@
Modelica
Y 4 Language

Modelica® — A Unified Object-Oriented Language
for Systems Modeling

Language Specification

Version 3.6-dev

May 4, 2021

Modelica Association

Abstract

This document defines the Modelica! language, version 3.6-dev, which is developed by the Modelica
Association, a non-profit organization with seat in LinkOping, Sweden. Modelica is a freely available,
object-oriented language for modeling of large, complex, and heterogeneous systems. It is suited for
multi-domain modeling, for example, mechatronic models in robotics, automotive and aerospace appli-
cations involving mechanical, electrical, hydraulic control and state machine subsystems, process oriented
applications and generation and distribution of electric power. Models in Modelica are mathematically
described by differential, algebraic and discrete equations. No particular variable needs to be solved
for manually. A Modelica tool will have enough information to decide that automatically. Model-
ica is designed such that available, specialized algorithms can be utilized to enable efficient handling
of large models having more than one hundred thousand equations. Modelica is suited and used for
hardware-in-the-loop simulations and for embedded control systems. More information is available at
https://www.modelica.org.

! Modelica is a registered trademark of the Modelica Association.

https://www.modelica.org

Modelica Language Specification 3.6-dev

o
Modelica
language

Copyright (©) 1998-2021, Modelica Association (https://www.modelica.org)

All rights reserved. Reproduction or use of editorial or pictorial content is permitted, i.e., this document
can be freely distributed especially electronically, provided the copyright notice and these conditions
are retained. No patent liability is assumed with respect to the use of information contained herein.
While every precaution has been taken in the preparation of this document no responsibility for errors
or omissions is assumed.

The contributors to this and to previous versions of this document are listed in appendix D. All contrib-
utors worked voluntarily and without compensation.

https://www.modelica.org

Contents

Preface
1 Introduction
1.1 Overview of Modelica o
1.2 Scope of the Specification
1.3 Some Definitions L e e e e e e e e e
1.4 Notation and Grammar o i v i e e e e e e e e
2 Lexical Structure
2.1 Character Set e e e e e e e e
2.2 Comments v e e e e e e e e e e e e e
2.3 Identifiers, Names, and Keywords oo o
2.4 Literal Constants e
2.5 Operator Symbols L
3 Operators and Expressions
3.1 Expressions L e e
3.2 Operator Precedence and Associativity L.
3.3 Evaluation Order e e
3.4 Arithmetic Operators o e e e e
3.5 Equality, Relational, and Logical Operators
3.6 Miscellaneous Operators and Variables
3.7 Built-in Intrinsic Operators with Function Syntax
3.8 Variability of Expressions L
4 Classes, Predefined Types, and Declarations
4.1 Access Control — Public and Protected Elements
4.2 Double Declaration not Allowedo
4.3 Declaration Order and Usage before Declaration
44 Component Declarations L e
4.5 Class Declarations
4.6 Specialized Classes e
4.7 Balanced Models
4.8 Predefined Types and Classes o ittt
5 Scoping, Name Lookup, and Flattening
5.1 Flattening Context o e e
5.2 Enclosing Classes e e e
5.3 Static Name Lookup e
5.4 Instance Hierarchy Name Lookup of Inner Declarations
5.5 Simultaneous Inner/Outer Declarations
5.6 Flattening Process e
6 Interface or Type Relationships
6.1 Interface Terminology
6.2 The Concepts of Type, Interface and Subtype
6.3 Interface or Type o e e e e
6.4 Interface Compatibility or Subtyping

10
11
12

13
13
13
14
15
15
16
18
31

34
34
35
35
35
42
45
47
33

59
99
99
99
61
63
64

Modelica Language Specification 3.6-dev

nlod/gj:ig Contents
6.5 Plug-Compatibility or Restricted Subtyping 75
6.6 Function-Compatibility or Function-Subtyping for Functions 76
6.7 Type Compatible Expressions 77
7 Inheritance, Modification, and Redeclaration 79
7.1 Inheritance — Extends Clause e 79
7.2 Modifications L. e e e 82
7.3 Redeclaration 87
8 Equations 95
8.1 Equation Categories e 95
8.2 Flattening and Lookup in Equations 95
8.3 Equations in Equation Sections e 95
8.4 Synchronous Data-flow Principle and Single Assignment Rule 103
8.5 Events and Synchronization Lo e 103
8.6 Initialization, initial equation, and initial algorithm 105
9 Connectors and Connections 109
9.1 Connect-Equations and Connectors oo 109
9.2 Generation of Connection Equations 114
9.3 Restrictions of Connections and Connectors 117
9.4 Equation Operators for Overconstrained Connection-Based Equation Systems 120
10 Arrays 126
10.1 Array Declarations L 126
10.2 Flexible Array Sizes e e e e e e e 129
10.3 Built-in Array Functions L 129
10.4 Vector, Matrix and Array Constructors e 134
10.5 Array Indexing e 138
10.6 Scalar, Vector, Matrix, and Array Operator Functions 139
10.7 Empty Arrays e e 144
11 Statements and Algorithm Sections 145
11.1 Algorithm Sections e 145
11.2 Statements L e e e e e e 146
12 Functions 153
12.1 Function Declaration 153
12.2 Function as a Specialized Class e 154
12.3 Pure Modelica Functions e 156
124 Function Call L e e 158
12.5 Built-in Functions L 165
12.6 Record Constructor Functions 165
12.7 Declaring Derivatives of Functions L L. 169
12.8 Declaring Inverses of Functions L o 174
12.9 External Function Interface o 176
13 Packages 190
13.1 Package as Specialized Class e 190
13.2 Importing Definitions from a Package oo, 190
13.3 The Modelica Library Path - MODELICAPATH 192
13.4 Mapping Package/Class Structures to a Hierarchical File System 193
13.5 External resources 194
14 Overloaded Operators 196
14.1 Overview of overloaded operators 196
14.2 Matching Function L e 197
14.3 Overloaded Constructors o e e e 197
14.4 Overloaded String Conversions i 198

Modelica Language Specification 3.6-dev

n‘lo‘dLesliugg Contents
14.5 Overloaded Binary Operations. 0 e 198
14.6 Overloaded Unary Operations o0 i it vt i e e e 199
14.7 Example of Overloading for Complex Numbers 199
15 Stream Connectors 203
15.1 Definition of Stream Connectors v v i i e e e e 203
15.2 Stream Operator inStream and Connection Equations 204
15.3 Stream Operator actualStream 208
16 Synchronous Language Elements 209
16.1 Rationale for Clocked Semantics 210
16.2 Definitions e e e e e e e e e e 211
16.3 Clock Constructors v v i i e e e e e 214
16.4 Clocked State Variables e 217
16.5 Partitioning Operators e 217
16.6 Clocked When-Clause 221
16.7 Clock Partitioning L e 221
16.8 Continuous-Time Equations in Clocked Partitions 224
16.9 Initialization of Clocked Partitions e 228
16.10 Other Operators o o o i e e e e e e e 228
16.11 Semantics o o e e e e e e e e 229
17 State Machines 232
17.1 Transitions o v o e e e e e e e e e e e e e e e e e e e 232
17.2 State Machine Graphics 234
17.3 State Machine Semanticso 235
18 Annotations 244
18.1 Vendor-Specific Annotationso 244
18.2 Annotations for Documentation 244
18.3 Annotations for Code Generation e 249
18.4 Annotations for Simulations e 251
18.5 Annotation for single use of class oo 252
18.6 Annotations for Graphical Objects 252
18.7 Annotations for the Graphical User Interface 262
18.8 Annotations for Version Handling 267
18.9 Annotations for Access Control to Protect Intellectual Property 273
18.10 Annotations for Functions 276
18.11 Annotation Choices for Modifications and Redeclarations 277
18.12 Annotation for External Libraries and Include Files 277
19 Unit Expressions 278
19.1 The Syntax of Unit Expressions 278
19.2 Examples e e e e e e e e e 279
20 The Modelica Standard Library 280
A Modelica Concrete Syntax 281
A.1 Lexical conventions e e 281
A2 Grammar e e e e 282
B Modelica DAE Representation 289
C Derivation of Stream Equations 292
D Modelica Revision History 297
Bibliography 332
Index 333

Preface

Modelica is a freely available, object-oriented language for modeling of large, complex, and heterogeneous
physical systems. From a user’s point of view, models are described by schematics, also called object
diagrams. Examples are shown below:

lossyRavigneaux
Star2
o C lessyPlanetary

R3 1_.
1e 10 } m=m el —
Grds R=0.0001 -
] o AME1 L 0=-1.9189
electrlcal circuits electrical machines

drive trains, e.g. planetary gears

| o A A b FlowSource Vu\ume Smk
m_flow
4) . ,ZB
[X

pump
[}

anjeA

- | w

I N thermo-fluid pipe flow, e.g.
hydraulic circuits power plants, air conditioning systems

fiter intialStep transition1 step lransmnn?
feedback
> _} _
x
T D 1 t\mer

state machines 3-dim. mechanical systems

EN

f_cut=5

block diagrams

A schematic consists of connected components, like a resistor, or a hydraulic cylinder. A component has
connectors (often also called ports) that describe the interaction possibilities, e.g., an electrical pin, a
mechanical flange, or an input signal. By drawing connection lines between connectors a physical system
or block diagram model is constructed. Internally a component is defined by another schematic, or on
“bottom” level, by an equation-based description of the model in Modelica syntax.

The Modelica language is a textual description to define all parts of a model and to structure model
components in libraries, called packages. An appropriate Modelica simulation environment is needed to
graphically edit and browse a Modelica model (by interpreting the information defining a Modelica model)
and to perform model simulations and other analysis. Information about such environments is available at
www.modelica.org/tools. Basically, all Modelica language elements are mapped to differential, algebraic
and discrete equations. There are no language elements to describe directly partial differential equations,
although some types of discretized partial differential equations can be reasonably defined, e.g., based on
the finite volume method and there are Modelica libraries to import results of finite-element programs.

This document defines the details of the Modelica language. It is not intended to learn the Model-
ica language with this text. There are better alternatives, such as the Modelica books referenced at
www.modelica.org/publications. This specification is used by computer scientist to implement a Mod-
elica translator and by modelers who want to understand the exact details of a particular language
element.

https://www.modelica.org/tools
https://www.modelica.org/publications

Modelica Language Specification 3.6-dev
dell Content
m°"§' ng ontents

The text directly under the chapter headings are non-normative introductions to the chapters.

The Modelica language has been developed since 1996. This document describes version 3.6-dev of the
Modelica language. The revision history is available in appendix D.

Chapter 1

Introduction

1.1 Overview of Modelica

Modelica is a language for modeling of physical systems, designed to support effective library development
and model exchange. It is a modern language built on acausal modeling with mathematical equations
and object-oriented constructs to facilitate reuse of modeling knowledge.

1.2 Scope of the Specification

The semantics of the Modelica language is specified by means of a set of rules for translating any class
described in the Modelica language to a flat Modelica structure.

A class (of specialized class model, class or block) intended to be simulated on its own is called a
simulation model.

The flat Modelica structure is also defined for other cases than simulation models; including functions
(can be used to provide algorithmic contents), packages (used as a structuring mechanism), and partial
models (used as base-models). This allows correctness to be verified for those classes, before using them
to build the simulation model.

There are specific semantic restrictions for a simulation model to ensure that the model is complete; they
allow its flat Modelica structure to be further transformed into a set of differential, algebraic and discrete
equations (= flat hybrid DAE). Note that satisfying the semantic restrictions does not guarantee that
the model can be initialized from the initial conditions and simulated.

Modelica was designed to facilitate symbolic transformations of models, especially by mapping basically
every Modelica language construct to equations in the flat Modelica structure. Many Modelica models,
especially in the associated Modelica Standard Library, are higher index systems, and can only be
reasonably simulated if symbolic index reduction is performed, i.e., equations are differentiated and
appropriate variables are selected as states, so that the resulting system of equations can be transformed
to state space form (at least locally numerically), i.e., a hybrid DAE of index zero. In order to allow
this structural analysis, a tool may reject simulating a model if parameters cannot be evaluated during
translation — due to calls of external functions or initial equations/initial algorithms for fixed = false
parameters. Accepting such models is a quality of implementation issue. The Modelica specification
does not define how to simulate a model. However, it defines a set of equations that the simulation result
should satisfy as well as possible.

The key issues of the translation (or flattening) are:
e Expansion of inherited base classes
e Parameterization of base classes, local classes and components
e Generation of connection equations from connect-equations

The flat hybrid DAE form consists of:

Modelica Language Specification 3.6-dev
Modelica 1.3. Some Definitions

Language

e Declarations of variables with the appropriate basic types, prefixes and attributes, such as parameter
Real v=5.

e Equations from equation sections.

e Function invocations where an invocation is treated as a set of equations which involves all input
and all result variables (number of equations = number of basic result variables).

e Algorithm sections where every section is treated as a set of equations which involves the variables
occurring in the algorithm section (number of equations = number of different assigned variables).

e When-clauses where every when-clause is treated as a set of conditionally evaluated equations,
which are functions of the variables occurring in the clause (number of equations — number of
different assigned variables).

Therefore, a flat hybrid DAE is seen as a set of equations where some of the equations are only condi-
tionally evaluated. Initial setup of the model is specified using start-values and equations that hold only
during initialization.

A Modelica class may also contain annotations, i.e. formal comments, which specify graphical represen-
tations of the class (icon and diagram), documentation text for the class, and version information.

1.3 Some Definitions

The semantic specification should be read together with the Modelica grammar. Non-normative text,
i.e., examples and comments, are enclosed in [...] and set in italics. Explanations of many terms can be
found using the document index in appendix D.14.5. Some important terms are defined below.

Definition 1.1. Component. An element defined by the production component-clause in the Mod-
elica grammar (basically a variable or an instance of a class) O

Definition 1.2. Element. Class definitions, extends-clauses and component-clauses declared in a class
(basically a class reference or a component in a declaration). O

Definition 1.3. Flattening. The translation of a model described in Modelica to the corresponding
model described as a hybrid DAE, involving expansion of inherited base classes, parameterization of base
classes, local classes and components, and generation of connection equations from connect-equations
(basically, mapping the hierarchical structure of a model into a set of differential, algebraic and discrete
equations together with the corresponding variable declarations and function definitions from the model).

O

1.4 Notation and Grammar

The meta symbols (of the extended BNF-grammar) are defined in appendix A.1.

Boldface denotes keywords of the Modelica language. Keywords are reserved words and shall not be used
as identifiers, with the exception of initial which is a keyword in section headings, and der which is a
keyword for declaration functions, but it is also possible to call the functions initial and der.

See appendix A for a full lexical specification and grammar.

Chapter 2

Lexical Structure

This chapter describes several of the basic building blocks of Modelica such as characters and lexical
units including identifiers and literals. Without question, the smallest building blocks in Modelica are
single characters belonging to a character set. Characters are combined to form lexical units, also called
tokens. These tokens are detected by the lexical analysis part of the Modelica translator. Examples of
tokens are literal constants, identifiers, and operators. Comments are not really lexical units since they
are eventually discarded. On the other hand, comments are detected by the lexical analyzer before being
thrown away.

The information presented here is derived from the more formal specification in appendix A.

2.1 Character Set

The character set of the Modelica language is Unicode, but restricted to the Unicode characters corre-
sponding to 7-bit ASCII characters in several places; for details see appendix A.1.

2.2 Comments

There are two kinds of comments in Modelica which are not lexical units in the language and therefore
are treated as white-space by a Modelica translator. The white-space characters are space, tabulator,
and line separators (carriage return and line feed); and white-space cannot occur inside tokens, e.g., <=
must be written as two characters without space or comments between them. The following comment
variants are available:

// comment & Characters from // to the end of the line are ignored.
/* comment %/ & Characters between /x and %/ are ignored, including line
terminators.

[The comment syntax is identical to that of C++.]

Modelica comments do not nest, i.e., /* */ cannot be embedded within /* */. The following is invalid:

/* Commented out — erroneous comment, invalid nesting of comments!
/* This is an interesting model x/
model interesting

end interesting;

:‘:/

There is also a description-string, that is part of the Modelica language and therefore not ignored by
the Modelica translator. Such a description-string may occur at the end of a declaration, equation, or
statement or at the beginning of a class definition. For example:

model TempResistor "Temperature dependent resistor"”

Modelica Language Specification 3.6-dev
Modelica 2.3. Identifiers, Names, and Keywords

Language

parameter Real R "Resistance for reference temp.";

end TempResistor;

2.3 Identifiers, Names, and Keywords

Identifiers are sequences of letters, digits, and other characters such as underscore, which are used for
naming various items in the language. Certain combinations of letters are keywords represented as
reserved words in the Modelica grammar and are therefore not available as identifiers.

2.3.1 Ildentifiers

Modelica identifiers, used for naming classes, variables, constants, and other items, are of two forms.
The first form always starts with a letter or underscore (‘ ’), followed by any number of letters, digits,
or underscores. Case is significant, i.e., the identifiers Inductor and inductor are different. The second
form (Q-IDENT) starts with a single quote, followed by a sequence of any printable ASCII character, where
single-quote must be preceded by backslash, and terminated by a single quote, e.g. *12H’, "13\’H’, ’
+foo’. Control characters in quoted identifiers have to use string escapes. The single quotes are part
of the identifier, i.e., "x’ and x are distinct identifiers. The redundant escapes (’\?’ and ’\"’) are the
same as the corresponding non-escaped variants (’?’ and ’"’), but are only for use in Modelica source
code. A full BNF definition of the Modelica syntax and lexical units is available in appendix A.

IDENT = NON-DIGIT { DIGIT | NON-DIGIT } | Q-IDENT

Q-IDENT = "’'" { Q-CHAR | S-ESCAPE } "’'"

NON-DIGIT = "_" | letters "a" ... "z" | letters "A" ... "Z"

DIGIT = "O" | ™1™ | "2"™ | ™3" | "4™ | "5" | "e"™ | "7" | "8" | "9"

Q-CHAR = NON-DIGIT | DIGIT | "™!"™ | "#" | "$" | "%" | "&" | "(¢" | ")y"
[L AT F) IR B2 A I B S B B
e e N e I A T e 2 D

S-ESCAPE = "\"" | "\"" | "\?2" | "\\"
["N\a" | "\b" | "N\£" | "\n" | "\r" | "\t" | "\v"

2.3.2 Names

A name is an identifier with a certain interpretation or meaning. For example, a name may denote
an Integer variable, a Real variable, a function, a type, etc. A name may have different meanings in
different parts of the code, i.e., different scopes. The interpretation of identifiers as names is described
in more detail in chapter 5. The meaning of package names is described in more detail in chapter 13.

[Ezample: A name: Ele.Resistor]

A component reference is an expression containing a sequence of identifiers and indices. A component
reference is equivalent to the referenced object, which must be a component. A component reference is
resolved (evaluated) in the scope of a class (section 4.4), or expression for the case of a local iterator
variable (section 10.6.9).

[Ezample: A component reference: Ele.Resistor.u[21].r]

2.3.3 Modelica Keywords

The following Modelica keywords are reserved words and shall not be used as identifiers, except as listed
in appendix A.1:

10

Modelica Language Specification 3.6-dev

nlod/;?m 2.4. Literal Constants
Anguass
algorithm discrete false loop pure
and each final model record
annotation else flow not redeclare
elseif for operator replaceable
block elsewhen function or return
break encapsulated if outer stream
class end import output then
connect enumeration impure package true
connector equation in parameter type
constant expandable initial partial when
constrainedby extends inner protected while
der external input public within

2.4 Literal Constants

Literals (or literal constants) are unnamed constants used to build expressions, and have different forms
depending on their type. Each of the predefined types in Modelica has a way of expressing unnamed
constants of the corresponding type, which is presented in the ensuing subsections. Additionally, array
literals and record literals can be expressed.

2.4.1 Floating Point Numbers

A floating point number is expressed as a decimal number in the form of a sequence of decimal digits
followed by a decimal point, followed by decimal digits, followed by an exponent indicated by E or e
followed by a sign and one or more decimal digits. The various parts can be omitted, see UNSIGNED-REAL
in appendix A.1 for details and also the examples below. The minimal recommended range is that
of IEEE double precision floating point numbers, for which the largest representable positive number
is 1.7976931348623157 x 103%® and the smallest positive number is 2.2250738585072014 x 10~3%%. For
example, the following are floating point number literal constants:

22.5, 3.141592653589793, 1.2E-35

The same floating point number can be represented by different literals. For example, all of the following
literals denote the same number:

13., 13E0, 1.3el, 0.13E2, .13E2

The last variant shows that that the leading zero is optional (in that case decimal digits must be present).
Note that 13 is not in this list, since it is not a floating point number, but can be converted to a floating
point number.

2.4.2 Integer Literals

Literals of type Integer are sequences of decimal digits, e.g. as in the integer numbers 33, 0, 100,
30030044. The range of supported Integer literals shall be at least large enough to represent the largest
positive IntegerType value, see section 4.8.2.

[Negative numbers are formed by unary minus followed by an integer literal.]

2.4.3 Boolean Literals

The two Boolean literal values are true and false.

2.4.4 Strings

String literals appear between double quotes as in "between". Any character in the Modelica language
character set (see appendix A.1 for allowed characters) apart from double quote (") and backslash (\
), including new-line, can be directly included in a string without using an escape sequence. Certain
characters in string literals can be represented using escape sequences, i.e., the character is preceded by
a backslash (\) within the string. Those characters are:

11

Modelica Language Specification 3.6-dev
Modelica 2.5. Operator Symbols

Language

Character Description

\’ Single quote, may also appear without backslash in string constants
\" Double quote

\? Question-mark, may also appear without backslash in string constants
\\ Backslash itself

\a Alert (bell, code 7, ctrl-G)

\b Backspace (code 8, ctrl-H)

\f Form feed (code 12, ctrl-L)

\n Newline (code 10, ctrl-J), same as literal newline

\r Carriage return (code 13, ctrl-M)

\t Horizontal tab (code 9, ctrl-I)

\v Vertical tab (code 11, ctrl-K)

For example, a string literal containing a tab, the words: This is, double quote, space, the word: between,
double quote, space, the word: us, and new-line, would appear as follows:

"\tThis is\" between\" us\n"

Concatenation of string literals in certain situations (see the Modelica grammar) is denoted by the +
operator in Modelica, e.g. "a" + "b" becomes "ab". This is useful for expressing long string literals that
need to be written on several lines.

The "\n" character is used to conceptually indicate the end of a line within a Modelica string. Any
Modelica program that needs to recognize line endings can check for a single "\n" character to do so on
any platform. It is the responsibility of a Modelica implementation to make any necessary transformations
to other representations when writing to or reading from a text file.

[For ezample, a "\n" is written and read as-is in a Uniz or Linuz implementation, but written as "\r\n"
pair, and converted back to "\n" when read in a Windows implementation.]

[For long string comments, e.g., the info annotation to store the documentation of a model, it would be
very inconvenient, if the string concatenation operator would have to be used for every line of documen-
tation. It is assumed that a Modelica tool supports the non-printable newline character when browsing
or editing a string literal. For example, the following statement defines one string that contains (non-
printable) newline characters:

assert(noEvent(length > s_small),
"The distance between the origin of frame_a and the origin of frame_b
of a LineForceWithMass component became smaller as parameter s_small
(= a small number, defined in the
\"Advanced\" menu). The distance is
set to s_small, although it is smaller, to avoid a division by zero
when computing the direction of the line force.",

level = Assertionlevel.warning);

2.5 Operator Symbols

The predefined operator symbols are formally defined on page 281 and summarized in the table of
operators in section 3.2.

12

Chapter 3

Operators and Expressions

The lexical units are combined to form even larger building blocks such as expressions according to the
rules given by the expression part of the Modelica grammar in appendix A. For example, they can be
built from operators, function references, components, or component references (referring to components)
and literals. Each expression has a type and a variability.

This chapter describes the evaluation rules for expressions, the concept of expression variability, built-in
mathematical operators and functions, and the built-in special Modelica operators with function syntax.

Expressions can contain variables and constants, which have types, predefined or user defined. The
predefined built-in types of Modelica are Real, Integer, Boolean, String, and enumeration types which
are presented in more detail in section 4.8.

3.1 Expressions

Modelica equations, assignments and declaration equations contain expressions.

Expressions can contain basic operations, +, -, *, /, A, etc. with normal precedence as defined in the
Table in section 3.2 and the grammar in appendix A. The semantics of the operations is defined for both
scalar and array arguments in section 10.6.

It is also possible to define functions and call them in a normal fashion. The function call syntax for both
positional and named arguments is described in section 12.4.1 and for vectorized calls in section 12.4.4.
The built-in array functions are given in section 10.1.1 and other built-in operators in section 3.7.

3.2 Operator Precedence and Associativity

Operator precedence determines the order of evaluation of operators in an expression. An operator with
higher precedence is evaluated before an operator with lower precedence in the same expression.

The following table presents all the expression operators in order of precedence.

13

Modelica Language Specification 3.6-dev
Modelica 3.3. Evaluation Order

Language

Table 3.1: Operators in order of precedence from highest to lowest, as derived from the Modelica
grammar in appendix A. All operators are binary except the postfix operators and those shown
as unary together with expr, the conditional operator, the array construction operator { } and
concatenation operator [], and the array range constructor which is either binary or ternary.
Operators with the same precedence occur at the same table row.

Operator group Operator syntax Ezxzamples
Postfix array index operator [] arr[index]
Postfix access operator . a.b
Postfix function call SfuncName (functionArguments) sin(4.36)
Array construction {expressions} {2, 3%
Horizontal concatenation [expressions] [5, 6]
Vertical concatenation [expressions; expressions...] [2, 3; 7, 8]
Exponentiation A 2 A3
Multiplicative * / 2 %3,2/3
Elementwise multiplicative KL/ [1, 2; 3, 4] .* [2, 3; 5, 6]
Additive + - 1+ 2
Additive unary +expr -expr -0.5
Array elementwise additive I [1, 2; 3, 4] .+ [2, 3; 5, 6]
Relational < <= >>= = <> a<ba<=ba>h,...
Unary negation not expr not bl
Logical and and bl and b2
Logical or or bl or b2
Array range expr . expr 1:5

erpr i expr : expr start : step : stop
Conditional if expr then expr else expr if b then 3 else x
Named argument ident = expr X = 2.26

The conditional operator may also include elseif-clauses. Equality = and assignment := are not expression
operators since they are allowed only in equations and in assignment statements respectively. All binary
expression operators are left associative, except exponentiation which is non-associative. The array range
operator is non-associative.

[The unary minus and plus in Modelica is slightly different than in Mathematica® and in MATLAB?,
since the following expressions are illegal (whereas in Mathematica and in MATLAB these are valid
expressions):

2%¥-2 /] = —4 in Mathematica/MATLAB; is illegal in Modelica
--2 // = 2 in Mathematica/MATLAB; is illegal in Modelica
++2 // = 2 in Mathematica/MATLAB; is illegal in Modelica
2--2 // = 4 in Mathematica/MATLAB; is illegal in Modelica

Non-associative exponentiation and array range operator:

xAyArz // Not legal , use parenthesis to make it clear
a:b:c:d:e:f:g // Not legal, and scalar arguments gives no legal interpretation.

3.3 Evaluation Order

A tool is free to solve equations, reorder expressions and to not evaluate expressions if their values
do not influence the result (e.g. short-circuit evaluation of Boolean expressions). If-statements and
if-expressions guarantee that their clauses are only evaluated if the appropriate condition is true, but
relational operators generating state or time events will during continuous integration have the value
from the most recent event.

! Mathematica is a registered trademark of Wolfram Research Inc.
2MATLAB is a registered trademark of MathWorks Inc.

14

Modelica Language Specification 3.6-dev
Modelica 3.4. Arithmetic Operators

Language

If a numeric operation overflows the result is undefined. For literals it is recommended to automatically
convert the number to another type with greater precision.

3.3.1 Example: Guarding Expressions Against Incorrect Evaluation

[Example: If one wants to guard an expression against incorrect evaluation, it should be guarded by an
if:

Boolean v[n];
Boolean b;
Integer I;
equation
b=(I>=1 and I<=n) and v[I]; // Invalid
b=if (I>=1 and I<=n) then v[I] else false; // Correct

To guard square against square root of negative number use noEvent:

der (h)=if h>0 then -c*sqrt(h) else 0; // Incorrect
der (h)=if noEvent(h>0) then -c*sqrt(h) else 0; // Correct

3.4 Arithmetic Operators

Modelica supports five binary arithmetic operators that operate on any numerical type:

Operator ‘ Description

A Exponentiation
* Multiplication
/ Division

+ Addition

- Subtraction

Some of these operators can also be applied to a combination of a scalar type and an array type, see
section 10.6.

The syntax of these operators is defined by the following rules from the Modelica grammar:

arithmetic-expression
[add-operator] term { add-operator term }

add-operator

+

term
factor { mul-operator factor }

mul-operator

o

factor
primary ["A" primary]

3.5 Equality, Relational, and Logical Operators

Modelica supports the standard set of relational and logical operators, all of which produce the standard
boolean values true or false:

15

Modelica Language Specification 3.6-dev
Modelica 3.6. Miscellaneous Operators and Variables

Language

Operator \ Description

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal to

== Equality within expressions
<> Inequality

A single equals sign = is never used in relational expressions, only in equations (chapter 8, section 10.6.1)
and in function calls using named parameter passing (section 12.4.1).

The following logical operators are defined:

Operator \ Description

not Logical negation (unary operator)
and Logical and (conjunction)
or Logical or (disjunction)

The grammar rules define the syntax of the relational and logical operators.

logical-expression
logical-term { or logical-term }

logical-term
logical-factor { and logical-factor }

logical-factor
[not] relation

relation
arithmetic-expression [relational-operator arithmetic-expression]

relational-operator
N R T B S RN

The following holds for relational operators:

e Relational operators <, <=,>, >=, ==, <>, are only defined for scalar operands of simple types. The
result is Boolean and is true or false if the relation is fulfilled or not, respectively.

e For operands of type String, strl op str2 is for each relational operator, op, defined in terms
of the C function strcmp as strcmp(strl, str2) op O.

e For operands of type Boolean, false < true.

e For operands of enumeration types, the order is given by the order of declaration of the enumeration
literals.

e In relations of the form vl == v2 or vl <> v2, vl or v2 shall, unless used in a function, not be
a subtype of Real.

[The reason for this rule is that relations with Real arguments are transformed to state events
(see Events, section 8.5) and this transformation becomes unnecessarily complicated for the ==
and <> relational operators (e.g. two crossing functions instead of one crossing function needed,
epsilon strategy needed even at event instants). Furthermore, testing on equality of Real variables
is questionable on machines where the number length in registers is different to number length in
main memory.]

e Relational operators can generate events, see section 3.8.3.

3.6 Miscellaneous Operators and Variables

Modelica also contains a few built-in operators which are not standard arithmetic, relational, or logical
operators. These are described below, including time, which is a built-in variable, not an operator.

16

Modelica Language Specification 3.6-dev
Modelica 3.6. Miscellaneous Operators and Variables

Language

3.6.1 String Concatenation
Concatenation of strings (see the Modelica grammar) is denoted by the + operator in Modelica.

[Example: "a" + "b" becomes "ab".]

3.6.2 Array Constructor Operator

The array constructor operator { ... } is described in section 10.4.

3.6.3 Array Concatenation Operator

The array concatenation operator [...] is described in section 10.4.2.

3.6.4 Array Range Operator

The array range constructor operator : is described in section 10.4.3.

3.6.5 If-Expressions

An expression

if expressionl then expression2 else expression3

is one example of if-expression. First expressionl, which must be Boolean expression, is evaluated. If
expressionl is true expression2 is evaluated and is the value of the if-expression, else expression3
is evaluated and is the value of the if-expression. The two expressions, expression2 and expression3,
must be type compatible expressions (section 6.7) giving the type of the if-expression. If-expressions
with elseif are defined by replacing elseif by else if. For short-circuit evaluation see section 3.3.

[elseif in expressions has been added to the Modelica language for symmetry with if-clauses.]

[Ezample:

Integer 1ij;
Integer sign_of_il=if i<0 then -1 elseif i==0 then 0 else 1;
Integer sign_of_i2=if i<0 then -1 else if i==0 then 0 else 1;

3.6.6 Member Access Operator
It is possible to access members of a class instance using dot notation, i.e., the . operator.

[Ezample: R1.R for accessing the resistance component R of resistor R1. Another use of dot notation:
local classes which are members of a class can of course also be accessed using dot notation on the name
of the class, not on instances of the class.]

3.6.7 Built-in Variable time

All declared variables are functions of the independent variable time. The variable time is a built-in
variable available in all models and blocks, which is treated as an input variable. It is implicitly defined
as:

input Real time (final quantity = "Time",
final unit = "s");

The value of the start attribute of time is set to the time instant at which the simulation is started.

[Ezample:

encapsulated model SineSource

import Modelica.Math.sin;

connector OutPort=output Real;

OutPort y=sin(time); // Uses the built—in variable time.
end SineSource;

17

Modelica Language Specification 3.6-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

3.7 Built-in Intrinsic Operators with Function Syntax

Certain built-in operators of Modelica have the same syntax as a function call. However, they do not
behave as a mathematical function, because the result depends not only on the input arguments but also
on the status of the simulation.

There are also built-in functions that depend only on the input argument, but also may trigger events
in addition to returning a value. Intrinsic means that they are defined at the Modelica language level,
not in the Modelica library. The following built-in intrinsic operators/functions are available:

e Mathematical functions and conversion functions, see section 3.7.1 below.

e Derivative and special purpose operators with function syntax, see section 3.7.4 below.
e Event-related operators with function syntax, see section 3.7.5 below.

e Array operators/functions, see section 10.1.1.

Note that when the specification references a function having the name of a built-in function it references
the built-in function, not a user-defined function having the same name, see also section 12.5. With
exception of the built-in String operator, all operators in this section can only be called with positional
arguments.

3.7.1 Numeric Functions and Conversion Functions

The mathematical functions and conversion operators are listed below do not generate events.

Ezxpression \ Description Details

abs (v) Absolute value (event-free) Function 3.1
sign(v) Sign of argument (event-free) Function 3.2
sqrt(v) Square root Function 3.3
Integer(e) Conversion from enumeration to Integer Operator 3.1
EnumTypeName (i) | Conversion from Integer to enumeration Operator 3.2
String(...) Conversion to String Operator 3.3

All of these except for the String conversion operator are vectorizable according to section 12.4.6.

Additional non-event generating mathematical functions are described in section 3.7.3, whereas the
event-triggering mathematical functions are described in section 3.7.2.

Function 3.1 abs
abs (v)

Expands into noEvent(if v >= 0 then v else -v). Argument v needs to be an Integer or
Real expression.

Function 3.2 sign
sign (v)

Expands into noEvent (if v > 0 then 1 else if v < 0 then -1 else 0). Argument v needs
to be an Integer or Real expression.

Function 3.3 sqrt
sqrt (v)

Square root of v if v > 0, otherwise an error occurs. Argument v needs to be an Integer or Real
expression.

Operator 3.1 Integer

Integer (e)

18

Modelica Language Specification 3.6-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

Ordinal number of the expression e of enumeration type that evaluates to the enumeration value
E.enumvalue, where Integer(E.el) = 1, Integer(E.en) = n, for an enumeration type E =
enumeration(el, ..., en). See also section 4.8.5.2.

Operator 3.2 <EnumTypeName>
EnumTypeName (2)

For any enumeration type EnumTypeName, returns the enumeration value EnumTypeName.e such
that Integer (EnumTypeName.e) = i. Refer to the definition of Integer above.

It is an error to attempt to convert values of 7 that do not correspond to values of the enumeration
type. See also section 4.8.5.3.

Operator 3.3 String
String (b, <options>)
String (¢, <options>)
String(r, significantDigits=d, <options>)
String(r, format=s)
String (e, <options>)

Convert a scalar non-String expression to a String representation. The first argument may be
a Boolean b, an Integer 4, a Real r or an enumeration value e (section 4.8.5.2). The other
arguments must use named arguments. For Real expressions the output shall be according to the
Modelica grammar.

The optional <options> are:

e Integer minimumLength = 0: Minimum length of the resulting string. If necessary, the
blank character is used to fill up unused space.

e Boolean leftJustified = true: If true, the converted result is left justified in the string;
if false it is right justified in the string.

e Integer significantDigits = 6: Number of significant digits in the result string.

[Ezamples of Real walues formatted with 6 significant digits: 12.3456, 0.0123456, 12345600,
1.23456E-10.]

The format string corresponding to <options> is:

e For Real:
(if leftJustified then "-" else "") + String(minimumLength)
+ "." + String(signficantDigits) + "g"

e For Integer:
(if leftJustified then "-" else "") + String(minimumLength) + "d"

Form of the format string: According to ANSI-C the format string specifies one conversion
specifier (excluding the leading %), shall not contain length modifiers, and shall not use ‘*’ for
width and/or precision. For all numeric values the format specifiers ‘£’, ‘e’, ‘E’, ‘g’, ‘G’ are allowed.
For integral values it is also allowed to use the ‘d’, ‘1’, ‘0’, ‘x’, ‘X’, ‘u’, and ‘c’ format specifiers (for
non-integral values a tool may round, truncate or use a different format if the integer conversion

characters are used).

The ‘x’/‘X’ formats (hexa-decimal) and c (character) for Integer values give results that do not
agree with the Modelica grammar.

3.7.2 Event Triggering Mathematical Functions

The operators listed below trigger events if used outside of a when-clause and outside of a clocked
discrete-time partition (see section 16.8.1).

19

Modelica Language Specification 3.6-dev

Modelica 3.7. Built-in Intrinsic Operators with Function Syntax
Language

Ezxpression \ Description Details

div(z,) Division with truncation toward zero Operator 3.4

mod(x, ¥) Integer modulus Operator 3.5

rem(z,) Integer remainder Operator 3.6

ceil(x) Smallest integer Real not less than z Operator 3.7

floor(x) Largest integer Real not greater than = Operator 3.8

integer(x) | Largest Integer not greater than x Operator 3.9

These expression for div, ceil, floor, and integer are event generating expression. The event gen-
erating expression for mod(x,y) is floor(x/y), and for rem(x,y) it is div(x,y) — i.e. events are not
generated when mod or rem changes continuously in an interval, but when they change discontinuously
from one interval to the next.

[If this is not desired, the noEvent operator can be applied to them. E.g. noEvent (integer(v)).]
Operator 3.4 div
div(x, y)
Algebraic quotient /y with any fractional part discarded (also known as truncation toward zero).

[This is defined for / in C99; in C89 the result for negative numbers is implementation-defined,
so the standard function div must be used.]

Result and arguments shall have type Real or Integer. If either of the arguments is Real the
result is Real otherwise Integer.

Operator 3.5 mod
mod (x, y)

Integer modulus of z/y, i.e. mod(z, y) = x - floor(z / y) * y. Result and arguments shall
have type Real or Integer. If either of the arguments is Real the result is Real otherwise
Integer.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously. Examples: mod(3, 1.4) = 0.2, mod(-3, 1.4) = 1.2, mod(3, -1.4) = -1.2/]

Operator 3.6 rem
rem(x, ¥y)

Integer remainder of x/y, such that div(x, y) * y + rem(z, y) = z. Result and arguments
shall have type Real or Integer. If either of the arguments is Real the result is Real otherwise
Integer.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously. Examples: rem(3, 1.4) = 0.2, rem(-3, 1.4) = -0.2/]

Operator 3.7 ceil
ceil (x)
Smallest integer not less than x. Result and argument shall have type Real.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously.]

Operator 3.8 floor
floor (z)
Largest integer not greater than z. Result and argument shall have type Real.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously.]

Operator 3.9 integer

integer (x)

20

Modelica Language Specification 3.6-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Largest integer not greater than x. The argument shall have type Real. The result has type
Integer.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously.]

3.7.3 Elementary Mathematical Functions

The functions listed below are elementary mathematical functions. Tools are expected to utilize well
known properties of these functions (derivatives, inverses, etc) for symbolic processing of expressions and
equations.

FExpression \ Description Details
sin(x) Sine

cos(x) Cosine

tan(x) Tangent (z shall not be: ..., -7/2, /2, 37/2, ...)

asin(x) Inverse sine (—1 <z < 1)

acos(x) Inverse cosine (—1 <z < 1)

atan(z) Inverse tangent

atan2(y, x) Principal value of the arc tangent of y/x Function 3.4
sinh(z) Hyperbolic sine

cosh(z) Hyperbolic cosine

tanh(z) Hyperbolic tangent

exp(x) Exponential, base e

log(x) Natural (base €) logarithm (z > 0)

logl10(x) Base 10 logarithm (x > 0)

These functions are the only ones that can also be called using the deprecated "builtin" external
language, see section 12.9.

[End user oriented information about the elementary mathematical functions can be found for the corre-
sponding functions in the Modelica.Math package.]

Function 3.4 atan2
atan2 (y, x)
Principal value of the arc tangent of y/z, using the signs of the two arguments to determine the

quadrant of the result. The result ¢ is in the interval [—=, 7] and satisfies:

(2, y)| cos(p) ==
|(z, y)| sin(p) =y

3.7.4 Derivative and Special Purpose Operators with Function Syntax

The operators listed below include the derivative operator and special purpose operators with function
syntax.

FExpression \ Description Details

der Cexpr) Time derivative Operator 3.10
delay(Cezpr, ...) Time delay Operator 3.11
cardinality(c) Number of occurrences in connect-equations Operator 3.12
homotopy Cactual, simplified) | Homotpy initialization Operator 3.13
semilinear(z, k*, k) Sign-dependent slope Operator 3.14
inStream(v) Stream variable flow into component Operator 3.15
actualStream(v) Actual value of stream variable Operator 3.16
spatialDistribution(...) Variable-speed transport Operator 3.17
getInstanceName () Name of instance at call site Operator 3.18

The special purpose operators with function syntax where the call below uses named arguments can be
called with named arguments (with the specified names), or with positional arguments (the inputs of the
functions are in the order given in the calls below).

21

Modelica Language Specification 3.6-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

Operator 3.10 der
der Cexpr)

The time derivative of ezpr. If the expression expr is a scalar it needs to be a subtype of Real.
The expression and all its time-varying subexpressions must be continuous and semi-differentiable.
If expr is an array, the operator is applied to all elements of the array. For non-scalar arguments
the function is vectorized according to section 10.6.12.

[For Real parameters and constants the result is a zero scalar or array of the same size as the
variable.]

Operator 3.11 delay

delay Cexpr, delayTime, delayMax)
delay Cexpr, delayTime)

Evaluates to expr(time - delayTime) for time > time.start + delayTime and expr(time.
start) for time < time.start+delayTime. The arguments, i.e., expr, delayTime and delayMazx,
need to be subtypes of Real. delayMaz needs to be additionally a parameter expression. The
following relation shall hold: 0 < delayTime < delayMaz, otherwise an error occurs. If delayMaz
is not supplied in the argument list, delayTime needs to be a parameter expression. For non-
scalar arguments the function is vectorized according to section 10.6.12. For further details, see
section 3.7.4.1.

Operator 3.12 cardinality
cardinality (c)

[This is a deprecated operator. It should no longer be used, since it will be removed in one of the
next Modelica releases.]

Returns the number of (inside and outside) occurrences of connector instance ¢ in a connect-
equation as an Integer number. For further details, see section 3.7.4.3.

Operator 3.13 homotopy
homotopy (actual=actual, simplified=simplified)

The scalar expressions actual and simplified are subtypes of Real. A Modelica translator should
map this operator into either of the two forms:

1. Returns actual (trivial implementation).

2. In order to solve algebraic systems of equations, the operator might during the solution
process return a combination of the two arguments, ending at actual.

|Example: actual - X + simplified - (1 — \), where X is a homotopy parameter going from 0 to
1]

The solution must fulfill the equations for homotopy returning actual.

For non-scalar arguments the function is vectorized according to section 12.4.6. For further details,
see section 3.7.4.4.

Operator 3.14 semilinear
semilinear (x, kt, k)

Returns: smooth(0, if z >= 0 then kT * z else k= * z). The result is of type Real. For
non-scalar arguments the function is vectorized according to section 10.6.12. For further details,
see section 3.7.4.5 (especially in the case when z = 0).

Operator 3.15 inStream
inStream(v)

inStream(w) is only allowed for stream variables v defined in stream connectors, and is the value
of the stream variable v close to the connection point assuming that the flow is from the connection
point into the component. This value is computed from the stream connection equations of the

22

Modelica Language Specification 3.6-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

flow variables and of the stream variables. The operator is vectorizable. For further details, see
section 15.2.

Operator 3.16 actualStream
actualStream(v)

actualStream(v) returns the actual value of the stream variable v for any flow direction. The
operator is vectorizable. For further details, see section 15.3.

Operator 3.17 spatialDistribution

spatialDistribution(
in0O=imn0, inl=inl, x=x,
positiveVelocity=...,
initialPoints=...,
initialValues=...)

spatialDistribution allows approximation of variable-speed transport of properties. For further
details, see section 3.7.4.2.

Operator 3.18 getInstanceName
getInstanceName ()

Returns a string with the name of the model /block that is simulated, appended with the fully qual-
ified name of the instance in which this function is called. For further details, see section 3.7.4.6.

A few of these operators are described in more detail in the following.

3.7.4.1 delay

[delay allows a numerical sound implementation by interpolating in the (internal) integrator polynomi-
als, as well as a more simple realization by interpolating linearly in o buffer containing past values of
expression expr. Without further information, the complete time history of the delayed signals needs to
be stored, because the delay time may change during simulation. To avoid excessive storage requirements
and to enhance efficiency, the mazimum allowed delay time has to be given via delayMaz.

This gives an upper bound on the values of the delayed signals which have to be stored. For real-time
simulation where fized step size integrators are used, this information is sufficient to allocate the necessary
storage for the internal buffer before the simulation starts. For variable step size integrators, the buffer
size is dynamic during integration. In principle, delay could break algebraic loops. For simplicity, this
is not supported because the minimum delay time has to be give as additional argument to be fized at
compile time. Furthermore, the mazimum step size of the integrator is limited by this minimum delay
time in order to avoid extrapolation in the delay buffer.]

3.7.4.2 spatialDistribution

[Many applications involve the modelling of variable-speed transport of properties. One option to model
this infinite-dimensional system is to approximate it by an ODE, but this requires a large number of
state variables and might introduce either numerical diffusion or numerical oscillations. Another option
is to use a built-in operator that keeps track of the spatial distribution of z(xz,t), by suitable sampling,
interpolation, and shifting of the stored distribution. In this case, the internal state of the operator is
hidden from the ODE solver.]

spatialDistribution allows the infinite-dimensional problem b