8. OpenModelicaScripting

This is a shared library that provides a OpenModelica Scripting interface for the OMSimulatorLib library.

8.1. Examples

loadOMSimulator();
oms_setTempDirectory("./temp/");
oms_newModel("model");
oms_addSystem("model.root", OpenModelica.Scripting.oms_system.oms_system_sc);

// instantiate FMUs
oms_addSubModel("model.root.system1", "FMUs/System1.fmu");
oms_addSubModel("model.root.system2", "FMUs/System2.fmu");

// add connections
oms_addConnection("model.root.system1.y", "model.root.system2.u");
oms_addConnection("model.root.system2.y", "model.root.system1.u");

// simulation settings
oms_setResultFile("model", "results.mat");
oms_setStopTime("model", 0.1);
oms_setFixedStepSize("model.root", 1e-4);

oms_instantiate("model");
oms_setReal("model.root.system1.x_start", 2.5);

oms_initialize("model");
oms_simulate("model");
oms_terminate("model");
oms_delete("model");
unloadOMSimulator();

8.2. OpenModelica Scripting Commands

8.3. addBus

Adds a bus to a given component.

status := oms_addBus(cref);

8.4. addConnection

Adds a new connection between connectors A and B. The connectors need to be specified as fully qualified component references, e.g., “model.system.component.signal”.

status := oms_addConnection(crefA, crefB, suppressUnitConversion);

The two arguments crefA and crefB get swapped automatically if necessary. The third argument suppressUnitConversion is optional and the default value is false which allows automatic unit conversion between connections, if set to true then automatic unit conversion will be disabled.

8.5. addConnector

Adds a connector to a given component.

status := oms_addConnector(cref, causality, type);

The second argument "causality", should be any of the following,

"OpenModelica.Scripting.oms_causality.oms_causality_input"
"OpenModelica.Scripting.oms_causality.oms_causality_output"
"OpenModelica.Scripting.oms_causality.oms_causality_parameter"
"OpenModelica.Scripting.oms_causality.oms_causality_bidir"
"OpenModelica.Scripting.oms_causality.oms_causality_undefined"

The third argument type, should be any of the following,

"OpenModelica.Scripting.oms_signal_type.oms_signal_type_real"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_integer"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_boolean"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_string"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_enum"
"OpenModelica.Scripting.oms_signal_type.oms_signal_type_bus"

8.6. addConnectorToBus

Adds a connector to a bus.

status := oms_addConnectorToBus(busCref, connectorCref);

8.7. addSignalsToResults

Add all variables that match the given regex to the result file.

status := oms_addSignalsToResults(cref, regex);

The second argument, i.e. regex, is considered as a regular expression (C++11). “.*” and “(.)*” can be used to hit all variables.

8.8. addSubModel

Adds a component to a system.

status := oms_addSubModel(cref, fmuPath);

8.9. addSystem

Adds a (sub-)system to a model or system.

status := oms_addSystem(cref, type);

The second argument type, should be any of the following,

"OpenModelica.Scripting.oms_system.oms_system_none"
"OpenModelica.Scripting.oms_system.oms_system_wc"
"OpenModelica.Scripting.oms_system.oms_system_sc"

8.10. compareSimulationResults

This function compares a given signal of two result files within absolute and relative tolerances.

status := oms_compareSimulationResults(filenameA, filenameB, var, relTol, absTol);

The following table describes the input values:

Input

Type

Description

filenameA

String

Name of first result file to compare.

filenameB

String

Name of second result file to compare.

var

String

Name of signal to compare.

relTol

Number

Relative tolerance.

absTol

Number

Absolute tolerance.

The following table describes the return values:

Type

Description

Integer

1 if the signal is considered as equal, 0 otherwise

8.11. copySystem

Copies a system.

status := oms_copySystem(source, target);

8.12. delete

Deletes a connector, component, system, or model object.

status := oms_delete(cref);

8.13. deleteConnection

Deletes the connection between connectors crefA and crefB.

status := oms_deleteConnection(crefA, crefB);

The two arguments crefA and crefB get swapped automatically if necessary.

8.14. deleteConnectorFromBus

Deletes a connector from a given bus.

status := oms_deleteConnectorFromBus(busCref, connectorCref);

8.15. export

Exports a composite model to a SPP file.

status := oms_export(cref, filename);

8.16. exportDependencyGraphs

Export the dependency graphs of a given model to dot files.

status := oms_exportDependencyGraphs(cref, initialization, event, simulation);

8.17. exportSnapshot

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings take care of the memory and the caller doesn’t need to call free.

(contents, status) := oms_exportSnapshot(cref);

8.18. freeMemory

Free the memory allocated by some other API. Pass the object for which memory is allocated.

This function is not needed for OpenModelicaScripting Interface

8.19. getBoolean

Get boolean value of given signal.

(value, status) := oms_getBoolean(cref);

8.20. getFixedStepSize

Gets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the integrator step size in model exchange systems.

(stepSize, status) := oms_setFixedStepSize(cref);

8.21. getInteger

Get integer value of given signal.

(value, status) := oms_getInteger(cref);

8.22. getModelState

Gets the model state of the given model cref.

(modelState, status) := oms_getModelState(cref);

8.23. getReal

Get real value.

(value, status) := oms_getReal(cref);

8.24. getSolver

Gets the selected solver method of the given system.

(solver, status) := oms_getSolver(cref);

8.25. getStartTime

Get the start time from the model.

(startTime, status) := oms_getStartTime(cref);

8.26. getStopTime

Get the stop time from the model.

(stopTime, status) := oms_getStopTime(cref);

8.27. getSubModelPath

Returns the path of a given component.

(path, status) := oms_getSubModelPath(cref);

8.28. getSystemType

Gets the type of the given system.

(type, status) := oms_getSystemType(cref);

8.29. getTime

Get the current simulation time from the model.

(time, status) := oms_getTime(cref);

8.30. getTolerance

Gets the tolerance of a given system or component.

(relativeTolerance, status) := oms_getTolerance(cref);

8.31. getVariableStepSize

Gets the step size parameters.

(initialStepSize, minimumStepSize, maximumStepSize, status) := oms_getVariableStepSize(cref);

8.32. getVersion

Returns the library’s version string.

version := oms_getVersion();

8.33. importFile

Imports a composite model from a SSP file.

(cref, status) := oms_importFile(filename);

8.34. importSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must not be instantiated.

status := oms_importSnapshot(cref, snapshot);

8.35. initialize

Initializes a composite model.

status := oms_initialize(cref);

8.36. instantiate

Instantiates a given composite model.

status := oms_instantiate(cref);

8.37. list

Lists the SSD representation of a given model, system, or component.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings take care of the memory and the caller doesn’t need to call free.

(contents, status) := oms_list(cref);

8.38. listUnconnectedConnectors

Lists all unconnected connectors of a given system.

Memory is allocated for contents. The caller is responsible to free it using the C-API. The Lua and Python bindings take care of the memory and the caller doesn’t need to call free.

(contents, status) := oms_listUnconnectedConnectors(cref);

8.39. loadSnapshot

Loads a snapshot to restore a previous model state. The model must be in virgin model state, which means it must not be instantiated.

status := oms_loadSnapshot(cref, snapshot);

8.40. newModel

Creates a new and yet empty composite model.

status := oms_newModel(cref);

8.41. removeSignalsFromResults

Removes all variables that match the given regex to the result file.

status := oms_removeSignalsFromResults(cref, regex);

The second argument, i.e. regex, is considered as a regular expression (C++11). “.*” and “(.)*” can be used to hit all variables.

8.42. rename

Renames a model, system, or component.

status := oms_rename(cref, newCref);

8.43. reset

Reset the composite model after a simulation run.

The FMUs go into the same state as after instantiation.

status := oms_reset(cref);

8.44. setBoolean

Sets the value of a given boolean signal.

status := oms_setBoolean(cref, value);

8.45. setCommandLineOption

Sets special flags.

status := oms_setCommandLineOption(cmd);

Available flags:

info:    Usage: OMSimulator [Options] [Lua script] [FMU] [SSP file]
         Options:
           --addParametersToCSV=<bool>      false              Export parameters to a .csv file
           --algLoopSolver=<arg>            "kinsol"           Specifies the loop solver method (fixedpoint, kinsol) used for algebraic loops spanning multiple components.
           --clearAllOptions                                   Reset all flags to their default values
           --CVODEMaxErrTestFails=<int>     100                Maximum number of error test failures for CVODE
           --CVODEMaxNLSFailures=<int>      100                Maximum number of nonlinear convergence failures for CVODE
           --CVODEMaxNLSIterations=<int>    5                  Maximum number of nonlinear solver iterations for CVODE
           --CVODEMaxSteps=<int>            1000               Maximum number of steps for CVODE
           --deleteTempFiles=<bool>         true               Delete temporary files as soon as they are no longer needed
           --directionalDerivatives=<bool>  true               Use directional derivatives to calculate the Jacobian for algebraic loops
           --dumpAlgLoops=<bool>            false              Dump information for algebraic loops
           --emitEvents=<bool>              true               Emit events during simulation
           --help [-h]                                         Display the help text
           --ignoreInitialUnknowns=<bool>   false              Ignore initial unknowns from the modelDescription.xml
           --initialStepSize=<double>       1e-6               Specify the initial step size
           --inputExtrapolation=<bool>      false              Enable input extrapolation using derivative information
           --intervals=<int> [-i]           500                Specify the number of communication points (arg > 1)
           --logFile=<arg> [-l]             ""                 Specify the log file (stdout is used if no log file is specified)
           --logLevel=<int>                 0                  Set the log level (0: default, 1: debug, 2: debug+trace)
           --master=<arg>                   "ma"               Specify the master algorithm (ma)
           --maxEventIteration=<int>        100                Specify the maximum number of iterations for handling a single event
           --maxLoopIteration=<int>         10                 Specify the maximum number of iterations for solving algebraic loops between system-level components. Internal algebraic loops of components are not affected.
           --minimumStepSize=<double>       1e-12              Specify the minimum step size
           --mode=<arg> [-m]                "me"               Force a certain FMI mode if the FMU provides both cs and me (cs, me)
           --numProcs=<int> [-n]            1                  Specify the maximum number of processors to use (0=auto, 1=default)
           --progressBar=<bool>             false              Show a progress bar for the simulation progress in the terminal
           --realTime=<bool>                false              Enable experimental feature for (soft) real-time co-simulation
           --resultFile=<arg> [-r]          "<default>"        Specify the name of the output result file
           --skipCSVHeader=<bool>           true               Skip exporting the CSV delimiter in the header
           --solver=<arg>                   "cvode"            Specify the integration method (euler, cvode)
           --solverStats=<bool>             false              Add solver stats to the result file, e.g., step size; not supported for all solvers
           --startTime=<double> [-s]        0                  Specify the start time
           --stepSize=<double>              1e-3               Specify the (maximum) step size
           --stopTime=<double> [-t]         1                  Specify the stop time
           --stripRoot=<bool>               false              Remove the root system prefix from all exported signals
           --suppressPath=<bool>            false              Suppress path information in info messages; especially useful for testing
           --tempDir=<arg>                  "."                Specify the temporary directory
           --timeout=<int>                  0                  Specify the maximum allowed time in seconds for running a simulation (0 disables)
           --tolerance=<double>             1e-4               Specify the relative tolerance
           --version [-v]                                      Display version information
           --wallTime=<bool>                false              Add wall time information to the result file
           --workingDir=<arg>               "."                Specify the working directory
           --zeroNominal=<bool>             false              Accept FMUs with invalid nominal values and replace the invalid nominal values with 1.0

8.46. setFixedStepSize

Sets the fixed step size. Can be used for the communication step size of co-simulation systems and also for the integrator step size in model exchange systems.

status := oms_setFixedStepSize(cref, stepSize);

8.47. setInteger

Sets the value of a given integer signal.

status := oms_setInteger(cref, value);

8.48. setLogFile

Redirects logging output to file or std streams. The warning/error counters are reset.

filename=”” to redirect to std streams and proper filename to redirect to file.

status := oms_setLogFile(filename);

8.49. setLoggingInterval

Set the logging interval of the simulation.

status := oms_setLoggingInterval(cref, loggingInterval);

8.50. setLoggingLevel

Enables/Disables debug logging (logDebug and logTrace).

0 default, 1 default+debug, 2 default+debug+trace

oms_setLoggingLevel(logLevel);

8.51. setReal

Sets the value of a given real signal.

status := oms_setReal(cref, value);

This function can be called in different model states:

  • Before instantiation: setReal can be used to set start values or to define initial unknowns (e.g. parameters, states). The values are not immediately applied to the simulation unit, since it isn’t actually instantiated.

  • After instantiation and before initialization: Same as before instantiation, but the values are applied immediately to the simulation unit.

  • After initialization: Can be used to force external inputs, which might cause discrete changes of continuous signals.

8.52. setRealInputDerivative

Sets the first order derivative of a real input signal.

This can only be used for CS-FMU real input signals.

status := oms_setRealInputDerivative(cref, value);

8.53. setResultFile

Set the result file of the simulation.

status := oms_setResultFile(cref, filename);
status := oms_setResultFile(cref, filename, bufferSize);

The creation of a result file is omitted if the filename is an empty string.

8.54. setSolver

Sets the solver method for the given system.

status := oms_setSolver(cref, solver);

The second argument "solver" should be any of the following,

"OpenModelica.Scripting.oms_solver.oms_solver_none"
"OpenModelica.Scripting.oms_solver.oms_solver_sc_min"
"OpenModelica.Scripting.oms_solver.oms_solver_sc_explicit_euler"
"OpenModelica.Scripting.oms_solver.oms_solver_sc_cvode"
"OpenModelica.Scripting.oms_solver.oms_solver_sc_max"
"OpenModelica.Scripting.oms_solver.oms_solver_wc_min"
"OpenModelica.Scripting.oms_solver.oms_solver_wc_ma"
"OpenModelica.Scripting.oms_solver.oms_solver_wc_mav"
"OpenModelica.Scripting.oms_solver.oms_solver_wc_mav2"
"OpenModelica.Scripting.oms_solver.oms_solver_wc_max"

8.55. setStartTime

Set the start time of the simulation.

status := oms_setStartTime(cref, startTime);

8.56. setStopTime

Set the stop time of the simulation.

status := oms_setStopTime(cref, stopTime);

8.57. setTempDirectory

Set new temp directory.

status := oms_setTempDirectory(newTempDir);

8.58. setTolerance

Sets the tolerance for a given model or system.

status := oms_setTolerance(const char* cref, double relativeTolerance);

Default values are 1e-4 for both relative and absolute tolerances.

A tolerance specified for a model is automatically applied to its root system, i.e. both calls do exactly the same:

oms_setTolerance("model", relativeTolerance);
oms_setTolerance("model.root", relativeTolerance);

Component, e.g. FMUs, pick up the tolerances from there system. That means it is not possible to define different tolerances for FMUs in the same system right now.

In a strongly coupled system (oms_system_sc), the relative tolerance is used for CVODE and the absolute tolerance is used to solve algebraic loops.

In a weakly coupled system (oms_system_wc), both the relative and absolute tolerances are used for the adaptive step master algorithms and the absolute tolerance is used to solve algebraic loops.

8.59. setVariableStepSize

Sets the step size parameters for methods with stepsize control.

status := oms_getVariableStepSize(cref, initialStepSize, minimumStepSize, maximumStepSize);

8.60. setWorkingDirectory

Set a new working directory.

status := oms_setWorkingDirectory(newWorkingDir);

8.61. simulate

Simulates a composite model.

status := oms_simulate(cref);

8.62. stepUntil

Simulates a composite model until a given time value.

status := oms_stepUntil(cref, stopTime);

8.63. terminate

Terminates a given composite model.

status := oms_terminate(cref);