpenModelica.Scripting.html>.

1.4.2 Example Session 2 — create an TestModel.mo file and run omc on it

model TestModel
parameter Real x = 1;
end TestModel;

$ omc TestModel.mo

class TestModel
parameter Real x = 1.0;

end TestModel;

1.4.3 Example Session 3 — create a mos-script and run omc on it

loadModel (Modelica) ;

getErrorString();

simulate (Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum);
getErrorString();

$ omc TestScript.mos
true
nn
record SimulationResult

resultFile = "/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/doc/
—UsersGuide/source/Modelica.Mechanics.MultiBody.Examples.Elementary.Pendulum_res.
—mat",

simulationOptions = "startTime = 0.0, stopTime = 5.0, numberOfIntervals = 500,
—~tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'Modelica.Mechanics.
—MultiBody.Examples.Elementary.Pendulum', options = '', outputFormat = 'mat',
—variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished
—successfully without homotopy method.

LOG_SUCCESS | info | The simulation finished successfully.

"
’

timeFrontend = 0.361891449,

(continues on next page)

1.4. Running the compiler from command line 25

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

(continued from previous page)

timeBackend = 0.647045238,
timeSimCode = 0.058970739,
timeTemplates = 0.04284145900000001,

timeCompile = 0.955337624,
timeSimulation = 0.06628170600000001,
timeTotal = 2.132551575

end SimulationResult;

In order to obtain more information from the compiler one can use the command line options --
showErrorMessages -d=failtrace when running the compiler:

$ omc —--showErrorMessages —-d=failtrace TestScript.mos
InstFunction.getRecordConstructorFunction failed for OpenModelica.Scripting.
—loadModel

- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE ()>].<Prefix.NOPRE ()>.Modelica,,
—env: <global scope>

— Static.elabCref failed: Modelica in env: <global scope>

- Static.elabCrefSubs failed on: [top:<Prefix.NOPRE ()>].<Prefix.NOPRE ()>.Modelica_,
—env: <global scope>

timeTotal = 2.421428885
end SimulationResult;
"[/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/OMCompiler/Compiler/
—BackEnd/ExpressionSolve.mo:186:9-186:210:writable] Error: Internal error Failed
—to solve \"world.z_label.cylinders[2].lengthDirection[l] = world.z_label.
—cylinders[1l].lengthDirection[1]\" w.r.t. \"world.z_label.R_lines[1,1]\"

n

26 Chapter 1. Introduction

CHAPTER
TWO

OMEDIT — OPENMODELICA CONNECTION EDITOR

OMEdit — OpenModelica Connection Editor is the new Graphical User Interface for graphical model editing in
OpenModelica. It is implemented in C++ using the Qt graphical user interface library and supports the Modelica
Standard Library that is included in the latest OpenModelica installation. This chapter gives a brief introduction
to OMEdit and also demonstrates how to create a DCMotor model using the editor.

OMEdit provides several user friendly features for creating, browsing, editing, and simulating models:
* Modeling — Easy model creation for Modelica models.
* Pre-defined models — Browsing the Modelica Standard library to access the provided models.
 User defined models — Users can create their own models for immediate usage and later reuse.

* Component interfaces — Smart connection editing for drawing and editing connections between model in-
terfaces.

* Simulation — Subsystem for running simulations and specifying simulation parameters start and stop time,
etc.

* Plotting — Interface to plot variables from simulated models.

2.1 Starting OMEdit

A splash screen similar to the one shown in Figure 2.1 will appear indicating that it is starting OMEdit. The
executable is found in different places depending on the platform (see below).

2.1.1 Microsoft Windows
OMEdit can be launched wusing the executable placed in OpenModelicalnstallationDirec-

tory/bin/OMEdit/OMEdit.exe. Alternately, choose OpenModelica > OpenModelica Connection Editor from the
start menu in Windows.

2.1.2 Linux

Start OMEdit by either selecting the corresponding menu application item or typing “OMEdit” at the shell or
command prompt.

27

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

OMEdit

—
. L L
{

Figure 2.1: OMEdit Splash Screen.

2.1.3 Mac OS X

The default installation is /Application/MacPorts/OMEdit.app.

2.2 MainWindow & Browsers

The MainWindow contains several dockable browsers,
e Libraries Browser
¢ Documentation Browser
* Variables Browser
* Messages Browser
Figure 9.2 shows the MainWindow and browsers.

The default location of the browsers are shown in Figure 9.2. All browsers except for Message Browser can
be docked into left or right column. The Messages Browser can be docked into top or bottom areas. If you
want OMEdit to remember the new docked position of the browsers then you must enable Preserve User's GUI
Customizations option, see section General.

28 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

o OMEdit - OpenModelica Connection Editor = B

File Edit View Simulation FMI Export Tools Help
BB 9%

FwHB - @Heee \OHNOTH
Libraries Browser Documentation Browser @ X

& X
|Search Classes | \ < Previous | [Next

v

Libraries

4 E OpenModelica

3 D MeodelicaServices
> . Complex

b P7%2] Modelica

[o ModelicaReference

Variables Browser g X

|Find Variables | ¥

Variables Value

£ >
F X

X:108.62 ¥:-16.90 o Modeling 8

Figure 2.2: OMEdit MainWindow and Browsers.

2.2. MainWindow & Browsers 29

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.2.1 Filter Classes

To filter a class click Edit > Filter Classes or press keyboard shortcut Ctrl+Shift+F. The loaded Modelica classes
can be filtered by typing any part of the class name.

2.2.2 Libraries Browser

To view the Libraries Browser click View > Windows > Libraries Browser. Shows the list of loaded Modelica
classes. Each item of the Libraries Browser has right click menu for easy manipulation and usage of the class. The
classes are shown in a tree structure with name and icon. The protected classes are not shown by default. If you
want to see the protected classes then you must enable the Show Protected Classes option, see section General.

2.2.3 Documentation Browser

Displays the HTML documentation of Modelica classes. It contains the navigation buttons for moving forward
and backward. It also contains a WYSIWYG editor which allows writing class documentation in HTML format.
To view the Documentation Browser click View > Windows > Documentation Browser.

Documentation Browser n
» - 5 L)
info rev hadr e
. ~
Modelica

Modelica Standard Library - Version 3.2.2

Information

Package Modelica® is a standardized and free package that is developed together with the Modelica® language from the Modelica
Association, see https://'www.Modelica.org. It is also caled Modelica Standard Library. It provides model components in many dormains
that are based on standardired interface definitions. Some typical examples are shown in the next figure:

l‘f‘?’ ambient
5, Did 00 I®
;{H : e

e I |

L]
AIMC1

cormvection

For an introduction, have especialy a look at:

* Overview provides an overview of the Modelica Standard Library inside the User's Guide.
¢ Release Motes summarizes the changes of new versions of this package.

¢ Contact lists the contributors of the Modelica Standard Library.

+ The Examples packages in the various libraries, demonstrate how to use the components of the corresponding sublibrary.

This version of the Modelica Standard Library consists of

« 1600 models and blocks, and
« 1350 functions

that are directly usable {= number of public, non-partial classes). It is fully compliant to Modelica Specification Version 3.2 Revision 2 and it
has heen tested with Madelica tanls fram different vendars.

Figure 2.3: Documentation Browser.

30 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.2.4 Variables Browser

The class variables are structured in the form of the tree and are displayed in the Variables Browser. Each variable
has a checkbox. Ticking the checkbox will plot the variable values. There is a find box on the top for filtering the
variable in the tree. The filtering can be done using Regular Expression, Wildcard and Fixed String. The complete
Variables Browser can be collapsed and expanded using the Collapse All and Expand All buttons.

The browser allows manipulation of changeable parameters for Plot Window. It also displays the unit and descrip-
tion of the variable.

The browser also contains the slider and animation buttons. These controls are used for variable graphics and
schematic animation of models i.e., DynamicSelect annotation. They are also used for debugging of state ma-
chines. Open the Diagram Window for animation. It is only possible to animate one model at a time. This is
achieved by marking the result file active in the Variables Browser. The animation only read the values from the
active result file. It is possible to simulate several models. In that case, the user will see a list of result files in
the Variables Browser. The user can switch between different result files by right clicking on the result file and
selecting Set Active in the context menu.

Variables Browser g X

|FiItE|' Variables

|:| Casze Sensitive Regular Expression o
Expand All Collapse All

Simulation Time Unit g -

“ ’ II Time:| 0.0 Speed:| 1~
)

Variables Value Display Unit Description
=] @ Meodelica.E...huaCircuit
=1
C F Capacitance
[] derfv) 0.014557 km2...-1.g der(Voltage drop of...pins (= p.v - nv))
i 0.14557 A Current flowing from pin p to pin n
n

Yoltage drop of the... pins (= p.v - nw)

[=Y = I =

= T &1 & M

= =] ra
(=9

=
=
[=]

Figure 2.4: Variables Browser.

2.2. MainWindow & Browsers 31

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.2.5 Messages Browser

Shows the list of errors. Following kinds of error can occur,
* Syntax
e Grammar
e Translation
* Symbolic
¢ Simulation
e Scripting

See section Messages for Messages Browser options.

2.3 Perspectives

The perspective tabs are loacted at the bottom right of the MainWindow:
* Welcome Perspective
* Modeling Perspective
* Plotting Perspective

* Debugging Perspective

2.3.1 Welcome Perspective

The Welcome Perspective shows the list of recent files and the list of latest news from https://www.openmodelica.
org. See Figure 2.5. The orientation of recent files and latest news can be horizontal or vertical. User is allowed
to show/hide the latest news. See section General.

2.3.2 Modeling Perspective

The Modeling Perpective provides the interface where user can create and design their models. See Figure 2.6.

The Modeling Perspective interface can be viewed in two different modes, the tabbed view and subwindow view,
see section General.

2.3.3 Plotting Perspective

The Plotting Perspective shows the simulation results of the models. Plotting Perspective will automatically
become active when the simulation of the model is finished successfully. It will also become active when user
opens any of the OpenModelica’s supported result file. Similar to Modeling Perspective this perspective can also
be viewed in two different modes, the tabbed view and subwindow view, see section General.

2.3.4 Debugging Perspective

The application automatically switches to Debugging Perpective when user simulates the class with algorithmic
debugger. The prespective shows the list of stack frames, breakpoints and variables.

32 Chapter 2. OMEdit — OpenModelica Connection Editor

https://www.openmodelica.org
https://www.openmodelica.org

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

ot OMEdit - OpenModelica Connection Editor — O *

File Edit View Sirmulation FMI Export Debug Git Tools Help

JeBB - l@meee/\® -EH|GQf X |-

Libraries Browser A X

|Filter Classes | ¥ ~t

OMEdit - OpenModelica Connection Editor

Libraries

> E OpenModelica

> [] ModelicaServices

Recent Files Latest News
> . Complex
> @ Meodelica E:> C:/OpenModelica/OMCompiler/Exan ED’ February &, 2017: OpenMeodelica 1.11.0 released
’ 0 ModelicaReference E:> C:/Users/adeas31/Desktop/Connecto ED’ January 17, 2017: OpenModelica 1.11 Beta3 released

E:> C:/Users/adeas31/Desktop/PhotoVolt December 20, 2016: OpenMeodelica 1.11 Beta2 released

E:> C:/Users/adeas31/Desktop/OmcOmc Movernber 22, 2016 OpenModelica 1.9.7 released

E:> C:/Users/adeas31/Desktop/Folder/pa March 16, 2016 OpenModelica 1.9.6 released

February 18, 2016: OpenModelica 1.9.4 beta2 released

EC}’ March 9, 2016: OpenModelica 1.9.4 released
ED’ Program OpenModelica Annual Workshop 2016

Clear Recent Files Reload | For more details visit our website www.openmodelica.or

oo oty e

t Welcome oﬁ Modeling s Plotting *» Debugging

Figure 2.5: OMEdit Welcome Perspective.

2.3. Perspectives 33

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

ot OMEdit - OpenModelica Connection Editor — O *
File Edit View Sirmulation FMI Export Debug Git Tools Help

teBB @oee \® -E-| QP9 X5
Libraries Browser T x| o4 DCMotor™® 8
[Fiter Classes | @ |.|.. A=) ‘szble |Mode| |Diagram View ‘DCI\"Iotor ‘DCI'\"Iotor |Une: 1,Cal: 0 ‘ h|
Libraries
@ OpenModelica
D ModelicaServices
. Complex
P72 Modelica
o MeodelicaReference

[

¥:-124.07 ¥:-32.34 t Welcome gﬁ Modeling ﬁ Plotting ‘» Debugging

Figure 2.6: OMEdit Modeling Perspective.

34

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

ot OMEdit - OpenModelica Connection Editor - [Plot: 1] — O *,
IZ Eile Edit View Simulation FM| Export Debug Git Tools Help - &8 X
FeBB @O0 \® -E| Q][R]X 5
Libraries Browser @ %' Zoom Pan | AutoScale = FitinView Save | Print | Grid | Detailed Grid || Variables Browser g X
|Filter Classes | ¥ |Filter Variables | &
Libraries emf.phi [deg] Simulation Time Linit l:l

E OpenMeodelica 0 __\\\\- Variables Value
[] ModelicaServices E‘M
. Complex -1 = emf

P72 Modelica [dertph) -03403

-3 fined
o MaodelicaReference b flange
E DCMotor] i -0.53350
-3

internalSupport

[k 1.0

-4 n
\ P
5] [phi -7.23033
] v -0.3403
1 \ Cw -0.3403
-6 groundl
] \ inductorl
74 inertial
] resistor]
" 1 S S S . A signalvoltagel
0 0.2 0.4 0.6 0.8 1 stepl
time [s] ‘ N

¥:-138.55 ¥:-43.45 t Welcome oﬁ Modeling m Flotting ‘ Debugging

Figure 2.7: OMEdit Plotting Perspective.

2.3. Perspectives 35

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

% OMEdit - OpenModelica Connection Editor — O X
File Edit View Simulation FMI Export Debug Git Tools Help
[[=3 9 o]
FeBA Heee \PHOTHE < EH-©-2-9 X5~
Libraries Browser & X Stack Frames Browser & X BreakPoints Browser & X | Locals Browser F X
5 io Il W] 2 2 [y <[souvedotb_mvent[ire i Nome Type vaue
))) ® 5 C/Users/..dByTwo.mo inValue Real 0
L ~
Libraries Function Line File outValue Real 4.1445)
E OpenModelica E’> getV.yTwo 35 C:/Users/adeas31/De...eMultipliedByTwo.mo
D ModelicaServices Simul...ion_1 5 C:/Users/adeas31/De.../SimulationModel.mo
Simu..ns_ 0 33 :/Users/adeas31/App...ulaticnModel_12jac.h
. Complex ; ; r . ‘h - -
Simul...tions 43 C:/Users/adeas31/App...ulationModel_12jac.h
@ Modelica fumb_ finn hd
o ModelicaReference E getValueMultipliedByTwo [5¢]
m DCMotor |I'I o&o |Wr1'tzble |Function |Text\ﬁew |getVaIueMuIﬁp|iedByTwo C:/Use.. Two.mo | Line: 5, Col: 0 | ﬁ|
getValueM.. liedByTwo 1 function getValueMultipliedByTwo
M| SimulationModel 2 input Real inValue;
3 output Eeal outValue:;
1 algorithm
® S outValue := inValue * 2;
&8 end getValueMultipliedByTwo;
£ >
4.1445230292290475e-316
Qutput Browser [4
Debugger CLI QOutput Browser
¥: -95,10 i 105.72 t Welcome oﬁ Modeling ﬂ Plotting ‘ Debugging

Figure 2.8: OMEdit Debugging Perspective.

36

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.4 File Menu

New

New Modelica Class - Creates a new Modelica class.

New SSP Model - Creates a new SSP model.

Open Model/Library File(s) - Opens the Modelica file or a library.

Open/Convert Modelica File(s) With Encoding - Opens the Modelica file or a library with a specific encod-
ing. It is also possible to convert to UTF-8.

Load Library - Loads a Modelica library. Allows the user to select the library path assuming that the path
contains a package.mo file.

Load Encrypted Library - Loads an encrypted library. see OpenModelica Encryption

Open Result File(s) - Opens a result file.

Open Transformations File - Opens a transformational debugger file.

New Composite Model - Creates a new composite model.

Open Composite Model(s) - Loads an existing composite model.

Load External Model(s) - Loads the external models that can be used within composite model.
Open Directory - Loads the files of a directory recursively. The files are loaded as text files.
Save - Saves the class.

Save As - Save as the class.

Save Total - Saves the class and all the classes it uses in a single file. The class and its dependencies can
only be loaded later by using the loadFile() API function in a script. Allows third parties to reproduce an
issue with a class without worrying about library dependencies.

Import

FMU - Imports the FMU.

FMU Model Description - Imports the FMU model description.

From OMNotbook - Imports the Modelica models from OMNotebook.

Ngspice netlist - Imports the ngspice netlist to Modelica code.

"Export"

To Clipboard - Exports the current model to clipboard.

Image - Exports the current model to image.

FMU - Exports the current model to FMU.

Read-only Package - Exports a zipped Modelica library with file extension .mol
Encrypted Package - Exports an encrypted package. see OpenModelica Encryption
XML - Exports the current model to a xml file.

Figaro - Exports the current model to Figaro.

To OMNotebook - Exports the current model to a OMNotebook file.

System Libraries - Contains a list of system libraries.

Recent Files - Contains a list of recent files.

Clear Recent Files - Clears the list of recent files.

Print - Prints the current model.

Quit - Quit the OpenModelica Connection Editor.

2.4.

File Menu 37

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.5

2.6

2.7

Edit Menu

Undo - Undoes the last change.
Redo - Redoes the last undone change.

Filter Classes - Filters the classes in Libraries Browser. see Filter Classes

View Menu

Toolbars - Toggle visibility of toolbars.

Windows - Toggle visibility of windows.

Close Window - Closes the current model window.

Close All Windows - Closes all the model windows.

Close All Windows But This - Closes all the model windows except the current.
Cascade Windows - Arranges all the child windows in a cascade pattern.

Tile Windows Horizontally - Arranges all child windows in a horizontally tiled pattern.
Tile Windows Vertically - Arranges all child windows in a vertically tiled pattern.
Toggle Tab/Sub-window View - Switches between tab and subwindow view.
Grid Lines - Toggle grid lines of the current model.

Reset Zoom - Resets the zoom of the current model.

Zoom In - Zoom in the current model.

Zoom Out - Zoom out the current model.

Simulation Menu

Check Model - Checks the current model.

Check All Models - Checks all the models of a library.
Instantiate Model - Instantiates the current model.
Simulation Setup - Opens the simulation setup window.

Simulate - Simulates the current model.

Simulate with Transformational Debugger - Simulates the current model and opens the transformational

debugger.

Simulate with Algorithmic Debugger - Simulates the current model and opens the algorithmic debugger.

Simulate with Animation - Simulates the current model and open the animation.

Archived Simulations - Shows the list of simulations already finished or running. Double clicking on any of

them opens the simulation output window.

38

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.8 Debug Menu

* Debug Configurations - Opens the debug configurations window.

* Attach to Running Process - Attaches the algorithmic debugger to a running process.

2.9 SSP Menu

* Add System - Adds the system to a model.
Add/Edit Icon - Add/Edit the system/submodel icon.

* Delete Icon - Deletes the system/submodel icon.

* Add Connector - Adds a connector to a system/submodel.

Add Bus - Adds a bus to a system/submodel.
Add TLM Bus - Adds a TLM bus to a system/submodel.
Add SubModel - Adds a submodel to a system.

2.10 Sensitivity Optimization Menu

* Run Sensitivity Analysis and Optimization - Runs the sensitivity analysis and optimization.

2.11 Tools Menu

* OpenModelica Compiler CLI - Opens the OpenModelica Compiler command line interface window.

* OpenModelica Command Prompt - Opens the OpenModelica Command Prompt (Only available on Win-
dows).

* Open Working Directory - Opens the current working directory.
* Open Terminal - Runs the terminal command set in General.

* Options - Opens the options window.

2.12 Help Menu

* OpenModelica Users Guide - Opens the OpenModelica Users Guide.

* OpenModelica Users Guide (PDF) - Opens the OpenModelica Users Guide (PDF).

* OpenModelica System Documentation - Opens the OpenModelica System Documentation.

* OpenModelica Scripting Documentation - Opens the OpenModelica Scripting Documentation.

* Modelica Documentation - Opens the Modelica Documentation.

* OMSimulator Users Guide - Opens the OMSimulator Users Guide.

* OpenModelica TLM Simulator Documentation - Opens the OpenModelica TLM Simulator Documentation.

About OMEdit - Shows the information about OpenModelica Connection Editor.

2.8. Debug Menu 39

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.13 Modeling a Model

2.13.1 Creating a New Modelica Class

Creating a new Modelica class in OMEdit is rather straightforward. Choose any of the following methods,
* Select File > New > New Modelica Class from the menu.
* Click on New Modelica Class toolbar button.
* Click on the Create New Modelica Class button available at the left bottom of Welcome Perspective.

¢ Press Ctrl+N.

2.13.2 Opening a Modelica File

Choose any of the following methods to open a Modelica file,
* Select File > Open Model/Library File(s) from the menu.
* Click on Open Model/Library File(s) toolbar button.
* Click on the Open Model/Library File(s) button available at the right bottom of Welcome Perspective.
¢ Press Ctrl+O.
(Note, for editing Modelica system files like MSL (not recommended), see Editing Modelica Standard Library)

2.13.3 Opening a Modelica File with Encoding

Select File > Open/Convert Modelica File(s) With Encoding from the menu. It is also possible to convert files to
UTF-8.

2.13.4 Model Widget

For each Modelica class one Model Widget is created. It has a statusbar and a view area. The statusbar contains
buttons for navigation between the views and labels for information. The view area is used to display the icon,
diagram and text layers of Modelica class. See Figure 2.9.

2.13.5 Adding Component Models

Drag the models from the Libraries Browser and drop them on either Diagram or Icon View of Model Widget.

2.13.6 Making Connections

In order to connect one component model to another the user first needs to enable the connect mode ('<:) from
the toolbar.

Move the mouse over the connector. The mouse cursor will change from arrow cursor to cross cursor. To start
the connection press left button and move while keeping the button pressed. Now release the left button. Move
towards the end connector and click when cursor changes to cross cursor.

40 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

oA DCMotor* %]
II-IE € | writable | Model | Diagram View | C:/Users/adeas31/Desktop/DCmotor.mo Line: 1, Col: 0 | &
~
resistor 1 inductorl
sepl
4 oo
=
»)ﬁ
z
+ 5
[| [
startTime=startTime
groundl
w
< >

Figure 2.9: Model Widget showing the Diagram View.

2.13. Modeling a Model 41

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.14 Simulating a Model

The simulation process in OMEdit is split into three main phases:

1. The Modelica model is translated into C/C++ code. The model is first instantiated by the frontend, which
turns it into a flat set of variables, parameters, equations, algorithms, and functions. The backend then
analyzes the mathematical structure of the flat model, applies symbolic simplifications and determines how
the equations can be solved efficiently. Finally, based on this information, model-specific C/C++ code is
generated. This part of the process can be influenced by setting Translation Flags (a.k.a. Command Line
Options), e.g. deciding which kind of structural simplifications should be performed during the translation
phase.

2. The C/C++ code is compiled and linked into an executable simulation code. Additional C/C++ compiler
flags can be given to influence this part of the process, e.g. by setting compiler optimizations such as —03.
Since multiple C/C++ source code files are generated for a given model, they are compiled in parallel by
OMEdit, exploiting the power of multi-core CPUs.

3. The simulation executable is started and produces the simulation results in a .mat or .csv file. The runtime
behaviour can be influenced by Simulation Flags, e.g. by choosing specific solvers, or changing the output
file name. Note that it it possible to re-simulate a model multiple times, changing parameter values from the
Variables Browser and/or changing some Simulation Flags. In this case, only Phase 3. is repeated, skipping
Phases 1. and 2., which enables much faster iterations.

The simulation options for each model are stored inside the OMEdit data structure. They are set according to the
following sequence,

* Each model has its own translation and simulation options.

* If the model is opened for the first time then the translation and simulation options are set to defaults, that
can be customized in Tools | Options | Simulation.

* experiment,__ OpenModelica_commandLineOptionsand__ OpenModelica_simulationFlags
annotations are applied if the model contains them.

e After that all the changes done via Simulation Setup window for a certain model are pre-
served for the whole session. If you want to use the same settings in future sessions then
you should store them inside experiment, OpenModelica_commandLineOptions, and
__OpenModelica_simulationFlags annotations.

The OMEdit Simulation Setup can be launched by,
* Selecting Simulation > Simulation Setup from the menu. (requires a model to be active in ModelWidget)
¢ Clicking on the Simulation Setup toolbar button. (requires a model to be active in ModelWidget)

* Right clicking the model from the Libraries Browser and choosing Simulation Setup.

2.14.1 General

 Simulation Interval

e Start Time — the simulation start time.

e Stop Time — the simulation stop time.

* Number of Intervals — the simulation number of intervals.

¢ Interval — the length of one interval (i.e., stepsize)

* Integration
e Method — the simulation solver. See section Integration Methods for solver details.
* Tolerance — the simulation tolerance.
* Jacobian - the jacobian method to use.

DASSL/IDA Options

* Root Finding - Activates the internal root finding procedure of dassl.

42 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

* Restart After Event - Activates the restart of dassl after an event is performed.
e Initial Step Size
* Maximum Step Size
* Maximum Integration Order
C/C++ Compiler Flags (Optional) — the optional C/C++ compiler flags.
Number of Processors — the number of processors used to build the simulation.
Build Only — only builds the class.
Launch Transformational Debugger — launches the transformational debugger.
Launch Algorithmic Debugger — launches the algorithmic debugger.

Launch Animation — launches the 3d animation window.

2.14.2 Interactive Simulation

Simulate with steps (makes the interactive simulation synchronous; plots nicer curves at the expense of
performance)

Simulation server port

2.14.3 Translation Flags

2.14.4 Simulation Flags

Model Setup File (Optional) — specifies a new setup XML file to the generated simulation code.
Initialization Method (Optional) — specifies the initialization method.

Equation System Initialization File (Optional) — specifies an external file for the initialization of the model.
Equation System Initialization Time (Optional) — specifies a time for the initialization of the model.

Clock (Optional) — the type of clock to use.

Linear Solver (Optional) — specifies the linear solver method.

Non Linear Solver (Optional) — specifies the nonlinear solver.

Linearization Time (Optional) — specifies a time where the linearization of the model should be performed.

Output Variables (Optional) — outputs the variables a, b and c at the end of the simulation to the standard
output.

Profiling — creates a profiling HTML file.

CPU Time — dumps the cpu-time into the result file.

Enable All Warnings — outputs all warnings.

Logging (Optional)

stdout - standard output stream. This stream is always active, can be disabled with -lv=-stdout
assert - This stream is always active, can be disabled with -lv=-assert
LOG_DASSL - additional information about dassl solver.
LOG_DASSL_STATES - outputs the states at every dassl call.
LOG_DEBUG - additional debug information.

LOG_DSS - outputs information about dynamic state selection.
LOG_DSS_JAC - outputs jacobian of the dynamic state selection.
LOG_DT - additional information about dynamic tearing.

LOG_DT_CONS - additional information about dynamic tearing (local and global constraints).

2.14

. Simulating a Model 43

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

LOG_EVENTS - additional information during event iteration.
LOG_EVENTS_V - verbose logging of event system.

LOG_INIT - additional information during initialization.

LOG_IPOPT - information from Ipopt.

LOG_IPOPT_FULL - more information from Ipopt.

LOG_IPOPT_JAC - check jacobian matrix with Ipopt.
LOG_IPOPT_HESSE - check hessian matrix with Ipopt.
LOG_IPOPT_ERROR - print max error in the optimization.

LOG_JAC - outputs the jacobian matrix used by dassl.

LOG_LS - logging for linear systems.

LOG_LS_V - verbose logging of linear systems.

LOG_NLS - logging for nonlinear systems.

LOG_NLS_V - verbose logging of nonlinear systems.
LOG_NLS_HOMOTOPY - logging of homotopy solver for nonlinear systems.
LOG_NLS_JAC - outputs the jacobian of nonlinear systems.
LOG_NLS_JAC_TEST - tests the analytical jacobian of nonlinear systems.
LOG_NLS_RES - outputs every evaluation of the residual function.
LOG_NLS_EXTRAPOLATE - outputs debug information about extrapolate process.
LOG_RES_INIT - outputs residuals of the initialization.

LOG_RT - additional information regarding real-time processes.
LOG_SIMULATION - additional information about simulation process.
LOG_SOLVER - additional information about solver process.
LOG_SOLVER_V - verbose information about the integration process.
LOG_SOLVER_CONTEXT - context information during the solver process.
LOG_SOTI - final solution of the initialization.

LOG_STATS - additional statistics about timer/events/solver.
LOG_STATS_V - additional statistics for LOG_STATS.

LOG_SUCCESS - This stream is always active, can be disabled with -lv=-LOG_SUCCESS.
LOG_UTIL.

LOG_ZEROCROSSINGS - additional information about the zerocrossings.
Additional Simulation Flags (Optional) — specify any other simulation flag.

2.14.5 Output

Output Format — the simulation result file output format.

Single Precision - Output results in single precision (only for mat output format).
File Name Prefix (Optional) — the name is used as a prefix for the output files.
Result File (Optional) - the simulation result file name.

Variable Filter (Optional)

Protected Variables — adds the protected variables in result file.

Equidistant Time Grid — output the internal steps given by dassl instead of interpolating results into an
equidistant time grid as given by stepSize or numberOfIntervals

44

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

e Store Variables at Events — adds the variables at time events.

* Show Generated File — displays the generated files in a dialog box.

2.14.6 Data Reconciliation

* Algorithm — data reconciliation algorithm.
* Measurement Input File — measurement input file.
e Correlation Matrix Input File — correlation matrix file.

* Epsilon

2.15 2D Plotting

Successful simulation of model produces the result file which contains the instance variables that are candidate for
plotting. Variables Browser will show the list of such instance variables. Each variable has a checkbox, checking
it will plot the variable. See Figure 2.7. To get several plot windows tiled horizontally or vertically use the menu
items Tile Windows Horizontally or Tile Windows Vertically under View Menu.

2.15.1 Types of Plotting

The plotting type depends on the active Plot Window. By default the plotting type is Time Plot.

Time Plot

Plots the variable over the simulation time. You can have multiple Time Plot windows by clicking on New Plot

Window toolbar button (|Z).

Plot Parametric

Draws a two-dimensional parametric diagram, between variables x and y, with y as a function of x. You can have
multiple Plot Parametric windows by clicking on the New Plot Parametric toolbar button (I@).

Select the x-axis variable while holding down the shift key, release the shift key and then select y-axis variables.
One or many y-axis variables can be selected against one x-axis variable. To select a new x-axis variable press
and hold the shift key again.

Unchecking the x-axis variable will uncheck all y-axis variables linked to it.

Array Plot

Plots an array variable so that the array elements' indexes are on the x-axis and corresponding elements' values are
on the y-axis. The time is controlled by the slider above the variable tree. When an array is present in the model,
it has a principal array node in the variable tree. To plot this array as an Array Plot, match the principal node. The
principal node may be expanded into particular array elements. To plot a single element in the Time Plot, match

the element. A new Array Plot window is opened using the New Array Plot Window toolbar button (|L").

2.15. 2D Plotting 45

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

Array Parametric Plot

Plots the first array elements' values on the x-axis versus the second array elements' values on the y-axis. The time
is controlled by the slider above the variable tree. To create a new Array Parametric Plot, press the New Array

Parametric Plot Window toolbar button (|), then match the principle array node in the variable tree view to be
plotted on the x-axis and match the principle array node to be plotted on the y-axis.

Diagram Window

Shows the active ModelWidget as a read only diagram. You can only have one Diagram Window. To show it click

on Diagram Window toolbar button (tﬂi).

2.15.2 Plot Window

A plot window shows the plot curve of instance variables. Several plot curves can be plotted in the same plot
window. See Figure 2.7.

Plot Window Menu

* Auto Scale - Automatically scales the horizontal and vertical axes.
* Fit in View - Adjusts the plot canvas to according to the size of plot curves.
* Save - Saves the plot to file system as .png, .svg or .bmp.
* Print - Prints the plot.
* Grid - Shows grid lines.
* Detailed Grid - Shows detailed grid lines.
* No Grid - Hides grid lines.
* Log X - Logarithmic scale of the horizontal axis.
* Log Y - Logarithmic scale of the vertical axis.
* Setup - Shows a setup window.
* Variables - List of all plotted variables.

* General - Variable general information.

* Legend - Display name for legend.

* File - File name where variable data is stored.

* Appearance - Visual settings of variable.

* Color - Display color.

e Pattern - Line pattern of curve.

* Thickness - Line thickness of curve.

* Hide - Hide/Show the curve.

» Toggle Sign - Toggles the sign of curve.

* Titles - Plot, axes and footer titles settings.

* Legend - Sets legend position and font.

* Range - Automatic or manual axes range.

* Auto Scale - Automatically scales the horizontal and vertical axes.
* X-Axis

e Minimum - Minimum value for x-axis.

46 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

e Maximum - Maximum value for x-axis.

e Y-Axis

* Minimum - Minimum value for y-axis.

* Maximum - Maximum value for y-axis.

* Prefix Units - Automatically pick the right prefix for units.

2.16 Re-simulating a Model

The Variables Browser allows manipulation of changeable parameters for re-simulation. After changing the pa-

rameter values user can click on the re-simulate toolbar button (9), or right click the model in Variables Browser
and choose re-simulate from the menu.

2.17 3D Visualization

Since OpenModelica 1.11 , OMEdit has built-in 3D visualization, which replaces third-party libraries (such as
Modelica3D) for 3D visualization.

2.17.1 Running a Visualization

The 3d visualization is based on OpenSceneGraph. In order to run the visualization simply right click the class in
Libraries Browser an choose “Simulate with Animation” as shown in Figure 2.10.

% File Edit View Simulation FMI
(e =
Libraries Browser =

|Sea|'ch Classes |

A
(1]

Libraries
D ModelicaServices

Complex

= P7%] Modelica

&% OMEdit - OpenModelica Connection Editor - [DoublePendulum]

Export Debug Tools Help

Heee \OHOTHE < EQY -

- %»

O

- &8 X

IZ » m))

£3 |II'I o’& E o | Writable | Model | Diagram View | Modelim.Med'1anics.MuIﬁBody.Examples.EIemenizry.Dou| | Line: 1, Col: 0 | |

Open Class

View Documentation

Save Total

Ll

E Instantiate Model
0 UsersGuide Q Check Model
(8] Blocks @) Check All Models
ComplexBlocks =) Simulate Ctrl+B boxBodyl Rudfi=2 boxBody2
@ StateGraph # Simulate with Transformational Debugger] I I-—-I] I
@] Electrical # Simulate with Algorithmic Debugger r={05. 0.0} .0, r={05, 0,0}
Magnetic 6 Simulate with Animation
=] Mechanics S| Simulation Setup
= Y| MultiBody W Duplicate
o UsersGuide - Export FMU
World S Export XML
= E] Examples B Export Figaro
- E] Elementary Update Bindings
() DoublePenduluminitTip
) ForceAndTorque
':\!,:' FreeBody v v
Simulates the Modelica class with Animation ¥:-89.44 ¥:-53.85 t Welcome oﬁ Modeling & Plotting [4 Debugging

Figure 2.10: OMEdit Simulate with Animation.

One can also run the visualization via Simulation > Simulate with Animation from the menu.

2.16. Re-simulating a Model

47

https://github.com/OpenModelica/Modelica3D

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

When simulating a model in animation mode, the flag +d=visxml is set. Hence, the compiler will generate a
scene description file _visual.xml which stores all information on the multibody shapes. This scene description
references all variables which are needed for the animation of the multibody system. When simulating with
+d=visxml, the compiler will always generate results for these variables.

2.17.2 Viewing a Visualization

After the successful simulation of the model, the visualization window will show up automatically as shown in
Figure 2.11.

,ﬁ OMEdit - OpenModelica Connection Editor = | B |
File Edit View Simulation FMI Export Debug Tools Help
j.l—'_-'. ..R @O\(D\O\ \\ODOTB» v » r det Q»K» r-L.'»
Libraries Browser g X | £2) Modelica,Mechanics. MultiBody Examples. Elementary. DoublePendulum_res.mat [£J | Variables Browser g X%
[Fitter Clzsses | @ - " > II 0 rime [s]: et 1 (_"‘\ —~ [Filter variables | @
Libraries - Simulation Time Unit [:]
= 7’:’ Modelica Variables . Valu
o UsersGuide E\DXMBszic...endulum
IE] Blocks 3 > boxBody2
:EE]: ComplexBlocks rd:\:li:td
D+0 StateGraph revolute?
:E%J Electrical werld
:tl]: Magnetic
= :’“III‘ Mechanics x
| T MultiBody
o UsersGuide
World
=] rh1 Examples
= :’: Ele..ary
l- D..m
l' Dain «[m s
X: 17.97 ¥:15.286 | t Welcome | o’ Modeling | Plotting | & Debugging

Figure 2.11: OMEdit 3D Visualization.

The animation starts with pushing the play button. The animation is played until stopTime or until the pause
button is pushed. By pushing the previous button, the animation jumps to the initial point of time. Points of time
can be selected by moving the time slider or by inserting a simulation time in the Time-box. The speed factor of
animation in relation to realtime can be set in the Speed-dialog. Other animations can be openend by using the
open file button and selecting a result file with a corresping scene description file.

The 3D camera view can be manipulated as follows:

Operation Key Mouse Action
Move Closer/Further none Wheel

Move Closer/Further Right Mouse Hold Up/Down
Move Up/Down/Left/Right | Middle Mouse Hold Move Mouse
Move Up/Down/Left/Right | Left and Right Mouse Hold | Move Mouse
Rotate Left Mouse Hold Move Mouse
Shape context menu Right Mouse + Shift

Predefined views (Isometric, Side, Front, Top) can be selected and the scene can be tilted by 90° either clock or
anticlockwise with the rotation buttons.

48 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.17.3 Additional Visualization Features

The shapes that are displayed in the viewer can be selected with shift + right click. If a shape is selected, a context
menu pops up that offers additional visualization features

1 shape ' |€ Change Transparency
Reset Transparency and Texture [Make Shape Invisible

Change Color

&

.. Apply Check Texture
oo

&

Apply Customn Texture

Remove Texure

The following features can be selected:

Menu Description

Change Transparency | The shape becomes either transparent or intransparent.

Make Shape Invisible | The shape becomes invisible.

Change Color A color dialog pops up and the color of the shape can be set.

Apply Check Texture A checked texture is applied to the shape.

Apply Custom Texture | A file selection dialog pops up and an image file can be selected as a texture.
Remove Texture Removes the current texture of the shape.

2.17. 3D Visualization

49

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.18 Animation of Realtime FMUs

Instead of a result file, OMEdit can load Functional Mock-up Units to retrieve the data for the animation of
multibody systems. Just like opening a mat-file from the animation-plotting view, one can open an FMU-file.
Necessarily, the FMU has to be generated with the +d=visxml flag activated, so that a scene description file is
generated in the same directory as the FMU. Currently, only FMU 1.0 and FMU 2.0 model exchange are supported.
When choosing an FMU, the simulation settings window pops up to choose solver and step size. Afterwards, the
model initializes and can be simulated by pressing the play button.

2.18.1 Interactive Realtime Animation of FMUs

FMUs can be simulated with realtime user interaction. A possible solution is to equip the model with an inter-
action model from the Modelica_DeviceDrivers library (https://github.com/modelica/Modelica_DeviceDrivers).
The realtime synchronization is done by OMEdit so no additional time synchronization model is necessary.

&t OMEdit - OpenModelica Connection Editor l‘:' E] éj
File Edit View Simulation FMI Expot Debug Git Tools Help

s8R oo \PHOTREK 5- O9E »%-9- 7

Libraries Browser 8 x| 4 DoublePendulum_interactive™ 8 |
Filter Classes _I N *@]E o ‘Writable |Mode\ |Diagram View |DoubIePendqum_interacﬁve |D:fProgramminngPENMODELICA...ub\ePendqum_inheracﬁve.mo | |

-

Libraries

@ OpenModelica

o ModelicaReference

ModelicaServices
Complex
. 777 Modelica =ddl
: : Bl +1
l DU Modelica_..ceDrivers +
—) I
Modelica...chronous p' \ +1

m

positionl
1

| tWeImme | diMUdeIing | aPlotﬁng | uDebugging

50 Chapter 2. OMEdit — OpenModelica Connection Editor

https://github.com/modelica/Modelica_DeviceDrivers

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.19 Interactive Simulation

Warning: Interactive simulation is an experimental feature.

Interactive simulation is enabled by selecting interactive simulation in the simulation setup.

There are two main modes of execution: asynchronous and synchronous (simulate with steps). The difference is
that in synchronous (step mode), OMEdit sends a command to the simulation for each step that the simulation
should take. The asynchronous mode simply tells the simulation to run and samples variables values in real-time;
if the simulation runs very fast, fewer values will be sampled.

When running in asynchronous mode, it is possible to simulate the model in real-time (with a scaling factor just
like simulation flag -7z, but with the ability to change the scaling factor during the interactive simulation). In the
synchronous mode, the speed of the simulation does not directly correspond to real-time.

2.20 How to Create User Defined Shapes - Icons

Users can create shapes of their own by using the shape creation tools available in OMEdit.

 Line Tool — Draws a line. A line is created with a minimum of two points. In order to create a line, the user
first selects the line tool from the toolbar and then click on the Icon/Diagram View; this will start creating a
line. If a user clicks again on the Icon/Diagram View a new line point is created. In order to finish the line
creation, user has to double click on the Icon/Diagram View.

* Polygon Tool — Draws a polygon. A polygon is created in a similar fashion as a line is created. The only
difference between a line and a polygon is that, if a polygon contains two points it will look like a line and
if a polygon contains more than two points it will become a closed polygon shape.

* Rectangle Tool — Draws a rectangle. The rectangle only contains two points where first point indicates the
starting point and the second point indicates the ending the point. In order to create rectangle, the user
has to select the rectangle tool from the toolbar and then click on the Icon/Diagram View, this click will
become the first point of rectangle. In order to finish the rectangle creation, the user has to click again on the
Icon/Diagram View where he/she wants to finish the rectangle. The second click will become the second
point of rectangle.

* Ellipse Tool — Draws an ellipse. The ellipse is created in a similar way as a rectangle is created.
e Text Tool — Draws a text label.
* Bitmap Tool — Draws a bitmap container.

The shape tools are located in the toolbar. See Figure 2.12.

The user can select any of the shape tools and start drawing on the Icon/Diagram View. The shapes created on the
Diagram View of Model Widget are part of the diagram and the shapes created on the Icon View will become the
icon representation of the model.

For example, if a user creates a model with name testModel and add a rectangle using the rectangle tool and a
polygon using the polygon tool, in the Icon View of the model. The model’s Modelica Text will appear as follows:

model testModel

annotation (Icon (graphics = {Rectangle(rotation = 0, lineColor = {0,0,255},
—~fillColor = {0,0,255}, pattern = LinePattern.Solid, fillPattern = FillPattern.
—None, lineThickness = 0.25, extent = {{ -64.5,88},{63, —-22.5}}),Polygon(points =
—{{ -47.5, -29.5},{52.5, -29.5},{4.5, -86},{ -47.5, -29.5}}, rotation = 0,
—~lineColor = {0,0,255}, fillColor = {0,0,255}, pattern = LinePattern.Solid,
—~fillPattern = FillPattern.None, lineThickness = 0.25)1}));
end testModel;

In the above code snippet of testModel, the rectangle and a polygon are added to the icon annotation of the model.
Similarly, any user defined shape drawn on a Diagram View of the model will be added to the diagram annotation
of the model.

2.19. Interactive Simulation 51

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

(Rectangle Tool (Text Tool >

\

(¢ Line Tool) A4—“WOHOEN —»(Bitmap Tool D

/N

(Polygon Tool) (¢ Ellipse Tool)

Figure 2.12: User defined shapes.

2.21 Global head section in documentation

If you want to use same styles or same JavaScript for the classes contained inside a package then you can de-
fine __ OpenModelica_infoHeader annotation inside the Documentation annotation of a package. For
example,

package P
model M
annotation (Documentation (info="<html>
Click here
</html>"));
end M;
annotation (Documentation (___OpenModelica_infoHeader="
<script type=\"text/javascript\">
function HelloWorld() {
alert (\"Hello World!'\")
}
</script>"));
end P;

In the above example model M does not need to define the javascript function HelloWorld. It is only defined
once at the package level using the __OpenModelica_infoHeader and then all classes contained in the
package can use it.

In addition styles and JavaScript can be added from file locations using Modelica URIs. Example:

package P
model M
annotation (Documentation (info="<html>
Click here
</html>"));
end M;
annotation (Documentation (___OpenModelica_infoHeader="
<script type=\"text/javascript\">
src=\"modelica://P/Resources/hello.js\">
t
</script>"));
end P;

Where the file Resources/hello. js then contains:

52 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

function HelloWorld() {
alert ("Hello World!™);

}

2.2

2 Options

OMEdit allows users to save several options which will be remembered across different sessions of OMEdit. The
Options Dialog can be used for reading and writing the options.

2.22.1 General

General

Language — Sets the application language.

Working Directory — Sets the application working directory. All files are generated in this directory.
Toolbar Icon Size — Sets the size for toolbar icons.

Preserve User’s GUI Customizations — If true then OMEdit will remember its windows and toolbars posi-
tions and sizes.

Terminal Command — Sets the terminal command. When user clicks on Tools > Open Terminal then this
command is executed.

Terminal Command Arguments — Sets the terminal command arguments.
Hide Variables Browser — Hides the variable browser when switching away from plotting perspective.

Activate Access Annotations — Activates the access annotations for the non-encrypted libraries. Access
annotations are always active for encrypted libraries.

Create a model.bak-mo backup file when deleting a model

Display errors/warnings when instantiating the graphical annotations - if true then the errors/warnings are
shown when using OMC API for graphical annotations.

Libraries Browser
Library Icon Size — Sets the size for library icons.

Max. Library Icon Text Length to Show — Sets the maximum text length that can be shown in the icon in
Libraries Browser.

Show Protected Classes — If enabled then Libraries Browser will also list the protected classes.

Show Hidden Classes — If enabled then Libraries Browser will also list the hidden classes. Ignores the
annotation(Protection(access = Access.hide))

Synchronize with Model Widget — If enabled then Libraries Browser will scroll automatically to the active
Model Widget i.e., the current model.

Enable Auto Save - Enables/disables the auto save feature.

Auto Save interval — Sets the auto save interval value. The minimum possible interval value is 60 seconds.
Welcome Page

Horizontal View/Vertical View — Sets the view mode for welcome page.

Show Latest News - If enabled then the latest news from https://openmodelica.org are shown.

Recent Files and Latest News Size - Sets the display size for recent files and latest news items.

Optional Features

Enable replaceable support - Enables/disables the replaceable support.

Enable new frontend use in OMC API (faster GUI response) - if true then uses the new frontend in OMC
API calls.

2.22

. Options 53

https://openmodelica.org

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.22.2 Libraries

 System Libraries — The list of system libraries that should be loaded every time OMEdit starts.

e Force loading of Modelica Standard Library — If true then Modelica and ModelicaReference will always
load even if user has removed them from the list of system libraries.

* Load OpenModelica library on startup — If true then OpenModelica package will be loaded when OMEdit
is started.

e User Libraries — The list of user libraries/files that should be loaded every time OMEdit starts.

2.22.3 Text Editor

* Format
* Line Ending - Sets the file line ending.
e Byte Order Mark (BOM) - Sets the file BOM.
* Tabs and Indentation
 Tab Policy — Sets the tab policy to either spaces or tabs only.
* Tab Size — Sets the tab size.
* Indent Size — Sets the indent size.
» Syntax Highlight and Text Wrapping
» Enable Syntax Highlighting — Enable/Disable the syntax highlighting.

* Enable Code Folding - Enable/Disable the code folding. When code folding is enabled multi-
line annotations are collapsed into a compact icon (a rectangle containing "...)"). A marker
containing a "+" sign becomes available at the left-side of the involved line, allowing the code
to be expanded/re-collapsed at will.

* Match Parentheses within Comments and Quotes — Enable/Disable the matching of parentheses
within comments and quotes.

» Enable Line Wrapping — Enable/Disable the line wrapping.
* Autocomplete
* Enable Autocomplete — Enables/Disables the autocomplete.
* Font
 Font Family — Shows the names list of available fonts. Sets the font for the editor.

e Font Size — Sets the font size for the editor.

2.22.4 Modelica Editor

* Preserve Text Indentation — If true then uses diffModelicaFileListings API call otherwise uses the OMC
pretty-printing.

e Colors
* Jtems — List of categories used of syntax highlighting the code.
¢ [tem Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

54 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.22.5 MetaModelica Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.6 CompositeModel Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.7 SSP Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.8 C/C++ Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.9 HTML Editor

* Colors
* Jtems — List of categories used of syntax highlighting the code.
* Item Color — Sets the color for the selected item.

* Preview — Shows the demo of the syntax highlighting.

2.22.10 Graphical Views

* General

Modeling View Mode

Tabbed View/SubWindow View — Sets the view mode for modeling.
Default View

Icon View/DiagramView/Modelica Text View/Documentation View — If no preferredView annotation is
defined then this setting is used to show the respective view when user double clicks on the class in
the Libraries Browser.

— Move connectors together on both icon and diagram layers

* Graphics

2.22. Options 55

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

— Icon/Diagram View
* Extent
Left — Defines the left extent point for the view.
* Bottom — Defines the bottom extent point for the view.
% Right — Defines the right extent point for the view.
+ Top — Defines the top extent point for the view.
Grid
* Horizontal — Defines the horizontal size of the view grid.
* Vertical — Defines the vertical size of the view grid.
* Component
* Scale factor — Defines the initial scale factor for the component dragged on the view.

Preserve aspect ratio — If true then the component’s aspect ratio is preserved while scaling.

2.22.11 Simulation

» Simulation
e Translation Flags
* Matching Algorithm — sets the matching algorithm for simulation.
¢ Index Reduction Method — sets the index reduction method for simulation.

e Show additional information from the initialization process - prints the information from the
initialization process

e Evaluate all parameters (faster simulation, cannot change them at runtime) - makes the simu-
lation more efficient but you have to recompile the model if you want to change the parameter
instead of re-simulate.

* Enable analytical jacobian for non-linear strong components - enables analytical jacobian for
non-linear strong components without user-defined function calls.

* Enable pedantic debug-mode, to get much more feedback

» Enable parallelization of independent systems of equations (Experimental)

* Enable old frontend for code generation

* Additional Translation Flags — sets the translation flags see Options

» Target Language — sets the target language in which the code is generated.

» Target Build — sets the target build that is used to compile the generated code.
* C Compiler — sets the C compiler for compiling the generated code.

e CXX Compiler — sets the CXX compiler for compiling the generated code.

e Use static linking — if true then static linking is used for simulation executable. The default is
dynamic linking. This option is only available on Windows.

e Ignore __OpenModelica_commandLineOptions annotation — if true then ignores the __Open-
Modelica_commandLineOptions annotation while running the simulation.

e Ignore __OpenModelica_simulationFlags annotation — if true then ignores the __OpenModel-
ica_simulationFlags annotation while running the simulation.

* Save class before simulation — if true then always saves the class before running the simulation.

* Switch to plotting perspective after simulation — if true then GUI always switches to plotting
perspective after the simulation.

56 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

* Close completed simulation output windows before simulation — if true then the completed sim-
ulation output windows are closed before starting a new simulation.

* Delete intermediate compilation files — if true then the files generated during the compilation
are deleted automatically.

e Delete entire simulation directory of the model when OMEdit is closed — if true then the entire
simulation directory is deleted on quit.

¢ Output
o Structured - Shows the simulation output in the form of tree structure.
o Formatted Text - Shows the simulation output in the form of formatted text.

e Display Limit - Sets the display limit for simulation output. A link to log file is shown once the
limit is reached.

2.22.12 Messages

¢ General

* Qutput Size - Specifies the maximum number of rows the Messages Browser may have. If there are more
rows then the rows are removed from the beginning.

* Reset messages number before simulation — Resets the messages counter before starting the simulation.

* Clear messages browser before checking, instantiation & simulation — If enabled then the messages browser
is cleared before checking, instantiation & simulation of model.

* Font and Colors

* Font Family — Sets the font for the messages.

* Font Size — Sets the font size for the messages.

* Notification Color — Sets the text color for notification messages.
* Warning Color — Sets the text color for warning messages.

e Error Color — Sets the text color for error messages.

2.22.13 Notifications

* Notifications
* Always quit without prompt — If true then OMEdit will quit without prompting the user.

» Show item dropped on itself message — If true then a message will pop-up when a class is dragged
and dropped on itself.

* Show model is partial and component is added as replaceable message — If true then a message
will pop-up when a partial class is added to another class.

* Show component is declared as inner message — If true then a message will pop-up when an
inner component is added to another class.

* Show save model for bitmap insertion message — If true then a message will pop-up when user
tries to insert a bitmap from a local directory to an unsaved class.

e Always ask for the dragged component name — If true then a message will pop-up when user
drag & drop the component on the graphical view.

* Always ask for what to do with the text editor error — If true then a message will always pop-up
when there is an error in the text editor.

 If new frontend for code generation fails
e Always ask for old frontend

* Try with old frontend once

2.22. Options 57

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

e Switch to old frontend permanently

* Keep using new frontend

2.22.14 Line Style

Line Style

Color — Sets the line color.

Pattern — Sets the line pattern.

Thickness — Sets the line thickness.

Start Arrow — Sets the line start arrow.

End Arrow — Sets the line end arrow.

Arrow Size — Sets the start and end arrow size.

Smooth — If true then the line is drawn as a Bezier curve.

2.22.15 Fill Style

Fill Style
Color — Sets the fill color.
Pattern — Sets the fill pattern.

2.22.16 Plotting

General
Auto Scale — Sets whether to auto scale the plots or not.

Prefix Units — Automatically pick the right prefix for units for the new plot windows. For existing plot
windows use the Plot Window Menu.

Plotting View Mode

Tabbed View/SubWindow View — Sets the view mode for plotting.
Curve Style

Pattern — Sets the curve pattern.

Thickness — Sets the curve thickness.

Variable filter

Filter Interval - Delay in filtering the variables. Set the value to 0 if you don't want any delay.
Font Size - sets the font size for plot window items

Title

Vertical Axis Title

Vertical Axis Numbers

Horizontal Axis Title

Horizontal Axis Numbers

Footer

Legend

58

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.22.17 Figaro

Figaro
Figaro Library — the Figaro library file path.
Tree generation options — the Figaro tree generation options file path.

Figaro Processor — the Figaro processor location.

2.22.18 Debugger

Algorithmic Debugger

GDB Path — the gnu debugger path

GDB Command Timeout — timeout for gdb commands.
GDB Output Limit — limits the GDB output to N characters.
Display C frames — if true then shows the C stack frames.

Display unknown frames — if true then shows the unknown stack frames. Unknown stack frames means
frames whose file path is unknown.

Clear old output on a new run — if true then clears the output window on new run.
Clear old log on new run — if true then clears the log window on new run.
Transformational Debugger

Always show Transformational Debugger after compilation — if true then always open the Transformational
Debugger window after model compilation.

Generate operations in the info xml — if true then adds the operations information in the info xml file.

2.22.19 FMI

Export
* Version
e 1.0 — Sets the FMI export version to 1.0
e 2.0 — Sets the FMI export version to 2.0
* Type
e Model Exchange — Sets the FMI export type to Model Exchange.
* Co-Simulation — Sets the FMI export type to Co-Simulation.

* Model Exchange and Co-Simulation — Sets the FMI export type to Model Exchange and Co-
Simulation.

e FMU Name — Sets a prefix for generated FMU file.
* Move FMU — Moves the generated FMU to a specified path.
* Platforms

The list of platforms is created by searching for programs in the PATH matching pattern
"--#-%cc"." Add the host triple to the PATH to get it listed.

* None — Do not generate code for any platform i.e., a source only FMU.
* Dynamic — Generate the FMU with dynamically linked runtime for current platform.
* Static — Generate the FMU with statically linked runtime for current platform.

* Solver for Co-Simulation

e Explicit Euler

2.22,

Options 59

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

* CVODE

* Model Description Filters - Sets the variable filter for model description file see omcflag-
fmifilter

e Include Modelica based resources via loadResource

e Include Source Code - Sets if the exported FMU can contain source code. Model Description
Filter "blackBox" will override this, because black box FMUs do never contain their source
code.

* Generate Debug Symbols - Generates a FMU with debug symbols.
* Import

e Delete FMU directory and generated model when OMEdit is closed - If true then the temporary FMU
directory that is created for importing the FMU will be deleted.

2.22.20 OMTLMSimulator

* General
* Path - path to OMTLMSimulator bin directory.
* Manager Process - path to OMTLMSimulator managar process.

* Monitor Process - path to OMTLMSimulator monitor process.

2.22.21 OMSimulator/SSP

* General
* Command Line Options - sets the OMSimulator command line options.

* Logging Level - OMSimulator logging level.

2.23 __OpenModelica_commandLineOptions Annotation

OpenModelica specific annotation to define the command line options needed to simulate the model. For example
if you always want to simulate the model with a specific matching algorithm and index reduction method instead
of the default ones then you can write the following code,

model Test

annotation (___OpenModelica_commandLineOptions = "—--matchingAlgorithm=BFSB ——
—indexReductionMethod=dynamicStateSelection");
end Test;

The annotation is a space separated list of options where each option is either just a command line flag or a flag
with a value.

In OMEdit open the Simulation Setup and set the Translation Flags then in the bottom check Save translation
flags inside model i.e., __OpenModelica_commandLineOptions annotation and click on OK.

If you want to ignore this annotation then use setCommandLineOptions("--
ignoreCommandLineOptionsAnnotation=true"). In OMEdit Tools > Options > Simulation check Ignore
__OpenModelica_commandLineOptions annotation.

60 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.24 OpenModelica_simulationFlags Annotation

OpenModelica specific annotation to define the simulation options needed to simulate the model. For example if
you always want to simulate the model with a specific solver instead of the default DASSL and would also like to
see the cpu time then you can write the following code,

model Test
annotation (___OpenModelica_simulationFlags (s = "heun", cpu = "()"));
end Test;

The annotation is a comma separated list of options where each option is a simulation flag with a value. For flags
that doesn't have any value use () (See the above code example).

In OMEdit open the Simulation Setup and set the Simulation Flags then in the bottom check Save simulation flags
inside model i.e., __OpenModelica_simulationFlags annotation and click on OK.

If you want to ignore this annotation then use setCommandLineOptions("--
ignoreSimulationFlagsAnnotation=true"). In OMEdit Tools > Options > Simulation check Ignore __OpenMod-
elica_simulationFlags annotation.

2.25 Global and Local Flags

There is a large number of optional settings and flags to influence the way OpenModelica generates the simulation
code (Compiler flags, a.k.a. Translation flags or Command Line Options) and the way the simulation executable
is run (Simulation Flags).

The global default settings can be accessed and changed with the Tools > Options menu. It is also possible to reset
them to factory state by clicking on the Reset button of the Tools > Options dialog window.

When you start OMEdit and you simulate a model for the first time, the model-specific simulation ses-
sion settings are initialized by copying the global default settings, and then by applying any further settings
that are saved in the model within OpenModelica-specific __OpenModelica_commandLineOptions and
__OpenModelica_simulationFlags annotations. Note that the latter may partially override the former, if
they give different values to the same flags.

You can change those model-specific settings at will with the Simulation Setup window. Any change you make
will be remembered until the end of the simulation session, i.e. until you close OMEdit. This is very useful
to experiment with different settings and find the optimal ones, or to investigate bugs by turning on logging
options, etc. If you check the Save translation flags and Save simulation flags options in
the simulation setup, those settings will be saved in the model within the corresponding OpenModelica-specific
annotations, so that you can get the same behavior when you start a new session later on, or if someone else loads
the model on a different computer. Otherwise, all of those changes will be forgotten when you exit OMEdit.

If you change the global default settings after running some models, the simulation settings of those models will
be reset as if you closed OMEdit and restarted a new session: the new global options will first be applied, and then
any further setting saved in the OpenModelica-specific annotations will be applied, possibly overriding the global
options if the same flags get different values from the annotations. Any model-specific settings that you may have
changed with Simulation Setup up to that point will be lost, unless you saved them in the OpenModelica-specific
annotations before changing the global default settings.

2.24. _ OpenModelica_simulationFlags Annotation 61

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.26 Debugger

For debugging capability, see Debugging.

2.27 Editing Modelica Standard Library

By default OMEdit loads the Modelica Standard Library (MSL) as a system library. System libraries are read-
only. If you want to edit MSL you need to load it as user library instead of system library. We don't recommend
editing MSL but if you really need to and understand the consequences then follow these steps,

e Go to Tools > Options > Libraries.

* Remove Modelica & ModelicaReference from list of system libraries.

* Uncheck force loading of Modelica Standard Library.

Add SOPENMODELICAHOME/lib/omlibrary/Modelica X.X/package.mo under user libraries.
* Restart OMEdit.

2.28 State Machines

2.28.1 Creating a New Modelica State Class

Follow the same steps as defined in Creating a New Modelica Class. Additionally make sure you check the State
checkbox.

==l

,:,-!i OMEdit - Create New Modelica Class b

Mame: Statel

Spedalization: Model i

Extends (optional): Browse...

Insert in class (optional): Browse...
[] Partial

[] Encapsulated

State

K Cancel

Figure 2.13: Creating a new Modelica state.

62 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

2.28.2 Making Transitions

c—
In order to make a transition from one state to another the user first needs to enable the transition mode (—) from
the toolbar.

Move the mouse over the state. The mouse cursor will change from arrow cursor to cross cursor. To start the
transition press left button and move while keeping the button pressed. Now release the left button. Move towards
the end state and click when cursor changes to cross cursor.

A Create Transition dialog box will appear which allows you to set the transition attributes. Cancelling the dialog
will cancel the transition.

Double click the transition or right click and choose Edit Transition to modify the transition attributes.

2.28.3 State Machines Simulation

Support for Modelica state machines was added in the Modelica Language Specification v3.3. A subtle problem
can occur if Modelica v3.2 libraries are loaded, e.g., the Modelica Standard Library v3.2.2, because in this case
OMC automatically switches into Modelica v3.2 compatibility mode. Trying to simulate a state machine in
Modelica v3.2 compatibility mode results in an error. It is possible to use the OMC flag --std=latest in order to
ensure (at least) Modelica v3.3 support. In OMEdit this can be achieved by setting that flag in the Tools > Options
> Simulation dialog.

OMEdit - Options

General Simulation
& Libraries
E Text Editar Matching Algorithm: PFPlusExt >

Index Reduction Method: | dynamicStateSelection b

CompositeModel Editor Target Language: C e

C/C++ Editor

Target Compiler: gec ~
E HTML Editor
,}ﬁ Graphical Views OMC Flags: —-std=latest | E
Simulation : . . .
[] 1gnore __openModelica_commandLineOptions annotation
‘{? Messages
5 e |:| Ignore __OpenModelica_simulationFlags annotation
o Notifications i i
* The changes will take effect after restart. OK Cancel

Figure 2.14: Ensure (at least) Modelica v3.3 support.

2.28.4 State Machines Debugger

Modelica state machines debugger is implemented as a visualization, which allows the user to run the state ma-
chines simulation as an animation.

A special Diagram Window is developed to visualize the active and inactive states. The active and inactive value
of the states are stored in the OpenModelica simulation result file. After the successful simulation, of the state
machine model, OMEdit reads the start, stop time values, and initializes the visualization controls accordingly.

The controls allows the easy manipulation of the visualization,
» Rewind — resets the visualization to start.

¢ Play — starts the visualization.

2.28. State Machines 63

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

&% OMEdit - OpenModelica Connection Editor - O *
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help
[| . . csv %
Ly s 1tht -
FPeBR 95 XPl-E a4 S Y &
Libraries Browser g x [X Plot : 1 B 4 Diagram %] Variables Browser 8 X
Filter Classes L4 A | [Filter Variables ¢
Libraries Simulation Time Unit s =
@ OpenModelica I
ModelicaServices
— MO D1 efiss] smsals
. Complex
@ Modelica Variables Value Displ
o ModelicaReference Sta te 1 = @ (Active...erQuter
=] E SMGraphi...estCases i “
o m Dprevious(i] 42
. -
SimpleS.. tations smOf
m InnerQuter statel
. Maraninchi2003_2 state?
E Components true
m DeepHierarchy
v
£ > £ >
t Welcome oﬁ Modeling g Plotting ‘ Debugging

Figure 2.15: State machine debugger in OMEdit.

64

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

 Pause — pauses the visualization.

* Time — allows the user to jump at any specific time.
* Speed — speed of the visualization.

* Slider — controls the time.

The visualization is based on the simulation result file. All three formats of the simulation result file are supported
i.e., mat, csv and plt where mat is a matlab file format, csv is a comma separated file and plt is an ordered text file.

It is only possible to debug one state machine at a time. This is achieved by marking the result file active in the
Variables Browser. The visualization only read the values from the active result file. It is possible to simulate
several state machine models. In that case, the user will see a list of result files in the Variables Browser. The user
can switch between different result files by right clicking on the result file and selecting Set Active in the context
menu.

2.29 Using OMEdit as Text Editor

OMEdit can be be used as a Text editor. Currently support for editing MetaModelica,Modelica and C/C++ are
available with syntax highlighting and autocompletion of keywords and types. Additionaly the Modelica and
MetaModelica files are provided with autocompletion of code-snippets along with keywords and types. The users
can load the directory from file menu File > Open Directory. which opens the Directory structure in the Libraries-
browser.

% OMEdit - OpenMadelica Connection Editor - O X

Debug OMSimulator Git Tools Help
Ctri+N
Ctrl+O

File Edit View Simulation
j’ MNew Modelica Class
i Open Model/Library File(s)
Open/Convert Modelica File(s) With Encoding
Load Library
Load Encrypted Library
Open Result File(s)

Ctrl+Shift+O

Open Transformations File

New Composite Model
Open Composite Model(s)
Load External Maodel(s)

Open Directory

Save
Save As

Save Total

Import
Export

System Libraries

Recent Files
Clear Recent Files

Print...

Quit

rent Files
/OPENMODELICAGIT/Of, ~
-/OPENMODELICAGIT/Of
:/OPENMODELICAGIT/Og

:/Users/arupa54/Downloi
Ctrl+5S N

r Recent Files

Latest News

E:> b January 31, 2019: OpenModelica 1.13.2 released
£» December 20, 2018: OpenModelica 1.13.0 released
£» December 10, 2018: OpenModelica 1.13.0-dev.betal r

= Program OpenModelica Annual Workshop 2019 v

< >

Reload | For more details visit our website www.openmodelica.org

te New Modelica Class

» Browser

» ,7- History: | New Search

Open Model/Library File(s)

F x

All
Ctrl+P

-

or: ‘

v

Ctrl+Q

ern: ‘*

™ |

Search

Search Browser Messages Browser

Opens the directory

Ln: 439, Col: 20

t Welcome

ﬂ Flotting ‘ Debugging

g& Modeling

Figure 2.16: open-directory

After the directory is opened in the Libraries-browser, the users can expand the directory structure and click the
file which opens in the texteditor.

2.29. Using OMEdit as Text Editor 65

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

u‘i OMEdit - OpenModelica Connection Editor

File Edit WView Simulation Debug OMSimulator Git Tools Help

O X

. Ll LN — %]
EA 1=1- Heee \PHOTE < = K- >% - ¥- 5 W
Libraries Browser & x u\i BackendDAEUl.mo a
[Filter Classes | & = |Writab\e | C:/OPENMODELICAGIT/OpenModelica/OMCompiler/ Compiler/BackEnd/BackendDAEUtiL mo | |
Libraries ~ tl = Expression.typeof (el); ~
H@ ModelicaReference t2 = ComponentReference.creflastType (cr):
T[] Modelicaservices b = Expression.equalTypes (tl,t2):
1M complex wrongEgnsl = List.consOnTrue (not
HP% Modelica b, e,wrongEgns) ;]
. then (e,wrongEgnsl);
EI OMCompiler
3rdParty v
mmm_O” else (inEqg, inEgs);
=17 compiler 439 end matchcontinue:;
= ‘BackEnd end checkEguationSize;
& AdjacencyMatrixmo
;‘, BackendDAE.mo IEIpublic function checkAssertCondition "Succeds if
£/ BackendDAECreate.mo co:.)di:ion of assert is not constant false"
&/ BackendDAEEXT.mo input DAE.Exp cond; v
;;. BackendDAEFunc.mo S BT 8 x
i/ BackendDAEOptimize.mo
?; P * History: | New Search <
& BackendDAETransform.mo
’ BackendDAEUtil.mo Seope: o .
& BackendDump.mo
=) . Search for: | V‘
& BackendEquation.mo
&/ Backendinline.mo File Pattern: [~ >
;;. BackendVariable.mo Search
;;. BackendVarTransform.mo
;"; E?naryiree;rrlo v Search Browser Messages Browser
Ln: 439, Col: 20 @ Welcome o Modeling Plotting @ Debugging

Figure 2.17: openfile in texteditor

2.29.1 Advanced Search

Support to search in OMEdit texteditor is available. The search browser can be enabled by selecting View >

Windows > Search browser or through shortcut keys (ctrl+h).

The users can start the search by loading the directory they want to search and fill in the text to be searched for

and file pattern if needed and click the search button.

After the search is completed the results are presented to the users in a separate window, The search results contains

the following
1) The name of the files where the searched word is matched

2) The line number and text of the matched word.

The users can click the line number or the matched text and it will automatically open the file in the texteditor and

move the cursor to matched line number of the text.

The users can perform multiple searches and go back to old search results using search histroy option.

66

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

Tl
Libraries Brov
Filter Classes
Libraries ﬁ

> lE Oper O\
> @ Moa: &,
» G Mode e\

File Edit View Simulation

g& OMEdit - OpenModelica Connection Editor

FMI Export Debug OMSimulator Git Tools Help

Toolbars v

Windows Y~ Libraries Browser

Toggle Tab/Sub-window View DTSR By
Variables Browser

Grid Lines 3D Viewer Browser

Reset Zoom Ctrl+0 ' Messages Browser

Zoom In Ctrl++ . Search Browser

Zoom Out Ctrl+- Stack Frames Browser

» . Complex
> @ Modelica

> OMCompiler

B C/OPENMODENCAGIT/C
£» C;/OpenPBS/OpenPBS/pz
E» C/Users/arupa54/AppDa
&

Clear Recent Files

Create New Modelica Class

BreakPoints Browser
Locals Browser
Output Browser
Debugger CLI

Close Window
Close All Windows
Close All Windows But This

Cascade Windows
Tile Windows Horizontally

lews

31, 2019: OpenModelica 1.13.2 released
F 20, 2018: OpenModelica 1.13.0 released

[10, 2018: OpenModelica 1.13.0-dev.beta released
W

>

For more details visit our website www.openmodelica.org

Open Model/Library File(s)

. Tile Windows Vertically g x
ke I_.' ,-_ History: | Mew Search
Scope: oMCompiler -
Search for: | V|
File Pattern: | * V|
Search
Messages Browser Search Browser
€ welcome &% Madeling &2 Plotting ‘ Debugging

Figure 2.18: Enable omedit search browser

2.30 Temporary Directory, Log Files and Working Directory

On Unix/Linux systems temporary directory is the path in the TMPDIR environment variable or /tmp if TMPDIR is
not defined appended with directory paths OpenModelica< USERNAME>/OMEdit so the complete path is usually
/tmp/OpenModelica< USERNAME>/OMEdit.

On Windows its the path in the TEMP or TMP environment variable appended with directory paths OpenModel-
ica/OMEdit so the complete path is usually %TEMP%/OpenModelica/OMEdit.

All the log files are always generated in the temporary directory. Choose Tools > Open Temporary Directory to
open the temporary directory.

By default the working directory has the same path as the temporary directory. You can change the working
directory from Tools > Options > General see section General.

For each simulation a new directory with the model name is created in the working directory and then all the
simulation intermediate and results files are generated in it.

2.30. Temporary Directory, Log Files and Working Directory

67

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

u& Bac..mo Y Messages Browser Search Browser

o%% OMEdit - OpenModelica Connection Editor — O X
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help
[(0 LN ; [—
J.h @O\G)\e\ \\’..T.” ' 0” =, ® *' wou | il »
Libraries Browser & x ﬁ.ﬁ BackendDump.mo B &% BackendDump.interface.mo [
IMI A ‘E ‘Wrﬂable ‘C:,I’OPENMDDEIJI:AG]T!OpenModeIica!{)MCompiIer!CompilerfbootfhuildeackendDump.interface.rrn ‘ a
Libraries ~ 14 ZH:I “
ﬂ OpenModelica 143|=| function dumpDAE
F|@ Modeli...erence 1 input BackendDAE.BackendDAE inDAE;
F10) Modeli...vices 1 guzputDigckendDAE.BackendDHE outDAE;
E. Complex g en Hmp .
i MOdehca_ 148 function dumpBackendDAE
=| = omcompiler 149 input BackendDAE.BackendDAE inBackendDAE;
3rdParty 150 input String heading:
commaon 151 - end dumpBackendDAE;
=]~ compiler 152
[=] © Backend 153 function dumpBackendDAEToModelica
ot Adj...mo 154 input BackendDAE.BackendDAE inBackendDAE; v
g& Bac...mo Search Browser F X
"& Bac..mo 2 '»'v'-' | History: |Mew Search -
p& Bac...mo
p& Bac...mo Scope: OMCompiler M
d‘i Bac..mo Search for: |dumpEackendDAEFoModeIica V|
p& Bac...mo
ﬂ& File Pattern: |*.mo V|
Bac...mo
g‘& Bac...mo Search
p& Bac...mo
p& Bac...mo

Figure 2.19: Start search in search browser

Ln: 153, Col: O tWeIcome Daﬁ Modeling a Plotting * Debugging

68 Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

&% OMEdit - OpenModelica Connection Editor — O >
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help
" X " LN) =t
reBB meee \OHNOTH < = &E-/Q%E > - &=/ #-
Libraries Browser g x p.& BackendDump.mo B8 ot BackendDump.interface.mo %]
M‘ T E |W’ri‘table | C:/OPENMODELICAGIT /OpenMadelica/OMCompiler/Compiler/boat/build/BackendDump. interface.mo | B ‘
Libraries ~ 150 { input String heading; (A
E‘E OpenModelica 151 end dumpBackendDAE;
+| @ Modeli...erence o)]
F1) Modeli..rvices 153[= function dumpBackendDAEToModelica
Fl Complex 154 input BackendDAE.BackendDAE inBackendDAE;
17 Model 155 input String suffix;
oaelica 156 -~ end dumpBackendDAEToModelica:
El OMCompiler =
3rdParty 158/=] function dumpEgSystem
common 1589 input BackendDAE.EgSystem inEgSystem;
[=] 1 compiler 160 input String heading:
[=] © Backend lel - end dumpEgSystem;
& Adj..mo 162 | v
ﬁ Bac...mo Search Browser 8 x
Bac...mo
Y N 5 — -
0& Bac..mo - @ {} History: |Project-OMCompiler: dumpBackendDAET oModel
0& Bac..mo Searched 1160 of 1160 files. Search Completed. 3 FOUND
n& Bac...mo
g!i Bac...ma
g\{i Bac...mo E| C,/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/boot/build/BackendDump.interface.mo ~
c& Bac...mo 153 function dumpBackendDAEToModelica
a& Bac...mo |156 end dumpBackendDAEToModelica;
O& Bac...mo |¢| C./OPENMODELICAGIT/OpenMaodelica/OMCompiler/Compiler/BackEnd/Backend Dump.mo v
g& Bac..mo | Messages Browser Search Browser
tn: 156, Col: 0 @ Welcome % Modeling Plottng @i Debugging

Figure 2.20: Search Results

2.31 High DPI Settings

When the text is too big / too small to read there are options to change the font size used in OMEdit, see 7ext
Editor.

If you are using a high-resolution screen (1080p, 4k and more) and the app is blurry or the overall proportions of
the different windows are off, it can help to change the DPI settings.

On Windows it is possible to change the scaling factor to adjust the size of text, apps and other times, but the
default setting might not be appropriate for OMEdit e.g., on compact notebooks with high resolution screens.

You can either change the scaling factor for the whole Windows system or only change the scaling used for
OMEdit. This is done by changing the Compatibility settings for High DPI settings for OMEdit.exe with the
following steps:

1. Press Windows-Key and type OpenModelica Connection Editor and right-click on the app and Open file
location, Figure 2.22.

2. Right-click on OpenModelica Connection Editor and open Properties.

3. In the properties window go to tab Compatibility and open Change high DPI settings. In the High DPI
settings for OMEdit.exe choose Use the settings to fix scaling problems for this program instead of the one
in Settings and Override high DPI scaling behavior.Scaling performed by: and choose System from the
drop-down menu, Figure 2.23.

2.31. High DPI Settings 69

OpenModelica

User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

o't OMEdit - OpenModelica Connection Editor - O >
File Edit View Simulation FMI Export Debug OMSimulator Git Tools Help
[LD Y / 3 —
TeBE r Boee \PHOTRE <= E- O%9E > - &- T~ ¥~
Libraries Browser X A BackendDump.mo (] o% Bsackendbump.interface.mo [X]
Filter Classes T | Writable |C:fDPENMDDEL'IEAG]'I',poenModelicafDMCompiler,fCompiler,fbaot,,’buildjliackendﬂump.interface.rno ‘ o ‘
Libraries ~ input String heading: ~
ﬂ OpenModelica end dumpBackendDAE;
Bﬂ Modeli...erence . .
FI) Modeii..rvices furllctlon dumpBackendDBEToModel}ca
@ Complex input BackendDAE.BackendDAE inBackendDAE;
1P% Model input String suffix;
oaelica end dumpBackendDAEToModelica;
El OMCompiler
3rdParty function SisiHeERERR=S
common input BackendDAE.EgSystem inEqSystem;
[=] © compiler 1 input String heading;
[=] © Backend 161 - end dumpEgSystem;
& Adj...mo 162 | v
ﬁ Bac..mo Search Browser 8 x
Bac...mo
L} e — - -
d& Bac..ma " G G History: |Project-OMCompiler: dumpEqSystem |
u‘& Bac...mo Searched 557 of 1160 Pr‘cqect-:)l'dComp\er' dumpBackendDAET oModelica 14 FOUND
ﬂ.& Bac...mo Project-OMCompiler: dumpEqSystem
d& Bac...mo
u‘fg Bac...mo EEI C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/boot/build/BackendDump.interface.mo ~
Bac...mo EE| C./OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/SynchronousFeatures.mo
uﬁ Bac...mo Ezl C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/Resolveloops.ma
u.& Bac...mo |:-| C:/OPENMODELICAGIT/OpenModelica/OMCompiler/Compiler/BackEnd/OnRelaxation.mo ©
u‘& Bac..mo v | Messages Browser Search Browser
Ln: 158, Col: 23 tWe\come g& Modeling & Flotting & Debugging

Figure 2.21: Search History

70

Chapter 2. OMEdit — OpenModelica Connection Editor

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

All Apps Documents ~ Web More ¥

Best match
e . . . i
ﬂ-‘i OpenMadelica Connection Editor
e LS Run as administrator ﬁ"
Search work and web [0 Open file location . . .
P :nModelica Connection Editor

L omedit - See work and web results -3 Pin to Start App

O omedit idf <3 Pin to taskbar

Photos il Uninstall

OMEdit-plot-DualMassOscillator.png > v

Recent
B/ DualMassOscillator.mo

£ OMEdit

View

I Open - elect all

B Edit elect none

Security Details Previous Versions
General Shorteut Compatibility

) fthis program isn't working carrectly on this version of Windows, try
Name running the compatibility troubleshooter. High DPI settings for OMEdit.exe

Run compaiibility roubleshooter
BB Documentation Choose the high DPI settings for this program.
; How do | choase y seffings manually?

Program DPI

I pySimulator Compatibility mode [Use this setting to fix scaling problems for this program

[JRun this program in compatibility mode for instead of the one in Settings
B OpenModelica Connection Editor Open Advanced scaling seftings
U T A program might look blurry if the DPI for your main display

& OpenMadelica Notebook changes after you sign in to Windows. Windows can try to fix
this scaling problem for this program by using the DFI that's

Settings set for your main display when you apen this program.

&7 OpenModel e

Use the DPI that's set for my main display when

BE® OpenMadel e 8-bit (256) color Isigned in to Windows ~

& OpenModelica Website Run in 640 x 480 screen resolution Learn more
[Disable fullscreen optimizations

e Uninstall OpenModelica ["]Run this program as an administrator BN TS
7] verride high DI scaling behavior.

¥ This PC Scaling performed by:

] Register this program for restart

S [JUse legacy display ICC color management AT

. Change high DPI settings
A Linux

8items | 1item selected 1.95KB |

Cancel

‘y Change settings for all users

Cancel

Figure 2.23: Change high DPI settings for OMEdit.exe

2.31. High DPI Settings 71

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

72 Chapter 2. OMEdit — OpenModelica Connection Editor

CHAPTER
THREE

2D PLOTTING

This chapter covers the 2D plotting available in OpenModelica via OMNotebook, OMShell and command line
script. The plotting is based on OMPIlot application. See also OMEdit Data Reconciliation.

3.1 Example

class HelloWorld

Real x(start = 1, fixed = true);
parameter Real a = 1;

equation
der (x) = — a * x;

end HelloWorld;

To create a simple time plot the above model HelloWorld is simulated. To reduce the amount of simulation data in
this example the number of intervals is limited with the argument numberOflIntervals=5. The simulation is started
with the command below.

>>> simulate (HelloWorld, outputFormat="csv", startTime=0, stopTime=4, |
—numberOfIntervals=5)
record SimulationResult

resultFile = "«DOCHOME»/HelloWorld_res.csv",

simulationOptions = "startTime = 0.0, stopTime = 4.0, numberOfIntervals = 5, |,
—tolerance = 1le-06, method = 'dassl', fileNamePrefix = 'HelloWorld', options = '',
— outputFormat = 'csv', variableFilter = '.x', cflags = '', simflags = ''",

messages = "LOG_SUCCESS | info | The initialization finished,
—successfully without homotopy method.
LOG_SUCCESS | info | The simulation finished successfully.

n
’

timeFrontend = 0.002589221,
timeBackend = 0.009690967,
timeSimCode = 0.011175051,
timeTemplates = 0.003903398,
timeCompile = 0.599577614,
timeSimulation = 0.021164625,
timeTotal = 0.6483077740000001
end SimulationResult;

When the simulation is finished the file HelloWorld_res.csv contains the simulation data:

Listing 3.1: HelloWorld_res.csv

"time", "X", "der(x) n

0,1,-1
0.8,0.4493289092712475,-0.4493289092712475
1.6,0.2018973974273906,-0.2018973974273906
2.4,0.09071896372718975,-0.09071896372718975
3.2,0.04076293845066793,-0.04076293845066793

(continues on next page)

73

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

(continued from previous page)

4,0.01831609502171534,-0.01831609502171534
4,0.01831609502171534,-0.01831609502171534

Diagrams are now created with the new OMPlot program by using the following plot command:

0.8

0.6

04
03
0.2

0.1

0 1 1 1 1 1 1

0 0.5 1 1.5 2 2.5 3

Figure 3.1: Simple 2D plot of the HelloWorld example.

By re-simulating and saving results at many more points, for example using the default 500 intervals, a much
smoother plot can be obtained. Note that the default solver method dassl has more internal points than the output
points in the initial plot. The results are identical, except the detailed plot has a smoother curve.

>>> (O==system("./HelloWorld -override stepSize=0.008")
true

>>> res:=strtok (readFile ("HelloWorld res.csv"), "\n");
>>> res[end]
"4,0.01831609502171534,-0.01831609502171534"

0.8

0.6

0.4

03

0.1

Figure 3.2: Simple 2D plot of the HelloWorld example with a larger number of output points.

74

Chapter 3. 2D Plotting

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

3.2 Plot Command Interface

Plot command have a number of optional arguments to further customize the the resulting diagram.

>>> list (OpenModelica.Scripting.plot, interfaceOnly=true)
"function plot
input VariableNames vars \"The variables you want to plot\";
input Boolean externalWindow = false \"Opens the plot in a new plot window\";
input String fileName = \"<default>\" \"The filename containing the variables.
—<default> will read the last simulation result\";
input String title = \"\" \"This text will be used as the diagram title.\";
input String grid = \"simple\" \"Sets the grid for the plot i.e simple, detailed,
< none.\";

input Boolean logX = false \"Determines whether or not the horizontal axis is_
—logarithmically scaled.\";
input Boolean logY = false \"Determines whether or not the vertical axis is_

—logarithmically scaled.\";
input String xLabel = \"time\" \"This text will be used as the horizontal label_
—in the diagram.\";

input String yLabel = \"\" \"This text will be used as the vertical label in the_
—~diagram.\";

input Real xRange([2] = {0.0, 0.0} \"Determines the horizontal interval that is,
—visible in the diagram. {0,0} will select a suitable range.\";
input Real yRange[2] = {0.0, 0.0} \"Determines the vertical interval that is,,

—visible in the diagram. {0,0} will select a suitable range.\";

input Real curveWidth = 1.0 \"Sets the width of the curve.\";

input Integer curveStyle = 1 \"Sets the style of the curve. SolidLine=1,
—DashLine=2, DotLine=3, DashDotLine=4, DashDotDotLine=5, Sticks=6, Steps=7.\";

input String legendPosition = \"top\" \"Sets the POSITION of the legend i.e left,
— right, top, bottom, none.\";

input String footer = \"\" \"This text will be used as the diagram footer.\";

input Boolean autoScale = true \"Use auto scale while plotting.\";

input Boolean forceOMPlot = false \"if true launches OMPlot and doesn't call
—callback function even if it is defined.\";

output Boolean success \"Returns true on success\";
end plot;"

3.2. Plot Command Interface 75

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

76 Chapter 3. 2D Plotting

CHAPTER
FOUR

SOLVING MODELICA MODELS

4.1 Integration Methods

By default OpenModelica transforms a Modelica model into an ODE representation to perform a simulation by
using numerical integration methods. This section contains additional information about the different integration
methods in OpenModelica. They can be selected by the method parameter of the simulate command or the -s

simflag.
The different methods are also called solver and can be distinguished by their characteristic:
* explicit vs. implicit
* order
* step size control
* multi step

A good introduction on this topic may be found in [CK06] and a more mathematical approach can be found in
[HNorsettW93].

4.1.1 DASSL

DASSL is the default solver in OpenModelica, because of a severals reasons. It is an implicit, higher order,
multi-step solver with a step-size control and with these properties it is quite stable for a wide range of models.
Furthermore it has a mature source code, which was originally developed in the eighties an initial description may
be found in [Pet82].

This solver is based on backward differentiation formula (BDF), which is a family of implicit methods for numer-
ical integration. The used implementation is called DASPK?2.0 (see') and it is translated automatically to C by f2¢
(see?).

The following simulation flags can be used to adjust the behavior of the solver for specific simulation problems:
Jjacobian, noRootFinding, noRestart, initialStepSize, maxStepSize, maxIntegrationOrder, noEquidistantTimeGrid.

4.1.2 IDA

The IDA solver is part of a software family called sundials: SUite of Nonlinear and DIfferential/ALgebraic equa-
tion Solvers [HBG+05]. The implementation is based on DASPK with an extended linear solver interface, which
includes an interface to the high performance sparse linear solver KLU [DN10].

The simulation flags of DASSL are also valid for the IDA solver and furthermore it has the following IDA specific
flags: idaLsS, idaMaxNonLinlters, idaMaxConvFails, idaNonLinConvCoef, idaMaxErrorTestFails.

I DASPK Webpage
2 Cdaskr source

77

https://cse.cs.ucsb.edu/software
https://github.com/wibraun/Cdaskr

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

4.1.3 CVODE

The CVODE solver is part of sundials: SUite of Nonlinear and DIfferential/ALgebraic equation Solvers
[HBG+05]. CVODE solves initial value problems for ordinary differential equation (ODE) systems with variable-
order, variable-step multistep methods.

In OpenModelica, CVODE uses a combination of Backward Differentiation Formulas (varying order 1 to 5) as
linear multi-step method and a modified Newton iteration with fixed Jacobian as non-linear solver per default.
This setting is advised for stiff problems which are very common for Modelica models. For non-stiff problems
an combination of an Adams-Moulton formula (varying order 1 to 12) as linear multi-step method together with a
fixed-point iteration as non-linear solver method can be choosen.

Both non-linear solver methods are internal functions of CVODE and use its internal direct dense linear solver
CVDense. For the Jacobian of the ODE CVODE will use its internal dense difference quotient approximation.

CVODE has the following solver specific flags: cvodeNonlinearSolverlteration, cvodeLinearMultistepMethod.

4.1.4 Basic Explicit Solvers

The basic explicit solvers are performing with a fixed step-size and differ only in the integration order. The
step-size is based on the numberOfIntervals, the startTime and stopTime parameters in the simulate command:

. stopTime — startTime
stepSize ~

numberOflntervals
e euler - order 1

¢ heun - order 2

* rungekutta - order 4

4.1.5 Basic Implicit Solvers

The basic implicit solvers are all based on the non-linear solver KINSOL from the SUNDIALS suite. The un-
derlining linear solver can be modified with the simflag -impRKLS. The step-size is determined as for the basic
explicit solvers.

 impeuler - order 1
* trapezoid - order 2

» imprungekutta - Based on Radau ITA and Lobatto IITA defined by its Butcher tableau where the order can
be adjusted by -impRKorder.

4.1.6 Experimental Solvers

The following solvers are marked as experimental, mostly because they are till now not tested very well.

* cvode - experimental implementation of SUNDIALS CVODE solver - BDF or Adams-Moulton method -
step size control, order 1-12

* rungekuttaSsc - Runge-Kutta based on Novikov (2016) - explicit, step-size control, order 4-5
* irksco - Own developed Runge-Kutta solver - implicit, step-size control, order 1-2
* symSolver - Symbolic inline solver (requires --symSolver) - fixed step-size, order 1

* symSolverSsc - Symbolic implicit inline Euler with step-size control (requires --symSolver) - step-size
control, order 1-2

* gss - A QSS solver

78 Chapter 4. Solving Modelica Models

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

4.2 DAE Mode Simulation

Beside the default ODE simulation, OpenModelica is able to simulate models in DAE mode. The DAE mode is
enabled by the flag --daeMode. In general the whole equation system of a model is passed to the DAE integrator,
including all algebraic loops. This reduces the amount of work that needs to be done in the post optimization
phase of the OpenModelica backend. Thus models with large algebraic loops might compile faster in DAE mode.

Once a model is compiled in DAE mode the simulation can be only performed with SUNDIALS/IDA integrator
and with enabled -daeMode simulation flag. Both are enabled automatically by default, when a simulation run is
started.

4.3 Initialization

To simulate an ODE representation of an Modelica model with one of the methods shown in Integration Methods
a valid initial state is needed. Equations from an initial equation or initial algorithm block define a desired initial
system.

4.3.1 Choosing start values
Only non-linear iteration variables in non-linear strong components require start values. All other start values will
have no influence on convergence of the initial system.

Use -d=initialization to show additional information from the initialization process. In OMEdit Tools->Options-
>Simulation->OMCFlags, in OMNotebook call setCommandLineOptions("-d=initialization")

model piston
Modelica.Mechanics.MultiBody.Parts.Fixed fixedl annotation (
Placement (visible = true, transformation(origin = {-80, 70}, extent = {{-10, -
—10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Parts.Body bodyl(m = 1) annotation (

Placement (visible = true, transformation(origin = {30, 70}, extent = {{-10, -
10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Parts.FixedTranslation fixedTranslationl(r = {0.3,_
—0, 0}) annotation (
Placement (visible = true, transformation(origin = {-10, 70}, extent = {{-10, -
10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Parts.FixedTranslation fixedTranslation2(r = {0.8,
—~0, 0}) annotation (
Placement (visible = true, transformation(origin = {10, 20}, extent = {{-10,
10}, {10, 10}}, rotation = -90)));
Modelica.Mechanics.MultiBody.Parts.Fixed fixed2 (animation = false, r = {1.1, O,
—~0}) annotation (
Placement (visible = true, transformation(origin = {70, -60}, extent = {{-10,

10}, {10, 10}}, rotation = 180)));
Modelica.Mechanics.MultiBody.Parts.Body body2 (m = 1) annotation (
Placement (visible = true, transformation(origin = {30, -30}, extent
10}, {10, 10}}, rotation = 0)));
inner Modelica.Mechanics.MultiBody.World world annotation (
Placement (visible = true, transformation(origin = {-70, -50}, extent = {{-10, -
10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Joints.Prismatic prismatic(animation = true)
—annotation (
Placement (visible = true, transformation(origin = {30, -60}, extent = {{-10, -
10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Joints.RevolutePlanarLoopConstraint revolutePlanar,
—annotation (
Placement (visible = true, transformation(origin = {-50, 70}, extent = {{-10,
—~10}, {10, 10}}, rotation = 0)));
Modelica.Mechanics.MultiBody.Joints.Revolute revolutel (a(fixed = false),

{({-10, -

= = 7 = continues on next page

4.2. DAE Mode Simulation 79

80

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

fixed1

fixedTranslation1
a b

I
r={0.3, 0, 0} m
revolutePlanar

m=1 kg
r={0,0,0} m 5
a o]
o
o (]
=
-
A
(=)
fed
o
=2
3
3
1l
fpan)
o
o
=
body2
world m=1 k
% g

Figure 4.1: piston.mo

r={1.1, 0,0} m

fixed2

Chapter 4. Solving Modelica Models

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

(continued from previous page)

Placement (visible = true, transformation(origin = {10, 48}, extent = {{-10, -
—10}, {10, 10}}, rotation = -90)));
Modelica.Mechanics.MultiBody.Joints.Revolute revolute2 annotation (
Placement (visible = true, transformation(origin = {10, -10}, extent = {{-10,
—10}, {10, 10}}, rotation = -90)));
equation

connect (prismatic.frame_b, fixed2.frame_b) annotation (
Line (points = {{40, -60}, {60, -60}, {60, -60}, {60, -60}}, color = {95, 95
—=95}));
connect (fixedl.frame_b, revolutePlanar.frame_a) annotation (
Line (points = {{-70, 70}, {-60, 70}, {-60, 70}, {-60, 70}}));
connect (revolutePlanar. frame_b, fixedTranslationl.frame_a) annotation
Line (points = {{-40, 70}, {-20, 70}, {-20, 70}, {-20, 70}}, color = {95, 95
—95}));
connect (fixedTranslationl.frame_b, revolutel.frame_a) annotation (
Line (points = {{0, 70}, {10, 70}, {10, 58}, {10, 58}}, color = {95, 95, 95}));
connect (revolutel.frame_b, fixedTranslation2.frame_a) annotation (
Line (points = {{10, 38}, {10, 38}, {10, 30}, {10, 30}}, color = {95, 95, 95}));
connect (revolute2.frame_b, prismatic.frame_a) annotation/
Line (points = {{10, -20}, {10, -20}, {10, -60}, {20, -60}, {20, -60}}));
connect (revolute2.frame_b, body2.frame_a) annotation (
Line (points = {{10, -20}, {10, -20}, {10, -30}, {20, -30}, {20, -30}}, color =
—~{95, 95, 95}));
connect (revolute2.frame_a, fixedTranslation?2.frame_b) annotation (
Line (points = {{10, 0}, {10, 0O}, {10, 10}, {10, 10}}, color = {95, 95, 95}));
connect (fixedTranslationl.frame_b, bodyl.frame_a) annotation (
Line (points = {{0, 70}, {18, 70}, {18, 70}, {20, 70}}));
end piston;

[

I

>>> loadModel (Modelica);

>>> setCommandLineOptions ("-d=initialization");

>>> buildModel (piston);
"[/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/build/lib/omlibrary/
—Modelica 4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable],
—Warning: Parameter body2.r_CM[3] has no value, and is fixed during,
—initialization (fixed=true), using available start value (start=0.0) as default_
—value.
[/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/build/lib/omlibrary/
—Modelica 4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable]
—Warning: Parameter body2.r_CM[2] has no value, and is fixed during,,
—initialization (fixed=true), using available start value (start=0.0) as default,
—value.
[/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/build/lib/omlibrary/
—Modelica 4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable]
—Warning: Parameter body2.r_CM[1l] has no value, and is fixed during,
—initialization (fixed=true), using available start value (start=0.0) as default,
—value.
[/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/build/lib/omlibrary/
—Modelica 4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable],
—Warning: Parameter bodyl.r_CM[3] has no value, and is fixed during,
—initialization (fixed=true), using available start value (start=0.0) as default_
—value.
[/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/build/lib/omlibrary/
—Modelica 4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable],
—Warning: Parameter bodyl.r_CM[2] has no value, and is fixed during,,
—initialization (fixed=true), using available start value (start=0.0) as default,
—value.
[/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/build/lib/omlibrary/
—Modelica 4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable]
—Warning: Parameter bodyl.r_CM[1l] has no value, and is fixed during,

—initialization (fixed=true), using available start value (start=0.0) as default,
—value.

(continues on next page)

4.3. Initialization 81

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

(continued from previous page)

Warning: Assuming fixed start value for the following 2 variables:
SSTATESET1.x:VARIABLE (start = /+Real/ (SSTATESET1.A[1]) % SSTART.
—revolutel.w + /*Realx/ (SSTATESET1.A[2]) % S$SSTART.revolute2.w fixed = true)
—type: Real
SSTATESET2.x:VARIABLE (start = /+Realx/ (SSTATESET2.A[1]) % SSTART.
—revolutel.phi + /*Realx/ ($SSTATESET2.A[2]) = S$START.revolute2.phi fixed = true)
—type: Real

"

[

[

Note how OpenModelica will inform the user about relevant and irrelevant start values for this model and for
which variables a fixed default start value is assumed. The model has four joints but only one degree of freedom,
so one of the joints revolutePlanar or prismatic must be initialized.

So, initializing phi and w of revolutePlanar will give a sensible start system.

model pistonInitialize

extends piston(revolutel.phi.fixed true, revolutel.phi.start = -1.
—221730476396031, revolutel.w.fixed = true, revolutel.w.start = 5);
equation
end pistonInitialize;

>>> setCommandLineOptions ("-d=initialization");

>>> gsimulate (pistonInitialize, stopTime=2.0);
"[/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/build/lib/omlibrary/
—Modelica 4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable],
—Warning: Parameter body2.r_CM[3] has no value, and is fixed during,
—initialization (fixed=true), using available start value (start=0.0) as default_
—value.
[/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/build/lib/omlibrary/
—Modelica 4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable] |
—Warning: Parameter body2.r_CM[2] has no value, and is fixed during,
—initialization (fixed=true), using available start value (start=0.0) as default,
—value.
[/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/build/lib/omlibrary/
—Modelica 4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable],
—Warning: Parameter body2.r_CM[1l] has no value, and is fixed during,
—initialization (fixed=true), using available start value (start=0.0) as default_
—value.
[/var/1lib/jenkinsl/ws/Modelica_Added-citation-metadata/build/lib/omlibrary/
—Modelica 4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable]
—Warning: Parameter bodyl.r_CM[3] has no value, and is fixed during,
—initialization (fixed=true), using available start value (start=0.0) as default_
—value.
[/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/build/lib/omlibrary/
—Modelica 4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable],,
—Warning: Parameter bodyl.r_CM[2] has no value, and is fixed during,
—initialization (fixed=true), using available start value (start=0.0) as default,
—value.
[/var/lib/jenkinsl/ws/Modelica_Added-citation-metadata/build/lib/omlibrary/
—Modelica 4.0.0+maint.om/Mechanics/MultiBody/Parts/Body.mo:14:3-15:65:writable]
—Warning: Parameter bodyl.r_CM[1l] has no value, and is fixed during,
—initialization (fixed=true), using available start value (start=0.0) as default,
—value.

n

82 Chapter 4. Solving Modelica Models

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

1.1 T T T
body2.frame,.rg[1] —
09
0.8
0.7

0.6

Figure 4.2: Vertical movement of mass body2.

4.3.2 Homotopy Method

For complex start conditions OpenModelica can have trouble finding a solution for the initialization problem with
the default Newton method.

Modelica offers the homotopy operator® to formulate actual and simplified expression for equations, with homo-
topy parameter A going from O to 1:

actual - A + simplified - (1 — X).

OpenModelica has different solvers available for non-linear systems. Initializing with homotopy on the first try
is default if a homotopy operator is used. It can be switched off with noHomotopyOnFirstTry. For a general
overview see [SCO+11], for details on the implementation in OpenModelica see [OB13].

The homotopy methods distinguish between local and global methods meaning, if A affects the entire initialization
system or only local strong connected components. In addition the homotopy methods can use equidistant A or
and adaptive A in [0,1].

Default order of methods tried to solve initialization system
If there is no homotopy in the model
* Solve without homotopy method.
If there is homotopy in the model or solving without homotopy failed
¢ Try global homotopy approach with equidistant .
The default homotopy method will do three global equidistant steps from O to 1 to solve the initialization system.

Several compiler and simulation flags influence initialization with homotopy: --homotopyApproach,
-homAdaptBend, -homBacktraceStrategy, -homHEps, -homMaxLambdaSteps, -homMaxNewtonSteps,
-homMaxTries, -homNegStartDir, -homotopyOnkFirstTry, -homTauDecFac, -homTauDecFacPredictor, -
homTaulncFac, -homTaulncThreshold, -homTauMax, -homTauMin, -homTauStart, -ils.

3 Modelica Association, Modelica® - A Unified Object-Oriented Language for Systems Modeling Language Specification - Version 3.4,
2017 - Section 3.7.2.4

4.3. Initialization 83

https://specification.modelica.org/maint/3.4/Ch3.html#homotopy
https://specification.modelica.org/maint/3.4/Ch3.html#homotopy

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

4.4 Algebraic Solvers

If the ODE system contains equations that need to be solved together, so called algebraic loops, OpenModelica
can use a variety of different linear and non-linear methods to solve the equation system during simulation.

For the C runtime the linear solver can be set with -/s and the non-linear solver with -nls. There are dense and
sparse solver available.

Linear solvers

e default : Lapack with totalpivot as fallback [ABB+99]

* lapack : Non-Sparse LU factorization using [ABB+99]

e [is : Iterative linear solver [Nis10]

* klu : Sparse LU factorization [Nat05]

* umfpack : Sparse unsymmetric multifrontal LU factorization [Dav04]

* totalpivot : Total pivoting LU factorization for underdetermined systems
Non-linear solvers

e hybrid : Modified Powell hybrid method from MINPACK [DJS96]

¢ kinsol : Combination of Newton-Krylov, Picard and fixed-point solver [T+98]

* newton : Newton-Raphson method [CKO06]

» mixed : Homotopy with hybrid as fallback [Kel78] [BBOR15]

* homotopy : Damped Newton solver with fixed-point solver and Newton homotopy solver as fallbacks

In addition, there are further optional settings for the algebraic solvers available. A few of them are listed in the
following:

General: -nlsLS
Newton: -newton -newtonFTol -newtonMaxStepFactor -newtonXTol
Sparse solver: -nlssMinSize -nlssMaxDensity

Enable logging: -lv=LOG_LS -lv=LOG_LS_V -lv=LOG_NLS -lv=LOG_NLS_V

4.4.1 References

84 Chapter 4. Solving Modelica Models

CHAPTER
FIVE

DEBUGGING

There are two main ways to debug Modelica code, the transformations browser, which shows the transformations
OpenModelica performs on the equations. There is also a debugger for debugging of algorithm sections and
functions.

5.1 The Equation-based Debugger

This section gives a short description how to get started using the equation-based debugger in OMEdit.

5.1.1 Enable Tracing Symbolic Transformations

This enables tracing symbolic transformations of equations. It is optional but strongly recommended in order to
fully use the debugger. The compilation time overhead from having this tracing on is less than 1%, however, in
addition to that, some time is needed for the system to write the xml file containing the transformation tracing
information.

Enable -d=infoXmlOperations in Tools->Options->Simulation (see section Simulation) OR alternatively click on
the checkbox Generate operations in the info xml in Tools->Options->Debugger (see section Debugger) which
performs the same thing.

This adds all the transformations performed by OpenModelica on the equations and variables stored in the
model_info.xml file. This is necessary for the debugger to be able to show the whole path from the source
equation(s) to the position of the bug.

5.1.2 Load a Model to Debug

Load an interesting model. We will use the package Debugging.mo since it contains suitable, broken models to
demonstrate common errors.

5.1.3 Simulate and Start the Debugger

Select and simulate the model as usual. For example, if using the Debugging package, select the model Debug-
ging.Chattering.ChatteringEvents1. If there is an error, you will get a clickable link that starts the debugger. If the
user interface is unresponsive or the running simulation uses too much processing power, click cancel simulation
first.

85

https://github.com/OpenModelica/OMCompiler/blob/master/Examples/Debugging.mo

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

Running Simulation of Debugging.C hattering.C hatteringEvents1.
Please wait for a while.

IRNRNRNNNNNNNNNNRNEE

Cancel Simulation

™ OMEdit - Debugging.Chattering.ChatteringEvents1 Simulation Output - 0O &

Output Compilation]

Jtop/OpenModel ica /OMEd] ¢ /Debugging . Chattering . ChatteringEventsl -

port=50212 -logFormat=xml -w -1wv=LOG_ STATS
stdout | info | Chattering detected arcund time

0.500000005..0.500000995001 (100 state events in a row with a total time
delta less than the step size 0.002). This can be a performance
bottleneck. Use -1v LOG EVENTS for more information. The zZero-crossing

was: 2 > 0.0 D;e%g more

Figure 5.1: Simulating the model.

86 Chapter 5. Debugging

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

5.1.4 Use the Transformation Debugger for Browsing

The debugger opens on the equation where the error was found. You can browse through the dependencies
(variables that are defined by the equation, or the equation is dependent on), and similar for variables. The
equations and variables form a bipartite graph that you can walk.

If the -d=infoXmlOperations was used or you clicked the “generate operations” button, the operations performed
on the equations and variables can be viewed. In the example package, there are not a lot of operations because
the models are small.

Try some larger models, e.g. in the MultiBody library or some other library, to see more operations with several
transformation steps between different versions of the relevant equation(s). If you do not trigger any errors in a
model, you can still open the debugger, using File->Open Transformations File (model_info.json).

OMEdit - Transformational Debugger

& | /tmp/Openmodelica_marsj/OMEdit/Debugging.Chattering.ChatteringEvents1_infoxml

Variables | [Source Browser |
Variables Browser |[Defined In Equations | [Used In Equations | /home/marsj/trunk/testsuite/openmodelica,
Find Variables |inc» Type Equation Inc * Type Equation 1 within ;

"] Case Sensitive Regular Expression = |:2 initial (assignmen...0 else 1.0 |:3 initial (assignment)y=2.0%z £ Eiﬁﬁg?;eggﬂﬂsggn;Tﬁt

Expand All Collapse All 5 regular (assignmen...0 else 1.0 6 regular (assignment)y=2.0%z declarative models"

Variables ¥ Comment Line Location 2 package Chattering "Models
X 7 fhom...q. with chattering behaviour™
v 8 /hom...g. 5 model ChatteringEventsl

6 "Exhibits chattering
= 9 /hom...g. after t = 0.5, with
[variable Operations generated events”
: 7 Real x(start=1
Operations '
B fixed=true);
8 Real y;
Real z;
16 equation
11 z = if x > @ then -1
else 1;
12 y = 2%z;
13 der(x) =y;
(j v 14 annotation

Equations | (Documentation(info="<html>

Eauati B Defi) a 15 <p>After t = 8.5, chattering
quations Browser | [Defines | [Depends | Lakes place, due to the

Inc v+ Type Equation Variable ¥ | Variable M discontinuity in the right
1 initial (assignment) x=1.0 z Lx handtnde ?f the first

- . equation.</p>
2 !n!t!al (ass!gnment‘...o else 1.0 16 <p>Chattering can be
3 initial (assignment)y=2.0%z detected because lots of
4 initial (assignment) der(x) =y tightly spaced events are
5 & : . 0else 1.0 generated. The feedback to
e {assgnmen . the user should allow to
6 reqular (assignment)y=2.0%z identify the equation from
7 reqular (assignment) der(x) =y = = which the zero crossing
[Equation Operations | function that generates the
Operations events originates.</p>

17 </html=>"),
experiment (StopTime=1});

tsolved: z=if x> 0.0 then-1.0 else 1.0
18 end ChatteringEventsl;

original: z = if x > 0 then -1 else 1; => flattened: z = if x > 0.0 then -1.0 else 1.0;

24 model ChatteringEvents2
21 "Exhibits chattering
after t = 0.422, with

nenerated events" -

Figure 5.2: Transfomations Browser.

5.1. The Equation-based Debugger 87

OpenModelica User’s Guide, Release v1.19.0-dev-417-gd538fbe53e

5.2 The Algorithmic Debugger

This section gives a short description how to get started using the algorithmic debugger in OMEdit. See section
Simulation for further details of debugger options.

5.2.1 Adding Breakpoints

There are two ways to add the breakpoints,

* Click directly on the line number in Text View, a red circle is created indicating a breakpoint as shown in
Figure 5.3.

* Open the Algorithmic Debugger window and add a breakpoint using the right click menu of Breakpoints
Browser window.

g |
gi OMEdit - OpenModelica Connection Editor - [SimulationModel] l = Q
B Fle Edit View Simulaion FMI Export Tools Help NEE
FEHH 00 BQAQ WemNeEN[EQ9reS 8- 9 X »
Libraries Browser g X |II-I aﬁﬂ |Wriheab|e |Mode| ‘ Text View ‘ C:/Usersfadeas31/.. imulationModel. mo ‘ Line: 1, Col: 0 | i‘
L 1 model SimulationModel
+ Complex Beal =x=(start = 1);
1 7 Modelica Real y(start = 1);
o) algorithm
* ﬂ ModelicaReference [] x = getValueMulcipliedByTwo (x) ;
+ || ModelicaServices ¥ = X;
+ EI OpenModelica end SimulationModel;

|:|E| SimulationMaodel

getValueMultipliedByTwo

¥:-96.28 ¥: 100.83 €L welcome | o4 Modelin