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Abstract

This document defines the Modelica® language, version 3.5 (RC1), which is developed by the Modelica
Association, a non-profit organization with seat in Linkoping, Sweden. Modelica is a freely available,
object-oriented language for modeling of large, complex, and heterogeneous systems. It is suited for
multi-domain modeling, for example, mechatronic models in robotics, automotive and aerospace appli-
cations involving mechanical, electrical, hydraulic control and state machine subsystems, process oriented
applications and generation and distribution of electric power. Models in Modelica are mathematically
described by differential, algebraic and discrete equations. No particular variable needs to be solved
for manually. A Modelica tool will have enough information to decide that automatically. Model-
ica is designed such that available, specialized algorithms can be utilized to enable efficient handling
of large models having more than one hundred thousand equations. Modelica is suited and used for
hardware-in-the-loop simulations and for embedded control systems. More information is available at
https://www.modelica.org.

1 Modelica is a registered trademark of the Modelica Association.
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Preface

Modelica is a freely available, object-oriented language for modeling of large, complex, and heterogeneous
physical systems. From a user’s point of view, models are described by schematics, also called object
diagrams. Examples are shown below:
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A schematic consists of connected components, like a resistor, or a hydraulic cylinder. A component has
connectors (often also called ports) that describe the interaction possibilities, e.g., an electrical pin, a
mechanical flange, or an input signal. By drawing connection lines between connectors a physical system
or block diagram model is constructed. Internally a component is defined by another schematic, or on
“bottom” level, by an equation-based description of the model in Modelica syntax.

The Modelica language is a textual description to define all parts of a model and to structure model
components in libraries, called packages. An appropriate Modelica simulation environment is needed to
graphically edit and browse a Modelica model (by interpreting the information defining a Modelica model)
and to perform model simulations and other analysis. Information about such environments is available at
www.modelica.org/tools. Basically, all Modelica language elements are mapped to differential, algebraic
and discrete equations. There are no language elements to describe directly partial differential equations,
although some types of discretized partial differential equations can be reasonably defined, e.g., based on
the finite volume method and there are Modelica libraries to import results of finite-element programs.

This document defines the details of the Modelica language. It is not intended to learn the Model-
ica language with this text. There are better alternatives, such as the Modelica books referenced at
www.modelica.org/publications. This specification is used by computer scientist to implement a Mod-
elica translator and by modelers who want to understand the exact details of a particular language
element.


https://www.modelica.org/tools
https://www.modelica.org/publications
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The text directly under the chapter headings are non-normative introductions to the chapters.

The Modelica language has been developed since 1996. This document describes version 3.5 of the
Modelica language. A complete summary is available in appendix D.1.



Chapter 1

Introduction

1.1 Overview of Modelica

Modelica is a language for modeling of physical systems, designed to support effective library development
and model exchange. It is a modern language built on acausal modeling with mathematical equations
and object-oriented constructs to facilitate reuse of modeling knowledge.

1.2 Scope of the Specification

The semantics of the Modelica language is specified by means of a set of rules for translating any class
described in the Modelica language to a flat Modelica structure.

A class (of specialized class model, class or block) intended to be simulated on its own is called a
simulation model.

The flat Modelica structure is also defined for other cases than simulation models; including functions
(can be used to provide algorithmic contents), packages (used as a structuring mechanism), and partial
models (used as base-models). This allows correctness to be verified for those classes, before using them
to build the simulation model.

There are specific semantic restrictions for a simulation model to ensure that the model is complete; they
allow its flat Modelica structure to be further transformed into a set of differential, algebraic and discrete
equations (= flat hybrid DAE). Note that satisfying the semantic restrictions does not guarantee that
the model can be initialized from the initial conditions and simulated.

Modelica was designed to facilitate symbolic transformations of models, especially by mapping basically
every Modelica language construct to continuous or instantaneous equations in the flat Modelica struc-
ture. Many Modelica models, especially in the associated Modelica Standard Library, are higher index
systems, and can only be reasonably simulated if symbolic index reduction is performed, i.e., equations
are differentiated and appropriate variables are selected as states, so that the resulting system of equa-
tions can be transformed to state space form (at least locally numerically), i.e., a hybrid DAE of index
zero. In order to allow this structural analysis, a tool may reject simulating a model if parameters cannot
be evaluated during translation — due to calls of external functions or initial equations/initial algorithms
for fixed=false parameters. Accepting such models is a quality of implementation issue. The Modelica
specification does not define how to simulate a model. However, it defines a set of equations that the
simulation result should satisfy as well as possible.

The key issues of the translation (or flattening) are:
e Expansion of inherited base classes
e Parameterization of base classes, local classes and components
e Generation of connection equations from connect-equations

The flat hybrid DAE form consists of:
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Declarations of variables with the appropriate basic types, prefixes and attributes, such as parameter
Real v=5.

e Equations from equation sections.

e Function invocations where an invocation is treated as a set of equations which involves all input
and all result variables (number of equations = number of basic result variables).

e Algorithm sections where every section is treated as a set of equations which involves the variables
occurring in the algorithm section (number of equations = number of different assigned variables).

e When-clauses where every when-clause is treated as a set of conditionally evaluated equations, also
called instantaneous equations, which are functions of the variables occurring in the clause (number
of equations = number of different assigned variables).

Therefore, a flat hybrid DAE is seen as a set of equations where some of the equations are only condition-
ally evaluated (e.g. instantaneous equations are only evaluated when the corresponding when-condition
becomes true). Initial setup of the model is specified using start-values and instantaneous equations that
hold at the initial time only.

A Modelica class may also contain annotations, i.e. formal comments, which specify graphical represen-
tations of the class (icon and diagram), documentation text for the class, and version information.

1.3 Some Definitions

The semantic specification should be read together with the Modelica grammar. Non-normative text,
i.e., examples and comments, are enclosed in [...] and set in italics. Explanations of many terms can be
found using the document index in appendix D.14.5. Some important terms are defined below.

Definition 1.1. Component. An element defined by the production component-clause in the Mod-
elica grammar (basically a variable or an instance of a class) O

Definition 1.2. Element. Class definitions, extends-clauses and component-clauses declared in a class
(basically a class reference or a component in a declaration). O

Definition 1.3. Flattening. The translation of a model described in Modelica to the corresponding
model described as a hybrid DAE, involving expansion of inherited base classes, parameterization of base
classes, local classes and components, and generation of connection equations from connect-equations
(basically, mapping the hierarchical structure of a model into a set of differential, algebraic and discrete
equations together with the corresponding variable declarations and function definitions from the model).

O

1.4 Notation and Grammar

The meta symbols (of the extended BNF-grammar) are defined in appendix A.1.

Boldface denotes keywords of the Modelica language. Keywords are reserved words and shall not be used
as identifiers, with the exception of initial which is a keyword in section headings, and der which is a
keyword for declaration functions, but it is also possible to call the functions initial and der.

See appendix A for a full lexical specification and grammar.



Chapter 2

Lexical Structure

This chapter describes several of the basic building blocks of Modelica such as characters and lexical
units including identifiers and literals. Without question, the smallest building blocks in Modelica are
single characters belonging to a character set. Characters are combined to form lexical units, also called
tokens. These tokens are detected by the lexical analysis part of the Modelica translator. Examples of
tokens are literal constants, identifiers, and operators. Comments are not really lexical units since they
are eventually discarded. On the other hand, comments are detected by the lexical analyzer before being
thrown away.

The information presented here is derived from the more formal specification in appendix A.

2.1 Character Set

The character set of the Modelica language is Unicode, but restricted to the Unicode characters corre-
sponding to 7-bit ASCII characters in several places; for details see appendix A.1.

2.2 Comments

There are two kinds of comments in Modelica which are not lexical units in the language and therefore
are treated as white-space by a Modelica translator. The white-space characters are space, tabulator,
and line separators (carriage return and line feed); and white-space cannot occur inside tokens, e.g., <=
must be written as two characters without space or comments between them. The following comment
variants are available:

// comment & Characters from // to the end of the line are ignored.
/* comment %/ & Characters between /+ and %/ are ignored, including line
terminators.

[The comment syntaz is identical to that of C++.]

Modelica comments do not nest, i.e., /* */ cannot be embedded within /* */. The following is invalid:

/* Commented out — erroneous comment, invalid nesting of comments!
/* This is an interesting model x/
model interesting

end interesting;

*/

There is also a description-string, that is part of the Modelica language and therefore not ignored by
the Modelica translator. Such a description-string may occur at the end of a declaration, equation, or
statement or at the beginning of a class definition. For example:

model TempResistor "Temperature dependent resistor"
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parameter Real R "Resistance for reference temp.";

end TempResistor;

2.3 Identifiers, Names, and Keywords

Identifiers are sequences of letters, digits, and other characters such as underscore, which are used for
naming various items in the language. Certain combinations of letters are keywords represented as
reserved words in the Modelica grammar and are therefore not available as identifiers.

2.3.1 Identifiers

Modelica identifiers, used for naming classes, variables, constants, and other items, are of two forms.
The first form always starts with a letter or underscore (‘_’), followed by any number of letters, digits,
or underscores. Case is significant, i.e., the identifiers Inductor and inductor are different. The second
form (Q-IDENT) starts with a single quote, followed by a sequence of any printable ASCII character,
where single-quote must be preceded by backslash, and terminated by a single quote, e.g. >12H?, > 13\’
H’, *+foo’. Control characters in quoted identifiers have to use string escapes. The single quotes are
part of the identifier, i.e., ’x’ and x are distinct identifiers. The redundant escapes (’\?’ and ’\"?)
are the same as the corresponding non-escaped variants (’?? and ’>"?), but are only for use in Modelica
source code. A full BNF definition of the Modelica syntax and lexical units is available in appendix A.

IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT

Q-IDENT = ">" { Q-CHAR | S-ESCAPE } "’"

NONDIGIT = "_" | letters "a" ... "z" | letters "A" ... "Z"

DIGIT =0l 121311415161 71]381]29

Q_CHAR = NONDIGIT | DIGIT I nwyn | ngn | ||$n | n%u I u&u | ||(|| | u)u | Ny n |
nyn I " s n | n_nmn | non I u/u I nw.n | n ; " | ngn | nyn I n=mn I non | "Q" | " [Il
I u] [ | nan | n{n | n}n | " | " | n~n I non | nwun

S_ESCAPE = n\;u | u\u n | ||\?|| | u\\n I ||\a|| | u\bu | n\fu | "\Il" I n\rn | "\t"
I II\VII

2.3.2 Names

A name is an identifier with a certain interpretation or meaning. For example, a name may denote
an Integer variable, a Real variable, a function, a type, etc. A name may have different meanings in
different parts of the code, i.e., different scopes. The interpretation of identifiers as names is described
in more detail in chapter 5. The meaning of package names is described in more detail in chapter 13.

[Example: A name: Ele.Resistor]

A component reference is an expression containing a sequence of identifiers and indices. A component
reference is equivalent to the referenced object, which must be a component. A component reference is
resolved (evaluated) in the scope of a class (section 4.4), or expression for the case of a local iterator
variable (section 10.6.9).

[Example: A component reference: Ele.Resistor.ul[21].1]

2.3.3 Modelica Keywords

The following Modelica keywords are reserved words and shall not be used as identifiers, except as listed
in appendix A.1:

10
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algorithm discrete false loop pure

and each final model record
annotation else flow not redeclare

elseif for operator replaceable

block elsewhen function or return
break encapsulated if outer stream
class end import output then
connect enumeration impure package true
connector equation in parameter type
constant expandable initial partial when
constrainedby extends inner protected while

der external input public within

2.4 Literal Constants

Literals (or literal constants) are unnamed constants used to build expressions, and have different forms
depending on their type. Each of the predefined types in Modelica has a way of expressing unnamed
constants of the corresponding type, which is presented in the ensuing subsections. Additionally, array
literals and record literals can be expressed.

2.4.1 Floating Point Numbers

A floating point number is expressed as a decimal number in the form of a sequence of decimal digits
followed by a decimal point, followed by decimal digits, followed by an exponent indicated by E or e
followed by a sign and one or more decimal digits. The various parts can be omitted, see UNSIGNED-REAL
in appendix A.1 for details and also the examples below. The minimal recommended range is that
of IEEE double precision floating point numbers, for which the largest representable positive number
is 1.7976931348623157 x 103%® and the smallest positive number is 2.2250738585072014 x 1073%%. For
example, the following are floating point number literal constants:

22.5, 3.141592653589793, 1.2E-35

The same floating point number can be represented by different literals. For example, all of the following
literals denote the same number:

13., 13E0, 1.3e1, 0.13E2, .13E2

The last variant shows that that the leading zero is optional (in that case decimal digits must be present).
Note that 13 is not in this list, since it is not a floating point number, but can be converted to a floating
point number.

2.4.2 Integer Literals

Literals of type Integer are sequences of decimal digits, e.g. as in the integer numbers 33, 0, 100,
30030044. The range of supported Integer literals shall be at least large enough to represent the largest
positive IntegerType value, see section 4.8.2.

[Negative numbers are formed by unary minus followed by an integer literal.]

2.4.3 Boolean Literals

The two Boolean literal values are true and false.

2.4.4 Strings

String literals appear between double quotes as in "between". Any character in the Modelica language
character set (see appendix A.1l for allowed characters) apart from double quote (") and backslash (\
), including new-line, can be directly included in a string without using an escape sequence. Certain
characters in string literals can be represented using escape sequences, i.e., the character is preceded by
a backslash (\) within the string. Those characters are:

11
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Character  Description

\’ Single quote, may also appear without backslash in string constants
\" Double quote

\7 Question-mark, may also appear without backslash in string constants
\\ Backslash itself

\a Alert (bell, code 7, ctrl-G)

\b Backspace (code 8, ctrl-H)

\f Form feed (code 12, ctrl-L)

\n Newline (code 10, ctrl-J), same as literal newline

\r Carriage return (code 13, ctrl-M)

\t Horizontal tab (code 9, ctrl-I)

\v Vertical tab (code 11, ctrl-K)

For example, a string literal containing a tab, the words: This ¢s, double quote, space, the word: between,
double quote, space, the word: us, and new-line, would appear as follows:

"\tThis is\" between\" us\n"

Concatenation of string literals in certain situations (see the Modelica grammar) is denoted by the +
operator in Modelica, e.g. "a" + "b" becomes "ab". This is useful for expressing long string literals that
need to be written on several lines.

The "\n" character is used to conceptually indicate the end of a line within a Modelica string. Any
Modelica program that needs to recognize line endings can check for a single "\n" character to do so on
any platform. It is the responsibility of a Modelica implementation to make any necessary transformations
to other representations when writing to or reading from a text file.

[For example, a "\n" is written and read as-is in a Uniz or Linuz implementation, but written as "\r\n"
pair, and converted back to "\n" when read in a Windows implementation.]

[For long string comments, e.g., the info annotation to store the documentation of a model, it would be
very inconvenient, if the string concatenation operator would have to be used for every line of documen-
tation. It is assumed that a Modelica tool supports the non-printable newline character when browsing
or editing a string literal. For example, the following statement defines one string that contains (non-
printable) newline characters:

assert (noEvent (length > s_small),
"The distance between the origin of frame_a and the origin of frame_b
of a LineForceWithMass component became smaller as parameter s_small
(= a small number, defined in the
\"Advanced\" menu). The distance is
set to s_small, although it is smaller, to avoid a division by =zero
when computing the direction of the line force.",

level = Assertionlevel.warning);

2.5 Operator Symbols

The predefined operator symbols are formally defined on page 280 and summarized in the table of
operators in section 3.2.

12
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Operators and Expressions

The lexical units are combined to form even larger building blocks such as expressions according to the
rules given by the expression part of the Modelica grammar in appendix A. For example, they can be
built from operators, function references, components, or component references (referring to components)
and literals. Each expression has a type and a variability.

This chapter describes the evaluation rules for expressions, the concept of expression variability, built-in
mathematical operators and functions, and the built-in special Modelica operators with function syntax.

Expressions can contain variables and constants, which have types, predefined or user defined. The
predefined built-in types of Modelica are Real, Integer, Boolean, String, and enumeration types
which are presented in more detail in section 4.8.

3.1 Expressions

Modelica equations, assignments and declaration equations contain expressions.

Expressions can contain basic operations, +, -, *, /, =, etc. with normal precedence as defined in the
Table in section 3.2 and the grammar in appendix A. The semantics of the operations is defined for both
scalar and array arguments in section 10.6.

It is also possible to define functions and call them in a normal fashion. The function call syntax for both
positional and named arguments is described in section 12.4.1 and for vectorized calls in section 12.4.4.
The built-in array functions are given in section 10.1.1 and other built-in operators in section 3.7.

3.2 Operator Precedence and Associativity

Operator precedence determines the order of evaluation of operators in an expression. An operator with
higher precedence is evaluated before an operator with lower precedence in the same expression.

The following table presents all the expression operators in order of precedence.
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Table 3.1: Operators in order of precedence from highest to lowest, as derived from the Modelica
grammar in appendix A. All operators are binary except the postfix operators and those shown
as unary together with expr, the conditional operator, the array construction operator { } and
concatenation operator [ 1, and the array range constructor which is either binary or ternary.
Operators with the same precedence occur at the same table row.

Operator group Operator syntax Ezamples
Postfix array index operator [] arr [index]
Postfix access operator . a.b
Postfix function call funcName (functionArguments) sin(4.36)
Array construction {expressions} {2, 3}
Horizontal concatenation [expressions] [5, 6]
Vertical concatenation [expressions; expressions...] [2, 3; 7, 8]
Exponentiation - 2~ 3
Multiplicative * / 2% 3,2/ 3
Elementwise multiplicative kL / [1, 2; 3, 4] .x [2, 3; 5, 6]
Additive + - 1+ 2
Additive unary +expr —erpr -0.5
Array elementwise additive A+o- [1, 2; 3, 4] .+ [2, 3; 5, 6]
Relational < <= >>= == < a<b,a<=ba>hb,...
Unary negation not expr not b1l
Logical and and bl and b2
Logical or or bl or b2
Array range expr : expr 1:5

erpr . erpr . erpr start : step : stop
Conditional if expr then expr else expr if b then 3 else x
Named argument ident = expr x = 2.26

The conditional operator may also include elseif-clauses. Equality = and assignment := are not expression
operators since they are allowed only in equations and in assignment statements respectively. All binary
expression operators are left associative, except exponentiation which is non-associative. The array range
operator is non-associative.

[The unary minus and plus in Modelica is slightly different than in Mathematica' and in MATLAB?,
since the following expressions are illegal (whereas in Mathematica and in MATLAB these are valid
expressions):

2x-2 // = —4 in Mathematica/MATLAB; is illegal in Modelica
--2 // = 2 in Mathematica/MATLAB; is illegal in Modelica
++2 // = 2 in Mathematica/MATLAB; is illegal in Modelica
2--2 // = 4 in Mathematica/MATLAB; is illegal in Modelica

Non-associative exponentiation and array range operator:

“yoz // Not legal, use parenthesis to make it clear
:b:c:d:e:f:g // Not legal, and scalar arguments gives no legal interpretation.

3.3 Evaluation Order

A tool is free to solve equations, reorder expressions and to not evaluate expressions if their values
do not influence the result (e.g. short-circuit evaluation of Boolean expressions). If-statements and
if-expressions guarantee that their clauses are only evaluated if the appropriate condition is true, but
relational operators generating state or time events will during continuous integration have the value
from the most recent event.

! Mathematica is a registered trademark of Wolfram Research Inc.
2MATLAB is a registered trademark of MathWorks Inc.
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If a numeric operation overflows the result is undefined. For literals it is recommended to automatically
convert the number to another type with greater precision.

3.3.1 Example: Guarding Expressions Against Incorrect Evaluation

E:mmple: If one wants to guard an ETPT esston against incorrect evaluation, it should be guarded by an
if:

Boolean v[n];
Boolean b;
Integer I;
equation
b=(I>=1 and I<=n) and vI[I]; // Invalid
b=if (I>=1 and I<=n) then v[I] else false; // Correct

To guard square against square root of negative number use noEvent:

der (h)=if h>0 then -c*sqrt(h) else 0; // Incorrect
der (h)=if noEvent (h>0) then -cxsqrt(h) else 0; // Correct

3.4 Arithmetic Operators

Modelica supports five binary arithmetic operators that operate on any numerical type:

Operator \ Description

Exponentiation
Multiplication
Division
Addition

- Subtraction

+ N %

Some of these operators can also be applied to a combination of a scalar type and an array type, see
section 10.6.

The syntax of these operators is defined by the following rules from the Modelica grammar:

arithmetic-expression
[ add-operator ] term { add-operator term }

add-operator
II+I| | n_n

term
factor { mul-operator factor }

mul-operator
Il*l! | II/II

factor
primary [ """ primary ]

3.5 Equality, Relational, and Logical Operators

Modelica supports the standard set of relational and logical operators, all of which produce the standard
boolean values true or false:

15



Modelica Language Specification 3.5 (RC1)
Modelica 3.6. Miscellaneous Operators and Variables

Operator ‘ Description

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal to

== Equality within expressions
<> Inequality

A single equals sign = is never used in relational expressions, only in equations (chapter 8, section 10.6.1)
and in function calls using named parameter passing (section 12.4.1).

The following logical operators are defined:

Operator ‘ Description

not Logical negation (unary operator)
and Logical and (conjunction)
or Logical or (disjunction)

The grammar rules define the syntax of the relational and logical operators.

logical-expression
logical-term { or logical-term }

logical-term
logical-factor { and logical-factor 1}

logical-factor
[ not 1 relation

relation
arithmetic-expression [ relational-operator arithmetic-expression ]

relational-operator
ngn | ng=n | nyn | ny=n | N==n I ng>n

The following holds for relational operators:

e Relational operators <, <=,>, >= ==, <>, are only defined for scalar operands of simple types. The
result is Boolean and is true or false if the relation is fulfilled or not, respectively.

e For operands of type String, strl op str2 is for each relational operator, op, defined in terms
of the C function strcmp as strcmp(strl, str2) op O.

e For operands of type Boolean, false < true.

e For operands of enumeration types, the order is given by the order of declaration of the enumeration
literals.

e In relations of the form vl == v2 or vl <> v2, vl or v2 shall, unless used in a function, not be
a subtype of Real.

[The reason for this rule is that relations with Real arguments are transformed to state events
(see Events, section 8.5) and this transformation becomes unnecessarily complicated for the ==
and <> relational operators (e.g. two crossing functions instead of one crossing function needed,
epsilon strategy needed even at event instants). Furthermore, testing on equality of Real variables
is questionable on machines where the number length in registers is different to number length in
main memory.]

e Relational operators can generate events, see section 3.8.3.

3.6 Miscellaneous Operators and Variables

Modelica also contains a few built-in operators which are not standard arithmetic, relational, or logical
operators. These are described below, including time, which is a built-in variable, not an operator.
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3.6.1 String Concatenation
Concatenation of strings (see the Modelica grammar) is denoted by the + operator in Modelica.

[Example: "a" + "b" becomes "ab".]

3.6.2 Array Constructor Operator

The array constructor operator { ... } is described in section 10.4.

3.6.3 Array Concatenation Operator

The array concatenation operator [ ... ] is described in section 10.4.2.

3.6.4 Array Range Operator

The array range constructor operator : is described in section 10.4.3.

3.6.5 If-Expressions

An expression

if expressionl then expression2 else expression3

is one example of if-expression. First expressionl, which must be Boolean expression, is evaluated. If
expressionl is true expression?2 is evaluated and is the value of the if-expression, else expression3
is evaluated and is the value of the if-expression. The two expressions, expression2 and expression3,
must be type compatible expressions (section 6.7) giving the type of the if-expression. If-expressions
with elseif are defined by replacing elseif by else if. For short-circuit evaluation see section 3.3.

[elseif in expressions has been added to the Modelica language for symmetry with if-clauses.)

[Example:

Integer 1i;
Integer sign_of_il=if i<0 then -1 elseif i==0 then 0 else 1;
Integer sign_of_i2=if i<0 then -1 else if i==0 then 0 else 1;

3.6.6 Member Access Operator
It is possible to access members of a class instance using dot notation, i.e., the . operator.

[Example: R1.R for accessing the resistance component R of resistor R1. Another use of dot notation:
local classes which are members of a class can of course also be accessed using dot notation on the name
of the class, not on instances of the class.]

3.6.7 Built-in Variable time

All declared variables are functions of the independent variable time. The variable time is a built-in
variable available in all models and blocks, which is treated as an input variable. It is implicitly defined
as:

input Real time (final quantity = "Time",
final unit = "s");

The value of the start attribute of time is set to the time instant at which the simulation is started.

[Example:

encapsulated model SineSource

import Modelica.Math.sin;

connector OutPort=output Real;

OutPort y=sin(time); // Uses the built—in variable time.
end SineSource;
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3.7 Built-in Intrinsic Operators with Function Syntax

Certain built-in operators of Modelica have the same syntax as a function call. However, they do not
behave as a mathematical function, because the result depends not only on the input arguments but also
on the status of the simulation.

There are also built-in functions that depend only on the input argument, but also may trigger events
in addition to returning a value. Intrinsic means that they are defined at the Modelica language level,
not in the Modelica library. The following built-in intrinsic operators/functions are available:

e Mathematical functions and conversion functions, see section 3.7.1 below.

e Derivative and special purpose operators with function syntax, see section 3.7.4 below.
e Event-related operators with function syntax, see section 3.7.5 below.

e Array operators/functions, see section 10.1.1.

Note that when the specification references a function having the name of a built-in function it references
the built-in function, not a user-defined function having the same name, see also section 12.5. With
exception of the built-in String operator, all operators in this section can only be called with positional
arguments.

3.7.1 Numeric Functions and Conversion Functions

The mathematical functions and conversion operators are listed below do not generate events.

FExpression \ Description Details

abs(v) Absolute value (event-free) Function 3.1
sign(v) Sign of argument (event-free) Function 3.2
sqrt (v) Square root Function 3.3
Integer(e) Conversion from enumeration to Integer Operator 3.1
EnumTypeName (¢) | Conversion from Integer to enumeration Operator 3.2
String(...) Conversion to String Operator 3.3

All of these except for the String conversion operator are vectorizable according to section 12.4.6.

Additional non-event generating mathematical functions are described in section 3.7.3, whereas the
event-triggering mathematical functions are described in section 3.7.2.

Function 3.1 abs
abs (v)

Expands into noEvent(if v >= 0 then v else -v). Argument v needs to be an Integer or
Real expression.

Function 3.2 sign
sign (v)

Expands into noEvent (if v > 0 then 1 else if v < 0 then -1 else 0). Argument v needs
to be an Integer or Real expression.

Function 3.3 sqrt
sqrt (v)

Square root of v if v > 0, otherwise an error occurs. Argument v needs to be an Integer or Real
expression.

Operator 3.1 Integer

Integer (e)
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#  Language

Ordinal number of the expression e of enumeration type that evaluates to the enumeration value
E.enumvalue, where Integer(E.el) = 1, Integer(E.en) = n, for an enumeration type E =
enumeration(el, ..., en). See also section 4.8.5.2.

Operator 3.2 <EnumTypeName>
EnumTypeName (¢)

For any enumeration type EnumTypeName, returns the enumeration value EnumTypeName.e such
that Integer (EnumTypeName.e) = i. Refer to the definition of Integer above.

It is an error to attempt to convert values of i that do not correspond to values of the enumeration
type. See also section 4.8.5.3.

Operator 3.3 String
String (b, <options>)
String(z, <options>)
String(r, significantDigits=d, <options>)
String(r, format=s)
String (e, <options>)

Convert a scalar non-String expression to a String representation. The first argument may be
a Boolean b, an Integer i, a Real r or an enumeration value e (section 4.8.5.2). The other
arguments must use named arguments. For Real expressions the output shall be according to the
Modelica grammar.

The optional <options> are:

e Integer minimumlLength = 0: Minimum length of the resulting string. If necessary, the
blank character is used to fill up unused space.

e Boolean leftJustified = true: If true, the converted result is left justified in the string;
if false it is right justified in the string.

e Integer significantDigits = 6: Number of significant digits in the result string.

[Ezamples of Real wvalues formatted with 6 significant digits: 12.3456, 0.0123456, 12345600,
1.23456E-10.]

The format string corresponding to <options> is:

e For Real:
(if leftJustified then "-" else "") + String(minimumLength)
+ "." + String(signficantDigits) + "g"

e For Integer:
(if leftJustified then "-" else "") + String(minimumLength) + "4"

Form of the format string: According to ANSI-C the format string specifies one conversion
specifier (excluding the leading %), shall not contain length modifiers, and shall not use ‘*’ for
width and/or precision. For all numeric values the format specifiers ‘f’, ‘e’, ‘E’, ‘g’, ‘G’ are allowed.
For integral values it is also allowed to use the ‘d’, ‘1’, ‘o’, ‘x’, ‘X’, ‘v’, and ‘c’ format specifiers (for
non-integral values a tool may round, truncate or use a different format if the integer conversion
characters are used).

The ‘x’/X’ formats (hexa-decimal) and ¢ (character) for Integer values give results that do not
agree with the Modelica grammar.

3.7.2 Event Triggering Mathematical Functions

The operators listed below trigger events if used outside of a when-clause and outside of a clocked
discrete-time partition (see section 16.8.1).
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FEzxpression \ Description Details

div(z, ) Division with truncation toward zero Operator 3.4

mod(x, y) Integer modulus Operator 3.5

rem(x, y) Integer remainder Operator 3.6

ceil(x) Smallest integer Real not less than z Operator 3.7

floor(z) Largest integer Real not greater than z  Operator 3.8

integer(x) | Largest Integer not greater than x Operator 3.9

These expression for div, ceil, floor, and integer are event generating expression. The event gen-
erating expression for mod(x,y) is floor(x/y), and for rem(x,y) it is div(x,y) — i.e. events are not
generated when mod or rem changes continuously in an interval, but when they change discontinuously
from one interval to the next.

[If this is not desired, the noEvent operator can be applied to them. E.g. noEvent (integer (v)) ]
Operator 3.4 div
div(x, y)
Algebraic quotient z/y with any fractional part discarded (also known as truncation toward zero).

[This is defined for / in C99; in C89 the result for negative numbers is implementation-defined,
so the standard function div must be used.]

Result and arguments shall have type Real or Integer. If either of the arguments is Real the
result is Real otherwise Integer.

Operator 3.5 mod
mod (x, y)

Integer modulus of z/y, i.e. mod(z, y) = & - floor(z / y) * y. Result and arguments shall
have type Real or Integer. If either of the arguments is Real the result is Real otherwise
Integer.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously. Examples: mod(3, 1.4) = 0.2, mod(-3, 1.4) = 1.2, mod(3, -1.4) = -1.2]

Operator 3.6 rem
rem(z, ¥y)

Integer remainder of x/y, such that div(z, y) * y + rem(z, y) = z. Result and arguments
shall have type Real or Integer. If either of the arguments is Real the result is Real otherwise
Integer.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously. Examples: rem(3, 1.4) = 0.2, rem(-3, 1.4) = -0.2]

Operator 3.7 ceil
ceil (zx)
Smallest integer not less than z. Result and argument shall have type Real.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously.]

Operator 3.8 floor
floor (x)
Largest integer not greater than x. Result and argument shall have type Real.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously.]

Operator 3.9 integer

integer ()
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Largest integer not greater than x. The argument shall have type Real. The result has type
Integer.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously.]

3.7.3 Elementary Mathematical Functions

The functions listed below are elementary mathematical functions. Tools are expected to utilize well
known properties of these functions (derivatives, inverses, etc) for symbolic processing of expressions and
equations.

FExpression \ Description Details
sin(z) Sine

cos(x) Cosine

tan(z) Tangent (z shall not be: ..., -7/2, /2, 37/2, ...)

asin(x) Inverse sine (—1 <z < 1)

acos () Inverse cosine (—1 < a < 1)

atan(z) Inverse tangent

atan2(y, x) | Principal value of the arc tangent of y/x Function 3.4
sinh(x) Hyperbolic sine

cosh(x) Hyperbolic cosine

tanh(x) Hyperbolic tangent

exp(x) Exponential, base e

log(x) Natural (base e) logarithm (z > 0)

log10(x) Base 10 logarithm (z > 0)

These functions are the only ones that can also be called using the deprecated "builtin" external
language, see section 12.9.

[End user oriented information about the elementary mathematical functions can be found for the corre-
sponding functions in the Modelica.Math package.|

Function 3.4 atan2
atan2 (y, x)
Principal value of the arc tangent of y/x, using the signs of the two arguments to determine the

quadrant of the result. The result ¢ is in the interval [—m, 7] and satisfies:

|(z, y)| cos(p) =
|(z, y)| sin(p) =y

3.7.4 Derivative and Special Purpose Operators with Function Syntax

The operators listed below include the derivative operator and special purpose operators with function
syntax.

FExpression \ Description Details

der Cexpr) Time derivative Operator 3.10
delay(ezpr, ...) Time delay Operator 3.11
cardinality(c) Number of occurrences in connect-equations Operator 3.12
homotopy Cactual, simplified) | Homotpy initialization Operator 3.13
semilinear(x, k%, k™) Sign-dependent slope Operator 3.14
inStream(v) Stream variable flow into component Operator 3.15
actualStream(v) Actual value of stream variable Operator 3.16
spatialDistribution(...) Variable-speed transport Operator 3.17
getInstanceName () Name of instance at call site Operator 3.18

The special purpose operators with function syntax where the call below uses named arguments can be
called with named arguments (with the specified names), or with positional arguments (the inputs of
the functions are in the order given in the calls below).
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#  Language

Operator 3.10 der
der (expr)

The time derivative of expr. If the expression expr is a scalar it needs to be a subtype of Real.
The expression and all its time-varying subexpressions must be continuous and semi-differentiable.
If expr is an array, the operator is applied to all elements of the array. For non-scalar arguments
the function is vectorized according to section 10.6.12.

[For Real parameters and constants the result is a zero scalar or array of the same size as the
variable.]

Operator 3.11 delay

delay Cexpr, delayTime, delayMax)
delay (expr, delayTime)

Evaluates to expr(time - delayTime) for time > time.start + delayTime and expr(time.
start) for time < time.start+delayTime. The arguments, i.e., expr, delayTime and delayMazx,
need to be subtypes of Real. delayMax needs to be additionally a parameter expression. The
following relation shall hold: 0 < delayTime < delayMaz, otherwise an error occurs. If delayMax
is not supplied in the argument list, delayTime needs to be a parameter expression. For non-
scalar arguments the function is vectorized according to section 10.6.12. For further details, see
section 3.7.4.1.

Operator 3.12 cardinality
cardinality (¢)

[This is a deprecated operator. It should no longer be used, since it will be removed in one of the
next Modelica releases.]

Returns the number of (inside and outside) occurrences of connector instance ¢ in a connect-
equation as an Integer number. For further details, see section 3.7.4.3.

Operator 3.13 homotopy
homotopy (actual=actual, simplified=simplified)

The scalar expressions actual and simplified are subtypes of Real. A Modelica translator should
map this operator into either of the two forms:

1. Returns actual (trivial implementation).

2. In order to solve algebraic systems of equations, the operator might during the solution
process return a combination of the two arguments, ending at actual.

[Example: actual - A + simplified - (1 — ), where X is a homotopy parameter going from 0 to
1.]

The solution must fulfill the equations for homotopy returning actual.

For non-scalar arguments the function is vectorized according to section 12.4.6. For further details,
see section 3.7.4.4.

Operator 3.14 semilinear
semilinear (x, kT, k™)

Returns: smooth(0, if x >= 0 then kT * z else k~ * z). The result is of type Real. For
non-scalar arguments the function is vectorized according to section 10.6.12. For further details,
see section 3.7.4.5 (especially in the case when z = 0).

Operator 3.15 inStream
inStream (v)

inStream(v) is only allowed for stream variables v defined in stream connectors, and is the value
of the stream variable v close to the connection point assuming that the flow is from the connection
point into the component. This value is computed from the stream connection equations of the
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#  Language

flow variables and of the stream variables. The operator is vectorizable. For further details, see
section 15.2.

Operator 3.16 actualStream
actualStream (v)

actualStream(v) returns the actual value of the stream variable v for any flow direction. The
operator is vectorizable. For further details, see section 15.3.

Operator 3.17 spatialDistribution

spatialDistribution (
in0O=m0, inl=inl, x=x,

positiveVelocity=...,
initialPoints=...,
initialValues=...)

spatialDistribution allows approximation of variable-speed transport of properties. For further
details, see section 3.7.4.2.

Operator 3.18 getInstanceName
getInstanceName ()

Returns a string with the name of the model /block that is simulated, appended with the fully qual-
ified name of the instance in which this function is called. For further details, see section 3.7.4.6.

A few of these operators are described in more detail in the following.

3.7.4.1 delay

[delay allows a numerical sound implementation by interpolating in the (internal) integrator polynomi-
als, as well as a more simple realization by interpolating linearly in o buffer containing past values of
expression expr. Without further information, the complete time history of the delayed signals needs to
be stored, because the delay time may change during simulation. To avoid excessive storage requirements
and to enhance efficiency, the mazimum allowed delay time has to be given via delayMazx.

This gives an upper bound on the values of the delayed signals which have to be stored. For real-time
simulation where fized step size integrators are used, this information is sufficient to allocate the necessary
storage for the internal buffer before the simulation starts. For variable step size integrators, the buffer
size is dynamic during integration. In principle, delay could break algebraic loops. For simplicity, this
is not supported because the minimum delay time has to be give as additional argument to be fized at
compile time. Furthermore, the maximum step size of the integrator is limited by this minimum delay
time in order to avoid extrapolation in the delay buffer.]

3.7.4.2 spatialDistribution

[Many applications involve the modelling of variable-speed transport of properties. One option to model
this infinite-dimensional system is to approximate it by an ODE, but this requires a large number of
state variables and might introduce either numerical diffusion or numerical oscillations. Another option
is to use a built-in operator that keeps track of the spatial distribution of z(x,t), by suitable sampling,
interpolation, and shifting of the stored distribution. In this case, the internal state of the operator is
hidden from the ODE solver.

spatialDistribution allows the infinite-dimensional problem below to be solved efficiently with good
accuracy

92(y; 1)
o T,
2(0.0,t) =ing(¢) if v >0

2(1.0,t) =iny () if v <0

=0.0

where z(y, t) is the transported quantity, y is the normalized spatial coordinate (0.0 <y < 1.0), ¢ is the
time, v(t) = der(z) is the normalized transport velocity and the boundary conditions are set at either
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#  Language

y = 0.0 or y = 1.0, depending on the sign of the velocity. The calling syntax is:

(out0, outl) = spatialDistribution(inO, inl, x, positiveVelocity,
initialPoints = {0.0, 1.0},
initialValues = {0.0, 0.0});

where in0, inl, out0, outl, x, v are all subtypes of Real, positiveVelocityis aBoolean, initialPoints
and initialValues are arrays of subtypes of Real of equal size, containing the y coordinates and the
z values of a finite set of points describing the initial distribution of z(y, t0). The out0 and outl are
given by the solutions at 2(0.0,¢) and 2(1.0,¢); and in0 and inl are the boundary conditions at z(0.0,t)
and z(1.0,t) (at each point in time only one of in0 and in1 is used). Elements in the initialPoints
array must be sorted in non-descending order. The operator can not be vectorized according to the
vectorization rules described in section 12.4.6. The operator can be vectorized only with respect to the
arguments in0 and inl (which must have the same size), returning vectorized outputs outO and outl
of the same size; the arguments initialPoints and initialValues are vectorized accordingly.

The solution, z, can be described in terms of characteristics:

t+8
z(y + / v(a)da, t + B) = z(y,t), for all 5 as long as staying inside the domain
t

This allows the direct computation of the solution based on interpolating the boundary conditions.

spatialDistribution can be described in terms of the pseudo-code given as a block:

block spatialDistribution
input Real inO;
input Real inil;
input Real x;
input Boolean positiveVelocity;
parameter Real initialPoints(each min=0, each max=1)[:] = {0.0, 1.0};
parameter Real initialValues[:] = {0.0, 0.0};
output Real outO;
output Real outl;
protected
Real points[:];
Real values/[:];
Real x0;
Integer m;
algorithm
/* The notation
* x <and then> vy
* is used below as a shorthand for

* if x then y else false
x also known as "short—circuit evaluation of x and y".
*/
if positiveVelocity then

outl := interpolate(points, values, 1 - (x - x0));

out0 := values[1]; // Similar to in0 but avoiding algebraic loop.
else

outO := interpolate(points, values, 0 - (x - x0));

outl := valuesl[end]; // Similar to inl but avoiding algebraic loop.
end if;

when <acceptedStep> then
if x > x0 then
m := size(points, 1);
while m > 0 <and then> points[m] + (x - x0) >= 1 loop
m :=m - 1;
end while;
values := cat (1,
{in0},
values [1:m],
{interpolate (points, values, 1 - (x - x0))1});
points := cat(1l, {0}, points[1:m] .+ (x-x0), {13});
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elseif x < x0 then
m := 1;
while m < size(points, 1) <and then> points[m] + (x - x0) <= 0 loop
m :=m + 1;
end while;
values := cat (1,
{interpolate (points, values, 0 - (x - x0))},
values[m:end],
{in1});
points := cat(1, {0}, points[m:end] .+ (x - x0), {1});
end if;
x0 := x;
end when;
initial algorithm
x0 := x;
points := initialPoints;
values := initialValues;
end spatialDistribution;

[Note that the implementation has an internal state and thus cannot be described as a function in Mod-
elica; initialPoints and initialValues are declared as parameters to indicate that they are only used
during initialization.

The infinite-dimensional problem stated above can then be formulated in the following way:

der(x) = v;
(out0, outl) = spatialDistribution(inO, inl, x, v >= O,
initialPoints, initialValues);

Events are generated at the exact instants when the velocity changes sign — if this is not needed, noEvent
can be used to suppress event generation.

If the velocity is known to be always positive, then outO can be omitted, e.g.:

der (x)

= v;
(, outl) =

spatialDistribution(in0O, O, x, true, initialPoints, initialValues);

Technically relevant use cases for the use of spatialDistribution are modeling of electrical trans-
mission lines, pipelines and pipeline networks for gas, water and district heating, sprinkler systems,
impulse propagation in elongated bodies, conveyor belts, and hydraulic systems. Vectorization is needed
for pipelines where more than one quantity is transported with velocity v in the example above.]

3.7.4.3 cardinality (deprecated)

[cardinality is deprecated for the following reasons and will be removed in a future release:
e Reflective operator may make early type checking more difficult.
o Almost always abused in strange ways
e Not used for Bond graphs even though it was originally introduced for that purpose.

]

[cardinality allows the definition of connection dependent equations in a model, for example:

connector Pin
Real v;
flow Real ij;
end Pin;
model Resistor
Pin p, n;
equation
assert (cardinality(p) > O and cardinality(m) > O,
"Connectors p and n of Resistor must be connected");
// Equations of resistor
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‘end Resistor;

]

The cardinality is counted after removing conditional components, and shall not be applied to expandable
connectors, elements in expandable connectors, or to arrays of connectors (but can be applied to the
scalar elements of array of connectors). cardinality should only be used in the condition of assert and
if-statements that do not contain connect and similar operators, see section 16.8.1).

3.7.4.4 homotopy

[During the initialization phase of a dynamic simulation problem, it often happens that large nonlinear
systems of equations must be solved by means of an iterative solver. The convergence of such solvers
critically depends on the choice of initial guesses for the unknown variables. The process can be made
more robust by providing an alternative, simplified version of the model, such that convergence is possible
even without accurate initial guess values, and then by continuously transforming the simplified model
into the actual model. This transformation can be formulated using expressions of this kind:

A-actual + (1 — A) - simplified

in the formulation of the system equations, and is usually called a homotopy transformation. If the
simplified expression is chosen carefully, the solution of the problem changes continuously with \, so by
taking small enough steps it is possible to eventually obtain the solution of the actual problem.

The operator can be called with ordered arguments or preferably with named arguments for improved
readability.

It is recommended to perform (conceptually) one homotopy iteration over the whole model, and not
several homotopy iterations over the respective non-linear algebraic equation systems. The reason is that
the following structure can be present:

w = fi(x) // has homotopy
0 fa(der(x), x, z, w)

Here, a non-linear equation system fo is present. homotopy is, however used on a variable that is an
“input” to the mon-linear algebraic equation system, and modifies the characteristics of the non-linear
algebraic equation system. The only useful way is to perform the homotopy iteration over fi and fo
together.

The suggested approach is “conceptual”, because more efficient implementations are possible, e.g. by
determining the smallest iteration loop, that contains the equations of the first BLT block in which
homotopy is present and all equations up to the last BLT block that describes a non-linear algebraic
equation system.

A trivial implementation of homotopy is obtained by defining the following function in the global scope:

function homotopy
input Real actual;
input Real simplified;
output Real y;
algorithm
y := actual;
annotation(Inline = true);
end homotopy;

]

[Example 1: In electrical systems it is often difficult to solve non-linear algebraic equations if switches are
part of the algebraic loop. An idealized diode model might be implemented in the following way, by starting
with a “flat” diode characteristic and then move with homotopy to the desired “steep” characteristic:

model IdealDiode

parameter Real Goff = 1le-5;
protected
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Real Goff_flat = max(0.01, Goff);
Real Goff2;
equation
off = s < 0;
Goff2 = homotopy(actual=Goff, simplified=Goff_flat);
u = s*(if off then 1 else Ron2) + Vknee;
i = sx(if off then Goff2 else 1 ) + Goff2*Vknee;

end IdealDiode;

]

[Example 2: In electrical systems it is often useful that all voltage sources start with zero voltage and all
current sources with zero current, since steady state initialization with zero sources can be easily obtained.
A typical voltage source would then be defined as:

model ConstantVoltageSource
extends Modelica.Electrical.Analog.Interfaces.0OnePort;
parameter Modelica.Units.SI.Voltage V;

equation
v = homotopy(actual=V, simplified=0.0);

end ConstantVoltageSource;

]

[Example 3: In fluid system modelling, the pressure/flowrate relationships are highly nonlinear due to
the quadratic terms and due to the dependency on fluid properties. A simplified linear model, tuned on
the nominal operating point, can be used to make the overall model less nonlinear and thus easier to solve
without accurate start values. Named arguments are used here in order to further improve the readability.

model Pressureloss
import Modelica.Units.SI;

parameter SI.MassFlowRate m_flow_nominal "Nominal mass flow rate";
parameter SI.Pressure dp_nominal "Nominal pressure drop";
SI.Density rho "Upstream demnsity";
SI.DynamicViscosity lambda "Upstream viscosity";

equation

m_flow = homotopy(actual = turbulentFlow_dp(dp, rho, lambda),
simplified = dp/dp_nominal*m_flow_nominal);

end Pressureloss;

]

[Example /: Note that homotopy shall not be used to combine unrelated expressions, since this can
generate singular systems from combining two well-defined systems.

model DoNotUse

Real x;

parameter Real x0 = O0;
equation

der(x) = 1-x;
initial equation

0 = homotopy(der(x), x - x0);
end DoNotUse;

The initial equation is expanded into
0= Asxder(z)+ (1 — A)(z — o)
and you can solve the two equations to give

_)\+()\—1)Z’0
B 22—1
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which has the correct value of ro at X = 0 and of 1 at A = 1, but unfortunately has a singularity at
A=0.5]

3.7.4.5 semiLinear

(See definition of semiLinear in section 3.7.4). In some situations, equations with semiLinear become
underdetermined if the first argument (x) becomes zero, i.e., there are an infinite number of solutions.
It is recommended that the following rules are used to transform the equations during the translation
phase in order to select one meaningful solution in such cases:

e The equations

y = semilinear(x, sa, sl1);
y = semilinear(x, sl, s2);
y = semilinear(x, s2, s3);
y = semilLinear(x, sN, sb);

may be replaced by

sl = if x >= 0 then sa else sb
s2 = sl1;

s3 = s2;

SN = SN-1;

y = semilinear(x, sa, sb);

e The equations

x = 0;
y = 0;
y = semilinear(x, sa, sb);

may be replaced by

b4 0
y = 0;
sa = sb;

[For symbolic transformations, the following property is useful (this follows from the definition):

semiLinear(m_flow, port_h, h);

is identical to:

-semilinear (-m_flow, h, port_h);

The semilinear function is designed to handle reversing flow in fluid systems, such as

H_flow = semilinear(m_flow, port.h, h);

i.e., the enthalpy flow rate H_flow is computed from the mass flow rate m_flow and the upstream specific
enthalpy depending on the flow direction.]

3.7.4.6 getInstanceName

Returns a string with the name of the model/block that is simulated, appended with the fully qualified
name of the instance in which this function is called.

[Example:

package MyLib
model Vehicle
Engine engine;

end Vehicle;
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model Engine
Controller controller;

end Engine;
model Controller
equation
Modelica.Utilities.Streams.print("Info from: " + getInstanceName());
end Controller;
end MyLib;

If MyLib.Vehicle is simulated, the call of getInstanceName() returns "Vehicle.engine.controller
n
]

If this function is not called inside a model or block (e.g. the function is called in a function or in a
constant of a package), the return value is not specified.

[The simulation result should not depend on the return value of this function.)

3.7.5 Event-Related Operators with Function Syntax

The operators listed below are event-related operators with function syntax. The operators noEvent,
pre, edge, and change, are vectorizable according to section 12.4.6.

Expression Description Details

initial() Predicate for the initialization phase Operator 3.19
terminal () Predicate for the end of a successful analysis Operator 3.20
noEvent (expr) Evaluate ezpr without triggering events Operator 3.21
smooth(p, expr) Treat expr as p times continuously differentiable Operator 3.22
sample (start, interval) | Periodic triggering of events Operator 3.23
pre(y) Left limit y(¢~) of variable y(t) Operator 3.24
edge (b) Expands into (b and not pre(b)) Operator 3.25
change (v) Expands into (v <> pre(v)) Operator 3.26
reinit(x, expr) Reinitialize x with expr Operator 3.27

Operator 3.19 initial
initial ()
Returns true during the initialization phase and false otherwise.
[Hereby, initial () triggers a time event at the beginning of a simulation.]
Operator 3.20 terminal
terminal ()
Returns true at the end of a successful analysis.
[Hereby, terminal () ensures an event at the end of successful simulation.]
Operator 3.21 noEvent
noEvent (expr)

Real elementary relations within ezpr are taken literally, i.e., no state or time event is triggered.
No zero crossing functions shall be used to monitor any of the normally event-generating subex-
pressions inside expr. See also operator 3.22 smooth and section 8.5.

Operator 3.22 smooth
smooth (p, expr)

If p > 0 smooth(p, expr) returns expr and states that expr is p times continuously differentiable,
i.e.: expr is continuous in all Real variables appearing in the expression and all partial derivatives
with respect to all appearing real variables exist and are continuous up to order p. The argument
p should be a scalar Integer parameter expression. The only allowed types for expr in smooth
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are: Real expressions, arrays of allowed expressions, and records containing only components of
allowed expressions.

smooth should be used instead of noEvent in order to avoid events for efficiency reasons. A tool
is free to not generate events for expressions inside smooth. However, smooth does not guarantee
that no events will be generated, and thus it can be necessary to use noEvent inside smooth.

[Note that smooth does not guarantee a smooth output if any of the occurring variables change
discontinuously.]

[Example:

Real x, y, z;
parameter Real p;
equation
x = if time < 1 then 2 else time - 2;
z = smooth (0, if time < O then 0 else time);
y = smooth (1, noEvent(if x < 0 then 0 else sqrt(x) * x)); // noEvent is
necessary .

]

Operator 3.23 sample
sample (start, interval)

Returns true and triggers time events at time instants start + i - interval for ¢ = 0, 1 ..., and
is only true during the first event iteration at those times. At event iterations after the first
one at each event and during continuous integration the operator always returns false. The
starting time start and the sample interval interval must be parameter expressions and need to
be a subtype of Real or Integer. The sample interval interval must be a positive number.

Operator 3.24 pre
pre (y)

Returns the left limit y(t~) of variable y(¢) at a time instant ¢. At an event instant, y(¢~) is the
value of y after the last event iteration at time instant ¢ (see comment below). Any subscripts in
the component expression y must be parameter expressions. pre can be applied if the following
three conditions are fulfilled simultaneously: (a) variable y is either a subtype of a simple type
or is a record component, (b) y is a discrete-time expression (c¢) the operator is not applied in a
function class.

[This can be applied to continuous-time variables in when-clauses, see section 3.8.3 for the defi-
nition of discrete-time expression.

The first value of pre(y) is determined in the initialization phase.

A new event is triggered if there is at least for one variable v such that pre(v) <> v after the
active model equations are evaluated at an event instant. In this case the model is at once
reevaluated. This evaluation sequence is called event iteration. The integration is restarted once
pre(v) == v for all v appearing inside pre(...).

[If v and pre(v) are only used in when-clauses, the translator might mask event iteration for
variable v since v cannot change during event iteration. It is a quality of implementation to find
the minimal loops for event iteration, i.e., not all parts of the model need to be reevaluated.

The language allows mixed algebraic systems of equations where the unknown variables are of
type Real, Integer, Boolean, or an enumeration. These systems of equations can be solved by a
global fix point iteration scheme, similarly to the event iteration, by fizing the Boolean, Integer,
and/or enumeration unknowns during one iteration. Again, it is a quality of implementation to
solve these systems more efficiently, e.g., by applying the fix point iteration scheme to a subset of
the model equations.]

Operator 3.25 edge
edge (b)
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Expands into (b and not pre(b)) for Boolean variable b. The same restrictions as for pre apply
(e.g. not to be used in function classes).

Operator 3.26 change
change (v)
Expands into (v <> pre(w)). The same restrictions as for pre apply.
Operator 3.27 reinit
reinit (x, expr)

In the body of a when clause, reinitializes x with expr at an event instant. x is a scalar or array
Real variable that is implicitly defined to have StateSelect.always.

[1t is an error if the variable cannot be selected as a state.]

expr needs to be type-compatible with . reinit can only be applied once for the same variable
— either as an individual variable or as part of an array of variables. It can only be applied in the
body of a when clause in an equation section. See also section 8.3.6.

3.8 Variability of Expressions

The concept of variability of an expression indicates to what extent the expression can vary over time. See
also section 4.4.4 regarding the concept of variability. There are four levels of variability of expressions,
starting from the least variable:

e constant variability

e parameter variability

e discrete-time variability

e continuous-time variability

While many invalid models can be rejected based on the declared variabilities of variables alone (without
the concept of expression variability), the following rules both help enforcing compliance of computed
solutions to declared variability, and impose additional restrictions that simplify reasoning and reporting
of errors:

e For an assignment v := expr or binding equation v = expr, v must be declared to be at least as
variable as expr.

e When determining whether an equation can contribute to solving for a variable v (for instance,
when applying the perfect matching rule, see section 8.4), the equation can only be considered
contributing if the resulting solution would be at most as variable as v.

e The right-hand side expression in a binding equation (that is, expr) of a parameter component
and of the base type attributes (such as start) needs to be a parameter or constant expression.

o If v is a discrete-time component then expr needs to be a discrete-time expression.

3.8.1 Constant Expressions

Constant expressions are:
e Real, Integer, Boolean, String, and enumeration literals.
e Variables declared as constant.

e Except for the special built-in operators initial, terminal, der, edge, change, sample, and pre,
a function or operator with constant subexpressions as argument (and no parameters defined in
the function) is a constant expression.

e Some function calls are constant expressions regardless of the arguments:

— ndims (A)
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Components declared as constant shall have an associated declaration equation with a constant expres-
sion, if the constant is directly in the simulation model, or used in the simulation model. The value
of a constant can be modified after it has been given a value, unless the constant is declared final or
modified with a final modifier. A constant without an associated declaration equation can be given
one by using a modifier.

3.8.2 Parameter Expressions
Parameter expressions are:

e Constant expressions.

Variables declared as parameter.

Input variables in functions behave as though they were parameter expressions.

Except for the special built-in operators initial, terminal, der, edge, change, sample, and pre,
a function or operator with parameter subexpressions is a parameter expression.

Some function calls are parameter expressions even if the arguments are not:
— cardinality(c), see restrictions for use in section 3.7.4.3.
— end in A[... end ...] if A is variable declared in a non-function class.

— size(A) (including size(A, j) where j is parameter expression) if A is variable declared in
a non-function class.

— Connections.isRoot(A.R)

— Connections.rooted(A.R)

3.8.3 Discrete-Time Expressions
Discrete-time expressions are:
e Parameter expressions.

e Discrete-time variables, i.e., Integer, Boolean, String variables and enumeration variables, as
well as Real variables assigned in when-clauses.

e Function calls where all input arguments of the function are discrete-time expressions.
e Expressions where all the subexpressions are discrete-time expressions.
e Expressions in the body of a when-clause, initial equation, or initial algorithm.

e Unless inside noEvent: Ordered relations (>, <, >=, <=) and the event generating functions ceil,
floor, div, and integer, if at least one argument is non-discrete time expression and subtype of
Real.

[These will generate events, see section 8.5. Note that rem and mod generate events but are not
discrete-time expressions. In other words, relations inside noEvent, such as noEvent(x>1), are
not discrete-time expressions.]

e The functions pre, edge, and change result in discrete-time expressions.
e Expressions in functions behave as though they were discrete-time expressions.

For an equation exprl = expr2 where neither expression is of base type Real, both expressions must
be discrete-time expressions. For record equations the equation is split into basic types before applying
this test.

[ This restriction guarantees that noEvent cannot be applied to Boolean, Integer, String, or enumeration
equations outside of a when-clause, because then one of the two expressions is not discrete-time.]

Inside an if-expression, if-clause, while-statement or for-clause, that is controlled by a non-discrete-
time (that is continuous-time, but not discrete-time) switching expression and not in the body of a

32



Modelica Language Specification 3.5 (RC1)
Modelica 3.8. Variability of Expressions

#  Language

when-clause, it is not legal to have assignments to discrete-time variables, equations between discrete-
time expressions, or real elementary relations/functions that should generate events.

[The restriction above is necessary in order to guarantee that all equations for discrete-time variable are
discrete-time expressions, and to ensure that crossing functions do not become active between events.]

[Example: The (underdetermined) model Test below illustrates two kinds of consequences due to variabil-
ity constraints. First, it contains variability errors for declaration equations and assignments. Second, it

illustrates the impact of variability on the matching of equations to variables, which can lead to violation
of the perfect matching rule.

model Constants
parameter Real pl = 1;
constant Real c1 = pl + 2; // error, not a constant expression
parameter Real p2 = pl + 2; // fine
end Constants;
model Test
Constants c1(pl1=3); // fine
Constants c¢2(p2=7); // fine, declaration equation can be modified
Real x;
Boolean bl = noEvent(x > 1); // error, since bl is a discrete—time variable
// and noEvent(x > 1) is not discrete—time.
Boolean b2;
Integer il;
Integer 1i2;

algorithm
il := x; // error, assignment to variable of lesser variability.

equation
b2 = noEvent(x > 1); // no variability error, but equation cannot be matched.
i2 = x; // no variability error, and can be matched to x.

end Test;

3.8.4 Continuous-Time Expressions

All expressions are continuous-time expressions including constant, parameter and discrete expressions.
The term non-discrete-time expression refers to expressions that are neither constant, parameter nor
discrete-time expressions.
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Chapter 4

Classes, Predefined Types, and
Declarations

The fundamental structuring unit of modeling in Modelica is the class. Classes provide the structure
for objects, also known as instances. Classes can contain equations which provide the basis for the
executable code that is used for computation in Modelica. Conventional algorithmic code can also be
part of classes. All data objects in Modelica are instantiated from classes, including the basic data types
—Real, Integer, String, Boolean — and enumeration types, which are built-in classes or class schemata.

Declarations are the syntactic constructs needed to introduce classes and objects (i.e., components).

4.1 Access Control — Public and Protected Elements

Members of a Modelica class can have two levels of visibility: public or protected. The default is
public if nothing else is specified.

A protected element, P, in classes and components shall not be accessed via dot notation (e.g., A.P, a.P,
a[1].P, a.b.P, .A.P; but there is no restriction on using P or P.x for a protected element P). They
shall not be modified or redeclared except for modifiers applied to protected elements in a base-class
modification (not inside any component or class) and the modifier on the declaration of the protected
element.

[Example:

package A
model B
protected
parameter Real x;
end B;
protected
model C end C;
public
model D
C c; // Legal use of protected class C from enclosing scope
extends A.B(x=2); // Legal modifier for x in derived class
// also x.start=2 and x(start=2) are legal.
Real y=x; // Legal use of x in derived class
end D;
model E
A.B a(x=2); // Illlegal modifier, also x.start=2 and x(start=2) are illegal
A.C c; // lllegal use of protected class C
model F=A.C; // Illlegal use of protected class C
end E;
end A;
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All elements defined under the heading protected are regarded as protected. All other elements (i.e.,
defined under the heading public, without headings or in a separate file) are public (i.e. not protected).
Regarding inheritance of protected and public elements, see section 7.1.2.

4.2 Double Declaration not Allowed

The name of a declared element shall not have the same name as any other element in its partially
flattened enclosing class. However, the internal flattening of a class can in some cases be interpreted as
having two elements with the same name; these cases are described in section 5.5, and section 7.3.

[Example:

record R
Real x;
end R;
model M // wrong Modelica model
R R; // not correct, since component name and type specifier are identical
equation
R.x = 0;
end M;

4.3 Declaration Order and Usage before Declaration

Variables and classes can be used before they are declared.

[In fact, declaration order is only significant for:
e Functions with more than one input variable called with positional arguments, section 12.4.1.
o Functions with more than one output variable, section 12.4.3.
e Records that are used as arguments to external functions, section 12.9.1.3.

o Enumeration literal order within enumeration types, section 4.8.5.

4.4 Component Declarations

Component declarations are described in this section.

A component declaration is an element of a class definition that generates a component. A component
declaration specifies (1) a component name, i.e., an identifier, (2) the class to be flattened in order
to generate the component, and (3) an optional Boolean parameter expression. Generation of the
component is suppressed if this parameter expression evaluates to false. A component declaration may
be overridden by an element-redeclaration.

A component or variable is an instance (object) generated by a component declaration. Special kinds of
components are scalar, array, and attribute.

4.4.1 Syntax and Examples of Component Declarations

The formal syntax of a component declaration clause is given by the following syntactic rules:

component-clause:
type-prefix type-specifier [ array-subscripts ] component-list

type-prefix
[ flow | stream ]
[ discrete | parameter | constant ] [ input | output ]
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type-specifier
name

component-list
component-declaration { "," component-declaration }

component-declaration
declaration [ condition-attribute ] comment

condition-attribute:
if expression

declaration
IDENT [ array-subscripts ] [ modification ]

[The declaration of a component states the type, access, variability, data flow, and other properties of
the component. A component-clause i.e., the whole declaration, contains type prefizes followed by a
type-specifier with optional array-subscripts followed by a component-list.

There is no semantic difference between variables declared in a single declaration or in multiple declara-
tions. For example, regard the following single declaration (component-clause) of two matriz variables:

Real[2,2] A, B;

That declaration has the same meaning as the following two declarations together:

Real[2,2] A;
Real[2,2] B;

The array dimension descriptors may instead be placed after the variable name, giving the two declarations
below, with the same meaning as in the previous example:

Real A[2,2];
Real B[2,2];

The following declaration is different, meaning that the variable a is a scalar but B is a matriz as above:

Real a, B[2,2];

4.4.2 Component Declaration Static Semantics

If the type-specifier of the component declaration denotes a built-in type (RealType, IntegerType,
etc.), the flattened or instantiated component has the same type.

A class defined with partial in the class-prefixes is called a partial class. Such a class is allowed to
be incomplete, and cannot be instantiated in a simulation model; useful, e.g., as a base-class.

If the type-specifier of the component does not denote a built-in type, the name of the type is looked up
(section 5.3). The found type is flattened with a new environment and the partially flattened enclosing
class of the component. It is an error if the type is partial in a simulation model, or if a simulation model
itself is partial. The new environment is the result of merging

e the modification of enclosing class element-modification with the same name as the component
e the modification of the component declaration

in that order.

Array dimensions shall be scalar non-negative parameter expressions of type Integer, a reference to a
type (which must an enumeration type or Boolean, see section 4.8.5), or the colon operator denoting
that the array dimension is left unspecified (see section 10.1). All variants can also be part of short class

definitions.

[Example of variables with array dimensions.
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model ArrayVariants
type T=Reall:]; // Unspecified size for type
parameter T x=omnes (4);
parameter T y[3]=ones(3, 4);

parameter Real a[2]=ones(2); // Specified using Integer
parameter Real b[2, Ol=ones(2, 0); // Size 0 is allowed
parameter Real c[:]=ones(0); // Unspecified size for variable

parameter Integer n=0;
Real x[n*2]=cat(1,ones(n),zeros(n)};// Parameter expressions are allowed
Boolean notV[Boolean]={true,false}; // Indexing with type

end ArrayVariants;

]

The rules for components in functions are described in section 12.2.

Conditional declarations of components are described in section 4.4.5.

4.4.2.1 Declaration Equations

An environment that defines the value of a component of built-in type is said to define a declaration equa-
tion associated with the declared component. The declaration equation is of the form x = expression
defined by a component declaration, where expression must not have higher variability than the de-
clared component x (see section 3.8). Unlike other equations, a declaration equation can be overridden
(replaced or removed) by an element modification.

For declarations of vectors and matrices, declaration equations are associated with each element.

Only components of the specialized classes type, record, operator record, and connector, or com-
ponents of classes inheriting from ExternalObject may have declaration equations. See also the corre-
sponding rule for algorithms, section 11.2.1.2.

4.4.2.2 Prefix Rules

A prefix is property of an element of a class definition which can be present or not be present, e.g.,
final, public, flow.

Variables declared with the flow or the stream type prefix shall be a subtype of Real.

Type prefixes (that is, flow, stream, discrete, parameter, constant, input, output) shall only be
applied for type, record and connector components — see also record specialized class, section 4.6.

An exception is input for components whose type is of the special class function type (these can only
be used for function formal parameters and has special semantics, see section 12.4.2), and the input
prefix is not applied to the elements of the component and is allowed even if the elements have input or
output prefix.

In addition, instances of classes extending from ExternalObject may have type prefixes parameter and
constant, and in functions also type prefixes input and output, see section 12.9.7.

The type prefixes flow, stream, input and output of a structured component (except as described
above) are also applied to the elements of the component (this is done after verifying that the type
prefixes occurring on elements of the component are correct; e.g. the £f1low prefix can be used on a record
component and all the record elements will generate zero-sum equations, even if elements of a record
shall not be declared with the flow prefix). When any of the type prefixes flow, stream, input and
output are applied for a structured component, no element of the component may have any of these
type prefixes. The corresponding rules for the type prefixes discrete, parameter and constant are
described in section 4.4.4.1 for structured components.

[Example: input can only be used, if none of the elements has a flow, stream, input or output type
prefiz.]

The prefixes input and output have a slightly different semantic meaning depending on the context
where they are used:
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e In functions, these prefixes define the computational causality of the function body, i.e., given the
variables declared as input, the variables declared as output are computed in the function body,
see section 12.4.

e In simulation models and blocks (i.e., on the top level of a model or block that shall be simulated),
these prefixes define the interaction with the environment where the simulation model or block is
used. Especially, the input prefix defines that values for such a variable have to be provided from
the simulation environment and the output prefix defines that the values of the corresponding
variable can be directly utilized in the simulation environment, see the notion of globally balanced
in section 4.7.

e In component models and blocks, the input prefix defines that a binding equation has to be provided
for the corresponding variable when the component is utilized in order to guarantee a locally
balanced model (i.e., the number of local equations is identical to the local number of unknowns),
see section 4.7.

[Example:

block FirstOrder
input Real u;

end FirstOrder;
model UseFirstOrder
FirstOrder firstOrder (u=time); // binding equation for u

end UseFirstOrder;

}

The output prefix does not have a particular effect in a model or block component and is ignored.

e In connectors, prefixes input and output define that the corresponding connectors can only be
connected according to block diagram semantics, see section 9.1 (e.g., a connector with an output
variable can only be connected to a connector where the corresponding variable is declared as
input). There is the restriction that connectors which have at least one variable declared as input
must be externally connected, see section 4.7 (in order to get a locally balanced model, where the
number of local unknowns is identical to the number of unknown equations). Together with the
block diagram semantics rule this means, that such connectors must be connected ezactly once
externally.

e In records, prefixes input and output are not allowed, since otherwise a record could not be, e.g.,
passed as input argument to a function.

4.4.3 Acyclic Bindings of Constants and Parameters

The unexpanded binding equations for parameters and constants in the translated model must be acyclic
after flattening; except that cycles are allowed if the cycles disappear when evaluating parameters having
annotation Evaluate = true that are not part of the cycle. Thus it is not possible to introduce equations
for parameters by cyclic dependencies.

[There is no exception for parameters with fixed = false, despite the fact that such parameters are
generally allowed to be initialized from systems of dependent equations. However, a parameter with fixed
= false can use an initial equation instead of a binding equation, allowing for cyclic dependencies.]

[Example:

constant Real p = 2 * q;
constant Real q sin(p); // Illegal since p =2 % q, q = sin(p) are cyclical

model ABCD

parameter Real A[n, nl;

parameter Integer n = size(A, 1);
end ABCD;

final ABCD a;
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// lllegal since cyclic dependencies between size(a.A,1) and a.n

ABCD b(redeclare Real A[2, 2] = [1, 2; 3, 4]1);
// Legal since size of A is no longer dependent on n.

ABCD c(n = 2); // Legal since n is no longer dependent on the size of A.
parameter Real r = 2 * sin(r); // lllegal , since r =2 % sin(r) is cyclic

partial model PartialLumpedVolume
parameter Boolean use_T_start = true "= true, use T_start, otherwise h_start"
annotation(Dialog(tab = "Initialization"), Evaluate = true);
parameter Medium.Temperature T_start=if use_T_start then system.T_start else
Medium. temperature_phX(p_start ,h_start,X_start)
annotation(Dialog(tab = "Initialization", enable = use_T_start));
parameter Medium.SpecificEnthalpy h_start=if use_T_start then
Medium.specificEnthalpy_pTX(p_start, T_start, X_start) else Medium.
h_default
annotation(Dialog(tab = "Initialization", enable = not use_T_start));
end PartiallLumpedVolume;
// Cycle for T_start and h_start, but ok since disappears
// when evaluating use_T _start

// Illegal since the unexpanded bindings have cycles for both x and y
// (even if they would disappear if bindings were expanded).
model HasCycles
parameter Integer n = 10;
final constant Real A[3, 3] = [0, O, O; 1, O, O; 2, 3, 0];
parameter Real y[3] = A *x y + ones(3);
parameter Real x[n] = cat(1l, {3.4}, x[1:(n-1)1);
end HasCycles;

4.4.4 Component Variability Prefixes discrete, parameter, constant

The prefixes discrete, parameter, constant of a component declaration are called wvariability prefizes
and define in which situation the variable values of a component are initialized (see section 8.5 and
section 8.6) and when they are changed in transient analysis (= solution of initial value problem of the
hybrid DAE):

e A variable vc declared with constant prefix remains constant during transient analysis, with a
value that is unaffected by the initialization problem.

e A variable vc declared with the parameter prefix remains constant during transient analysis, with
a value determined by the initialization problem.

e A discrete-time variable vd has a vanishing time derivative between events. Note that this is not
the same as saying that der(vd)=0 almost everywhere, as the derivative is not even defined at
the events, and it is not legal to apply der to discrete-time variables as they are not continuous.
During transient analysis the variable can only change its value at event instants (see section 8.5).

e A continuous-time variable vn may have a non-vanishing time derivative (der (vn)<>0 possible) and
may also change its value discontinuously at any time during transient analysis (see section 8.5).
If there are any discontinuities the variable is not differentiable.

If a Real variable is declared with the prefix discrete it must in a simulation model be assigned in a
when-clause, either by an assignment or an equation. The variable assigned in a when-clause shall not
be defined in a sub-component of model or block specialized class. (This is to keep the property of
balanced models.)

A Real variable assigned in a when-clause is a discrete-time variable, even though it was not declared
with the prefix discrete. A Real variable not assigned in any when-clause and without any type prefix
is a continuous-time variable.
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The default variability for Integer, String, Boolean, or enumeration variables is discrete-time, and it
is not possible to declare continuous-time Integer, String, Boolean, or enumeration variables.

[The restriction that discrete-valued variables (of type Boolean, etc) cannot be declared with continuous-
time variability is one of the foundations of the expression variability rules that will ensure that any
discrete-valued expression has at most discrete-time variability, see section 3.8.]

The variability of expressions and restrictions on variability for definition equations is given in section 3.8.

[A discrete-time variable is a piecewise constant signal which changes its values only at event instants
during simulation. Such types of wvariables are needed in order that special algorithms, such as the
algorithm of Pantelides for index reduction, can be applied (it must be known that the time derivative of
these variables is identical to zero). Furthermore, memory requirements can be reduced in the simulation
environment, if it is known that a component can only change at event instants.

A parameter wvariable is constant during simulation. This prefix gives the library designer the possibility
to express that the physical equations in a library are only valid if some of the used components are
constant during simulation. The same also holds for discrete-time and constant variables. Additionally,
the parameter prefix allows a convenient graphical user interface in an experiment environment, to
support quick changes of the most important constants of a compiled model. In combination with an
if-clause, a parameter prefix allows removing parts of a model before the symbolic processing of a model
takes place in order to avoid variable causalities in the model (similar to #ifdef in C). Class parameters
can be sometimes used as an alternative.

Ezample:

model Inertia
parameter Boolean state = true;
equation
J*a = t1 - t2;
if state then // code which is removed during symbolic

der(v) = a; // processing, if state=false
der(r) = v;
end if;

end Inertia;

A constant variable is similar to a parameter with the difference that constants cannot be changed after
translation and usually not changed after they have been given a value. It can be used to represent
mathematical constants, e.g.

final constant Real PI=4xatan(1);

There are no continuous-time Boolean, Integer or String wariables. In the rare cases they are needed
they can be faked by using Real variables, e.g.:

Boolean offl, offla;
Real off2;
equation
offl = s1 < 0;
offla = noEvent(sl < 0); // error, since offla is discrete
off2 = if noEvent(s2 < 0) then 1 else 0; // possible
ul = if offl then sl else 0; // state events
u2 = if noEvent(off2 > 0.5) then s2 else 0; // no state events

Since off1 is a discrete-time variable, state events are generated such that off1 is only changed at event
instants. Variable of£2 may change its value during continuous integration. Therefore, ul is guaranteed
to be continuous during continuous integration whereas no such guarantee exists for u2.]

4.4.4.1 Variability of Structured Entities

For elements of structured entities with variability prefixes the most restrictive of the variability prefix
and the variability of the component wins (using the default variability for the component if there is no
variability prefix on the component).
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[Example:

record A
constant Real pi=3.14;
Real y;
Integer 1i;

end A;

parameter A a;
// a.pi is a constant
// a.y and a.i are parameters

A b;
// b.pi is a constant
// b.y is a continuous—time variable
// b.i is a discrete—time variable

4.4.5 Conditional Component Declaration
A component declaration can have a condition-attribute: if expression.

[Example:

parameter Integer level(min=1)=1;
Motor motor;

Levell componentl1(J=J) if level==1 "Conditional component";

Level2 component2 if level==2 "Conditional component";

Level3 component3(J=componentl.J) if level<2 "Conditional component";
// Illegal modifier on component3 since componentl.J is conditional

// Even if we can see that componentl always exist if component3 exist
equation

connect (componentl..., ...) "Connection to conditional component 1";

connect (component2.n, motor.n) "Connection to conditional component 2";

connect (component3.n, motor.n) "Connection to conditional component 3";

componentl.u=0; // Illlegal

]

The expression must be a Boolean scalar expression, and must be a parameter expression.
[A parameter expression is required since it shall be evaluated at compile time.]

A redeclaration of a component shall not include a condition attribute; and the condition attribute is
kept from the original declaration (see section 6.4).

If the Boolean expression is false the component (including its modifier) is removed from the flattened
DAE, and connections to/from the component are removed. A component declared with a condition-
attribute can only be modified and/or used in connections.

[Adding the component and then removing it ensures that the component is valid.

If a connect equation defines the connection of a non-conditional component c1 with a conditional com-
ponent c2 and c2 is de-activated, then c1 must still be a declared element.]

If the condition is true for a public connector containing flow variables the connector must be connected
from the outside.

[The reason for this restriction is that the default flow equation is probably incorrect (since it could
otherwise be an unconditional connector) and the model cannot check that connector is connected.)

4.5 Class Declarations

Essentially everything in Modelica is a class, from the predefined classes Integer and Real, to large
packages such as the Modelica standard library. The description consists of a class definition, a modi-
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fication environment that modifies the class definition, an optional list of dimension expressions if the
class is an array class, and a lexically enclosing class for all classes.

The object generated by a class is called an instance. An instance contains zero or more components
(i.e., instances), equations, algorithms, and local classes. An instance has a type (section 6.3).

[Example: A rather typical structure of a Modelica class is shown below. A class with a name, containing
a number of declarations followed by a number of equations in an equation section.

class ClassName
Declarationi
Declaration?2

equation
equationl
equation2

end ClassName;

]

The following is the formal syntax of class definitions, including the special variants described in later
sections.

An element is part of a class definition, and is one of: class definition, component declaration, or extends
clause. Component declarations and class definitions are called named elements. An element is either
inherited from a base class or local.

class-definition
[ encapsulated ] class-prefixes
class-specifier

class-prefixes
[ partial ]

( class | model | [ operator ] record | block | [ expandable ] connector |
type |
package | [ ( pure | impure ) ] [ operator ] function | operator )

class-specifier
long-class-specifier | short-class-specifier | der-class-specifier

long-class-specifier
IDENT description-string composition end IDENT
| extends IDENT [ class-modification ] description-string
composition end IDENT

short-class-specifier

IDENT "=" base-prefix name [ array-subscripts ]
[ class-modification ] comment
| IDENT "=" enumeration "(" ( [enum-1ist] | ":" ) ")" comment

der-class-specifier
IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment

base-prefix
[ input | output 1]

enum-list : enumeration-literal { "," enumeration-literal}
enumeration-literal : IDENT comment
composition

element-list

{ public element-list |
protected element-list |
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equation-section |
algorithm-section

}

[ external [ language-specification ]

[ external-function-call ] [ annotation ] ";" 1]
[ annotation ";" ]

4.5.1 Short Class Definitions

A class definition of the form

class IDENT1 = IDENT2 class-modification;

is identical, except that IDENT2 may be replaceable and for the lexical scope of modifiers, where the
short class definition does not introduce an additional lexical scope for modifiers, to the longer form

class IDENT1
extends IDENT2 class-modification;
end IDENT1;

An exception to the above is that if the short class definition is declared as encapsulated, then the
modifiers follow the rules for encapsulated classes and cannot be looked up in the enclosing scope.

[Example: Demonstrating the difference in scopes:

model Resistor
parameter Real R;

end Resistor;
model A
parameter Real R;
replaceable model Load=Resistor (R=R) constrainedby TwoPin;
// Correct, sets the R in Resistor to R from model A.
replaceable model LoadError
extends Resistor (R=R);
// Gives the singular equation R=R, since the right—hand side R
// is searched for in LoadError and found in its base—class Resistor.
end LoadError constrainedby TwoPin;
encapsulated model Load2=.Resistor (R=2); // Ok
encapsulated model LoadR=.Resistor(R=R); // Illegal
Load a,b,c;
ConstantSource ...;

end A;

]

A short class definition of the form

type TN = T[N] (optional modifier);

where N represents arbitrary array dimensions, conceptually yields an array class

>array’ TN
T[n]l] _ (optional modifiers);
’end’ TN;

Such an array class has exactly one anonymous component (_); see also section 4.5.2. When a component
of such an array class type is flattened, the resulting flattened component type is an array type with the
same dimensions as _ and with the optional modifier applied.

[Example: The types of £1 and £2 are identical:

type Force = Real[3](unit={"Nm","Nm","Nm"});
Force f1;
Real f2[3] (unit={"Nm","Nm","Nm"});
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]

If a short class definition inherits from a partial class the new class definition will be partial, regardless
of whether it is declared with the keyword partial or not.

[Example:

replaceable model Load=TwoPin;
Load R; // Error unless Load is redeclared since TwoPin is a partial class.

]

If a short class definition does not specify any specialized class the new class definition will inherit the
specialized class (this rule applies iteratively and also for redeclare).

A base-prefix applied in the short-class definition does not influence its type, but is applied to components
declared of this type or types derived from it; see also section 4.5.2.

[Example:

type InArgument = input Real;
type OutArgument = output Real [3];

function foo
InArgument u; // Same as: input Real u
OutArgument y; // Same as: output Real[3] vy
algorithm
y:=£ill(u,3);
end foo;

Real x[:]=foo(time);

4.5.2 Restriction on combining base-classes and other elements

It is not legal to combine other components or base-classes with an extends from an array class, a class
with non-empty base-prefix, a simple type (Real, Boolean, Integer, String and enumeration types),
or any class transitively extending from an array class, a class with non-empty base-prefix, or a simple

type.
[Example:

model Integrator
input Real u;
output Real y = x;
Real x;

equation
der(x) = u;

end Integrator;

model Integrators = Integrator[3]; // Legal

model IllegalModel

extends Integrators;

Real x; // lllegal combination of component and array class
end IllegalModel;

connector IllegalConnector

extends Real;

Real y; // lllegal combination of component and simple type
end IllegalConnector;
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4.5.3 Local Class Definitions — Nested Classes

The local class should be statically flattenable with the partially flattened enclosing class of the local class
apart from local class components that are partial or outer. The environment is the modification of
any enclosing class element modification with the same name as the local class, or an empty environment.

The unflattened local class together with its environment becomes an element of the flattened enclosing
class.

[Example: The following example demonstrates parameterization of a local class:

model C1
type Voltage = Real(nominal=1);
Voltage vl1, v2;

end C1;

model C2
extends Cl(Voltage (nominal=1000));
end C2;

Flattening of class C2 yields a local class Voltage with nominal-modifier 1000. The variables v1 and v2
are instances of this local class and thus have a nominal value of 1000.]

4.6 Specialized Classes

Specialized kinds of classes (earlier known as restricted classes) record, type, model, block, package,
function and connector have the properties of a general class, apart from restrictions. Moreover, they
have additional properties called enhancements. The definitions of the specialized classes are given below
(additional restrictions on inheritance are in section 7.1.3):

e record — Only public sections are allowed in the definition or in any of its components (i.e.,
equation, algorithm, initial equation, initial algorithm and protected sections are not
allowed). The elements of a record shall not have prefixes input, output, inner, outer, stream,
or flow. Enhanced with implicitly available record constructor function, see section 12.6. The
components directly declared in a record may only be of specialized class record or type.

e type — May only be predefined types, enumerations, array of type, or classes extending from type.
e model — The normal modeling class in Modelica.

e block — Same as model with the restriction that each connector component of a block must have
prefixes input and/or output for all connector variables.

[The purpose is to model input/output blocks of block diagrams. Due to the restrictions on input
and output prefizes, connections between blocks are only possible according to block diagram se-
mantic.

e function — See section 12.2 for restrictions and enhancements of functions. Enhanced to allow the
function to contain an external function interface.

[Non-function specialized classes do not have this property.]

e connector — Only public sections are allowed in the definition or in any of its components (i.e.,
equation, algorithm, initial equation, initial algorithm and protected sections are not
allowed).

Enhanced to allow connect to components of connector classes. The elements of a connector shall
not have prefixes inner, or outer. May only contain components of specialized class connector,
record and type.

e package — May only contain declarations of classes and constants. Enhanced to allow import of
elements of packages. (See also chapter 13 on packages.)

e operator record — Similar to record; but operator overloading is possible, and due to this the
typing rules are different, see chapter 6. It is not legal to extend from an operator record (or
connector inheriting from operator record), except if the new class is an operator record
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or connector that is declared as a short class definition, whose modifier is either empty or only
modify the default attributes for the component elements directly inside the operator record.
An operator record can only extend from an operator record. It is not legal to extend from
any of its enclosing scopes. (See chapter 14).

e operator — Similar to package; but may only contain declarations of functions. May only be
placed directly in an operator record. (See also chapter 14).

e operator function — Shorthand for an operator with exactly one function; same restriction as
function class and in addition may only be placed directly in an operator record.

[A function declaration

operator function foo ... end foo;

is conceptually treated as

operator foo function fool

end fool; end foo;

}

Additionally only components which are of specialized classes record, type, operator record, and
connector classes based on any of those can be used as component references in normal expressions and
in the left hand side of assignments, subject to normal type compatibility rules. Additionally components
of connectors may be arguments of connect-equations, and any component can be used as argument to
the ndims and size-functions, or for accessing elements of that component (possibly in combination
with array indexing).

[Example: Use of operator:

operator record Complex
Real re;
Real im;

encapsulated operator function ’x*’
import Complex;
input Complex c1;
input Complex c2;
output Complex result

algorithm
result := Complex(re=cl.re*c2.re - cl.im*c2.im,
im=cl.re*c2.im + cl.im*c2.re);

end ’x*x’;

end Complex;
record MyComplex
extends Complex; // Error; extending from enclosing scope.
Real k;
end MyComplex;
operator record ComplexVoltage = Complex(re(unit="V"),im(unit="V")); // allowed

4.7 Balanced Models

[In this section restrictions for model and block classes are present, in order that missing or too many
equations can be detected and localized by a Modelica translator before using the respective model or block
class. A non-trivial case is demonstrated in the following example:

partial model BaseCorrelation
input Real x;
Real y;

end BaseCorrelation;
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model SpecialCorrelation // correct in Modelica 2.2 and 3.0
extends BaseCorrelation(x=2);

equation
y=2/x%x;

end SpecialCorrelation;

model UseCorrelation // correct according to Modelica 2.2
// not valid according to Modelica 3.0
replaceable model Correlation=BaseCorrelation;
Correlation correlation;

equation
correlation.y=time;

end UseCorrelation;

model Broken // after redeclaration, there is 1 equation too much in Modelica
2.2
UseCorrelation example(redeclare Correlation=SpecialCorrelation);
end Broken;

In this case one can arque that both UseCorrelation (adding an acausal equation) and SpecialCorrelation
(adding a default to an input) are correct. Still, when combined they lead to a model with too many

equations, and it is not possible to determine which model is incorrect without strict rules — as the ones
defined here.

In Modelica 2.2, model Broken will work with some models. However, by just redeclaring it to model
SpecialCorrelation, an error will occur and it will be very difficult in a larger model to figure out the
source of this error.

In Modelica 3.0, model UseCorrelation is no longer allowed and the translator will give an error. In
fact, it is guaranteed that a redeclaration cannot lead to an unbalanced model any more.)

The restrictions below apply after flattening — i.e. inherited components are included — possibly modified.
The corresponding restrictions on connectors and connections are in section 9.3.

Definition 4.1. Local number of unknowns. The local number of unknowns of a model or block
class is the sum based on the components:

e For each declared component of specialized class type (Real, Integer, String, Boolean, enumer-
ation and arrays of those, etc.) or record, or operator record not declared as outer, it is the
number of unknown variables inside it (i.e., excluding parameters and constants and counting the
elements after expanding all records, operator record, and arrays to a set of scalars of primitive
types).

e Each declared component of specialized class type or record declared as outer is ignored.

[Le., all variables inside the component are treated as known.]

e For each declared component of specialized class connector component, it is the number of un-
known variables inside it (i.e., excluding parameters and constants and counting the elements after
expanding all records and arrays to a set of scalars of primitive types).

e For each declared component of specialized class block or model, it is the sum of the number of
inputs and flow variables in the (top level) public connector components of these components (and
counting the elements after expanding all records and arrays to a set of scalars of primitive types).

O

Definition 4.2. Local equation size. The local equation size of a model or block class is the sum of
the following numbers:

e The number of equations defined locally (i.e. not in any model or block component), including
binding equations, and equations generated from connect-equations.

[This includes the proper count for when-clauses (see section 8.3.5), and algorithms (see sec-
tion 11.1), and is also used for the flat Hybrid DAE formulation (see appendiz B).]
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e The number of input and flow variables present in each (top-level) public connector component.
[This represents the number of connection equations that will be provided when the class is used.]

e The number of (top level) public input variables that neither are connectors nor have binding
equations.

[Le., top-level inputs are treated as known variables. This represents the number of binding equa-
tions that will be provided when the class is used.]

O

[To clarify top-level inputs without binding equation (for non-inherited inputs binding equation is identical
to declaration equation, but binding equations also include the case where another model extends M and
has a modifier on u giving the value):

model M
input Real u;
input Real u2=2;
end M;

Here u and u2 are top-level inputs and not connectors. The variable u2 has a binding equation, but u
does not have a binding equation. In the equation count, it is assumed that an equation for u is supplied
when using the model.]

Definition 4.3. Locally balanced. A model or block class is locally balanced if the local number of
unknowns is identical to the local equation size for all legal values of constants and parameters. O

[Here, legal values must respect final bindings and min/maz-restrictions. A tool shall verify the locally
balanced property for the actual values of parameters and constants in the simulation model. It is a
quality of implementation for a tool to verify this property in general, due to arrays of (locally) undefined
sizes, conditional declarations, for-loops etc.]

Definition 4.4. Globally balanced. Similarly as locally balanced, but including all unknowns and
equations from all components. The global number of unknowns is computed by expanding all unknowns
(i.e. excluding parameters and constants) into a set of scalars of primitive types. This should match the
global equation size defined as:

e The number of equations defined (included in any model or block component), including equations
generated from connect-equations.

e The number of input and flow variables present in each (top-level) public connector component.

e The number of (top level) public input variables that neither are connectors nor have binding
equations.

[Le., top-level inputs are treated as known variables.]

The following restrictions hold:

e In a non-partial model or block, all non-connector inputs of model or block components must
have binding equations.

[E.g. if the model contains a component, firstOrder (of specialized class model) and firstOrder
has input Real u then there must be a binding equation for firstOrder.u.]

e A component declared with the inner or outer prefix shall not be of a class having top-level public
connectors containing inputs.

e In a declaration of a component of a record, connector, or simple type, modifiers can be applied to
any element, and these are also considered for the equation count.

[Example:

Flange support(phi=phi, tau=torquel+torque2) if use_support;
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If use_support=true, there are two additional equations for support.phi and support.tau via
the modifier.)

e In other cases (declaration of a component of a model or block class, modifiers on extends, and
modifier on short-class-definitions): Modifiers for components shall only contain redeclarations of
replaceable elements and binding equations. The binding equations in modifiers for components
may in these cases only be for parameters, constants, inputs and variables having a default binding
equation.

e All non-partial model and block classes must be locally balanced.
[This means that the local number of unknowns equals the local equation size.]
Based on these restrictions, the following strong guarantee can be given:
e All simulation models and blocks are globally balanced.

[Therefore the number of unknowns equal to the number of equations of a simulation model or block,
provided that every used non-partial model or block class is locally balanced.]

[Example: Example 1:

connector Pin
Real v;
flow Real i;
end Pin;

model Capacitor
parameter Real C;
Pin p, n;

Real u;
equation

0 =p.1i + n.i;

u = p.v - n.v;

Cxder(u) = p.i;
end Capacitor;

Model Capacitor is a locally balanced model according to the following analysis:
Locally unknown variables: p.i, p.v, n.i,n.v, u

Local equations:

0=mp.a+n.g;
U= pu— n.u;
C - der(u) = p.i;

and 2 equations corresponding to the 2 flow variables p.i andn.1i.

These are 5 equations in &5 unknowns (locally balanced model). A more detailed analysis would reveal
that this is structurally non-singular, i.e. that the hybrid DAFE will not contain a singularity independent
of actual values.

If the equationu = p.v - n.v would be missing in the Capacitor model, there would be 4 equations in
5 unknowns and the model would be locally unbalanced and thus simulation models in which this model
is used would be usually structurally singular and thus not solvable.

If the equation u = p.v - n.v would be replaced by the equation u = 0 and the equation Cxder(u) =
p.i would be replaced by the equation Cxder(u) = 0, there would be 5 equations in 5 unknowns (locally
balanced), but the equations would be singular, regardless of how the equations corresponding to the flow
variables are constructed because the information that u is constant is given twice in a slightly different
form.]

[Example: Example 2:

connector Pin
Real v;
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flow Real i;
end Pin;

partial model TwoPin
Pin p,n;
end TwoPin;

model Capacitor
parameter Real C;
extends TwoPin;

Real u;
equation

0 =p.i+ n.ij;

u = p.v - n.v;

Cxder(u) = p.i;
end Capacitor;

model Circuit
extends TwoPin;
replaceable TwoPin t;
Capacitor c(C=12);

equation
connect(p, t.p);
connect(t.n, c.p);
connect(c.n, n);

end Circuit;

Since t is partial we cannot check whether this is a globally balanced model, but we can check that Circuit
is locally balanced.

Counting on model Circuit results in the following balance sheet:

Locally unknown variables (8): p.i, p.v, n.i, n.v, and 2 flow variables for t (t.p.i, t.n.i), and 2
flow variables for ¢ (c.p.i, c.n.i).

Local equations:

p.v=t.p.v;
0=p.i—t.p.1
c.p.v=t.n.uv
0=cp.i+ t.n.g
n.v = C.N.v;

0=n.i— cn.i

and 2 equation corresponding to the flow variables p.i, n.1i.

In total we have 8 scalar unknowns and 8 scalar equations, i.e., a locally balanced model (and this feature
holds for any models used for the replaceable component t).

Some more analysis reveals that this local set of equations and unknowns is structurally non-singular.
However, this does not provide any guarantees for the global set of equations, and specific combinations
of models that are locally non-singular may lead to a globally singular model.]

[Ezample: Example 3:

import Modelica.Units.SI;

partial model BaseProperties
"Interface of medium model for all type of media"
parameter Boolean preferredMediumStates=false;
constant Integer nXi "Number of independent mass fractions";

InputAbsolutePressure P
InputSpecificEnthalpy h;
InputMassFraction Xi[nXil;
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SI.Temperature T;

SI.Density d;

SI.SpecificInternalEnergy u;

connector InputAbsolutePressure = input SI.AbsolutePressure;
connector InputSpecificEnthalpy = input SI.SpecificEnthalpy;
connector InputMassFraction = input SI.MassFraction;

end BaseProperties;

The use of connector here is a special design pattern. The variables p, h, Xi are marked as input to
get correct equation count. Since they are connectors they should neither be given binding equations in
derived classes mor when using the model. The design pattern is to give textual equations for them (as
below); using connect-equations for these connectors would be possible (and would work) but is not part
of the design.

This partial model defines that T, d, u can be computed from the medium model, provided p, h, Xi are
given. FEvery medium with one or multiple substances and one or multiple phases, including incompress-
ible media, has the property that T, d, u can be computed from p, h, Xi. A particular medium may
have different “independent variables” from which all other intrinsic thermodynamic variables can be
recursively computed. For example, a simple air model could be defined as:

model SimpleAir "Medium model of simple air. Independent variables: p,T"
extends BaseProperties(nXi = O,
p(stateSelect = if preferredMediumStates then StateSelect.prefer
else StateSelect.default),
T(stateSelect = if preferredMediumStates then StateSelect.prefer
else StateSelect.default));
constant SI.SpecificHeatCapacity R = 287;
constant SI.SpecificHeatCapacity cp = 1005.45;
constant SI.Temperature TO = 298.15
equation
d = p/(R¥T);
h = cp*(T-TO0);
u="h - p/d;
end SimplelAir;

The local number of unknowns in model SimpleAir (after flattening) is:
e 3 (T, 4, u: variables defined in BaseProperties and inherited in SimpleAir), plus

e 2+4nXi (p, h, Xi: variables inside connectors defined in BaseProperties and inherited in SimpleAir

)

resulting in 5 + nXi unknowns. The local equation size is:

e 3 (equations defined in SimpleAir), plus

e 2+ nXi (input variables in the connectors inherited from BaseProperties)
Therefore, the model is locally balanced.

The generic medium model BaseProperties is used as a replaceable model in different components,
like a dynamic volume or a fized boundary condition:

import Modelica.Units.SI;

connector FluidPort
replaceable model Medium = BaseProperties;
SI.AbsolutePressure p;
flow SI.MassFlowRate m_flow;
SI.SpecificEnthalpy h;
flow SI.EnthalpyFlowRate H_flow;
SI.MassFraction Xi [Medium.nXi] "Independent mixture mass fractions";

flow SI.MassFlowRate mXi_flow[Medium.nXi] "Independent subst. mass flow rates

end FluidPort;
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model DynamicVolume
parameter SI.Volume V;
replaceable model Medium = BaseProperties;
FluidPort port(redeclare model Medium = Medium) ;
Medium medium(preferredMediumStates=true); // No modifier for p,h,Xi
SI.InternalEnergy U;
SI.Mass M;
SI.Mass MXi[medium.nXil];
equation

U = medium.ux*xM;
M = medium.d*V;
MXi = medium.Xi*M;

der (U) = port.H_flow; // Energy balance

der (M) = port.m_flow; // Mass balance

der (MXi) = port.mXi_flow; // Substance mass balance
// Equations binding to medium (inputs)

medium.p = port.p;

medium.h = port.h;

medium.Xi = port.Xi;
end DynamicVolume;

The local number of unknowns of DynamicVolume is:

e 4+ 2 -nXi (inside the port connector), plus

e 2+ nXi (variables U, M and MXi), plus

e 2+ nXi (the input variables in the connectors of the medium model)
resulting in 8 + 4 - nXi unknowns; the local equation size is

e 6+ 3-nXi from the equation section, plus

e 2+ nXi flow variables in the port connector.
Therefore, DynamicVolume is a locally balanced model.

Note, when the DynamicVolume is used and the Medium model is redeclared to SimpleAir, then a tool
will try to select p, T as states, since these variables have StateSelect.prefer in the SimpleAir model
(this means that the default states U, M are derived quantities). If this state selection is performed, all
intrinsic medium variables are computed from medium.p and medium.T, although p and h are the input
arguments to the medium model. This demonstrates that in Modelica input/output does not define the
computational causality. Instead, it defines that equations have to be provided here for p, h, Xi, in
order that the equation count is correct. The actual computational causality can be different as it is
demonstrated with the SimpleAir model.

model FixedBoundary_pTX
parameter SI.AbsolutePressure p "Predefined boundary pressure';
parameter SI.Temperature T "Predefined boundary temperature';
parameter SI.MassFraction Xi[medium.nXil]
"Predefined boundary mass fraction";
replaceable model Medium = BaseProperties;
FluidPort port(redeclare model Medium = Medium) ;
Medium medium;
equation
port.p = p;
port.H_flow = semilinear (port.m_flow, port.h , medium.h);
port.MXi_flow = semilinear (port.m_flow, port.Xi, medium.Xi);
// Equations binding to medium (note: T is not an input).
medium.p = p;
medium.T = T;
medium.Xi = Xi;
end FixedBoundary_pTX;

The number of local variables in FixedBoundary_pTX is:

52




Modelica Language Specification 3.5 (RC1)
Modelica 4.8. Predefined Types and Classes

#  Language

e 4+ 2 -nXi (inside the port connector), plus

e 2+ nXi (the input variables in the connectors of the medium model)
resulting in 6 + 3 - nXi unknowns, while the local equation size is

e 4+ 2.-nXi from the equation section, plus

e 24 nXi flow variables in the port connector.

Therefore, FixedBoundary_pTX is a locally balanced model. The predefined boundary variables p and
Xi are provided via equations to the input arguments medium.p and medium.Xi, in addition there is an
equation for T in the same way — even though T is not an input. Depending on the flow direction, either
the specific enthalpy in the port (port.h) or h is used to compute the enthalpy flow rate H_flow. h
is provided as binding equation to the medium. With the equation medium.T = T, the specific enthalpy
h of the reservoir is indirectly computed via the medium equations. Again, this demonstrates, that an
input just defines the number of equations have to be provided, but that it not necessarily defines the
computational causality.)

4.8 Predefined Types and Classes

The attributes of the predefined variable types (Real, Integer, Boolean, String) and enumeration types
are described below with Modelica syntax although they are predefined. All attributes are predefined and
attribute values can only be defined using a modification, such as in Real x(unit = "kg"). Attributes
cannot be accessed using dot notation, and are not constrained by equations and algorithm sections.
E.g. in Real x(unit = "kg") = y; only the values of x and y are declared to be equal, but not their
unit attributes, nor any other attribute of x and y.

It is not possible to combine extends from the predefined types, enumeration types, or this Clock type
with other components.

The names Real, Integer, Boolean and String are reserved such that it is illegal to declare an element
with these names.

[Hence, it is possible to define a normal class called Clock in a package and extend from it.]
[1t also follows that the only way to declare a subtype of e.g. Real is to use the extends mechanism.]

The definitions use RealType, IntegerType, BooleanType, StringType, EnumType as mnemonics corre-
sponding to machine representations. These are called the primitive types.

4.8.1 Real Type
The following is the predefined Real type:

type Real // Note: Defined with Modelica syntax although predefined
RealType value; // Accessed without dot—notation
parameter StringType quantity = ",

parameter StringType unit = "" "Unit used in equations";

parameter StringType displayUnit = "" "Default display unit";

parameter RealType min = -Inf, max = +Inf; // Inf denotes a large value

parameter RealType start = 0; // Initial value

parameter BooleanType fixed = true, // default for parameter/constant;
= false; // default for other variables

parameter RealType nominal; // Nominal value

parameter BooleanType unbounded = false; // For error control

parameter StateSelect stateSelect = StateSelect.default;
equation

assert(value >= min and value <= max, "Variable value out of limit");
end Real;

The nominal attribute is meant to be used for scaling purposes and to define tolerances in relative terms,
see section 4.8.6.
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[For external functions in C89, RealType maps to double. In the mapping proposed in Annex F of the
C99 standard, RealType/double matches the IEC 60559:1989 (ANSI/IEEE 754-1985) double format.]

4.8.2 Integer Type
The following is the predefined Integer type:

type Integer // Note: Defined with Modelica syntax although predefined
IntegerType value; // Accessed without dot—notation
parameter StringType quantity = "";
parameter IntegerType min=-Inf, max=+Inf;
parameter IntegerType start = 0; // Initial value
parameter BooleanType fixed = true, // default for parameter/constant;
false; // default for other variables

equation
assert (value >= min and value <= max, "Variable value out of limit");
end Integer;

The minimal recommended number range for IntegerType is from -2147483648 to +2147483647, corre-
sponding to a two’s-complement 32-bit integer implementation.

4.8.3 Boolean Type
The following is the predefined Boolean type:

type Boolean // Note: Defined with Modelica syntax although predefined
BooleanType value; // Accessed without dot—notation
parameter StringType quantity = "";
parameter BooleanType start = false; // Initial value
parameter BooleanType fixed = true, // default for parameter/constant;
false, // default for other variables

end Boolean;

4.8.4 String Type
The following is the predefined String type:

type String // Note: Defined with Modelica syntax although predefined
StringType value; // Accessed without dot—notation
parameter StringType quantity = "";
parameter StringType start = ""; // Initial value
parameter BooleanType fixed = true, // default for parameter/constant;
= false, // default for other variables
end String;

4.8.5 Enumeration Types

A declaration of the form

type E = enumeration([enum-1list]);

defines an enumeration type E and the associated enumeration literals of the enum-list. The enumeration
literals shall be distinct within the enumeration type. The names of the enumeration literals are defined
inside the scope of E. Each enumeration literal in the enum-1ist has type E.

[Example:
type Size = enumeration(small, medium, large, xlarge);
Size t_shirt_size = Size.medium;

]

An optional comment string can be specified with each enumeration literal.

[Example:
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type Size2 = enumeration(small "1st", medium "2nd", large "3rd", xlarge "4th");

]

An enumeration type is a simple type and the attributes are defined in section 4.8.5.1. The Boolean
type name or an enumeration type name can be used to specify the dimension range for a dimension
in an array declaration and to specify the range in a for-loop range expression; see section 11.2.2.2. An
element of an enumeration type can be accessed in an expression.

[Uses of elements of enumeration type in expressions include indexing into an array.]

[Example:
type DigitalCurrentChoices = enumeration(zero, one);
// Similar to Real, Integer

Setting attributes:

type DigitalCurrent = DigitalCurrentChoices (quantity="Current",

start = DigitalCurrentChoices.one, fixed = true)
5
DigitalCurrent c(start = DigitalCurrent.one, fixed = true);
DigitalCurrentChoices c(start = DigitalCurrentChoices.one, fixed = true);

Using enumeration types as expressions:

Real x[DigitalCurrentChoices];
// Example using the type name to represent the range
for e in DigitalCurrentChoices loop
x[e] := 0.;
end for;
for e loop // Equivalent example using short form
x[e] := 0.;

end for;

// Equivalent example using the colon range constructor

for e in DigitalCurrentChoices.zero : DigitalCurrentChoices.one loop
x[e] := 0.;
end for;

model Mixingl "Mixing of multi-substance flows, alternative 1"
replaceable type E=enumeration(:)"Substances in Fluid";
input Real c1[E], c2[E], mdotl, mdot2;
output Real c3[E], mdot3;

equation
0 = mdotl + mdot2 + mdot3;
for e in E loop

0 = mdotl*cl[e] + mdot2*c2[e]l+ mdot3*c3[e];
end for;
/* Array operations on enumerations are NOT (yet) possible:
zeros(n) = mdotl*cl + mdot2%c2 + mdot3%c3 // error
*
/

end Mixingl;

model Mixing2 "Mixing of multi-substance flows, alternative 2"
replaceable type E=enumeration(:)"Substances in Fluid";
input Real c1[E], c2[E], mdotl, mdot2;
output Real c3[E], mdot3;

protected
// No efficiency loss, since ccl, cc2, cc3
// may be removed during translation
Real ccl[:]=cl, cc2[:]1=c2, cc3[:]1=c3;
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final parameter Integer n = size(ccl,1);
equation

0 = mdotl + mdot2 + mdot3;

zeros(n) = mdotl*ccl + mdot2*cc2 + mdot3*cc3
end Mixing2;

4.8.5.1 Attributes of Enumeration Types

For each enumeration:

type E=enumeration(el, e2, ..., en);

a new simple type is conceptually defined as

type E // Note: Defined with Modelica syntax although predefined

EnumType value; // Accessed without dot—notation

parameter StringType quantity = "";

parameter EnumType min=el, max=en;

parameter EnumType start = el; // Initial value

parameter BooleanType fixed = true, // default for parameter/constant;
false; // default for other variables

constant EnumType el=...;

constant EnumType en=...;
equation

assert(value >= min and value <= max, "Variable value out of limit");
end E;

[Since the attributes and enumeration literals are on the same level, it is not possible to use the enumer-
ation attribute names (quantity, min, max, start, fixed) as enumeration literals.)

4.8.5.2 Type Conversion of Enumeration Values to String or Integer

The type conversion function Integer (<expression of enumeration type>) returns the ordinal num-
ber of the enumeration value E. enumvalue, to which the expression is evaluated, where Integer(E.el)
= 1, Integer(E.en) = n, for an enumeration type E = enumeration(el, ..., en).

String(E.enumvalue) gives the String representation of the enumeration value.
[Example: String(E.Small) gives "Small".]

See also section 3.7.1.

4.8.5.3 Type Conversion of Integer to Enumeration Values

Whenever an enumeration type is defined, a type conversion function with the same name and in the
same scope as the enumeration type is implicitly defined. This function can be used in an expression to
convert an integer value to the corresponding (as described in section 4.8.5.2) enumeration value.

For an enumeration type named EnumTypeName, the expression EnumTypeName (<Integer expression>)
returns the enumeration value EnumTypeName.e such that Integer (EnumTypeName.e) is equal to the
original integer expression.

Attempting to convert an integer argument that does not correspond to a value of the enumeration type
is an error.

[Example:

type Colors = enumeration ( RED, GREEN, BLUE, CYAN, MAGENTA, YELLOW );

Conwverting from Integer to Colors:

Colors (i) ;
Colors(10); // An error
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4.8.5.4 Unspecified enumeration

An enumeration type defined using enumeration(:) is unspecified and can be used as a replaceable
enumeration type that can be freely redeclared to any enumeration type. There can be no enumeration
variables declared using enumeration(:) in a simulation model.

4.8.6 Attributes start, fixed, nominal, and unbounded

The attributes start and fixed define the initial conditions for a variable. fixed = false means an
initial guess, i.e., value may be changed by static analyzer. fixed = true means a required value. The
resulting consistent set of values for all model variables is used as initial values for the analysis to be
performed.

The attribute nominal gives the nominal value for the variable. The user need not set it even though the
standard does not define a default value. The lack of default allows the tool to propagate the nominal
attribute based on equations, and if there is no value to propagate the tool should use a non-zero value,
it may use additional information (e.g. min attribute) to find a suitable value, and as last resort use 1. If
unbounded = true it indicates that the state may grow without bound, and the error in absolute terms
shall be controlled.

[The nominal value can be used by an analysis tool to determine appropriate tolerances or epsilons, or
may be used for scaling. For example, the tolerance for an integrator could be computed as tol * (abs
(nominal) + (if x.unbounded then 0 else abs(x))). A default value is not provided in order that
in cases such as a = b, where b has a nominal value but not a, the nominal value can be propagated to
the other variable).]

4.8.7 Other Predefined Types
4.8.7.1 StateSelect

The predefined StateSelect enumeration type is the type of the stateSelect attribute of the Real
type. It is used to explicitly control state selection.

type StateSelect = enumeration(
never "Do not use as state at all.",
avoid "Use as state, if it cannot be avoided (but only if variable appears
differentiated and no other potential state with attribute
default, prefer, or always can be selected).",
default "Use as state if appropriate, but only if variable appears
differentiated.",
prefer "Prefer it as state over those having the default value
(also variables can be selected, which do not appear
differentiated). ",
always "Do use it as a state."

)

4.8.7.2 ExternalObject

See section 12.9.7 for information about the predefined type ExternalObject.

4.8.7.3 AssertionLevel

The predefined AssertionLevel enumeration type is used together with assert, section 8.3.7.

type Assertionlevel = enumeration(warning, error);

4.8.7.4 Connections

The package Connections is used for over-constrained connection graphs, section 8.3.9.
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4.8.7.5 Graphical Annotation Types

A number of “predefined” record types and enumeration types for graphical annotations are described in
chapter 18. These types are not predefined in the usual sense since they cannot be referenced in ordinary
Modelica code, only within annotations.

4.8.7.6 Clock Types

See section 16.2.1 and section 16.3.
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Chapter 5

Scoping, Name Lookup, and
Flattening

This chapter describes the scope rules, and most of the name lookup and flattening of Modelica.

5.1 Flattening Context

Flattening is made in a context which consists of a modification environment (section 7.2.2) and an
ordered set of enclosing classes.

5.2 Enclosing Classes

The classes lexically enclosing an element form an ordered set of enclosing classes. A class defined inside
another class definition (the enclosing class) precedes its enclosing class definition in this set.

Enclosing all class definitions is an unnamed enclosing class that contains all top-level class definitions,
and not-yet read classes defined externally as described in section 13.4. The order of top-level class
definitions in the unnamed enclosing class is undefined.

During flattening, the enclosing class of an element being flattened is a partially flattened class.
[For example, this means that a declaration can refer to a name inherited through an extends-clause.)

[Example:

class C1 ... end C1;
class C2 ... end C2;
class C3

Real x=3;

Cl y;

class C4

Real z;

end C4;

end C3;

The unnamed enclosing class of class definition C3 contains C1, C2, and C3 in arbitrary order. When
flattening class definition C3, the set of enclosing classes of the declaration of x is the partially flattened
class C3 followed by the unnamed enclosing class with C1, C2, and C3. The set of enclosing classes of z
is C4, C3 and the unnamed enclosing class in that order.)

5.3 Static Name Lookup

Names are looked up at class flattening to find names of base classes, component types, etc. Implicitly
defined names of record constructor functions and enumeration type conversion functions are ignored
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during type name lookup. Names of record classes and enumeration types are ignored during function
name lookup.

[The reason to ignore the implicitly defined names is that a record and the implicitly created record
constructor function, see section 12.6, and an enumeration type and the implicitly created conversion
function (section 4.8.5.3), have the same name.]

5.3.1 Simple Name Lookup

A class declared with the keyword encapsulated (see class-definition in the grammar) is called an
encapsulated class. By restricting name lookup inside a restricted class in ways defined in this chapter,
the meaning of the class is made independent of where it is placed in a package hierarchy.

When an element, equation, or section is flattened, any simple name (not composed using dot notation) is
first looked up sequentially among iteration variables (if any; see below), and then looked up sequentially
in each member of the ordered set of instance scopes (see section 5.6.1.1) corresponding to lexically
enclosing classes until a match is found or an enclosing class is encapsulated. In the latter case the
lookup stops except for the predefined types, functions and operators defined in this specification. For
these cases the lookup continues in the global scope, where they are defined.

The iteration variables are the implicitly declared iteration variable(s) if inside the body of a for-loop,
section 8.3.2 and section 11.2.2, or the body of a reduction expression, section 10.3.4.

Reference to variables successfully looked up in an enclosing class is only allowed for variables declared as
constant. The values of modifiers are thus resolved in the instance scope of which the modifier appears;
if the use is in a modifier on a short class definition, see section 4.5.1.

This lookup in each instance scope is performed as follows:

e Among declared named elements (class-definition and component-declaration) of the class
(including elements inherited from base-classes).

e Among the import names of qualified import-clauses in the instance scope. The import name of
import A.B.C;is C and the import name of import D=A.B.C; is D.

e Among the public members of packages imported via unqualified import-clauses in the instance
scope. It is an error if this step produces matches from several unqualified imports.

Import statements defined in inherited classes are ignored for the lookup, i.e. import-clauses are not
inherited.

5.3.2 Composite Name Lookup
For a composite name of the form A.B or A.B.C, etc. lookup is performed as follows:
e The first identifier (4) is looked up as defined above.

e If the first identifier denotes a component, the rest of the name (e.g., B or B.C) is looked up among
the declared named component elements of the component.

e If not found, and if the first identifier denotes a scalar component, or component|[j] where component
is an array of components and the indices j can be evaluated at translation time and component|j]
is a scalar; and if the composite name is used as a function call, the lookup is also performed among
the declared named class elements of the scalar component, and must find a non-operator function.
All identifiers of the rest of the name (e.g., B and B.C) must be classes.

e If the identifier denotes a class, that class is temporarily flattened (as if instantiating a component
without modifiers of this class, see section 7.2.2) and using the enclosing classes of the denoted
class. The rest of the name (e.g., B or B.C) is looked up among the declared named elements of
the temporary flattened class. If the class does not satisfy the requirements for a package, the
lookup is restricted to encapsulated elements only. The class we look inside shall not be partial in
a simulation model.

[The temporary class flattening performed for composite names follow the same rules as class flattening
of the base class in an extends-clause, local classes and the type in a component clause, except that the
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environment is empty. See also MoistAir2 example in section 7.8 for further explanations regarding
looking inside partial packages.]

[Example: Components and classes are part of the same name-space and thus a component cannot have
the same name as its class or the first part of the class-name as that would prevent lookup of the class
name.

model A
M M; // Illegal , component 'M' prevents finding class 'M’
P.Q P; // lllegal , component 'P’' prevents finding package 'P’
R R; // Legal, see next section

S.Q Q; // Lega

Y a; // lllegal , component 'Y' (below) prevents finding class 'Y’
Y.X b; // Illegal , component 'Y' (below) prevents finding package 'Y’
.Y c; // Legal, see next section
Real Y;

end A;

5.3.3 Global Name Lookup

For a name starting with dot, e.g.: .A (or .A.B, .A.B.C etc.) lookup is performed as follows:

e The first identifier (4) is looked up in the global scope. This is possible even if the class is encap-
sulated and import-clauses are not used for this. If there does not exist a class A in global scope
this is an error.

e If the name is simple then the class A is the result of lookup.

e If the name is a composite name then the class A is temporarily flattened with an empty environment
(i.e. no modifiers, see section 7.2.2) and using the enclosing classes of the denoted class. The rest
of the name (e.g., B or B.C) is looked up among the declared named elements of the temporary
flattened class. If the class does not satisfy the requirements for a package, the lookup is restricted
to encapsulated elements only. The class we look inside shall not be partial.

[The package-restriction ensures that global name lookup of component references can only find global
constants.]

5.3.4 Lookup of Imported Names
See section 13.2.1.

5.4 Instance Hierarchy Name Lookup of Inner Declarations
An element declared with the prefix outer references an element instance with the same name but using
the prefix inner which is nearest in the enclosing instance hierarchy of the outer element declaration.

Outer component declarations shall not have modifications (including binding equations). Outer class
declarations should be defined using short-class definitions without modifications. However, see also
section 5.5.

If the outer component declaration is a disabled conditional component (section 4.4.5) it is also ignored
for the automatic creation of inner component (neither causing it; nor influencing the type of it).

An outer element reference in a simulation model requires that one corresponding inner element dec-
laration exist or can be created in a unique way:

e If there are two (or more) outer declarations with the same name, both lacking matching inner
declarations, and the outer declarations are not of the same class it is in error.

e If there is one (or more) outer declarations of a partial class it is an error.
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e In other cases, i.e. if a unique non-partial class is used for all outer declarations of the same name
lacking a matching inner declaration, then an inner declaration of that class is automatically added
at the top of the model and diagnostics is given.

e The annotations defined in section 18.7 does not affect this process, other than that:
— missingInnerMessage can be used for the diagnostic (and possibly error messages)

An outer element component may be of a partial class (but the referenced inner component must be
of a non-partial class).

[inner /outer components may be used to model simple fields, where some physical quantities, such as
gravity vector, environment temperature or environment pressure, are accessible from all components
in a specific model hierarchy. Inner components are accessible throughout the model, if they are not
“shadowed” by a corresponding inner declaration in a more deeply nested level of the model hierarchy.]

[Example: Simple Example:

class A
outer Real TO;

end A;

class B
inner Real TO=1;
A al, a2; // B.TO, B.al.TO and B.a2.T0 will have the same value
A a3(T0=4); // lllegal as TO is an outer variable.

end B;

More complicated example:

class A
outer Real TI;
class B
Real TI;
class C
Real TI;
class D
outer Real TI; //
end D;
D d;
end C;
C c;
end B;
B b;
end A;

class E
inner Real TI;
class F
inner Real TI;
class G
Real TI;
class H
A a;
end H;
H h;
end G;
G g;
end F;
F £f;
end E;

class I
inner Real TI;
E e;
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// e.f.g.h.a.Tl, e.f.g.h.a.b.c.d.Tl, and e.f. Tl is the same variable
// But e.f.Tl, e.Tl and TI are different variables
A a; // a.Tl, a.b.c.d.Tl, and TI is the same variable

end I;

]

The inner component shall be a subtype of the corresponding outer component.

[If the two types are not identical, the type of the inner component defines the instance and the outer
component references just part of the inner component.)

[Example:

class A
inner Real TI;
class B
outer Integer TI; // error, since A.Tl is no subtype of A.B.TI
end B;
end A;

5.4.1 Example of Field Functions using Inner/Outer

[Inner declarations can be used to define field functions, such as position dependent gravity fields, e.g.:

partial function A
input Real u;
output Real y;

end A;

function B // B is a subtype of A
extends A;
algorithm

end B;

class D
outer function fc = A;

equation
y = fc(u);
end D;

class C
inner function fc = B; // define function to be actually used
D d; // The equation is now treated as y = B(u)

end C;

5.5 Simultaneous Inner/Outer Declarations

An element declared with both the prefixes inner and outer conceptually introduces two declarations
with the same name: one that follows the above rules for inner and another that follows the rules for
outer.

[Local references for elements with both the prefix inner and outer references the outer element. That
in turn references the corresponding element in an enclosing scope with the prefix inner.]

Modifications of elements declared with both the prefixes inner and outer may have modifications,
those modifications are only applied to the inner declaration.

[Example:
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class A
outer parameter Real p=2; // error, since modification
end A;

Intent of the following example: Propagate enabled through the hierarchy, and also be able to disable
subsystems locally.

model ConditionalIntegrator "Simple differential equation if isEnabled"
outer Boolean isEnabled;
Real x(start=1);

equation
der (x)=if isEnabled then -x else O0;

end Conditionallntegrator;

model SubSystem "subsystem that ’enable’ its conditional integrators"

Boolean enableMe = time<=1;
// Set inner isEnabled to outer isEnabled and enableMe
inner outer Boolean isEnabled = isEnabled and enablelMe;

ConditionalIntegrator conditionallntegrator;
ConditionalIntegrator conditionallntegrator2;
end SubSystem;

model System
SubSystem subSystem;
inner Boolean isEnabled = time>=0.5;
// subSystem.conditionallntegrator.isEnabled will be
// 'isEnabled and subSystem.enableMe’
end System;

5.6 Flattening Process

In order to guarantee that elements can be used before they are declared and that elements do not
depend on the order of their declaration (section 4.3) in the enclosing class, the flattening proceeds in
the following two major steps:

1. Instantiation process
2. Generation of the flat equation system

The result is an equation system of all equations/algorithms, initial equations/algorithms and instances
of referenced functions. Modifications of constants, parameters and variables are included in the form of
equations.

The constants, parameters and variables are defined by globally unique identifiers and all references are
resolved to the identifier of the referenced variable. No other transformations are performed.

5.6.1 Instantiation

The instantiation is performed in two steps. First a class tree is created and then from that an instance
tree for a particular model is built up. This forms the basis for derivation of the flat equation system.

An implementation may delay and/or omit building parts of these trees, which means that the different
steps can be interleaved. If an error occurs in a part of the tree that is not used for the model to be
instantiated the corresponding diagnostics can be omitted (or be given). However, errors that should
only be reported in a simulation model must be omitted there, since they are not part of the simulation
model.

5.6.1.1 The Class Tree

All necessary libraries including the model which is to be instantiated are loaded from e.g. file system
and form a so called class tree. This tree represents the syntactic information from the class definitions.
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It contains also all modifications at their original locations in syntactic form. The builtin classes are put
into the unnamed root of the class tree.

[The class tree is built up directly during parsing of the Modelica texts. For each class a local tree is
created which is then merged into the one big tree, according to the location of the class in the class
hierarchy. This tree can be seen as the abstract syntax tree (AST) of the loaded libraries.]

5.6.1.2 The Instance Tree

The output of the instantiation process is an instance tree. The instance tree consists of nodes repre-
senting the elements of a class definition from the class tree. For a component the subtree of a particular
node is created using the information from the class of the component clause and a new modification
environment as result of merging the current modification environment with the modifications from the
current element declaration (see section 7.2.3).

The instance tree has the following properties:

e It contains the instantiated elements of the class definitions, with redeclarations taken into account
and merged modifications applied.

e Each instance knows its source class definition from the class tree and its modification environment.
e Each modification knows its instance scope.

The instance tree is used for lookup during instantiation. To be prepared for that, it has to be based on
the structure of the class tree with respect to the class definitions. The builtin classes are instantiated
and put in the unnamed root prior to the instantiation of the user classes, to be able to find them.

[The existence of the two separate trees (instance tree and class tree) is conceptual. Whether they really
exist or are merged into only one tree or the needed information is held completely differently is an
implementation detail. It is also a matter of implementation to have only these classes instantiated
which are needed to instantiate the class of interest.)

A node in the instance tree is the instance scope for the modifiers and elements syntactically defined in
the class it is instantiated from. The instance scope is the starting point for name lookup.

[If the name is not found the lookup is continued in the instance scope corresponding to the lexically
enclosing class. Extends clauses are treated as unnamed nodes in the instance tree — when searching for
an element in an instance scope the search also recursively examines the elements of the extends clauses.
Except that inherited import-clauses are ignored.)

5.6.1.3 The Instantiation Procedure.

The instantiation is a recursive procedure with the following inputs:

e the class to be instantiated (current class)

¢ the modification environment with all applicable redeclarations and merged modifications (initially
empty)

e areference to the node of the instance tree, which the new instance should go into (parent instance)

The instantiation starts with the class to be instantiated, an empty modification environment, and an
unnamed root node as parent node.

During instantiation all lookup is performed using the instance tree, starting from the instance scope of
the current element. References in modifications and equations are resolved later (during generation of
flat equation system) using the same lookup.

5.6.1.4 Steps of Instantiation

The element itself A partially instantiated class or component is an element that is ready to be
instantiated; a partially instantiated element (i.e. class or component) is comprised of a reference to the
original element (from the class tree) and the modifiers for that element (including a possible redeclara-
tion).

The possible redeclaration of the element itself takes effect.
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The class of a partially instantiated component is found in the instance tree (using the redeclaration if
any), modifiers merged to that class forming a new partially instantiated class that is instantiated as
below.

The local contents of the element For local classes and components in the current class, instance
nodes are created and inserted into the current instance. Modifiers (including class redeclarations) are
merged and associated with the instance and the element is partially instantiated.

[The partially instantiated elements are used later for lookup during the generation of the flat equation
system and are instantiated fully, if necessary, using the stored modification environment.]

Equations, algorithms, and annotations of the class and the component declaration are copied to the
instance without merging.

[The annotations can be relevant for simulations, e.g. annotations for code generation (section 18.3.),
simulation experiments (section 18.4.1) or functions (section 12.7, section 12.8 and section 12.9).]

Extends clauses are not looked up, but empty extends clause nodes are created and inserted into the
current instance (to be able to preserve the declaration order of components).

The inherited contents of the element Classes of extends clauses of the current class are looked
up in the instance tree, modifiers (including redeclarations) are merged, the contents of these classes are
partially instantiated using the new modification environment, and are inserted into an extends clause
node, which is an unnamed node in the current instance that only contains the inherited contents from
that base-class.

The classes of extends-clauses are looked up before and after handling extends-clauses; and it is an error
if those lookups generate different results.

At the end, the current instance is checked whether their children (including children of extends-clauses)
with the same name are identical and only the first one of them is kept. It is an error if they are not
identical.

[Only keeping the first among the children with the same name is important for function arguments where
the order matters.]

Recursive instantiation of components Components (local and inherited) are recursively instan-
tiated.

[Example: As an example, consider:

model M
model B
A a;
replaceable model A = C;
type E = Boolean;
end B;
B b(redeclare model A
partial model C
E e;
end C;

D (p=1));

model D
extends C;
parameter E p;
type E = Integer;
end D;

type E = Real;
end M;

To recursively instantiate M allowing the generation of flat equation system we have the following steps
(not including checks):
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1. Instantiate M: which partially instantiates B, b, C, D, and E.
2. Instantiate M.b:

2.1. First find the class B in M (the partially instantiated elements have correct name allowing
lookup)

2.2. instantiate the partially instantiated M.B with the modifier redeclare model A=D(p=1)
2.8. partially instantiate M.b.a (no modifier), and M.b.A (with modifier =D (p=1) )
3. Instantiate M.b.a:

3.1. First find the class A in M.b (the partially instantiated elements have correct name allowing
lookup)

3.2. Instantiate the partially instantiated M.b.A with the modifier =D (p=1).

3.2.1. Find the base-class =D from the modifier. This performs lookup for D in M, and finds the
partially instantiated class D

3.2.2. Instantiate the base-class M.D with modifier p=1, and insert as unnamed node in M.b.A.
3.2.2.1. Partially instantiate the component p with modifier =1

3.2.2.2. Find the base-class C in M.D. Since there is no local element called C the search is
then continued in M and finds the partially instantiated class M.C

3.2.2.3. Instantiate the base-class M.C as below
4. Instantiate the base-class M.C inserting the result into unnamed node in M.b.a
4.1. Partially instantiate e

4.2. Instantiate e which requires finding E. First looking for E in the un-named node for extends

M.C, and, since there is no local element E the search is then continued in M (which lexically

encloses M.C) and finds E class inheriting from Real. The e is then instantiated using class E
inheriting from Real.

5. Instantiate M.b.a.p
5.1. First the class E in M.b.a finding E class inheriting from Integer.
5.2. Instantiate the M.b.a.p using the class E inheriting from Integer with modifier =1
5.8. Instantiate the base-class Integer with modifier =1, and insert as unnamed node in M.b.a.p.

An implementation can use different heuristics to be more efficient by re-using instantiated elements as
long as the resulting flat equation system is identical.

Note that if D was consistently replaced by A in the example above the result would be identical (but harder
to read due to two different classes called A).)

5.6.2 Generation of the flat equation system

During this process, all references by name in conditional declarations, modifications, dimension defini-
tions, annotations, equations and algorithms are resolved to the real instance to which they are referring
to, and the names are replaced by the global unique identifier of the instance.

[This identifier is normally constructed from the names of the instances along a path in the instance tree
(and omitting the unnamed nodes of extends clauses), separated by dots. Either the referenced instance
belongs to the model to be simulated the path starts at the model itself, or if not, it starts at the unnamed
root of the instance tree, e.g. in case of a constant in a package.]

[To resolve the names, a name lookup using the instance tree is performed, starting at the instance scope
(unless the name is fully qualified) of the modification, algorithm or equation. If it is not found locally the
search is continued at the instance of the lexically enclosing class of the scope (this is normally not equal
to the parent of the current instance), and then continued with their parents as described in section 5.3.
If the found component is an outer declaration, the search is continued using the direct parents in the
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instance tree (see section 5.4). If the lookup has to look into a class which is not instantiated yet (or
only partially instantiated), it is instantiated in place.]

The flat equation system consists of a list of variables with dimensions, flattened equations and algo-
rithms, and a list of called functions which are flattened separately. A flattened function consists of
algorithm or external-clause and top-level variables (variables directly declared in the function or one of
its base-classes) — which recursively can contain other variables; the list of non-top level variables is not
needed.

The instance tree is recursively walked through as follows for elements of the class (if necessary a partially
instantiated component is first instantiated):

e At each visited component instance, the name is inserted into the variables list. Then the condi-
tional declaration expression is evaluated if applicable.

— The variable list is updated with the actual instance

— The variability information and all other properties from the declaration are attached to this
variable.

— Dimension information from the declaration and all enclosing instances are resolved and at-
tached to the variable to define their complete dimension.

— If it is of record or simple type (Boolean, Integer, enumeration, Real, String, Clock,
ExternalObject):

* In the modifications of value attribute references are resolved using the instance scope of
the modification. An equation is formed from a reference to the name of the instance and
the resolved modification value of the instance, and included into the equation system.
Except if the value for an element of a record is overridden by the value for an entire
record; section 7.2.3.

— If it is of simple type (Boolean, Integer, enumeration, Real, String, Clock, ExternalObject
):

* In the modifications of non-value attributes, e.g. start, fixed etc. references are resolved

using the instance scope of the modification. An equation is formed from a reference to

the name of the instance appended by a dot and the attribute name and the resolved
modification value of the instance, and included into the equation system.

— If it is of a non-simple type the instance is recursively handled.

e If there are equation or algorithm sections in the class definition of the instance, references are
resolved using the instance scope of the instance and are included in the equation system. Some
references — in particular to non simple, non record objects like connectors in connect-equations
and states in transition equations are not resolved yet and handled afterwards.

e Instances of local classes are ignored.
e The unnamed nodes corresponding to extends-clauses are recursively handled.

e If there are function calls encountered during this process, the call is filled up with default arguments
as defined in section 12.4.1. These are built from the modifications of input arguments which are
resolved using their instance scope. The called function itself is looked up in the instance tree. All
used functions are flattened and put into the list of functions.

e Conditional components with false condition are removed afterwards and they are not part of the
simulation model.

[Thus e.g. parameters don’t need values in them. However, type-error can be detected.)

e Each reference is checked, whether it is a valid reference, e.g. the referenced object belongs to or
is an instance, where all existing conditional declaration expressions evaluate to true or it is a
constant in a package.

[Conditional components can be used in connect-equations, and if the component is conditionally
disabled the connect-statement is removed.]
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This leads to a flattened equation system, except for connect and transition equations. These have
to be transformed as described in chapter 9 and chapter 17. This may lead to further changes in the
instance tree (e.g. from expandable connectors (section 9.1.3)) and additional equations in the flattened
equation system (e.g. connect-equations (section 9.2), generated equations for state machine semantics
(section 17.3.4)).

[After flattening, the resulting equation system is self contained and covers all information needed to
transform it to a simulatable model, but the class and instance trees are still needed: in the transformation
process, there might be the need to instantiate further functions, e.g. from derivative annotation or from
inverse annotation etc., on demand.]
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Chapter 6

Interface or Type Relationships

A class or component, e.g. denoted A, can in some cases be used at a location designed for another class
or component, e.g. denoted B. In Modelica this is the case for replaceable classes (see section 7.3) and for
inner/outer elements (see section 5.4). Replaceable classes are the primary mechanism to create very
flexible models. In this chapter, the precise rules are defined when A can be used at a location designed
for B. The restrictions are defined in terms of compatibility rules (section 6.4 and section 6.5) between
“interfaces” (section 6.2); this can also be viewed as sub-typing (section 6.2).

6.1 Interface Terminology

In this chapter, two kinds of terminology is used for identical concepts to get better understanding (e.g.
by both engineers and computer scientists). A short summary of the terms is given in the following
table. The details are defined in the rest of this chapter.

Definition 6.1. Type or interface. The “essential” part of the public declaration sections of a class
that is needed to decide whether A can be used instead of B.

[E.g. a declaration Real x is part of the type (also called interface), but import A is not.] O

Definition 6.2. Class type or inheritance interface. The “essential” part of the public and
protected declaration sections of a class that is needed to decide whether A can be used instead of B.
The class type, also called inheritance interface, is needed when inheritance takes place, since then the
protected declarations have to be taken into account. O

Definition 6.3. Subtype or compatible interface. A is a subtype of B, or equivalently, the interface
of A is compatible to the interface of B, if the “essential” part of the public declaration sections of B is
also available in A.

[E.g., if B has a declaration Real x, this declaration must also be present in A. If A has a declaration
Real vy, this declaration must not be present in B.] O

If A is a subtype of B, then B is said to be a supertype of A.

Definition 6.4. Restricted subtype or plug compatible interface. A is a restricted subtype of B,
or equivalently, the interface of A is plug compatible to the interface of B, if A is a subtype of B and if
connector components in A that are not in B, are default connectable.

[E.g. it is not allowed that these connectors have variables with the input prefiz, because then they must
be connected.]

A model or block A cannot be used instead of B, if the particular situation does not allow to make a
connection to these additional connectors. In such a case the stricter plug compatible is required for a
redeclaration. O

Definition 6.5. Function subtype or function compatible interface. A is a function subtype of
B, or equivalently, the interface of A is function compatible to the interface of B, if A is a subtype of B
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and if the additional arguments of function A that are not in function B are defined in such a way, that
A can be called at places where B is called.

[E.g. an additional argument must have a default value.] O

6.2 The Concepts of Type, Interface and Subtype

A type can conceptually be viewed as a set of values. When we say that the variable x has the type Real,
we mean that the value of x belongs to the set of values represented by the type Real i.e., roughly the
set of floating point numbers representable by Real, for the moment ignoring the fact that Real is also
viewed as a class with certain attributes. Analogously, the variable b having Boolean type means that
the value of b belongs to the set of values {false, true}. The built-in types Real, Integer, String,
Boolean are considered to be distinct types.

The subtype relation between types is analogous to the subset relation between sets. A type Al being a
subtype of type A means that the set of values corresponding to type Al is a subset of the set of values
corresponding to type A.

The type Integer is not a subtype of Real in Modelica even though the set of primitive integer values is
a subset of the primitive real values since there are some attributes of Real that are not part of Integer
(section 4.8).

The concept of interface as defined in section 6.3 and used in this document is equivalent to the notion
of type based on sets in the following sense:

An element is characterized by its interface defined by some attributes (section 6.3). The type of the
element is the set of values having the same interface, i.e. the same attributes.

A subtype A1l in relation to another type A, means that the elements of the set corresponding to Al is
a subset of the set corresponding to A, characterized by the elements of that subset having additional
properties.

[Example: A record R: record R Boolean b; Real x; end R;
Another record called R2: R2 Boolean b; Real x; Real y; end R2;
An instance r: R r;

An instance r2: R2 r2;

The type R of r can be viewed as the set of all record values having the attributes defined by the interface
of R, e.g. the infinite set {R(b=false,x=1.2), R(b=false, x=3.4), R(b=true, x=1.2), R(b=true, x
=1.2, y=2), R(b=true, x=1.2, a=2),...). The statement that r has the type (or interface) R means
that the value of r s to this infinite set.

The type R2 is a subtype of R since its instances fulfill the additional property of having the component
Real y; in all its values.

Type R: Records with at least
components named x and b

instance r

Type R2: Records with at least
components named x, b and y

instance r2

Figure 6.1: The type R can be defined as the set of record values containing x and b. The subtype
R2 is the subset of values that all contain x, b, and y.
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6.3 Interface or Type

Based on a flattened class or component we can construct an interface for that flattened class or compo-
nent. The interface or type (the terms interface and type are equivalent and can be used interchangeably,
and are different from inheritance interface and class type) is defined as the following information about
the flattened element itself:

e Whether it is replaceable or not.

e Whether the class itself or the class of the component is transitively non-replaceable (section 6.3.1),
and if not, the reference to the replaceable class it refers to.

e Whether it is a component or a class.
e Additional information about the element:

— The flow or stream prefix.

Declared variability (constant, parameter, discrete).

— The prefixes input and output.

— The prefixes inner and/or outer.

— Whether the declaration is final, and in that case its semantics contents.
— Array sizes (if any).

— Condition of conditional components (if any).

— Which kind of specialized class.

— For an enumeration type or component of enumeration type the names of the enumeration
literals in order.

— Whether it is a built-in type and the built-in type (RealType, IntegerType, StringType or
BooleanType).

e Only for an operator record class and classes derived from ExternalObject: the full name of
the operator record base-class (i.e. the one containing the operations), or the derived class. See
chapter 14 and section 12.9.7.

The following item does not apply for an operator record class or class derived from ExternalObject
, since the type is already uniquely defined by the full name.

e For each named public element of the class or component (including both local and inherited named
elements) a tuple comprised of:

— Name of the element.
— Interface or type of the element.

[ This might have been modified by modifiers and is thus not necessarily identical to the interface
of the original declaration.]

The corresponding constraining interface is constructed based on the constraining type (section 7.3.2)
of the declaration (if replaceable — otherwise same as actual type) and with the constraining interface
for the named elements.

In a class all references to elements of that class should be limited to their constraining interface.

[The constraining interface consists of only the public elements, and if the declaration is replaceable the
element is limited to the constraining interface.)

[The public interface does not contain all of the information about the class or component. When using a
class as a base-class we also need protected elements, and for internal type-checking we need e.g. import-
elements. However, the information is sufficient for checking compatibility and for using the class to
flatten components.]
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6.3.1 Transitively non-Replaceable

[In several cases it is important that no new elements can be added to the interface of a class, especially
considering short class definitions. Such classes are defined as transitively non-replaceable.]

A class reference is transitively non-replaceable iff (i.e. if and only if) all parts of the name satisfy the
following:

e If the class definition is long it is transitively non-replaceable if not declared replaceable.

e If the class definition is short (i.e. class A = P.B) it is transitively non-replaceable if it is non-
replaceable and equal to class reference (P.B) that is transitively non-replaceable.

[According to section 7.1.4, for a hierarchical name all parts of the name must be transitively non-
replaceable, i.e. in extends A.B.C this implies that A.B.C must be transitively non-replaceable, as well
as A and A.B, with the exception of the class extends redeclaration mechanism see section 7.3.1.)

6.3.2 Inheritance Interface or Class Type

For inheritance, the interface also must include protected elements; this is the only change compared to
above.

Based on a flattened class we can construct an inheritance interface or class type for that flattened class.
The inheritance interface or class type is defined as the following information about the flattened element
itself:

e Whether it is replaceable or not.

e Whether the class itself or the class of the component is transitively non-replaceable (section 6.3.1),
and if not the reference to replaceable class it refers to.

e For each named element of the class (including both local and inherited named elements) a tuple
comprised of:

— Name of the element.
— Whether the element is component or a class.
— For elements that are classes: Inheritance interface or class type of the element.

[ This might have been modified by modifiers and is thus not necessarily identical to the interface
of the original declaration.]

For elements that are components: interface or type of the element.

[This might have been modified by modifiers and is thus not necessarily identical to the interface
of the original declaration.]

e Additional information about the element:
— The flow or stream prefix.
— Declared variability (constant, parameter, discrete).
— The prefixes input and output.
— The prefixes inner and/or outer.
— Whether the declaration is final, and in that case its semantics contents.
— Array sizes (if any).
— Condition of conditional components (if any).
— Which kind of specialized class.

— For an enumeration type or component of enumeration type the names of the enumeration
literals in order.

— Whether it is a built-in type and the built-in type (RealType, IntegerType, StringType or
BooleanType).
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— Visibility (public or protected).

6.4 Interface Compatibility or Subtyping

An interface of a class or component A is compatible with an interface of a class or component B (or the
constraining interface of B), or equivalently that the type of A is a subtype of the type of B, iff:

e Ais a class if and only if B is a class (and thus: A is a component if and only if B is a component).

e If A has an operator record base-class then B must also have one and it must be the same. If A
does not have an operator record base-class then B shall not have one. See chapter 14.

o If A is derived from ExternalObject, then B must also be derived from ExternalObject and have
the same full name. If A is not derived from ExternalObject then B shall not be derived from
ExternalObject. See section 12.9.7.

e If B is not replaceable then A shall not be replaceable.

e If B is transitively non-replaceable then A must be transitively non-replaceable (section 6.3.1). For
all elements of the inheritance interface of B there must exist a compatible element with the same
name and visibility in the inheritance interface of A. The interface of A shall not contain any other
elements.

[We might even extend this to say that A and B should have the same contents, as in the additional
restrictions below.]

e If B is replaceable then for all elements of the component interface of B there must exist a plug-
compatible element with the same name in the component interface of A.

e If B is neither transitively non-replaceable nor replaceable then A must be linked to the same class,
and for all elements of the component interface of B there must thus exist a plug-compatible element
with the same name in the component interface of A.

e Additional restrictions on the additional information. These elements should either match or have
a natural total order:

— If B is a non-replaceable long class definition A must also be a long class definition.
— The flow or stream prefix should be matched for compatibility.

— Declared variability is ordered constant < parameter < discrete < continuous-time (Real
without prefix), and A is only compatible with B if the declared variability in A is less than or
equal the variability in B.

[For a redeclaration of an element the variability prefiz is as default inherited by the redecla-
ration (i.e. no need to repeat parameter when redeclaring a parameter).]

— The input and output prefixes must be matched. This ensures that the rules regarding
inputs/outputs for matching connectors and (non-connector inputs) are preserved, as well as
the restriction on blocks.

[For a redeclaration of an element the input or output prefiz is inherited from the original
declaration.]

— The inner and/or outer prefixes should be matched.

[For a redeclaration of an element the inner and/or outer prefizes are inherited from the
original declaration (since it is not possible to have inner and/or outer as part of a redeclare).]

— If B is final A must also be final and have the same semantic contents.
— The number of array dimensions in A and B must be matched.

— Conditional components are only compatible with conditional components. The conditions
must have equivalent contents (similar to array sizes, except there is no : for conditional
components).

[For a redeclaration of an element the conditional part is inherited from the original.]
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— A function class is only compatible with a function class, a package class only compatible
with a package class, a connector class only with a connector class, a model or block class
only compatible with a model or block class, and a type or record class only compatible
with a type or record class.

— If B is an enumeration type A must also be an enumeration type and vice versa. If B is an
enumeration type not defined as (:) then A must have the same enumeration literals in the
same order; if B is an enumeration type defined as (:) then there is no restriction on the
enumeration type A.

— If B is a built-in type then A must also be of the same built-in type and vice versa.

[Intuitively, that the type A is a subtype of the type of B means that all important elements of B are be
present in A.]

Plug-compatibility is a further restriction of compatibility (subtyping) defined in section 6.5, and further
restricted for functions, see section 6.6. For a replaceable declaration or modifier the default class must
be compatible with the constraining class.

For a modifier the following must apply:
e The modified element should exist in the element being modified.

e The modifier should be compatible with the element being modified, and in most cases also plug-
compatible, section 6.5.

[If the original constraining flat class is legal (no references to unknown elements and no illegal use of
class/component), and modifiers legal as above, then the resulting flat class will be legal (no references to
unknown elements and no illegal use of class/component and compatible with original constraining class)
and references refer to similar entities.]

6.5 Plug-Compatibility or Restricted Subtyping

[If a sub-component is redeclared, see section 7.3, it is impossible to connect to any new connector.
A connector with input prefix must be connected to, and since one cannot connect across hierarchies,
one should not be allowed to introduce such a connector at a level where a connection is not possible.
Therefore all public components present in the interface A that are not present in B must be connected by
default.]

Definition 6.6. Plug-compatibility (= restricted subtyping). An interface A is plug-compatible
with (a restricted subtype of) an interface B (or the constraining interface of B) iff:

e A is compatible with (subtype of) B.
e All public components present in A but not in B must be default-connectable (as defined below).
O
Definition 6.7. Default connectable. A component of an interface is default-connectable iff:
e All of its components are default connectable.
e A connector component must not be an input.
[Otherwise a connection to the input will be missing.)
e A connector component must not be of an expandable connector class.
[The expandable connector does potentially have inputs.]

e A parameter, constant, or non-connector input must either have a binding equation or all of its
sub-components must have binding equations.

O
Based on the above definitions, there are the following restrictions:

e A redeclaration of an inherited top-level component must be compatible with (subtype of) the
constraining interface of the element being redeclared.
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e In all other cases redeclarations must be plug-compatible with the constraining interface of the
element being redeclared.

[The reason for the difference is that for an inherited top-level component it is possible to connect to the
additional connectors, either in this class or in a derived class.

Ezxample:

partial model TwoFlanges
Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a;
Modelica.Mechanics.Rotational.Interfaces.Flange_b flange_b;
end TwoFlanges;

partial model FrictionElement
extends TwoFlanges;

end FrictionElement;

model Clutch "compatible - but not plug-compatible with FrictionElement"
Modelica.Blocks.Interfaces.Reallnput pressure;
extends FrictionElement;

end Clutch;

model DrivelLineBase

extends TwoFlanges;

Inertia J1;

replaceable FrictionElement friction;
equation

connect (flange_a, Jl.flange_a);

connect (J1.flange_b, friction.flange_a);

connect (friction.flange_b, flange_b);
end DrivelLineBase;

model DriveLine
extends DrivelLineBase(redeclare Clutch friction);
Constant const;
equation
connect (const.y, frition.pressure);
// Legal connection to new input connector.
end DriveLine;

model UseDrivelLine "illegal model"
DrivelLineBase base(redeclare Clutch friction);
// Cannot connect to friction.pressure

end UseDriveline;

If a subcomponent is redeclared, it is impossible to connect to any new connector. Thus any new con-
nectors must work without being connected, i.e., the default connection of flow variables. That fails for
inputs (and expandable connectors may contain inputs). For parameters and non-connector inputs it
would be possible to provide bindings in a derived class, but that would require hierarchical modifiers and
it would be bad modeling practice that a hierarchical modifier must be used in order to make a model
valid. A replaceable class might be used as the class for a sub-component, therefore plug-compatibility is
required not only for replaceable sub-components, but also for replaceable classes.

6.6 Function-Compatibility or Function-Subtyping for Functions

[Functions may be called with either named or positional arguments, and thus both the name and order
is significant. If a function is redeclared, see section 7.3, any new arguments must have defaults (and be
at the end) in order to preserve the meaning of existing calls.]

Definition 6.8. Function-compatibility or function-subtyping for functions. A function class
A is function-compatible with or a function subtype of function class B iff (the terms function-compatible
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and function subtype of are synonyms and used interchangeably):
e A is compatible to (subtype of) B.

e All public input components of B have correspondingly named public input components of A in the
same order and preceding any additional public input components of A.

e All public output components of B have correspondingly named public output components of A in
the same order and preceding any additional public output components of A.

e A public input component of A must have a binding assignment if the corresponding named element
has a binding assignment in B.

e A public input component of A not present in B must have a binding assignment.

e If A is impure, then B must also be impure, compare section 12.3.

Based on the above definition the following restriction holds:

e The interface of a redeclared function must be function-compatible with or a function subtype of
the constraining interface of the function being redeclared.

[Example: Demonstrating a redeclaration using a function-compatible function

function GravityInterface

input Modelica.Units.SI.Position position([3];

output Modelica.Units.SI.Acceleration acceleration[3];
end GravityInterface;

function PointMassGravity

extends GravityInterface;

input Modelica.Units.SI.Mass m;
algorithm

acceleration := -Modelica.Constants.G*m*position/(position*position)"1.5;
end PointMassGravity;

model Body
model UseDrivelLine "illegal model"
DrivelLineBase base(redeclare Clutch friction);
// Cannot connect to friction.pressure
end UseDriveline;
Modelica.Mechanics.MultiBody.Interface.Frame_a frame_a;

replaceable function gravity = GravityInterface;
equation

frame_a.f = gravity(frame_a.r0);

// or gravity(position=frame_a.r0);

frame_a.t = zeros(3);
end Body;

model PlanetSimulation
function sunGravity = PointMassGravity (m=2e30);
Body planetl(redeclare function gravity = sunGravity);
Body planet2(redeclare function gravity = PointMassGravity (m=2e30));

end PlanetSimulation;

Note: PointMassGravity is not function-compatible with GravityInterface (no default for m), but
sunGravity inside PlanetSimulation is function-compatible with GravityInterface.]

6.7 Type Compatible Expressions

Certain expressions consist of an operator applied to two or more type compatible sub-expressions (A and
B), including binary operators, e.g. A + B, if-expressions, e.g. if x then A else B, and array expres-
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sions, e.g. {A, B}. The resulting type of the expression in case of two type compatible subexpressions A
and B is defined as follows:

If A is a record-expression B must also be a record-expression with the same named elements. The
type compatible expression is a record comprised of named elements that are compatible with the
corresponding named elements of both A and B. In an array expression the two records may contain
elements with different sizes, but apart from that they must be of compatible types. That generates
a heterogenous array of records, see chapter 10.

If A is an array expression then B must also be an array expression, and ndims (A) = ndims(B).
The type compatible expression is an array expression with elements compatible with the elements
of both A and B. If both size(A) and size(B) are known and size(A) = size(B) then this defines
the size of the type compatible expression, otherwise the size of the expression is not known until
the expression is about to be evaluated. In case of an if-expression the size of the type compatible
expression is defined based on the branch selected, and for other cases size(A) = size(B) must
hold at this point.

If A is a scalar expression of a simple type B must also be a scalar expression of a simple type.

If A is a Real expression then B must be a Real or Integer expression and the type compatible
expression is Real, compare section 10.6.13.

If A is an Integer expression then B must be a Real or Integer expression. For exponentiation and
division the type compatible expression is Real (even if both A and B are Integer) see section 10.6.7
and section 10.6.5, in other cases the type compatible expression is Real or Integer (same as B),
compare section 10.6.13.

If A is a Boolean expression then B must be a Boolean expression and the type compatible expression
is Boolean.

If A is a String expression then B must be a String expression and the type compatible expression
is String.

If A is an enumeration expression then B must be an enumeration expression and the type compatible
expression is enumeration expression, and all enumeration expressions must be defined in terms of
an enumeration type with the same enumeration literals in the same order.

If A has an operator record base-class then B must also have an operator record base-class,
and it must be the same, and otherwise neither A nor B may have an operator record base-class.
This is also the operator record base-class for the expression e.g. for if (cond) then A else B.

If A is derived from ExternalObject then B must also be derived from ExternalObject and they
must have the same full name; and otherwise neither A nor B may be derived from ExternalObject.
The common full name also defines the type of the expression, e.g. for if (cond) then A else B.
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Chapter 7

Inheritance, Modification, and
Redeclaration

One of the major benefits of object-orientation is the ability to extend the behavior and properties of
an existing class. The original class, known as the base class, is extended to create a more specialized
version of that class, known as the derived class. In this process, the data and behavior of the original
class in the form of variable declarations, equations, and certain other contents are reused, or inherited,
by the derived class. In fact, the inherited contents is copied from the superclass into the derived class,
but before copying certain operations, such as type expansion, checking, and modification, are performed
on the inherited contents when appropriate. This chapter describes the inheritance concept in Modelica,
together with the related concepts modification and redeclaration.

7.1 Inheritance — Extends Clause

The class A is called a base class of B, if B extends A. The converse relation is then expressed as B being a
derived class of A, or as B being derived from A. This relation is specified by an extends-clause in B or in
one of B’s base classes. A class inherits all elements from its base classes, and may modify all non-final
elements inherited from base classes, as explained below.

The extends-clause is used to specify inheritance from a base class into an (enclosing) class containing
the extends-clause. It is an unnamed element of a class definition that uses a name and an optional
modification to specify a base class of the class defined using the class definition. The syntax of the
extends-clause is as follows:

extends-clause
extends name [ class-modification ] [annotation]

The name of the base class is looked up in the partially flattened enclosing class (section 5.2) of the
extends-clause. The found base class is flattened with a new environment and the partially flattened
enclosing class of the extends-clause. The new environment is the result of merging

e arguments of all enclosing class environments that match names in the flattened base class
e the optional class-modification of the extends-clause
in that order.

[Example:

class A
parameter Real a, b;
end A;

class B
extends A(b = 2);
end B;
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class C
extends B(a = 1);
end C;

]

The elements of the flattened base class become elements of the flattened enclosing class, and are added
at the place of the extends-clause: specifically components and classes, the equation sections, algorithm
sections, optional external-clause, and the contents of the annotation at the end of the class, but excluding
import-clauses.

[From the example above we get the following flattened class:

class Cinstance
parameter Real a 1;
parameter Real b 2;
end Cinstance;

The ordering of the merging rules ensures that, given classes A and B defined abouve,

class C2
B bcomp(b = 3);
end C2;

yields an instance with bcomp.b = 3, which overrides b = 2.]
The declaration elements of the flattened base class shall either:
e Not already exist in the partially flattened enclosing class (i.e., have different names).
e The new element is a long form of redeclare or uses the class extends A syntax, see section 7.3.

e Be exactly identical to any element of the flattened enclosing class with the same name and the
same level of protection (public or protected) and same contents. In this case, the first element in
order (can be either inherited or local) is kept. It is recommended to give a warning for this case;
unless it can be guaranteed that the identical contents will behave in the same way.

Otherwise the model is incorrect.

[Clarifiying order:

function A
input Real a;
input Real b;

end A;

function B
extends A;
input Real a;
end B;
// The inputs of B are "a, b” in that order; and the "input Real a;” is ignored

]

Equations of the flattened base class that are syntactically equivalent to equations in the flattened
enclosing class are discarded. This feature is deprecated, and it is recommended to give a warning
when discarding them and for the future give a warning about all forms of equivalent equations due to
inheritance.

[Equations that are mathematically equivalent but not syntactically equivalent are not discarded, hence
yield an overdetermined system of equations.]

7.1.1 Multiple Inheritance

Multiple inheritance is possible since multiple extends-clauses can be present in a class.
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7.1.2 Inheritance of Protected and Public Elements

If an extends-clause is used under the protected heading, all elements of the base class become protected
elements of the current class. If an extends-clause is a public element, all elements of the base class are
inherited with their own protection. The eventual headings protected and public from the base class
do not affect the consequent elements of the current class (i.e., headings protected and public are not
inherited).

7.1.3 Restrictions on the Kind of Base Class

Since specialized classes of different kinds have different properties, see section 4.6, only specialized
classes that are in some sense compatible to each other can be derived from each other via inheritance.
The following table shows which kind of specialized class can be used in an extends clause of another
kind of specialized class (the grey cells mark the few exceptional cases, where a specialized class can be
derived from a specialized class of another kind):

Base Class
Derived package | operator | function opera‘.cor type | record operator | expandable connector | block | model | class
Class function record connector
package yes yes
operator yes yes
function yes yes
operator
function yes yes yes
type yes yes
record yes yes
operator
record yes yes
expandable
yes yes
connector
connector yes yes yes yes yes
block yes yes yes
model yes yes yes yes
class yes

If a derived class is inherited from another type of specialized class, then the result is a specialized class
of the derived class type.

[For example, if a block inherits from a record, then the result is a block.]

All specialized classes can be derived from class, provided that the resulting class fulfills the restriction
of the specialized class. A class may only contain class-definitions, annotations, and extends-clauses
(having any other contents is deprecated).

[1t is recommended to use the most specific specialized class.

The specialized classes package, operator, function, type, record, operator record, and expandable
connector can only be derived from their own kind and from class.

[E.g. a package can only be base class for packages. All other kinds of classes can use the import-clause
to use the contents of a package.)

[Example:

record RecordA

end RecordA;

package PackageA

end Packagel;

package PackageB

extends PackagelA; // fine

end PackageB;

model ModelA

extends RecordA; // fine
end Modell;
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model ModelB
extends PackageA; // error, inheritance not allowed
end ModelB;

7.1.4 Restrictions on Base Classes and Constraining Types to be Transitively
Non-Replaceable

The class name used after extends for base-classes and for constraining classes must use a class reference
considered transitively non-replaceable, see definition in section 6.3.1. For a replaceable component
declaration without constraining clause the class must use a class reference considered transitively non-
replaceable.

[The requirement to use a transitively non-replaceable name excludes the long form of redeclare, i.e.
redeclare model extends M... where M must be an inherited replaceable class.]

[The rule for a replaceable component declaration without constraining clause implies that constraining
classes are always transitively non-replaceable — both if explicitly given or implicitly by the declaration.]

7.2 Modifications

A modification is part of an element. It modifies the instance generated by that element. A modifica-
tion contains element modifications (e.g., vec(unit = "V") = 1000) and element-redeclarations (e.g.,
redeclare type Voltage = Real(unit="V")).

There are three kinds of constructs in the Modelica language in which modifications can occur:
e Variable declarations.
e Short class declarations.
¢ Extends-clauses.

A modifier modifies one or more declarations from a class by changing some aspect(s) of the declarations.
The most common kind of modifier just changes the default value or the start value in a binding equation;
the value and/or start-value should be compatible with the variable according to section 6.7.

An element modification overrides the declaration equation in the class used by the instance generated
by the modified element.

[Example: Modifying the default start value of the altitude variable:

Real altitude(start = 59404);

]

A modification (e.g., C1 c1(x = 5)) is called a modification equation, if the modified variable (here:
cl.x) is a non-parameter variable.

[The modification equation is created, if the modified component (here: c1) is also created (see sec-
tion 4.5). In most cases a modification equation for a non-parameter variable requires that the variable
was declared with a declaration equation, see section 4.7; in those cases the declaration equation is re-
placed by the modification equation.]

A more dramatic change is to modify the type and/or the prefizes and possibly the dimension sizes of a
declared element. This kind of modification is called an element-redeclaration (section 7.3) and requires
the special keyword redeclare to be used in the modifier in order to reduce the risk for accidental
modeling errors. In most cases a declaration that can be redeclared must include the prefix replaceable
(section 7.3). The modifier value (and class for redeclarations) is found in the context in which the
modifier occurs, see also section 5.3.1.

[Example: Scope for modifiers:
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model B
parameter Real x;
package Medium = Modelica.Media.PartialMedium;
end B;
model C
parameter Real x = 2;
package Medium = Modelica.Media.PartialMedium;
B b(x = x, redeclare package Medium = Medium);
// The 'x' and 'Medium' being modified are declared in the model B.
// The modifiers '= x' and '= Medium’' are found in the model C.
end C;
model D
parameter Real x = 3;
package Medium = Modelica.Media.PartialMedium;
C c(b(x = x, redeclare package Medium = Medium));
// The 'x' and 'Medium' being modified are declared in the model B.
// The modifiers '= x' and '= Medium’' are found in the model D.
end D;

]

When present, the description-string of a modifier overrides the existing description.

7.2.1 Syntax of Modifications and Redeclarations
The syntax is defined in the grammar, appendix A.2.5.

7.2.2 Modification Environment

The modification environment of a class contains arguments which modify elements of the class (e.g.,
parameter changes) when the class is flattened. The modification environment is built by merging class
modifications, where outer modifications override inner modifications.

[This should not be confused with inner outer prefizes described in section 5.4.]

7.2.3 Merging of Modifications

Merging of modifiers means that outer modifiers override inner modifiers. The merging is hierarchical,
and a value for an entire non-simple component overrides value modifiers for all components, and it is an
error if this overrides a final prefix for a component, or if value for a simple component would override
part of the value of a non-simple component. When merging modifiers each modification keeps its own
each prefix.

[Example: The following larger example demonstrates several aspects:

class C1
class C11
parameter Real x;
end C11;
end C1;

class C2
class C21

end C21;
end C2;

class C3
extends C1;
C11 t(x = 3); // ok, Cll has been inherited from Cl1
C21 u; // ok, even though C21 is inherited below
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extends C2;
end C3;

The following example demonstrates overriding part of non-simple component:

record A
parameter Real x;
parameter Real y;
end A;

model B
parameter A a = A(2, 3);
end B;

model C
B bi(a(x = 4)); // Error since attempting to override value for a.x when a
has a value.
end C;

The modification environment of the declaration of t is (x = 3). The modification environment is built
by merging class modifications, as shown by:

class C1
parameter Real a;
end C1;

class C2
parameter Real b;
parameter Real c;
end C2;

class C3

parameter Real x1; // No default value

parameter Real x2 = 2; // Default value 2

parameter C1 x3; // No default value for x3.a

parameter C2 x4(b = 4); // x4.b has default value 4

parameter C1 x5(a = 5); // x5.a has default value 5

extends C1; // No default value for inherited element a

extends C2(b = 6, ¢ = 77); // Inherited b has default value 6
end C3;

class C4
extends C3(x2 = 22, x3(a = 33), x4(c = 44), x5 = x3, a = 55, b = 66);
end C4;

Outer modifications override inner modifications, e.g., b = 66 overrides the nested class modification of
extends C2(b = 6). This is known as merging of modifications: merge((b = 66), (b = 6)) becomes
(b = 66).

A flattening of class C4 will give an object with the following variables:
Variable \ Default value

x1 none
x2 22
x3.a 33
x4.b 4
x4.c 44
xb.a x3.a
a %)

b 66

c 77
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7.2.4 Single Modification

Two arguments of a modification shall not modify the same element, attribute, or description-string.
When using qualified names the different qualified names starting with the same identifier are merged
into one modifier. If a modifier with a qualified name has the each or final prefix, that prefix is only
seen as applied to the final part of the name.

[Example:

class C1
Real x[3];
end C1;
class C2 = C1(x = ones(3), x = ones(3)); // Error: x designated twice
class C3
class C4
Real x;
end C4;
C4 a(final x.unit = "V", x.displayUnit = "mV", x = 5.0);
// Ok, different attributes designated (unit, displayUnit and value)
// identical to:
C4 b(x(final unit = "V", displayUnit = "mV") = 5.0));
end C3;

The following examples are incorrect:

mi(r = 1.5, r = 1.6) // Multiple modifier for r (its value)
mi(r = 1.5, r = 1.5) // Multiple modifier for r (its value) — even if identical
ml(r.start = 2, r(start = 3)) // Multiple modifier for r.start
mi(x.r = 1.5 "x", x.r(start = 2.0) "y")) // Multiple description—string for x.r
mi(r = RO, r(y = 2)) // Multiple modifier for r.y — both direct value and

// part of record

The following examples are correct:

mi(r = 1.5, r(start = 2.0))
mi(r = 1.6, r "x"
mi(r = RO, r(y(min = 2)))

7.2.5 Modifiers for Array Elements
The following rules apply to modifiers:

e The each keyword on a modifier requires that it is applied in an array declaration/modification,
and the modifier is applied individually to each element of the enclosing array (with regard to the
position of each). In case of nested modifiers this implies it is applied individually to each element
of each element of the enclosing array; see example. If the modified element is a vector and the
modifier does not contain the each-prefix, the modification is split such that the first element in the
vector is applied to the first element of the vector of elements, the second to the second element,
until the last element of the vector-expression is applied to the last element of the array; it is an
error if these sizes do not match. Matrices and general arrays of elements are treated by viewing
those as vectors of vectors etc.

e If a nested modifier is split, the split is propagated to all elements of the nested modifier, and
if they are modified by the each-keyword the split is inhibited for those elements. If the nested
modifier that is split in this way contains re-declarations that are split it is illegal.

[Example:

model C
parameter Real a [3];
parameter Real 4d;

end C;

model B
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C c[5](each a = {1, 2, 3}, 4 = {1, 2, 3, 4, 5});
parameter Real b = 0;
end B;

]
.

This implies c[i] .al[j]l = j and c[i].d

model D
B b(each c.a = {3, 4, 5}, c.d = {2, 3, 4, 5, 6});
// Equivalent to:
B b2(c(each a = {3, 4, 5}, d = {2, 3, 4, 5, 6}));
end D;

This implies b.c[i].alj] = 2+j and b.c[i].d = 1+i.

model E

B b[2] (each c(each a = {1, 2, 3}, d = {1, 2, 3, 4, 5}), p = {1, 2});

// Without the first each one would have to use:

B b2[2](c(each a = {1, 2, 3}, 4 = fill1({1, 2, 3, 4, 5}, 2)), p = {1, 2});
end E;

This implies b[k] .c[il.aljl = j, blkl.c[il.d = i, and b[k].p = k. For c.a the additional (outer)
each has no effect, but it is necessary for c.d.

Specifying array dimensions after the type works the same as specifying them after the variable name.

model F
Real faill[2](each start = {1, 2}); // lllegal
Real workl[2](each start = 1); // Legal
Real [2] fail2(each start = {1, 2}); // lllegal
Real [2] work2(each start = 2); // Legal
end F;

7.2.6 Final Element Modification Prevention

An element defined as final by the final prefix in an element modification or declaration cannot be
modified by a modification or by a redeclaration. All elements of a final element are also final.

[Setting the value of a parameter in an experiment environment is conceptually treated as a modifica-
tion. This implies that a final modification equation of a parameter cannot be changed in a simulation
environment.)

[Example: Final component modification.

type Angle =
Real (final quantity = "Angle", final unit = "rad", displayUnit = "deg");

model TransferFunction
parameter Real b[:]
parameter Real al:]

{1} "numerator coefficient vector";
{1, 1} "denominator coefficient vector";

end TransferFunction;

model PI "PI controller"

parameter Real k = 1 "gain";

parameter Real T = 1 "time constant";

TransferFunction tf(final b = k * {T, 1}, final a = {T, 0});
end PI;

model Test

PI ci1(k = 2, T = 3); // fine, will indirectly change tf.b to 2 % {3, 1}
PI c2(tf(b = {1})); // error, b is declared as final
end Test;
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]

[Ezample: Final class declaration.

model Test2
final model MyTF = TramnsferFunction(b = {1, 2});
/* Equivalently:
final model MyTF = TransferFunction(final a, final b = {1, 2});

*/
MyTF tf1; // fine
MyTF tf2(a = {1, 2}); // error, all elements in MyTF are final
model M = MyTF(a = {4}); // error, all elements in MyTF are final
model TFX

extends MyTF; // fine

Real foo = 1.0;
end TFX;
TFX tfx(foo = 2.0); // fine, foo is not from MyRF
TFX tfx2(a = {1, 3}); // error, all elements from MyTF are final
model TFX3 = TFX(a = {1, 4}); // error, all elements from MyTF are final

end Test2;

7.3 Redeclaration

A redeclare construct in a modifier replaces the declaration of a local class or component with another
declaration. A redeclare construct as an element replaces the declaration of a local class or component
with another declaration. Both redeclare constructs work in the same way. The redeclare construct
as an element requires that the element is inherited, and cannot be combined with a modifier of the same
element in the extends-clause. For modifiers the redeclare of classes uses a special short-class-definition
construct; that is a subset of normal class definitions and semantically behave as the corresponding
class-definition.

A modifier with the keyword replaceable is automatically seen as being a redeclare.

In redeclarations some parts of the original declaration is automatically inherited by the new declaration.
This is intended to make it easier to write declarations by not having to repeat common parts of the
declarations, and does in particular apply to prefixes that must be identical. The inheritance only applies
to the declaration itself and not to elements of the declaration.

The general rule is that if no prefix within one of the following groups is present in the new declaration
the old prefixes of that kind are preserved.

The groups that are valid for both classes and components:

e public, protected

e inner, outer

e constraining type according to rules in section 7.3.2.
The groups that are only valid for components:

e flow, stream

e discrete, parameter, constant

e input, output

e array dimensions

Note that if the old declaration was a short class definition with array dimensions the array dimensions
are not automatically preserved, and thus have to be repeated in the few cases they are used.

Replaceable component array declarations with array sizes on the left of the component are seen as
syntactic sugar for having all arrays sizes on the right of the component; and thus can be redeclared in
a consistent way.
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[Note: The inheritance is from the original declaration. In most cases replaced or original does not
matter. It does matter if a user redeclares a variable to be a parameter and then redeclares it without
parameter.]

[

model HeatExchanger
replaceable parameter GeometryRecord geometry;
replaceable input Real ul[2];

end HeatExchanger;

HeatExchanger (
/*redeclarex/ replaceable /xparameterx/ GeoHorizontal geometry,
redeclare /xinputx/ Modelica.Units.SI.Angle u /% [2]x/);
// The semantics ensure that parts in /%.x/ are automatically added
// from the declarations in HeatExchanger

Ezxample of arrays on the left of the component name:

model M
replaceable Real [4] x[2];
// Seen as syntactic sugar for
// Note the order.

end M;

M m(redeclare Modelica.Units.SI.Length x[2, 4]); // Valid redeclare of the type

replaceable Real x[2, 4];"

7.3.1 The class extends Redeclaration Mechanism

A class declaration of the type redeclare class extends B(...), where class as usual can be replaced
by any other specialized class, replaces the inherited class B with another declaration that extends
the inherited class where the optional class-modification is applied to the inherited class. Inherited
B here means that the class containing redeclare class extends B(...) should also inherit another
declaration of B from one of its extends-clauses. The new declaration should explicitly include redeclare.

[Since the rule about applying the optional class-modification implies that all declarations are inherited
with modifications applied, there is no need to apply modifiers to the new declaration.]

For redeclare class extends B(...) the inherited class is subject to the same restrictions as a rede-
clare of the inherited element, and the original class B should be replaceable, and the new element is only
replaceable if the new definition is replaceable. In contrast to normal extends it is not subject to the
restriction that B should be transitively non-replaceable (since B should be replaceable).

The syntax rule for class extends construct is in the definition of the class-specifier nonterminal
(see also class declarations in section 4.5):

class-definition
[ encapsulated ] class-prefixes
class-specifier

class-specifier : long-class-specifier
long-class-specifier

| extends IDENT [ class-modification ] description-string
composition end IDENT

The nonterminal class-definition is referenced in several places in the grammar, including the fol-
lowing case which is used in some examples below, including package extends and model extends:

element
import-clause |
extends-clause |
[ redeclare ]
[ final 1]
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[ inner ] [ outer 1]
( ( class-definition | component-clause) |
replaceable ( class-definition | component-clause)
[constraining-clause comment])

[Example to extend from existing packages:

package PowerTrain // library from someone else
replaceable package GearBoxes

end GearBoxes;
end PowerTrain;

package MyPowerTrain
extends PowerTrain; // use all classes from PowerTrain
redeclare package extends GearBoxes // add classes to sublibrary

end GearBoxes;
end MyPowerTrain;

Example for an advanced type of package structuring with constraining types:

partial package PartialMedium "Generic medium interface"
constant Integer nX "number of substances";
replaceable partial model BaseProperties
Real X[nX];

end BaseProperties;

replaceable partial function dynamicViscosity
input Real p;
output Real eta;...
end dynamicViscosity;
end PartialMedium;

package MoistAir "Special type of medium"
extends PartialMedium (nX=2);

redeclare model extends BaseProperties(T(stateSelect = StateSelect.prefer))
// replaces BaseProperties by a new implementation and
// extends from Baseproperties with modification
// note, nX =2 (!)
equation
X = {0, 1};

end BaseProperties;

redeclare function extends dynamicViscosity
// replaces dynamicViscosity by a new implementation and
// extends from dynamicViscosity
algorithm
eta := 2 * p;
end dynamicViscosity;
end MoistAir;

Note, since MostAir extends from PartialMedium, constant nX = 2 in package MoistAir and the model
BaseProperties and the function dynamicViscosity is present in MoistAir. By the following defini-
tions, the available BaseProperties model is replaced by another implementation which extends from the
BaseProperties model that has been temporarily constructed during the extends of package MoistAir
from PartialMedium. The redeclared BaseProperties model references constant nX which is 2, since by
construction the redeclared BaseProperties model is in a package with nX = 2.

This definition is compact but is difficult to understand. At a first glance an alternative exists that is
more straightforward and easier to understand:
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package MoistAir2 "Alternative definition that does not work"
extends PartialMedium(nX=2,
redeclare model BaseProperties = MoistAir_BaseProperties,
redeclare function dynamicViscosity = MoistAir_dynamicViscosity);

model MoistAir_BaseProperties
// wrong model since nX has no value
extends PartialMedium.BaseProperties;
equation
X = {1, 0};
end MoistAir_BaseProperties;

model MoistAir_dynamicViscosity
extends PartialMedium.dynamicViscosity;
algorithm
eta := p;
end MoistAir_dynamicViscosity;
end MoistAir2;

Here, the usual approach is used to extend (here from PartialMedium) and in the modifier perform all
redeclarations. In order to perform these redeclarations, corresponding implementations of all elements of
PartialMedium have to be given under a different name, such as MoistAir2.MoistAir_BaseProperties
, since the name BaseProperties already exists due to extends PartialMedium. Then it is possible in
the modifier to redeclare PartialMedium.BaseProperties to MoistAir2.MoistAir_BaseProperties.
Besides the drawback that the namespace is polluted by elements that have different names but the same
implementation (e.g. MoistAir2.BaseProperties is identical to MoistAir2.MoistAir_BaseProperties
) the whole construction does not work if arrays are present that depend on constants in PartialMedium,
such as X[nX]: The problem is that MoistAir_BaseProperties extends from PartialMedium.BaseProperties
where the constant nX does not yet have a value. This means that the dimension of array X is unde-
fined and model MoistAir_BaseProperties is wrong. With this construction, all constant definitions
have to be repeated whenever these constants shall be used, especially in MoistAir_BaseProperties and
MoistAir_dynamicViscosity. For larger models this is not practical and therefore the only practically
useful definition is the complicated construction in the previous example with redeclare model extends
BaseProperties.

To detect this issue the rule on lookup of composite names (section 5.3.2) ensures that PartialMedium.
dynamicViscosity is incorrect in a simulation model.]

7.3.2 Constraining Type

In a replaceable declaration the optional constraining-clause defines a constraining type. Any mod-
ifications following the constraining type name are applied both for the purpose of defining the actual
constraining type and they are automatically applied in the declaration and in any subsequent redecla-
ration. The precedence order is that declaration modifiers override constraining type modifiers.

If the constraining-clause is not present in the original declaration (i.e., the non-redeclared declara-
tion):

e The type of the declaration is also used as a constraining type.

e The modifiers for subsequent redeclarations and constraining type are the modifiers on the com-
ponent or short-class-definition if that is used in the original declaration, otherwise empty.

The syntax of a constraining-clause is as follows:

constraining-clause
constrainedby name [ class-modification ]

[Example: Merging of modifiers:

class A
parameter Real Xx;
end A;
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class B
parameter Real x = 3.14, y; // B is a subtype of A
end B;

class C
replaceable A a(x = 1);
end C;

class D
extends C(redeclare B a(y = 2));
end D;

which is equivalent to defining D as

class D
Ba(x =1, y = 2);
end D;

A modification of the constraining type is automatically applied in subsequent redeclarations:

model ElectricalSource
replaceable SineSource source constrainedby MO(final n=5);

end ElectricalSource;

model TrapezoidalSource

extends ElectricalSource(

redeclare Trapezoidal source); // source.n=5
end TrapezoidalSource;

A modification of the base type without a constraining type is automatically applied in subsequent redec-
larations:

model Circuit
replaceable model NonlinearResistor = Resistor (R=100);

end Circuit;

model Circuit2
extends Circuit (
redeclare replaceable model NonlinearResistor
= ThermoResistor (TO = 300));
// As a result of the modification on the base type,
// the default value of R is 100

end Circuit?2;

model Circuit3
extends Circuit2(
redeclare replaceable model NonlinearResistor
= Resistor (R = 200));
// The TO modification is not applied because it did not
// appear in the original declaration
end Circuit3;

Circuit?2 is intended to illustrate that a user can still select any resistor model (including the original
one, as is done in Circuit3), since the constraining type is kept from the original declaration if not
specified in the redeclare. Thus it is easy to select an advanced resistor model, without limiting the
possible future changes.

A redeclaration can redefine the constraining type:

model Circuitéd
extends Circuit2(
redeclare replaceable model NonlinearResistor
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= ThermoResistor constrainedby ThermoResistor);
end Circuitéd;

model Circuitb
extends Circuit4(
redeclare replaceable model NonlinearResistor = Resistor); // illegal
end Circuith;

]

The class or type of component shall be a subtype of the constraining type. In a redeclaration of
a replaceable element, the class or type of a component must be a subtype of the constraining type.
The constraining type of a replaceable redeclaration must be a subtype of the constraining type of the
declaration it redeclares. In an element modification of a replaceable element, the modifications are
applied both to the actual type and to the constraining type.

In an element-redeclaration of a replaceable element the modifiers of the replaced constraining type are
merged to both the new declaration and to the new constraining type, using the normal rules where
outer modifiers override inner modifiers.

When a class is flattened as a constraining type, the flattening of its replaceable elements will use the
constraining type and not the actual default types.

The number of dimension in the constraining type should correspond to the number of dimensions in
the type-part. Similarly the type used in a redeclaration must have the same number of dimensions as
the type of redeclared element.

[Example:

replaceable T1 x[n] constrainedby T2;
replaceable type T=T1[n] constrainedby T2;
replaceable Ti1[n] x constrainedby T2;

In these examples the number of dimensions must be the same in T1 and T2, as well as in a redeclaration.
Normally T1 and T2 are scalar types, but both could also be defined as array types (with the same number
of dimensions). Thus if T2 is a scalar type (e.g. type T2 = Real) then T1 must also be a scalar type,
and if T2 is defined as vector type (e.g. type T2 = Reall[3]) then T1 must also be vector type.]

7.3.2.1 Constraining-clause annotations

Description and annotations on the constraining-clause are applied to the entire declaration, and it is an
error if they also appear on the definition.

[The intent is that the description and/or annotation are at the end of the declaration, but it is not
straightforward to specify this in the grammar.)

[Example:

replaceable model Loadl =

Resistor constrainedby TwoPin "The Load"; // Recommended
replaceable model Load2 =

Resistor "The Load" comnstrainedby TwoPin; // ldentical to Loadl
replaceable model Load3 =

Resistor "The Load" constrainedby TwoPin "The Load"; // Error

replaceable Resistor loadl

constrainedby TwoPin "The Load"; // Recommended
replaceable Resistor load2

"The Load" constrainedby TwoPin; // ldentical to loadl
replaceable Resistor load3

"The Load" constrainedby TwoPin "The Load!"; // Error

]

See also the examples in section 7.3.4.
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7.3.3 Restrictions on Redeclarations
The following additional constraints apply to redeclarations (after prefixes are inherited, section 7.3):

e Only classes and components declared as replaceable can be redeclared with a new type, which
must have an interface compatible with the constraining interface of the original declaration, and
to allow further redeclarations one must use redeclare replaceable.

[Redeclaration with the same type can be used to restrict variability and/or change array dimen-
sions.]

e An element declared as constant cannot be redeclared.
e An element declared as final shall not be modified, and thus not redeclared.

e Modelica does not allow a protected element to be redeclared as public, or a public element to be
redeclared as protected.

e Array dimensions may be redeclared; provided the sub-typing rules in section 6.4 are satisfied.

[This is one example of redeclaration of non-replaceable elements.]

7.3.4 Annotation Choices for Suggested Redeclarations and Modifications

A declaration can have an annotation choices containing modifiers on choice, where each of them
indicates a suitable redeclaration or modifications of the element.

This is a hint for users of the model, and can also be used by the user interface to suggest reasonable
redeclaration, where the string comments on the choice declaration can be used as textual explanations
of the choices. The annotation is not restricted to replaceable elements but can also be applied to
non-replaceable elements, enumeration types, and simple variables. For a Boolean variable, a choices
annotation may contain the definition checkBox = true, meaning to display a checkbox to input the
values false or true in the graphical user interface.

The annotation choicesAllMatching = true on a replaceable element indicates that tools should auto-
matically construct a menu with choices of elements usable for replacing it. Exact criteria for inclusion in
such a menu are not defined, but there shall be a a way to at least get a selection of classes, A.B..... X.Z,
that are either directly or indirectly derived by inheritance from the constraining class of the declaration,
where A to X are non-partial packages, and Z is non-partial. This menu can be disabled using annotation
choicesAllMatching = false.

[The behavior when choicesAllMatching is not specified; ideally it should present (at least) the same
choices as for choicesAllMatching = true; but if it takes (too long) time to present the list it is better
to have choicesAllMatching = false.]

[Example:
replaceable model MyResistor = Resistor
annotation(choices(
choice(redeclare model MyResistor=1ib2.Resistor(a={2}) "..."),
choice(redeclare model MyResistor=1ib2.Resistor2 "...")));
replaceable Resistor Load(R = 2) constrainedby TwoPin
annotation(choices(
choice(redeclare 1lib2.Resistor Load(a={2}) "..."),
choice(redeclare Capacitor Load(L=3) "...")));
replaceable FrictionFunction a(func = exp) constrainedby Friction
annotation (choices (
choice(redeclare ConstantFriction a(c=1) "..."),
choice(redeclare TableFriction a(table="...") "..."),
choice(redeclare FunctionFriction a(func=exp) "...")));

replaceable package Medium = Modelica.Media.Water.ConstantPropertyLiquidWater
constrainedby Modelica.Media.Interfaces.PartialMedium
annotation(choicesAllMatching = true);
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It can also be applied to nonreplaceable declarations, e.g. to describe enumerations.

type KindOfController = Integer(min = 1, max = 3)
annotation (choices (

choice =1 "P",
choice = 2 "PI",
choice = 3 "PID"));
model A
parameter KindOfController x;
end A;

A a(x = 3 "PID");

It can also be applied to Boolean wvariables to define a check box.

parameter Boolean useHeatPort = false annotation(choices(checkBox = true));
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Chapter 8

Equations

An equation is part of a class definition. A scalar equation relates scalar variables, i.e., constrains
the values that these variables can take simultaneously. When n-1 variables of an equation containing n
variables are known, the value of the n:th variable can be inferred (solved for). In contrast to a statement
in an algorithm section, an equation does not define for which of its variable it is to be solved. Special
cases are: initial equations, instantaneous equations, declaration equations.

An equation or statement is instantaneous if it holds only at events, i.e., at single points in time. The
equations and statements of a when-clause are instantaneous, see section 8.3.5 and section 11.2.7.

8.1 Equation Categories

Equations in Modelica can be classified into different categories depending on the syntactic context in
which they occur:

e Normal equality equations occurring in equation sections, including connect-equations and other
equation types of special syntactic form (section 8.3).

e Declaration equations, which are part of variable, parameter, or constant declarations (section 4.4.2.1).
e Modification equations, which are commonly used to modify attributes of classes (section 7.2).

e Binding equations, which include both declaration equations and element modification for the value
of the variable itself. These are considered equations when appearing outside functions, and then
a component with a binding equation has its value bound to some expression. (Binding equations
can also appear in functions, see section 12.4.4.)

e Initial equations, which are used to express equations for solving initialization problems (sec-
tion 8.6).
8.2 Flattening and Lookup in Equations

A flattened equation is identical to the corresponding nonflattened equation.

Names in an equation shall be found by looking up in the partially flattened enclosing class of the
equation.

8.3 Equations in Equation Sections

An equation section is comprised of the keyword equation followed by a sequence of equations. The
formal syntax is as follows:

equation-section
[ initial ] equation { equation ";" }

The following kinds of equations may occur in equation sections. The syntax is defined as follows:
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equation
( simple-expression "=" expression
| if-equation
| for-equation
| connect-clause
| when-equation
| component-reference function-call-args )
comment

No statements are allowed in equation sections, including the assignment statement using the := operator.

8.3.1 Simple Equality Equations

Simple equality equations are the traditional kinds of equations known from mathematics that express an
equality relation between two expressions. There are two syntactic forms of such equations in Modelica.
The first form below is equality equations between two expressions, whereas the second form is used
when calling a function with several results. The syntax for simple equality equations is as follows:

simple-expression "=" expression

The types of the left-hand-side and the right-hand-side of an equation need to be compatible in the same
way as two arguments of binary operators (section 6.7).

Three examples:
e simple_exprl = expr2;
e (if pred then altl else alt2) = expr2;
e (outl, out2, out3) = function_name(inexprl, inexpr2);

[Note: According to the grammar the if-then-else expression in the second example needs to be enclosed
in parentheses to avoid parsing ambiguities. Also compare with section 11.2.1.1 about calling functions
with several results in assignment statements.]

8.3.2 For-Equations — Repetitive Equation Structures

The syntax of a for-equation is as follows:

for for-indices 1loop
{ equation ";" }
end for ";"

For-equations may optionally use several iterators (for-indices), see section 11.2.2.3 for more information:

for-indices:
for-index {"," for-index}

for-index:
IDENT [ in expression ]

The following is one example of a prefix of a for-equation:

for IDENT in expression loop

8.3.2.1 Explicit Iteration Ranges of For-Equations

The expression of a for-equation shall be a vector expression, where more general array expressions
are treated as vector of vectors or vector of matrices. It is evaluated once for each for-equation, and is
evaluated in the scope immediately enclosing the for-equation. The expression of a for-equation shall be
a parameter expression. The iteration range of a for-equation can also be specified as Boolean or as an
enumeration type, see section 11.2.2.2 for more information. The loop-variable (IDENT) is in scope inside
the loop-construct and shall not be assigned to. For each element of the evaluated vector expression, in
the normal order, the loop-variable gets the value of that element and that is used to evaluate the body
of the for-loop.
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[Example:

for i in 1 : 10 loop // i takes the values 1, 2, 3, ..., 10

for r in 1.0 : 1.5 : 5.5 loop // r takes the values 1.0, 2.5, 4.0, 5.5

for i in {1, 3, 6, 7} loop // 1 takes the values 1, 3, 6, 7

for i in TwoEnums loop // i takes the values TwoEnums.one, TwoEnums.two
// for TwoEnums = enumeration (one,two)

The loop-variable may hide other variables as in the following example. Using another name for the
loop-variable is, however, strongly recommended.

constant Integer j = 4;
Real x[j]
equation
for j in 1:j loop // The loop—variable j takes the values 1,2,3,4
x[j1 = j; // Uses the loop—variable j
end for;

8.3.2.2 Implicit Iteration Ranges of For-Equations

The iteration range of a loop-variable may sometimes be inferred from its use as an array index. See
section 11.2.2.1 for more information.

[Example:
Real x[n],y[nl;

for i loop // Same as: for i in 1l:size(x ,1) loop
x[1] = 2*xy[i]l;

end for;

8.3.3 Connect-Equations

A connect-equation has the following syntax:

connect "(" component-reference "," component-reference ")" ";"

These can be placed inside for-equations and if-equations; provided the indices of the for-loop and
conditions of the if-clause are parameter expressions that do not depend on cardinality, rooted,
Connections.rooted, or Connections.isRoot. The for-equations/if-equations are expanded. Connect-
equations are described in detail in section 9.1.

The same restrictions apply to Connections.branch, Connections.root, and Connections.potentialRoot
; which after expansion are handled according to section 9.4.

8.3.4 If-Equations

If-equations have the following syntax:

if expression then
{ equation ";" }
{ elseif expression then
{ equation ";" } }
[ else
{ equation ";" }
]
end if ";"

The expression of an if- or elseif-clause must be a scalar Boolean expression. One if-clause, and zero or
more elseif-clauses, and an optional else-clause together form a list of branches. One or zero of the bodies
of these if-, elseif- and else-clauses is selected, by evaluating the conditions of the if- and elseif-clauses
sequentially until a condition that evaluates to true is found. If none of the conditions evaluate to true
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the body of the else-clause is selected (if an else-clause exists, otherwise no body is selected). In an
equation section, the equations in the body are seen as equations that must be satisfied. The bodies that
are not selected have no effect on that model evaluation.

If-equations in equation sections which do not have exclusively parameter expressions as switching condi-
tions shall have the same number of equations in each branch (a missing else is counted as zero equations
and the number of equations is defined after expanding the equations to scalar equations).

[If this condition is violated, the single assignment rule would not hold, because the number of equations
may change during simulation although the number of unknowns remains the same.)

8.3.5 When-Equations

When-equations have the following syntax:

when expression then

{ equation ";" }
{ elsewhen expression then
{ equation ";" } }

end when ";"

The expression of a when-equation shall be a discrete-time Boolean scalar or vector expression. The
statements within a when-equation are activated when the scalar expression or any of the elements of
the vector expression becomes true.

[Example: The order between the equations in a when-equation does not matter, e.g.

equation
when x > 2 then
y3 = 2xx +yl+y2; // Order of yl and y3 equations does not matter
yl = sin(x);
end when;
y2 = sin(yl);

8.3.5.1 Defining When-Equations by If-Expressions in Equality Equations

A when-equation:

equation
when x > 2 then
vl = expril;
v2 = expr2;
end when;

is conceptually equivalent to the following equations containing special if-expressions

// Not correct Modelica
Boolean b(start = x.start > 2);
equation
b =x > 2;
vl = if edge(b) then exprl else pre(vl);
v2 if edge(b) then expr2 else pre(v2);

[The equivalence is conceptual since pre(...) of a non discrete-time Real variable or expression can only
be used within a when-clause. Fxample:

/* discrete %/ Real x;
input Real u;
output Real y;
equation
when sample () then
x = a * pre(x) + b * pre(u);
end when;

y = X3

98




Modelica Language Specification 3.5 (RC1)
Modelica 8.3. Equations in Equation Sections

#  Language

Here, x is a discrete-time variable (whether it is declared with the discrete prefix or not), but u and
y cannot be discrete-time variables (since they are not assigned in when-clauses). However, pre(u) is
legal within the when-clause, since the body of the when-clause is only evaluated at events, and thus all
expressions are discrete-time expressions.]

The start-values of the introduced Boolean variables are defined by the taking the start-value of the
when-condition, as above where b is a parameter variable. The start-value of the special functions
initial, terminal, and sample is false.

8.3.5.2 Restrictions on Where a When-Equation may Occur
e When-equations shall not occur inside initial equations.

e When-equations cannot be nested.

e When-equations can only occur within if-equations and for-equations if the controlling expressions
are exclusively parameter expressions.

[Example: The following when-equation is invalid:

when x > 2 then
when y1 > 3 then
y2 = sin(x);
end when;
end when;

8.3.5.3 Restrictions on Equations within When-Equations
The equations within the when-equation must have one of the following forms:
® V = expr;
e (outl, out2, out3, ...) = function_call_name(inl, in2, ...);
e Operators assert, terminate, reinit.
e For- and if-equations if the equations within the for- and if-equations satisfy these requirements.

e The different branches of when/elsewhen must have the same set of component references on the
left-hand side.

e The branches of an if-then-else clause inside when-equations must have the same set of component
references on the left-hand side, unless the if-then-else have exclusively parameter expressions as
switching conditions.

Any left hand side reference, (v, outl, ...), in a when-clause must be a component reference, and any
indices must be parameter expressions.

e needed restrictions on equations within a when-equation becomes apparent wi e following exam-
Th ded restricti ti jithi h tion b t with the followi
ple:

Real x, y;
equation
X +y =5;

when condition then
2 x x +y =7; // error: not valid Modelica
end when;

When the equations of the when-equation are not activated it is not clear which variable to hold constant,
either x or y. A corrected version of this example is:

Real x,y;
equation
x +y = 5;
when condition then
y=7=-2=x*x; // fine
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‘ end when;

Here, variable y is held constant when the when-equation is deactivated and x is computed from the first
equation using the value of y from the previous event instant.]

[Example: The restrictions for if-equations mean that both of the following variants are illegal:

Real x, y;
equation

if time < 1 then

when sample(l, 2) then
X = time;

end when;

else
when sample(l, 3) then

y = time;
end when;
end if;

when sample(l, 2) then
if time < 1 then

y = time;
else

X = time;
end if;

end when;

whereas the restriction to parameter-expression is intended to allow:

parameter Boolean b = true;
parameter Integer n = 3;
Real x[n];
equation
if b then
for i in 1 : n loop

when sample(i, i) then
x[i] = time;
end when;
end for;
end if;

8.3.5.4 Application of the Single-assignment Rule to When-Equations
The Modelica single-assignment rule (section 8.4) has implications for when-equations:
e Two when-equations shall not define the same variable.

[ Without this rule this may actually happen for the erroneous model DoubleWhenConflict below,
since there are two equations (close = true; close = false; ) defining the same variable close.
A conflict between the equations will occur if both conditions would become true at the same time
instant.

model DoubleWhenConflict
Boolean close; // Erroneous model: close defined by two equations!
equation

when conditionl then

close = true;

end when;

when condition2 then
close = false;

end when;
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end DoubleWhenConflict;

One way to resolve the conflict would be to give one of the two when-equations higher priority. This
is possible by rewriting the when-equation using elsewhen, as in the WhenPriority model below or
using the statement version of the when-construct, see section 11.2.7.]

e When-equations involving elsewhen-parts can be used to resolve assignment conflicts since the first
of the when/elsewhen parts are given higher priority than later ones:

[Below it is well defined what happens if both conditions become true at the same time instant since
conditionl with associated conditional equations has a higher priority than condition2.

model WhenPriority
Boolean close; // Correct model: close defined by two equations!
algorithm

when conditionl then

close = true;
elsewhen condition2 then
close = false;

end when;

end WhenPriority;

8.3.6 reinit

reinit can only be used in the body of a when-equation. It has the following syntax:

reinit(x, expr);

The operator reinitializes x with expr at an event instant. x is a Real variable (or an array of Real
variables) that must be selected as a state (resp., states), i.e. reinit on x implies stateSelect =

StateSelect.always on x. expr needs to be type-compatible with x. reinit can for the same variable
(resp. array of variables) only be applied (either as an individual variable or as part of an array of
variables) in one equation (having reinit of the same variable in when and else-when of the same
variable is allowed). In case of reinit active during initialization (due to when initial), see section 8.6.

reinit does not break the single assignment rule, because reinit(x, expr) in equations evaluates expr
to a value, then at the end of the current event iteration step it assigns this value to x (this copying
from values to reinitialized state(s) is done after all other evaluations of the model and before copying x
to pre(x)).

[Example: If a higher index system is present, i.e., constraints between state variables, some state vari-
ables need to be redefined to non-state variables. During simulation, non-state variables should be chosen
in such a way that variables with an applied reinit are selected as states at least when the corresponding
when-clauses become active. If this is not possible, an error occurs, since otherwise reinit would be
applied to a non-state variable.

Ezample for the usage of reinit (bouncing ball):

der(h) = v;
der(v) = if flying then -g else O0;
flying = not (h <= 0 and v <= 0);
when h < 0 then

reinit(v, -e * pre(v));
end when

8.3.7 assert

An equation or statement of one of the following forms is an assertion:
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assert (condition, message); // Uses level=AssertionlLevel.error
assert (condition, message, assertionlLevel);
assert (condition, message, level = assertionLevel);

Here, condition is a Boolean expression, message is a String expression, and assertionLevel is an
optional parameter expression of the built-in enumeration type AssertionLevel. It can be used in
equation sections or algorithm sections.

[This means that assert can be called as if it were a function with three formal parameters, the third
formal parameter has the name level and the default value AssertionLevel.error.]

[A parameter expression is required for level since it shall be evaluated at compile time.)

If the condition of an assertion is true, message is not evaluated and the procedure call is ignored. If
the condition evaluates to false, different actions are taken depending on the level input:

e level = AssertionLevel.error: The current evaluation is aborted. The simulation may continue
with another evaluation. If the simulation is aborted, message indicates the cause of the error.

[Ways to continue simulation with another evaluation include using a shorter step-size, or changing
the values of iterationvariables.)

Failed assertions take precedence over successful termination, such that if the model first triggers
the end of successful analysis by reaching the stop-time or explicitly with terminate, but the
evaluation with terminal ()=true triggers an assert, the analysis failed.

e level = AssertionLevel.warning: The current evaluation is not aborted. message indicates the
cause of the warning.

[It is recommended to report the warning only once when the condition becomes false, and it is
reported that the condition is no longer violated when the condition returns to true. The assert
statement shall have no influence on the behavior of the model. For example, by evaluating the
condition and reporting the message only after accepted integrator steps. condition meeds to be
implicitly treated with noEvent since otherwise events might be triggered that can lead to slightly
changed simulation results.]

[The AssertionLevel.error case can be used to avoid evaluating a model outside its limits of validity;
for instance, a function to compute the saturated liquid temperature cannot be called with a pressure lower
than the triple point value.

The AssertionLevel.warning case can be used when the boundary of validity is not hard: for instance,
a fluid property model based on a polynomial interpolation curve might give accurate results between
temperatures of 250 K and 400 K, but still give reasonable results in the range 200 K and 500 K. When
the temperature gets out of the smaller interval, but still stays in the largest one, the user should be
warned, but the simulation should continue without any further action. The corresponding code would
be:

assert (T > 250 and T < 400, "Medium model outside full accuracy range",
Assertionlevel.warning);
assert (T > 200 and T < 500, "Medium model outside feasible region");

8.3.8 terminate

The terminate equation or statement (using function syntax) successfully terminates the analysis which
was carried out, see also section 8.3.7. The termination is not immediate at the place where it is defined
since not all variable results might be available that are necessary for a successful stop. Instead, the
termination actually takes place when the current integrator step is successfully finalized or at an event
instant after the event handling has been completed before restarting the integration.

The terminate statement has a string argument indicating the reason for the success.

[Example: The intention of the terminate statement is to give more complexr stopping criteria than a
fixed point in time:
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model ThrowingBall
Real x(start=0);
Real y(start=1);
equation
der (x) R
der (y) el
algorithm
when y < O then
terminate ("The ball touches the ground");
end when;
end ThrowingBall;

8.3.9 Equation Operators for Overconstrained Connection-Based Equation
Systems

See section 9.4 for a description of this topic.

8.4 Synchronous Data-flow Principle and Single Assignment
Rule

Modelica is based on the synchronous data flow principle and the single assignment rule, which are
defined in the following way:

1. Discrete-time variables keep their values until these variables are explicitly changed. Differentiated
variables have der (x) corresponding to the time-derivative of x, and x is continuous, except when
reinit is triggered, see section 8.3.6. Variable values can be accessed at any time instant during
continuous integration and at event instants.

2. At every time instant, during continuous integration and at event instants, the equations express
relations between variables which have to be fulfilled concurrently.

3. Computation and communication at an event instant does not take time.

[If computation or communication time has to be simulated, this property has to be explicitly mod-
eled.)

4. There must exist a perfect matching of variables to equations after flattening, where a variable can
only be matched to equations that can contribute to solving for the variable (perfect matching rule
— previously called single assignment rule); see also globally balanced section 4.7.

8.5 Events and Synchronization

An event is something that occurs instantaneously at a specific time or when a specific condition occurs.
Events are for example defined by the condition occurring in a when-clause, if-clause, or if-expression.

The integration is halted and an event occurs whenever an event generation expression, e.g. x > 2 0 or
floor(x), changes its value. An event generating expression has an internal buffer, and the value of the
expression can only be changed at event instants. If the evaluated expression is inconsistent with the
buffer, that will trigger an event and the buffer will be updated with a new value at the event instant.
During continuous integration event generation expression has the constant value of the expression from
the last event instant.

[A root finding mechanism is needed which determines a small time interval in which the expression
changes its value; the event occurs at the right side of this interval.]

[Example:

y = if u > uMax then uMax else if u < uMin then uMin else u;
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During continuous integration always the same if-branch is evaluated. The integration is halted whenever
u-uMax or u-uMin crosses zero. At the event instant, the correct if-branch is selected and the integration
is restarted.

Numerical integration methods of order n (n > 1) require continuous model equations which are differen-
tiable up to order n. This requirement can be fulfilled if Real elementary relations are not treated literally
but as defined above, because discontinuous changes can only occur at event instants and no longer during
continuous integration.]

[1t is a quality of implementation issue that the following special relations

time >= discrete expression
time < discrete expression

trigger a time event at time = discrete expression, i.e., the event instant is known in advance and no
iteration is needed to find the exact event instant.)

Relations are taken literally also during continuous integration, if the relation or the expression in which
the relation is present, are the argument of noEvent. smooth also allows relations used as argument to
be taken literally. The noEvent feature is propagated to all subrelations in the scope of the noEvent
application. For smooth the liberty to not allow literal evaluation is propagated to all subrelations, but
the smoothness property itself is not propagated.

[Example:

x = if noEvent(u > uMax) then uMax elseif noEvent(u < uMin) then uMin else u;
y = noEvent ( if u > uMax then uMax elseif u < uMin then uMin else u);

z = smooth (0, if u > uMax then uMax elseif u < uMin then uMin else u);

In this case x = y = z, but a tool might generate events for z. The if-expression is taken literally without
inducing state events.

The smooth operator is useful, if e.g. the modeler can guarantee that the used if-clauses fulfill at least
the continuity requirement of integrators. In this case the simulation speed is improved, since no state
event iterations occur during integration. The noEvent operator is used to guard against outside domain
errors, e.g. y = if noEvent(x >= 0) then sqrt(x) else 0.]

All equations and assignment statements within when-clauses and all assignment statements within
function classes are implicitly treated with noEvent, i.e., relations within the scope of these operators
never induce state or time events.

[Using state events in when-clauses is unnecessary because the body of a when-clause is not evaluated
during continuous integration.]

[Example:

Limitl = noEvent(xl > 1); // Error since Limitl is a discrete—time variable
when noEvent(x1>1) or x2>10 then // error, when—conditions is not a discrete—
time expression
Close = true;
end when;

]

Modelica is based on the synchronous data flow principle (section 8.4).

[The rules for the synchronous data flow principle guarantee that variables are always defined by a unique
set of equations. It is not possible that a variable is e.g. defined by two equations, which would give rise
to conflicts or non-deterministic behavior. Furthermore, the continuous and the discrete parts of a model
are always automatically “synchronized”. Example:

equation // Illegal example
when conditionl then
close = true;

end when;

when condition2 then
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close = false;
end when;

This is not a valid model because rule 4 is violated since there are two equations for the single unknown
variable close. If this would be a valid model, a conflict occurs when both conditions become true at the
same time instant, since no priorities between the two equations are assigned. To become valid, the model
has to be changed to:

equation
when conditionl then

close = true;
elsewhen condition2 then
close = false;

end when;

Here, it is well-defined if both conditions become true at the same time instant (conditionl has a higher
priority than condition?2).]

There is no guarantee that two different events occur at the same time instant.

[As a consequence, synchronization of events has to be explicitly programmed in the model, e.g. via
counters. Fxample:

Boolean fastSample, slowSample;

Integer ticks(start=0);
equation

fastSample = sample(0,1);

algorithm
when fastSample then
ticks := if pre(ticks) < 5 then pre(ticks)+1 else O0;
slowSample := pre(ticks) == 0;
end when;
algorithm

when fastSample then // fast sampling
end when;
algorithm

when slowSample then // slow sampling (5—times slower)

end when;

The slowSample when-clause is evaluated at every 5th occurrence of the fastSample when-clause.]

[The single assignment rule and the requirement to explicitly program the synchronization of events allow
a certain degree of model verification already at compile time.]

8.6 Initialization, initial equation, and initial algorithm

Before any operation is carried out with a Modelica model (e.g., simulation or linearization), initialization
takes place to assign consistent values for all variables present in the model. During this phase, called the
initialization problem, also the derivatives (der), and the pre-variables (pre), are interpreted as unknown
algebraic variables. The initialization uses all equations and algorithms that are utilized in the intended
operation (such as simulation or linearization).

The equations of a when-clause are active during initialization, if and only if they are explicitly enabled
with initial(), and only in one of the two forms when initial() then or when {..., initial(), ...
} then (and similarly for elsewhen and algorithms see below). In this case, the when-clause equations
remain active during the whole initialization phase. In case of a reinit(x, expr) being active during
initialization (due to being inside when initial()) this is interpreted as adding x = expr (the reinit
-equation) as an initial equation.

[If a when-clause equation v = expr; is not active during the initialization phase, the equation v =
pre(v) is added for initialization. This follows from the mapping rule of when-clause equations. If the
condition of the when-clause contains initial (), but not in one of the specific forms, the when-clause
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is mot active during initialization: when not initial() then print("simulation started"); end
when; ]

The algorithmic statements within a when-statement are active during initialization, if and only they are
explicitly enabled with initial (), and only in one of the two forms when initial() then or when {
..., initial(), ...} then. In this case, the algorithmic statements within the when-statement remain
active during the whole initialization phase.

An active when-clause inactivates the following elsewhen (similarly as for when-clauses during simula-
tion), but apart from that the first elsewhen initial() then or elsewhen {..., initial(), ...}
then is similarly active during initialization as when initial() then or when {..., initial(), ...}
then.

[That means that any subsequent elsewhen initial() has no effect, similarly as when false then.]

[There is no special handling of inactive when-statements during initialization, instead variables assigned
in when-statements are initialized using v := pre(v) before the body of the algorithm (since they are
discrete), see section 11.1.2.]

Further constraints, necessary to determine the initial values of all variables, can be defined in the
following ways:

1. Asequations in an initial equation section or as assignments in an initial algorithm section.
The equations and assignments in these initial sections are purely algebraic, stating constraints
between the variables at the initial time instant. It is not allowed to use when-clauses in these
sections.

2. For a non-discrete (that is continuous-time) Real variable vc, the equation pre(vc) = vc is added
to the initialization equations.

[If pre (vc) is not present in the flattened model, a tool may choose not to introduce this equation,
or if it was introduced it can eliminate it (to avoid the introduction of many dummy variables
pre(vc)).]

3. Implicitly by using the start attribute for variables with fixed = true. With start given by
startExpression:

e For a non-discrete-time (that is continuous-time) Real variable vc, the equation ve = startExpression
is added to the initialization equations.

e For a discrete-time variable vd, the equation pre(vd) = startExpression is added to the
initialization equations.

e For a variable declared as constant or parameter, no equation is added to the initialization
equations.

For constants and parameters, the attribute fixed defaults to true, which is the only allowed value for
a constant. For other variables, fixed defaults to false.

start-values of variables having fixed = false can be used as initial guesses, in case iterative solvers
are used in the initialization phase.

[In case of iterative solver failure, it is recommended to specially report those variables for which the
solver needs an initial guess, but which only have the default value of the start attribute as defined in
section 4.8, since the lack of appropriate initial guesses is a likely cause of the solver failure.]

If a parameter has a modifier for the start attribute, does not have fixed = false, and neither has a
binding equation nor is part of a record having a binding equation, the modifier for the start attribute
can be used to add a parameter binding equation assigning the parameter to that start value. In this
case a diagnostic message is recommended in a simulation model.

[This is used in libraries to give non-zero defaults so that users can quickly combine models and simulate
without setting parameters; but still easily find the parameters that need to be set.]

All variables declared as parameter having fixed = false are treated as unknowns during the initial-
ization phase, i.e. there must be additional equations for them — and the start-value can be used as a
guess-value during initialization.
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[In the case a parameter has both a binding equation and fixed = false a diagnostics is recommended,
but the parameter should be solved from the binding equation.

Non-discrete (that is continuous-time) Real wvariables vc have exactly one initialization value since the
rules above assure that during initialization ve = pre(vec) = vc.startExpression (if fixed = true).

Before the start of the integration, it must be guaranteed that for all variables v, v = pre(v). If this is
not the case for some variables vi, pre(vi) := vi must be set and an event iteration at the initial time
must follow, so the model is re-evaluated, until this condition is fulfilled.

A Modelica translator may first transform the continuous equations of a model, at least conceptually, to
state space form. This may require to differentiate equations for index reduction, i.e., additional equations
and, in some cases, additional unknown variables are introduced. This whole set of equations, together
with the additional constraints defined above, should lead to an algebraic system of equations where the
number of equations and the number of all variables (including der and pre wvariables) is equal. Often,
this is a nonlinear system of equations and therefore it may be necessary to provide appropriate guess
values (i.e., start values and fixed = false) in order to compute a solution numerically.

It may be difficult for a user to figure out how many initial equations have to be added, especially if
the system has a higher index. A tool may add or remove initial equations automatically such that the
resulting system is structurally nonsingular. In these cases diagnostics are appropriate since the result is
not unique and not necessarily what the user expects. A missing initial value of a discrete-time variable
which does not influence the simulation result, may be automatically set to the start value or its default
without informing the user. For erxample, variables assigned in a when-clause which are not accessed
outside of the when-clause and where pre is not explicitly used on these variables, do not have an effect
on the simulation.)

[Example: Continuous time controller initialized in steady-state:

Real y(fixed = false); // fixed=false is redundant
equation

der(y) = a * y + b *x u;
initial equation

der(y) = 0;

This has the following solution at initialization:

der(y) = 0;
y=-Db/ a* u;

]

[Example: Continuous time controller initialized either in steady-state or by providing a start value for
state y:

parameter Boolean steadyState = true;
parameter Real y0O = 0 "start value for y, if not steadyState";
Real y;

equation
der(y) = a x y + b *x u;
initial equation
if steadyState then
der(y) = 0;
else
y = y0;
end if;

This can also be written as follows (this form is less clear):

parameter Boolean steadyState = true;

Real y (start = 0, fixed = not steadyState);

Real der_y(start = 0, fixed = steadyState) = der(y);
equation

der(y) = a x y + b * u;
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[Example: Discrete time controller initialized in steady-state:

discrete Real y;
equation
when {initial (), sampleTrigger} then
y = a *x pre(y) + b * u;
end when;
initial equation
y = pre(y);

This leads to the following equations during initialization:

y = a *x pre(y) + b * u;
y = pre(y);

with the solution:

y := (b x u) / (1 - a);
pre(y) := y;

8.6.1 The Number of Equations Needed for Initialization

[In general, for the case of a pure (first order) ordinary differential equation (ODE) system with n
state variables and m output variables, we will have n + m unknowns in the simulation problem. The
ODE initialization problem has n additional unknowns corresponding to the derivative variables. At
initialization of an ODE we will need to find the values of 2n + m wvariables, in contrast to just n + m
variables to be solved for during simulation.]

[Example: Consider the following simple equation system:

der (x1) = f1(x1);
der (x2) = £f2(x2);
y = x1+x2+u;

Here we have three variables with unknown values: two dynamic variables that also are state variables,
x1 and x2, i.e., n = 2, one output variable y, i.e., m = 1, and one input variable u with known value. A
consistent solution of the initial value problem providing initial values for x1, x2, der(x1), der(x2), and
y needs to be found. Two additional initial equations thus need to be provided to solve the initialization
problem.

Regarding DAFEs, only that at most n additional equations are needed to arrive at 2n + m equations
in the initialization system. The reason is that in a higher index DAE problem the number of dynamic
continuous-time state variables might be less than the number of state variables n. As noted in section 8.6
a tool may add/remove initial equations to fulfill this requirement, if appropriate diagnostics are given.]

8.6.2 Recommended selection of start-values

In general many variables have start-values that are not fixed and selecting a sub-set of these can give
a consistent set of start-values close to the user-expectations. The following gives a non-normative
procedure for finding such a sub-set.

[A model has a hierarchical component structure. Each component of a model can be given a unique
model component hierarchy level number. The top level model has a level number of 1. The level number
increases by 1 for each level down in the model component hierarchy. The model component hierarchy
level number is used to give start values a confidence number, where a lower number means that the start
value is more confident. Loosely, if the start value is set or modified on level i then the confidence number
is 1. If a start value is set by a possibly hierarchical modifier at the top level, then this start value has
the highest confidence, namely 1 irrespectively on what level, the variable itself is declared.]
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Chapter 9

Connectors and Connections

This chapter covers connectors, connect-equations, and connections.

Connectors and connect-equations are designed so that different components can be connected graphically
with well-defined semantics. However, the graphical part is optional and found in chapter 18.
9.1 Connect-Equations and Connectors

Connections between objects are introduced by connect-equations in the equation part of a class. A
connect-equation has the following syntax:

connect (component-reference, component-reference);

[A connector is an instance of a connector class.]

The connect-equation construct takes two references to connectors, each of which is either of the following
forms:

® Cy.Co...cp, Where ¢p is a connector of the class, n>1 and c;11 is a connector element of ¢; for
i=1:(n-1).
e m.c, where m is a non-connector element in the class and c is a connector element of m.
There may optionally be array subscripts on any of the components; the array subscripts shall be
parameter expressions or the special operator :. If the connect construct references array of connectors,

the array dimensions must match, and each corresponding pair of elements from the arrays is connected
as a pair of scalar connectors.

[Example: Array usage:

connector InPort = input Real;
connector OutPort = output Real;
block MatrixGain

input InPort ulsize(A,2)];

output OutPort y[size(A,1)];

parameter Real A[:,:] = [1];
equation

y=A*u;
end MatrixGain;
Modelica.Blocks.Sources.Sine sinSource[5];
MatrixGain gain (A = 5*identity (5));
MatrixGain gain2(A = ones(2,5));
OutPort x[2];

equation

connect (sinSource.y, gain.u); // Lega
connect (gain.y, gain2.u); // Legal
connect (gain2.y, x); // Lega
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]

The three main tasks are to:
e Elaborate expandable connectors.
e Build connection sets from connect-equations.

e Generate equations for the complete model.

9.1.1 Connection Sets

A connection set is a set of variables connected by means of connect-equations. A connection set shall
contain either only flow variables or only non-flow variables.

9.1.2 Inside and Outside Connectors

In an element instance M, each connector element of M is called an outside connector with respect to M.
Any other connector elements that is hierarchically inside M, but not in one of the outside connectors
of M, is called an inside connector with respect to M. This is done before resolving outer elements to
corresponding inner ones.

FExample:
P
m6
mO
m3
mil mé
inner d
outer d _
Ot _
c
m2
m5
m7

Figure 9.1: Example for inside and outside connectors.

The figure visualizes the following connect equations to the connector c in the models mi. Consider the
following connect equations found in the model for component m0:

connect(ml.c, m3.c); // ml.c and m3.c are inside connectors
connect(m2.c, m3.¢c); // m2.c and m3.c are inside connectors

and in the model for component m3 (c.x is a sub-connector inside c):

connect(c, md.c); // c is an outside

connector, m4d.c is an inside connector

connect(c.x, mb.c); // c.x is an outside

connector, mb.c is an inside connector

connect(c , d) ; // ¢ is an outside connector, d is an outside connector

and in the model for component mé:

connect(d, m7.c); // d is an outside connector, m7.c is an inside connector
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9.1.3 Expandable Connectors

If the expandable qualifier is present on a connector definition, all instances of that connector are referred
to as expandable connectors. Instances of connectors that do not possess this qualifier will be referred to
as non-expandable connectors.

Before generating connection equations non-parameter scalar variables and non-parameter array elements
declared in expandable connectors are marked as only being potentially present. A non-parameter array
element may be declared with array dimensions : indicating that the size is unknown (note that the size
of such a dimension cannot be determined using size, see section 10.3.1). This applies to both variables
of simple types, and variables of structured types.

Then connections containing expandable connectors are elaborated:

e One connector in the connect equation must reference a declared component, and if the other
connector is an undeclared element in a declared expandable connector it is handled as follows
(elements that are only potentially present are not seen as declared):

— The expandable connector instance is automatically augmented with a new component having
the used name and corresponding type.

— If the undeclared component is subscripted, an array variable is created, and a connection to
the specific array element is performed. Introducing elements in an array gives an array with
at least the specified elements, other elements are either not created or have a default value
(i.e. as if they were only potentially present, and the same note regarding the use of size also
applies here).

— If the variable on the other side of the connect-equation is input or output the new component
will be either input or output to satisfy the restrictions in section 9.3 for a non-expandable
connector.

[If the existing side refers to an inside connector (i.e. a connector of a component) the new
variable will copy its causality, i.e. input if input and output if output, since the expandable
connector must be an outside connector.]

For an array the input/output property can be deduced separately for each array element.

e When two expandable connectors are connected, each is augmented with the variables that are
only declared in the other expandable connector (the new variables are neither input nor output).
This is repeated until all connected expandable connector instances have matching variables.

[Le. each of the connector instances is expanded to be the union of all connector variables.]

e The variables introduced in the elaboration follow additional rules for generating connection sets
(given in section 9.2).

e If a variable appears as an input in one expandable connector, it should appear as a non-input in
at least one other expandable connector instance in the same augmentation set. An augmentation
set is defined as the set of connected expandable connector instances that through the elaboration
will have matching variables.

[Example:

expandable connector EngineBus
end EngineBus;

block Sensor
RealOutput speed; // Output, i.e., non—input
end Sensor;
block Actuator
RealInput speed; // Input
end Actuator;

model Engine
EngineBus bus;
Sensor sensor;
Actuator actuator;
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equation
connect (bus.speed, sensor.speed); // provides the non—input from sensor.
speed
connect (bus.speed, actuator.speed);
end Engine;

]

e All components in an expandable connector are seen as connector instances even if they are not
declared as such.

[Le. it is possible to connect to e.g. a Real variable.]

[Example:

expandable connector EngineBus // has predefined signals
import Modelica.Units.SI;
SI.AngularVelocity speed;
SI.Temperature T;

end EngineBus;

block Sensor
RealOutput speed;
end Sensor;

model Engine
EngineBus bus;
Sensor sensor;
equation
connect (bus.speed, sensor.speed);
// connection to non—connector speed is possible
// in expandable connectors
end Engine;

]

e An expandable connector shall not contain a component declared with the prefix flow, but may
contain non-expandable connector components with flow components.

[Example:

import Interfaces=Modelica.Electrical.Analog.Interfaces;
expandable connector ElectricalBus
Interfaces.PositivePin p12, n12; // OK
flow Modelica.Units.SI.Current i; // Error
end ElectricalBus;

model Battery
Interfaces.PositivePin p42, n42;
ElectricalBus bus;
equation
connect (p42, bus.p42); // Adds new electrical pin
connect (n42, bus.n42); // Adds another pin
end Battery;

}

e expandable connectors can only be connected to other expandable connectors.

If a connect equation references a potentially present variable, or variable element, in an expandable
connector the variable or variable element is marked as being present, and due to the paragraphs above
it is possible to deduce whether the bus variable shall be treated as input, or shall be treated as output
in the connect equation. That input or output prefix is added if no input/output prefix is present on
the declaration.

[Example:
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expandable connector EmptyBus
end EmptyBus;

model Controller
EmptyBus busli;
EmptyBus bus2;
RealInput speed;
equation
connect (speed, busl.speed); // OK; only one undeclared and not subscripted.
connect (busl.pressure, bus2.pressure); // Error; both undeclared.
connect (speed, bus2.speed[2]); // Introduces speed array (with element [2]).
end Controller;

]

An expandable connector array component for which size is not defined (see section 10.3.1) is referred
to as a sizeless array component. Such a component shall not be used without subscripts, and the
subscripts must slice the array so that the sizeless dimensions are removed.

[Example: Valid and invalid uses of sizeless array components:

expandable connector EngineBus
end EngineBus;

block Sensor
RealOutput speed;
end Sensor;

model Engine
parameter Integer n = 1;
EngineBus bus;
Sensor sensor;
RealOutput sensorSpeeds[:];
equation
/* Comments below refer to the use of sizeless array bus.speed. x*/

connect (bus.speed[n], sensor.speed) ; // OK; subscript to scalar component
connect (bus.speed, sensorSpeeds); // Error; missing subscripts.

public
Real s[:] = bus.speed; // Error; missing subscripts.

Real s[2]
end Engine;

bus.speed[{1, 3}]; // OK; subscript selects fixed size sub—array.

]

After this elaboration the expandable connectors are treated as normal connector instances, and the
connections as normal connections, and all potentially present variables and array elements that are not
actually present are undefined. It is an error if there are expressions referring to potentially present
variables or array elements that are not actually present or non-declared variables. This elaboration
implies that expandable connectors can be connected even if they do not contain the same components.

[A tool may remove undefined variables in an expandable connector, or set them to the default value, e.g.
zero for Real wvariables.

[Expressions can only “read” variables from the bus that are actually declared and present in the connec-
tor, in order that the types of the variables can be determined in the local scope.]

[Note that the introduction of variables, as described above, is conceptual and does not necessarily impact
the flattening hierarchy in any way. Furthermore, it is important to note that these elaboration rules
must consider:

1. Expandable connectors nested hierarchically. This means that both outside and inside connectors
must be included at every level of the hierarchy in this elaboration process.

2. When processing an expandable connector that possesses the inner scope qualifier, all outer in-
stances must also be taken into account during elaboration.
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]

[Example: Engine system with sensors, controllers, actuator and plant that exchange information via a
bus (i.e. via expandable connectors):

import Modelica.Units.SI;
import Modelica.Blocks.Interfaces.Reallnput;
// Plant Side
model SparkPlug
ReallInput spark_advance;

end SparkPlug;

expandable connector EngineBus
// No minimal set
end EngineBus;

expandable connector CylinderBus
Real spark_advance;
end CylinderBus;

model Cylinder
CylinderBus cylinder_bus;
SparkPlug spark_plug;

equation
connect (spark_plug.spark_advance,
cylinder_bus.spark_advance) ;

end Cylinder;

model I4
EngineBus engine_bus;
Modelica.Mechanics.Rotational.Sensors.SpeedSensor speed_sensor;
Modelica.Thermal.HeatTransfer.Sensors.TemperatureSensor temp_sensor;

parameter Integer nCylinder = 4 "Number of cylinders";
Cylinder cylinder [nCylinder];
equation

// adds engine_speed (as output)

connect (speed_sensor.w, engine_bus.engine_speed);

// adds engine_temp (as output)

connect (temp_sensor.T, engine_bus.engine_temp);

// adds cylinder_busl (a nested bus)

for i in 1:nCylinder 1loop
connect (cylinder [i].cylinder_bus,
engine_bus.cylinder_bus[i]);

end for;

end I4;

Due to the above connection, conceptually a connector consisting of the union of all connectors is intro-
duced.

The engine_bus contains the following variable declarations:

RealOutput engine_speed;
RealOutput engine_temp;
CylinderBus cylinder_bus[1];
CylinderBus cylinder_bus [2];
CylinderBus cylinder_bus[3];
CylinderBus cylinder_bus [4];
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9.2 Generation of Connection Equations

When generating connection equations, outer elements are resolved to the corresponding inner elements
in the instance hierarchy (see instance hierarchy name lookup section 5.4). The arguments to each
connect-equation are resolved to two connector elements.

For every use of the connect-equation

connect (a, b);

the primitive components of a and b form a connection set, together with an indication of whether they
are from an inside or an outside connector. The primitive elements are of simple types or of types defined
as operator record (i.e. a component of an operator record type is not split into sub-components).
The elements of the connection sets are tuples of primitive variables together with an indication of inside
or outside; if the same tuple belongs to two connection sets those two sets are merged, until every tuple
is only present in one set. Composite connector types are broken down into primitive components. The
outer components are handled by mapping the objects to the corresponding inner components, and
the inside indication is not influenced. The outer connectors are handled by mapping the objects to the
corresponding inner connectors, and they are always treated as outside connectors.

[Rationale: The inside/outside as part of the connection sets ensure that connections from different
hierarchical levels are treated separately. Connection sets are formed from the primitive elements and
not from the connectors; this handles connections to parts of hierarchical connectors and also makes it
easier to generate equations directly from the connection sets. All variables in one connection set will
either be flow variables or non-flow variables due to restriction on connect-equations. The mapping from
an outer to an inner element must occur before merging the sets in order to get one zero-sum equation,
and ensures that the equations for the outer elements are all given for one side of the connector, and
the inner element can define the other side.)

The following connection sets with just one member are also present (and merged):
e Each primitive flow variable as inside connector.

e Each flow variable added during augmentation of expandable connectors, both as inside and as
outside.

[Note that the flow variable is not directly in the expandable connector, but in a connector inside
the expandable connector.]

[Rationale: If these variables are not connected they will generate a set comprised only of this element,
and thus they will be implicitly set to zero (see below). If connected, this set will be merged and adding
this at the start has no impact.|

Each connection set is used to generate equations for potential and flow (zero-sum) variables of the form
® a1 =as =...=a, (neither flow nor stream variables)
® 21+ 29+ (—23) + ...+ 2, = 0 (flow variables)

The bold-face 0 represents an array or scalar zero of appropriate dimensions (i.e. the same size as z).

For an operator record type this uses the operator >0’ — which must be defined in the operator record
— and all of the flow variables for the operator record must be of the same operator record type.
This implies that in order to have flow variables of an operator record type the operator record
must define addition, negation, and ’0°’; and these operations should define an additive group.

In order to generate equations for flow variables (using the flow prefix), the sign used for the connector
variable z; above is +1 for inside connectors and -1 for outside connectors (z3 in the example above).

[Example: Simple example:

model Circuit
Ground ground;
Load load;
Resistor resistor;
equation
connect (load.p , ground.p);
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connect (resistor.p, ground.p);
end Circuit;

model Load
extends TwoPin;
Resistor resistor;
equation
connect (p, resistor.p);
connect (resistor.n, n);
end Load;

The connection sets are before merging (note that one part of the load and resistor is not connected):

{<load.p.i, inside>}

{<load.n.i, inside>}

{<ground.p.1i, inside>}

{<load.resistor.p.1i, inside>}

{<load.resistor.n.i, inside>}

{<resistor.p.i, inside>}

{<resistor.n.i, inside>}

{<resistor.p.i, inside>, <ground.p.i, inside>}

{<resistor.p.v, inside>, <ground.p.v, inside>}

{<load.p.i, inside>, <ground.p.i, inside>}

{<load.p.v, inside>, <ground.p.v, inside>}

{<load.p.i, outside>, <load.resistor.p.i, inside>}

{<load.p.v, outside>, <load.resistor.p.v, inside>}

{<load.n.i, outside>, <load.resistor.n.i, inside>}
n n

{<load.n.v, outside>, <load.resistor.n.v, inside>}

After merging this gives:

{<load.p.i, outside>, <load.resistor.p.i, inside>}
{<load.p.v, outside>, <load.resistor.p.v, inside>}
{<load.n.i, outside>, <load.resistor.n.i, inside>}

v, inside>}

{<load.p.i, inside>, <ground.p.i, inside>, <resistor.p.i, inside>}
{<load.p.v, inside>, <ground.p.v, inside>, <resistor.p.v, inside>}
{<load.n.i, inside>}

{<resistor.n.i, inside>}

p
n
{<load.n.v, outside>, <load.resistor.n.
p
p

And thus the equations:

load.p.v = load.resistor.p.v;

load.n.v = load.resistor.n.v;

load.p.v = ground.p.v;

load.p.v = resistor.p.v;

0 = (-load.p.i) + load.resistor.p.i;

0 = (-load.n.i) + load.resistor.n.i;

0 = load.p.i + ground.p.i + resistor.p.i;
0 = load.n.ij;

0O = resistor.n.i;

]

[Example: Outer component example:

model Circuit

Ground ground;

Load load;

inner Resistor resistor;
equation

connect (load.p, ground.p);
end Circuit;
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model Load
extends TwoPin;
outer Resistor resistor;
equation
connect (p, resistor.p);
connect (resistor.n, n);

end

Load;

The connection sets are before merging (note that one part of the load and resistor is not connected):

{<load.p.i, inside>}

{<load.n.i, inside>}

{<ground.p.1i, inside>}

{<resistor.p.i, inside>}

{<resistor.n.i, inside>}

{<load.p.i, inside>, <ground.p.i, inside>}
{<load.p.v, inside>, <ground.p.v, inside>}
{<load.p.i, outside>, <resistor.p.i, inside>}

{<load.p.v, outside>, <resistor.

.V, inside>}

p
{<load.n.i, outside>, <resistor.n.i, inside>}
n

{<load.n.v, outside>, <resistor.

.V, inside>}

After merging this gives:

{<load.p.i, outside>, <resistor.p.i, inside>}
{<load.p.v, outside>, <resistor.p.v, inside>}
{<load.n.i, outside>, <resistor.n.i, inside>}
{<load.n.v, outside>, <resistor.n.v, inside>}
{<load.p.i, inside>, <ground.p.i, inside>}
{<load.p.v, inside>, <ground.p.v, inside>}
{<load.n.i, inside>}

And thus the equations:

load.p.v = resistor.p.v;
load.n.v = resistor.n.v;
load.p.v = ground.p.v;

0 = (-load.p.i) + resistor.p.ij;
0 = (-load.n.i) + resistor.n.ij;
0 = load.p.i + ground.p.i;

0 = load.n.ij;

This corresponds to a direct connection of the resistor.]

9.3

Restrictions of Connections and Connectors

The connect-equations (and the special functions for overdetermined connectors) can only be used
in equations, and shall not be used inside if-equations with conditions that are not parameter
expressions, or in when-equations.

[For-equations always have parameter expressions for the array expression.]

A connector component shall not be declared with the prefix parameter or constant. In the
connect-equation the primitive components may only connect parameter variables to parameter
variables and constant variables to constant variables.

The connect-equation construct only accepts forms of connector references as specified in sec-
tion 9.1.

In a connect-equation the two connectors must have the same named component elements with the
same dimensions; recursively down to the primitive components. The primitive components with
the same name are matched and belong to the same connection set.
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e The matched primitive components of the two connectors must have the same primitive types,
and flow variables may only connect to other flow variables, stream variables only to other stream
variables, and causal variables (input/output) only to causal variables (input/output).

e A connection set of causal variables (input/output) may at most contain variables from one inside
output connector (for state-machines extended as specified in section 17.3.6) or one public outside
input connector.

[Ie., a connection set may at most contain one source of a signal.]

e At least one of the following must hold for a connection set containing causal variables generated
for a non-partial model or block:

1. the connection set includes variables from an outside public expandable connector,
2. the set contains variables from protected outside connectors,

3. it contains variables from one inside output connector, or

4. from one public outside input connector, or
5

. the set is comprised solely of one variable from one inside input connector that is not part of
an expandable connector.

[Le., a connection set must — unless the model or block is partial — contain one source of a signal
(item & covers the case where a connector of a component is left unconnected and the source given
textually).)

e Variables from a protected outside connector must be part of a connection set containing at least
one inside connector or one declared public outside connector (i.e. it shall not be an implicitly
defined part of an expandable connector).

[Otherwise it would not be possible to deduce the causality for the expandable connector element.)

e In a connection set all variables having non-empty quantity attribute must have the same quantity
attribute.

e A connect equation shall not (directly or indirectly) connect two connectors of outer elements.

[Indirectly is similar to them being part of the same connection set. However, connections to outer
elements are “moved up” before forming connection sets. Otherwise the connection sets could
contain redundant information breaking the equation count for locally balanced models and blocks.]

e Subscripts in a connector reference shall be parameter expressions or the special operator :.

e Constants or parameters in connected components yield the appropriate assert statements to check
that they have the same value; connections are not generated.

e For conditional connectors, see section 4.4.5.

9.3.1 Balancing Restriction and Size of Connectors

For each non-partial non-expandable connector class the number of flow variables shall be equal to the
number of variables that are neither parameter, constant, input, output, stream nor flow. The
number of variables is the number of all elements in the connector class after expanding all records and
arrays to a set of scalars of primitive types. The number of variables of an overdetermined type or record
class (see section 9.4.1) is the size of the output argument of the corresponding equalityConstraint()
function.

[Ezpandable connector classes are excluded from this, since their component declarations are only a form
of constraint.]

[Example:

connector Pin // a physical connector of
Modelica.Electrical.Analog
Real v;
flow Real ij;

end Pin;
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connector Plug // a hierarchical connector of
Modelica.Electrical.MultiPhase
parameter Integer m=3;

Pin p[m];
end Plug;
connector InputReal = input Real; // A causal input connector
connector OutputReal = output Real; // A causal output connector

connector Frame_Illegal
Modelica.Units.SI.Position rO0[3] "Position vector of frame origin";
Real S[3, 3] "Rotation matrix of frame";
Modelica.Units.SI.Velocity v[3] "Abs. velocity of frame origin";
Modelica.Units.SI.AngularVelocity w[3] "Abs. angular velocity of frame";
Modelica.Units.SI.Acceleration a[3] "Abs. acc. of frame origin";
Modelica.Units.SI.AngularAcceleration z[3] "Abs. angular acc. of frame";
flow Modelica.Units.SI.Force f[3] "Cut force";
flow Modelica.Units.SI.Torque t[3] "Cut torque";

end Frame_Illegal;

The Frame_Illegal connector (intended to be used in a simple multi-body package without over-determined
connectors) is illegal since the number of flow and non-flow variables do not match. The solution is to
create two connector classes, where two 3-vectors (e.g., a and z) are acausal Real and the other vari-
ables are matching pairs of input and output. This ensures that the models can only be connected in a
tree-structure or require a “loop-breaker” joint for every closed kinematic loop:

connector Frame_a "correct connector"
input Modelica.Units.SI.Position rO[3];
input Real S[3, 3];
input Modelica.Units.SI.Velocity v[3];
input Modelica.Units.SI.AngularVelocity wl[3];
Modelica.Units.SI.Acceleration al[3];
Modelica.Units.SI.AngularAcceleration z[3];
flow Modelica.Units.SI.Force f[3];
flow Modelica.Units.SI.Torque t[3];

end Frame_a;

connector Frame_b "correct connector"
output Modelica.Units.SI.Position rO[3];
output Real S[3, 3];
output Modelica.Units.SI.Velocity vI[3];
output Modelica.Units.SI.AngularVelocity wl[3];
Modelica.Units.SI.Acceleration al[3];
Modelica.Units.SI.AngularAcceleration z[3];
flow Modelica.Units.SI.Force f[3];
flow Modelica.Units.SI.Torque t[3];

end Frame_b;

The subsequent connectors Plug_Expanded and PlugExpanded?2 are correct, but Plug_Expanded_Illegal

18 illegal since the number of non-flow and flow variables is different if n and m are different. It is not
clear how a tool can detect in general that connectors such as Plug_Expanded_Illegal are illegal. How-
ever, it is always possible to detect this defect after actual values of parameters and constants are provided
in the simulation model.

connector Plug_Expanded "correct connector"
parameter Integer m=3;
Real v[m];
flow Real il[m];

end Plug_Expanded;

connector Plug_Expanded2 "correct connector"
parameter Integer m=3;
final parameter Integer n=m;
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Real v[m];
flow Real iln];
end Plug_Expanded2;

connector Plug_Expanded_Illegal "connector is illegal"
parameter Integer m=3;
parameter Integer n=m;
Real v[m];
flow Real il[n];
end Plug_Expanded_Illegal;

9.4 Equation Operators for Overconstrained Connection-Based
Equation Systems

There is a special problem regarding equation systems resulting from loops in connection graphs where the
connectors contain non-flow (i.e., potential) variables dependent on each other. When a loop structure
occurs in such a graph, the resulting equation system will be overconstrained, i.e., have more equations
than variables, since there are implicit constraints between certain non-flow variables in the connector in
addition to the connection equations around the loop. At the current state-of-the-art, it is not possible to
automatically eliminate the unneeded equations from the resulting equation system without additional
information from the model designer.

This section describes a set of equation operators for such overconstrained connection-based equation
systems, that makes it possible for the model designer to specify enough information in the model to
allow a Modelica environment to automatically remove the superfluous equations.

[Connectors may contain redundant variables. For example, the orientation between two coordinate
systems in 3 dimensions can be described by 3 independent variables. However, every description of
orientation with 3 variables has at least one singularity in the region where the variables are defined.
1t is therefore not possible to declare only 3 variables in a connector. Instead n variables (n > 3) have
to be used. These variables are no longer independent from each other and there are n — 3 constraint
equations that have to be fulfilled. A proper description of a redundant set of variables with constraint
equations does no longer have a singularity. A model that has loops in the connection structure formed by
components and connectors with redundant variables, may lead to a differential algebraic equation system
that has more equations than unknown variables. The superfluous equations are usually consistent with
the rest of the equations, i.e., a unique mathematical solution exists. Such models cannot be treated with
the currently known symbolic transformation methods. To overcome this situation, operators are defined
in order that a Modelica translator can remove the superfluous equations. This is performed by replacing
the equality equations of non-flow variables from connection sets by a reduced number of equations in
certain situations.

This section handles a certain class of overdetermined systems due to connectors that have a redundant
set of variables. There are other causes of overdetermined systems, e.q., explicit zero-sum equations for
flow variables, that are not handled by the method described below.]

9.4.1 Overconstrained Equation Operators for Connection Graphs

A type or record declaration may have an optional definition of function equalityConstraint that shall
have the following prototype:

type Type // overdetermined type

extends <base type>;

function equalityConstraint // non—redundant equality
input Type T1;
input Type T2;
output Real residue[ <n> ];

algorithm
residue := .

end equalityConstraint;
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end Type;

record Record
< declaration of record fields>
function equalityConstraint // non—redundant equality
input Record R1;
input Record R2;
output Real residue[ <n> 1;
algorithm
residue := .
end equalityConstraint;
end Record;

The residue output of the equalityConstraint function shall have known size, say constant n. The
function shall express the equality between the two type instances T1 and T2 or the record instances R1
and R2, respectively, with a non-redundant number n > 0 of equations. The residues of these equations
are returned in vector residue of size n. The set of n non-redundant equations stating that R1 = R2 is
given by the equation (0 represents a vector of zeros of appropriate size):

Record R1, R2;
equation
0 = Record.equalityConstraint(R1, R2);

[If the elements of a record Record are not independent from each other, the equation R1 = R2 contains
redundant equations.)

A type class with an equalityConstraint function declaration is called overdetermined type. A record
class with an equalityConstraint function definition is called overdetermined record. A connector that
contains instances of overdetermined type and/or record classes is called overdetermined connector. An
overdetermined type or record may neither have flow components nor may be used as a type of flow
components. If an array is used as argument to any of the Connections.* functions it is treated as one
unit — unlike connect, there is no special treatment of this case, compare section 9.1.

Every instance of an overdetermined type or record in an overdetermined connector is a node in a virtual
connection graph that is used to determine when the standard equation R1 = R2 or when the equation 0

= equalityConstraint(R1, R2) has to be used for the generation of connect equations. The edges of
the virtual connection graph are implicitly defined by connect and explicitly by Connections.branch

statements, see table below. Connections is a built-in package in global scope containing built-in
operators. Additionally, corresponding nodes of the virtual connection graph have to be defined as roots
or as potential roots with functions Connections.root and Connections.potentialRoot, respectively.

The overconstrained equation operators for connection graphs are listed below. Here, A and B are
connector instances that may be hierarchically structured, e.g., A may be an abbreviation for EnginePort
.Frame.

FEzxpression \ Description Details

connect (A, B) Optional spanning-tree edge Operator 9.1
Connections.branch(A.R, B.R) Required spanning-tree edge Operator 9.2
Connections.root(A.R) Definite root node Operator 9.3
Connections.potentialRoot(A.R, ...) | Potential root node Operator 9.4
Connections.isRoot(A.R) Predicate for being selected as root Operator 9.5
Connections.rooted(A.R) Predicate for being closer to root Operator 9.6

Operator 9.1 connect
connect (A, B)

Defines optional spanning-tree edge from the overdetermined type or record instances in connector
instance A to the corresponding overdetermined type or record instances in connector instance B
for a virtual connection graph. The types of the corresponding overdetermined type or record
instances shall be the same.

Operator 9.2 Connections.branch
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Connections.branch(A.R, B.R)

Defines a required spanning-tree edge from the overdetermined type or record instance R in connec-
tor instance A to the corresponding overdetermined type or record instance R in connector instance
B for a virtual connection graph. This function can be used at all places where a connect state-
ment is allowed.

[E.g., it is not allowed to use this function in a when-clause. This definition shall be used if in a
model with connectors A and B the overdetermined records A.R and B.R are algebraically coupled
in the model, e.g., due to B.R = £ (A.R, <other unknowns>).]

Operator 9.3 Connections.root
Connections.root (A.R)

The overdetermined type or record instance R in connector instance A is a (definite) root node in
a virtual connection graph.

[This definition shall be used if in a model with connector A the overdetermined record A.R is
(consistently) assigned, e.g., from a parameter expressions.]

Operator 9.4 Connections.potentialRoot

Connections.potentialRoot (A.R)
Connections.potentialRoot (A.R, priority=p)

The overdetermined type or record instance R in connector instance A is a potential root node
in a virtual connection graph with priority p (p > 0). If no second argument is provided, the
priority is zero. p shall be a parameter expression of type Integer. In a virtual connection
subgraph without a Connections.root definition, one of the potential roots with the lowest
priority number is selected as root.

[This definition may be used if in a model with connector A the overdetermined record A.R appears
differentiated — der (A.R) — together with the constraint equations of A.R, i.e., a non-redundant
subset of A.R maybe used as states.)

Operator 9.5 Connections.isRoot
Connections.isRoot (A.R)

Returns true, if the overdetermined type or record instance R in connector instance A is selected
as a root in the virtual connection graph.

Operator 9.6 Connections.rooted

Connections.rooted (A.R)
rooted(A.R) // deprecated!

If the operator Connections.rooted(A.R) is used, or the equivalent but deprecated operator
rooted(A.R), then there must be exactly one statement Connections.branch(A.R, B.R) in-
volving A.R (the argument of Connections.rooted must be the first argument of Connections.
branch). In that case Connections.rooted(A.R) returns true, if A.R is closer to the root of the
spanning tree than B.R; otherwise false is returned.

[This operator can be used to avoid equation systems by providing analytic inverses, see
Modelica.Mechanics.MultiBody.Parts.FixedRotation.]

[Note, that Connections.branch, Connections.root, Connections.potentialRoot do not generate
equations. They only generate nodes and edges in the virtual graph for analysis purposes.]

9.4.2 Converting the Connection Graph into Trees and Generating Connec-
tion Equations

Before connect equations are generated, the virtual connection graph is transformed into a set of span-
ning trees by removing optional spanning tree edges from the graph. This is performed in the following
way:

122



Modelica Language Specification 3.5 (RC1)
Modelica 9.4. Equation Operators for Overconstrained Connection-Based Equation Systems

1. Every root node defined via the Connections.root statement is a definite root of one spanning
tree.

2. The virtual connection graph may consist of sets of subgraphs that are not connected together.
Every subgraph in this set shall have at least one root node or one potential root node in a simulation
model. If a graph of this set does not contain any root node, then one potential root node in this
subgraph that has the lowest priority number is selected to be the root of that subgraph. The
selection can be inquired in a class with function Connections.isRoot, see table above.

3. If there are n selected roots in a subgraph, then optional spanning-tree edges have to be removed
such that the result shall be a set of n spanning trees with the selected root nodes as roots.

After this analysis, the connection equations are generated in the following way:

1. For every optional spanning-tree edge (i.e., a connect(A, B) equation), in one of the spanning
trees, the connection equations are generated according to section 9.2.

2. For every optional spanning-tree edge not in any of the spanning trees, the connection equations
are generated according to section 9.2, except for overdetermined type or record instances R. Here
the equations 0 = R.equalityConstraint(A.R, B.R) are generated instead of A.R = B.R.

9.4.3 Examples of Overconstrained Connection Graphs

[Example:

O Node
O Root
@ Potential root

Nonbreakable branch
(Connections.branch)

Breakable branch
(connect)

o ()_ _ Removed breakable
branch to get tree

selected root

selected root

Figure 9.2: Example of a virtual connection graph.

9.4.3.1 An Overdetermined Connector for Power Systems

[An overdetermined connector for power systems based on the transformation theory of Park may be
defined as:

type AC_Angle "Angle of source, e.g., rotor of generator"
extends Modelica.Units.SI.Angle; // AC_Angle is a Real number
// with unit = "rad”
function equalityConstraint
input AC_Angle thetal;
input AC_Angle theta?2;
output Real residue[0] "No constraints";
algorithm
/* make sure that thetal and theta2 from joining edges are identical x/
assert (abs(thetal - theta2) < 1.e-10, "Consistent angles");
end equalityConstraint;
end AC_Angle;

connector AC_Plug "3-phase altermnating current connector"
import Modelica.Units.SI;
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#  Language

AC_Angle theta;

SI.Voltage v[3] "Voltages resolved in AC_Angle frame";

flow SI.Current i[3] "Currents resolved in AC_Angle frame";
end AC_Plug;

The currents and voltages in the connector are defined relatively to the harmonic, high-frequency signal
of a power source that is essentially described by angle theta of the rotor of the source. This allows much
faster simulations, since the basic high frequency signal of the power source is not part of the differential
equations. For example, when the source and the rest of the line operates with constant frequency (=
nominal case), then AC_Plug.v and AC_Plug.i are constant. In this case a variable step integrator can
select large time steps. An element, such as a 3-phase inductor, may be implemented as:

model AC_Inductor
parameter Real X[3,3], Y[3,3]; // component constants
AC_Plug p;
AC_Plug n;
Real omega;

equation
Connections.branch(p.theta,n.theta); //edge in virtual graph
// since n.theta = p.theta
n.theta = p.theta; // pass angle theta between plugs
omega = der (p.theta); // frequency of source
zeros(3) = p.i + n.i;
Xxder (p.i) + omega*Y*p.i = p.v - n.v;

end AC_Inductor

At the place where the source frequency, i.e., essentially variable theta, is defined, a Connections.root
must be present:

AC_Plug p;
equation
Connections.root(p.theta);
der (p.theta) = 2xModelica.Constants.pi*50 // 50 Hz;

The graph analysis performed with the virtual connection graph identifies the connectors, where the
AC_Angle needs not to be passed between components, in order to avoid redundant equations.)

9.4.3.2 An Overdetermined Connector for 3-dimensional Mechanical Systems

[An overdetermined connector for 3-dimensional mechanical systems may be defined as:

type TransformationMatrix = Real[3,3];
type Orientation "Orientation from frame 1 to frame 2"
extendsTransformationMatrix;
function equalityConstraint
input Orientation R1 "Rotation from inertial frame to frame 1";
input Orientation R2 "Rotation from inertial frame to frame 2";
output Real residue[3];

protected
Orientation R_rel "Relative Rotation from frame 1 to frame 2";
algorithm
R_rel := R2xtranspose(R1);
/ %
If frame_1 and frame_2 are identical , R_rel must be
the unit matrix. If they are close together, R_rel can be
linearized yielding:
R_rel = [ 1, phi3, —phi2;

—phi3, 1, phil;

phi2, —phil, 1 ];
where phil, phi2, phi3 are the small rotation angles around
axis x, y, z of frame 1 to rotate frame 1 into frame 2.
The atan2 is used to handle large rotation angles, but does not
modify the result for small angles.
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residue := { Modelica.Math.atan2(R_rel[2, 3], R_rell[1, 11),

Modelica.Math.atan2(R_rel[3, 1], R_rel[2, 2]),
Modelica.Math.atan2(R_rel[1, 2], R_rel[3, 3])};
end equalityConstraint;
end Orientation;

connector Frame "3-dimensional mechanical connector"
import Modelica.Units.SI;
SI.Position r[3] "Vector from inertial frame to Frame";
Orientation R "Orientation from inertial frame to Frame";
flow SI.Force f[3] "Cut-force resolved in Frame";
flow SI.Torque t[3] "Cut-torque resolved in Frame";

end Frame;

A fixed translation from a frame A to a frame B may be defined as:

model FixedTranslation
parameter Modelica.Units.SI.Position r[3];
Frame frame_a, frame_b;

equation
Connections.branch(frame_a.R, frame_b.R);

frame_b.r = frame_a.r + transpose(frame_a.R)*r;
frame_b.R = frame_a.R;

zeros (3) = frame_a.f + frame_b.f;

zeros (3) = frame_a.t + frame_b.t + cross(r, frame_b.f);

end FixedTranslation;

Since the transformation matriz frame_a.R is algebraically coupled with frame_b.R, an edge in the virtual
connection graph has to be defined. At the inertial system, the orientation is consistently initialized and
therefore the orientation in the inertial system connector has to be defined as root:

model InertialSystem
Frame frame_b;

equation
Connections.root (frame_b.R);
frame_b.r = zeros(3);
frame_b.R = identity(3);

end InertialSystem;
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Chapter 10

Arrays

A non-record array can be regarded as a collection of type compatible values, section 6.7. An array of
records may contain scalar record values whose elements differ in their dimension sizes, but apart from
that they must be of the same type. Such heterogenous arrays may only be used completely, sliced as
specified, or indexed. An array of arrays must have the same dimension sizes for all of the arrays (with
the same exception for records). Modelica arrays can be multidimensional and are “rectangular”, which
in the case of matrices has the consequence that all rows in a matrix have equal length, and all columns
have equal length.

Each array has a certain dimensionality, i.e., number of dimensions. The degenerate case of a scalar
variable is not really an array, but can be regarded as an array with zero dimensions. Vectors have one
dimension, matrices (sing. matriz) have two dimensions, etc.

So-called row vectors and column vectors do not exist in Modelica and cannot be distinguished since
vectors have only one dimension. If distinguishing these is desired, row matrices and column matrices are
available, being the corresponding two-dimensional entities. However, in practice this is seldom needed
since the usual matrix arithmetic and linear algebra operations have been defined to give the expected
behavior when operating on Modelica vectors and matrices.

Modelica is a strongly typed language, which also applies to array types. The number of dimensions
of an array is fixed and cannot be changed at run-time. However, the sizes of array dimensions can be
computed at run-time.

The fixed number of array dimensions permits strong type checking and efficient implementation. The
non-fixed sizes of array dimensions on the other hand, allow fairly generic array manipulation code to be
written as well as interfacing to standard numeric libraries implemented in other programming languages.

An array is allocated by declaring an array variable or calling an array constructor. Elements of an array
can be indexed by Integer, Boolean, or enumeration values.

10.1 Array Declarations

The Modelica type system includes scalar number, vector, matrix (number of dimensions, ndim=2), and
arrays of more than two dimensions.

[There is no distinction between a row and column vector.]

The following table shows the two possible forms of declarations and defines the terminology. C is
a placeholder for any class, including the built-in type classes Real, Integer, Boolean, String, and
enumeration types. The type of a dimension upper bound expression, e.g. n, m, p, ...in the table below,
need to be a subtype of Integer or EB for a class EB that is an enumeration type or subtype of the
Boolean type.

Colon (:) indicates that the dimension upper bound is unknown and is a subtype of Integer. The size
of such a variable can be determined from its binding equation, or the size of any of its array attributes,
see also section 12.4.5. The size cannot be determined from other equations or algorithm.
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Upper and lower array dimension index bounds are described in section 10.1.1.
An array indexed by Boolean or enumeration type can only be used in the following ways:
e Subscripted using expressions of the appropriate type (i.e. Boolean or the enumerated type).
¢ Binding equations of the form x1 = x2 are allowed for arrays independent of whether the index

types of dimensions are subtypes of Integer, Boolean, or enumeration types.

Table 10.1: General forms of declaration of arrays. The notation EB stands for an enumeration
type or Boolean. The general array can have one or more dimensions (k > 1).

Modelica form 1 Modelica form 2 # dims  Designation  Explanation

C x; C x; 0 Scalar Scalar

Cln] x; C x[nl; 1 Vector n-vector

C[EB] x; C x[EB] 1 Vector Vector indexed by EB
Cln, ml] x; C x[n, ml; 2 Matrix n X m matrix

Clny, na, ..., ngl x; C x[ny, na, ..., ngl; k Array General array

A component declared with array dimensions, or where the element type is an array type, is called
an array variable. It is a component whose components are array elements (see below). For an array
variable, the ordering of its components matters: The k:th element in the sequence of components of an
array variable x is the array element with index k, denoted x[k]. All elements of an array have the same
type. An array element may again be an array, i.e., arrays can be nested. An array element is hence
referenced using n indices in general, where n is the number of dimensions of the array.

A component contained in an array variable is called an array element. An array element has no
identifier. Instead they are referenced by array access expressions called indices that use enumeration
values or positive integer index values.

[Example: The number of dimensions and the dimensions sizes are part of the type, and shall be checked
for example at redeclarations. Declaration form 1 displays clearly the type of an array, whereas declaration
form 2 is the traditional way of array declarations in languages such as Fortran, C, C++.

Reall[:] v1, v2 // vectors vl and v2 have unknown sizes. The actual sizes may be
different.

It is possible to mix the two declaration forms although it might be confusing.

Real[3, 2] x[4, 5]; // x has type Real[4, 5, 3, 2];

The reason for this order is given by examples such as:

type R3 = Reall[3];
R3 a;

R3 bl[1] {a};
Real [3] c[1] = b;

Using a type for a and b in this way is normal, and substituting a type by its definition allows c.

A wvector y indezxed by enumeration values

type TwoEnums = enumeration (one,two);
Real [TwoEnums] y;

]

Zero-valued dimensions are allowed, so: C x[0]; declares an empty vector, and: C x[0, 3]; an empty
matrix. Some examples of array dimensions of size one are given in table 10.2.
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Table 10.2: Special cases of declaration of arrays as 1-vectors, row-vectors, or column-vectors of
arrays.

Modelica form 1 Modelica form 2 # dims  Designation  Fxplanation

Ccl1] x; Cc x[1]; 1 Vector 1-vector, representing a scalar

cl1, 11 x; Cc x[1, 11; 2 Matrix (1 x 1)-matrix, representing a scalar
Cln, 1] x; C x[n, 11; 2 Matrix (n x 1)-matrix, representing a column
Cl[1, n] x; C x[1, nl; 2 Matrix (1 x n)-matrix, representing a row

The type of an array of array is the multidimensional array which is constructed by taking the first
dimensions from the component declaration and subsequent dimensions from the maximally expanded
component type. A type is maximally expanded, if it is either one of the built-in types (Real, Integer,
Boolean, String, enumeration type) or it is not a type class. Before operator overloading is applied, a
type class of a variable is maximally expanded.

[Example:

type Voltage = Real(unit = "V");
type Current Real (unit = "A");
connector Pin
Voltage v; // type class of v = Voltage, type of v = Real
flow Current i; // type class of i = Current, type of i = Real
end Pin;
type MultiPin = Pin[5];
MultiPin[4] p; // type class of p is MultiPin, type of p is Pin[4, 5];
type Point = Real[3];
Point p1[10];
Real p2[10, 3];

The components pl and p2 have identical types.

p2[5] = p1[2] + p2[4]; // equivalent to p2[5, :] = pl[2, :] + p2[4, :]
Real r[3] = pi[2]; // equivalent to r[3] = pl[2, :]

]

[Automatic assertions at simulation time:

Let A be a declared array and i be the declared maximum dimension size of the di-dimension, then an
assert statement assert(i >= 0, ...) is generated provided this assertion cannot be checked at compile
time. It is a quality of implementation issue to generate a good error message if the assertion fails.

Let A be a declared array and i be an index accessing an index of the di-dimension. Then for every such
index-access an assert statement assert(l <= i and i <= size(A, di), ...) is generated, provided
this assertion cannot be checked at compile time.

For efficiency reasons, these implicit assert statements may be optionally suppressed.)

10.1.1 Array Dimension Lower and Upper Index Bounds

The lower and upper index bounds for a dimension of an array indexed by Integer, Boolean, or
enumeration values are as follows:

e An array dimension indexed by Integer values has a lower bound of 1 and an upper bound being
the size of the dimension.

e An array dimension indexed by Boolean values has the lower bound false and the upper bound
true.

e An array dimension indexed by enumeration values of the type E = enumeration(el, e2, ...,
en) has the lower bound E.el and the upper bound E.en.
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10.2 Flexible Array Sizes

Regarding flexible array sizes and resizing of arrays in functions, see section 12.4.5.

10.3 Built-in Array Functions

Modelica provides a number of built-in functions that are applicable to arrays.

The promote function listed below is utilized to define other array operators and functions.

FExpression ‘ Description Details

promote (A, n) | Append dimensions of size 1 (not Modelica) ~Operator 10.1

Operator 10.1 promote
promote (A, n) /x Not available in Modelica. x/

Fills dimensions of size 1 from the right to array A upto dimension n, where n > ndims(A) is
required.

Let C = promote(A, n), with np = ndims(A), then ndims(C) = n, size(C, j) = size(4d, j)
for 1 <j <mna,size(C, j) =1lforna+1<35<n,Clix, ...y @ny, 1, ..., 11 =Ali1, ...,
inpl

The argument n must be a constant that can be evaluated during translation, as it determines
the number of dimensions of the returned array.

[An n that is not a constant that can be evaluated during translation for promote complicates
matriz handling as it can change matriz-equations in subtle ways (e.g. changing inner products to
matriz multiplication).]

[Some examples of using the functions defined in the following section 10.5.1 to section 10.3.5:

Real x[4, 1, 6];

size(x, 1) = 4;

size(x); // vector with elements 4, 1, 6
size (2 * x x) = size(x);

Real [3] v1 £i11(1.0, 3);

Real [3, 1] = matrix(vl);

Real [3] v2 vector (m) ;

Boolean check[3, 4] = fill(true, 3, 4);

+

s

10.3.1 Array Dimension and Size Functions

The functions listed below operate on the array dimensions of the type of an expression:

FExpression \ Description Details

ndims (A) Number of dimensions Operator 10.2
size(A, i) | Size of single array dimension Operator 10.3
size(A) Sizes of all array dimensions Operator 10.4

Operator 10.2 ndims
ndims (A)
Returns the number of dimensions k of expression A, with k > 0.
Operator 10.3 size
size (A, 1)

Returns the size of dimension 4 of array expression A where 0 < i < ndims(A).
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If A refers to a component of an expandable connector, then the component must be a declared
component of the expandable connector, and it must not use colon (:) to specify the array size
of dimension 1.

Operator 10.4 size
size (A)
Returns a vector of length ndims (A) containing the dimension sizes of A.

If A refers to a component of an expandable connector, then the component must be a declared
component of the expandable connector, and it must not use colon (:) to specify the size of any
array dimension.

10.3.2 Dimensionality Conversion Functions

The conversion functions listed below convert scalars, vectors, and arrays to scalars, vectors, or matrices
by adding or removing 1-sized dimensions.

Ezpression \ Description Details

scalar(A) | Extract only element Operator 10.5
vector(A) | Vector of all elements Operator 10.6
matrix(A) | Two-dimensional array Operator 10.7

Operator 10.5 scalar
scalar (A)
Returns the single element of array A. size(A, i) =1 is required for 1 <14 < ndims(A).
Operator 10.6 vector
vector (A)

Returns a 1-vector if A is a scalar, and otherwise returns a vector containing all the elements of
the array, provided there is at most one dimension size > 1.

Operator 10.7 matrix
matrix (A)

Returns promote (A, 2) if A is a scalar or vector, and otherwise returns the elements of the first
two dimensions as a matrix. size(A, i) =1 is required for 2 < 7 < ndims(A).

10.3.3 Specialized Array Constructor Functions

An array constructor function constructs and returns an array computed from its arguments. Most of the
constructor functions listed below construct an array by filling in values according to a certain pattern,
in several cases just giving all array elements the same value. The general array constructor with syntax
array(...) or {...} is described in section 10.4.

FEzxpression \ Description Details
identity(n) Identity matrix Operator 10.8
diagonal (v) Diagonal matrix Operator 10.9
zeros(ny, ng, N3, ...) Array with all elements being 0 Operator 10.10
ones(ni, no, N3, ...) Array with all elements being 1 Operator 10.11
£ill(s, ny, n2, n3, ...) | Array with all elements equal Operator 10.12
linspace(xy, T2, M) Vector with equally spaced elements Operator 10.13

Operator 10.8 identity
identity (n)

Returns the n x n Integer identity matrix, with ones on the diagonal and zeros at the other
places.

Operator 10.9 diagonal
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diagonal (v)

Returns a square matrix with the elements of vector v on the diagonal and all other elements
zero.

Operator 10.10 zeros
zeros(ny, ns, N3, ...)

Returns the n; X ng X ng X ... Integer array with all elements equal to zero (n; > 0). The
function needs one or more arguments, that is, zeros() is not legal.

Operator 10.11 ones
ones(ny, no, N3z, ...)

Return the ny X ny X ng X ... Integer array with all elements equal to one (n; > 0). The function
needs one or more arguments, that is, ones () is not legal.

Operator 10.12 fill
£fill(s, ni, N2, Nz, ...)

Returns the n; X ng Xxn3 X. .. array with all elements equal to scalar or array expression s (n; > 0).
The returned array has the same type as s.

Recursive definition: £i11(s, ni, ns, ns, ...) = fill(fill(s, ns, ng, ...), ny); £ill(s,
n) =9s, s, ..., st

The function needs two or more arguments; that is, £i11(s) is not legal.
Operator 10.13 linspace
linspace (z1, 2, n)

Returns a Real vector with n equally spaced elements, such that v = linspace(xy, =2, n)
results in

V[i]:$1+($2—$1)2_ forlgign

It is required that n > 2. The arguments z; and x2 shall be numeric scalar expressions.

10.3.4 Reduction Functions and Operators

The reduction functions listed below “reduce” an array (or several scalars) to one value (normally a
scalar, but the sum reduction function may give an array as result and also be applied to an operator
record). Note that none of these operators (particularly min and max) generate events themselves (but
arguments could generate events). The restriction on the type of the input in section 10.3.4.1 for reduction
expressions also applies to the array elements/scalar inputs for the reduction operator with the same
name.

FExpression ‘ Description Details

min(A) Least element or array Operator 10.14
min(z, y) Least of two scalars Operator 10.15
min(... for ...) Reduction to least value Operator 10.16
max (A) Greatest element or array Operator 10.17
max(z, y) Greatest of two scalars Operator 10.18
max(... for ...) Reduction to greatest value Operator 10.19
sum(A) Sum of scalar array elements Operator 10.20
sum(... for ...) Sum reduction Operator 10.21
product (A) Product of scalar array elements Operator 10.22
product(... for ...) | Product reduction Operator 10.23

Operator 10.14 min
min (A)

Returns the least element of array expression A; as defined by <.
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Operator 10.15 min
min (x, y)
Returns the least element of the scalars x and y; as defined by <.
Operator 10.16 min
min(e(i, ..., j) for 4 in w, ..., j in wv)

Also described in section 10.3.4.1. Returns the least value (as defined by <) of the scalar expression
e(i, ..., j) evaluated for all combinations of 4 in u, ..., j in v.

Operator 10.17 max
max (A)
Returns the greatest element of array expression A; as defined by >.
Operator 10.18 max
max (x, y)
Returns the greatest element of the scalars  and y; as defined by >.
Operator 10.19 max
max (e(t, ..., j) for 4 in u, ..., j in wv)

Also described in section 10.3.4.1. Returns the greatest value (as defined by >) of the scalar
expression e(i, ..., j) evaluated for all combinations of ¢ in w, ..., j in v.

Operator 10.20 sum
sum (A)

Returns the scalar sum of all the elements of array expression A. Equivalent to sum reduction
(see below, including application to operator records) over all array indices: sum(A[j, k, ...]
for j, k, ...)

Operator 10.21 sum

sum(e(i, ..., j) for ¢ in w, ..., j in v)
Also described in section 10.3.4.1. Returns the sum of the expression e(i, ..., j) evaluated for
all combinations of 4 in u, ..., 7 in v.

The sum reduction function (both variants) may be applied to an operator record, provided that
the operator record defines 0’ and ’+°’. It is then assumed to form an additive group.

For Integer indexing this is

e(ul1], ..., v[1]) + e(ul2], ..., v[1]) + ...
+ e(ulend], ..., v[1]) + ...
+ e(ulend], ..., vliend])

For non-Integer indexing this uses all valid indices instead of 1..end.
The type of sum(e(i, ..., 7) for ¢ in w, ..., j in wv) is the same as the type of e(i, ...,
.
Operator 10.22 product
product (A)

Returns the scalar product of all the elements of array expression A. Equivalent to product
reduction (see below) over all array indices: product(A[j, k, ...] for j, k, ...)

Operator 10.23 product

product (e(i, ..., j) for ¢ in wu, ..., j in wv)
Also described in section 10.3.4.1. Returns the product of the expression e(i, ..., j) evaluated
for all combinations of ¢ in w, ..., j in v.
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For Integer indexing this is

e(ul1], ..., v[1]) * e(ul[2], ..., v[1]) =*= ...
* e(ulend]l, ..., v[1]) * ...
* e(ulend], ..., vlend])

For non-Integer indexing this uses all valid indices instead of 1..end.
The type of product(e(i, ..., j) for ¢ in w, ..., j in v) is the same as the type of e(z,
RS DR

10.3.4.1 Reduction Expressions

An expression:

function-name "(" expressionl for iterators ")"

is a reduction-expression. The expressions in the iterators of a reduction-expression shall be vector
expressions. They are evaluated once for each reduction-expression, and are evaluated in the scope
immediately enclosing the reduction-expression.

For an iterator:

IDENT in expression2

the loop-variable, IDENT, is in scope inside expressionl. The loop-variable may hide other variables, as
in for-clauses. The result depends on the function-name, and currently the only legal function-names
are the built-in operators array, sum, product, min, and max. For array, see section 10.4. If function
-name is sum, product, min, or max the result is of the same type as expressionl and is constructed
by evaluating expressionl for each value of the loop-variable and computing the sum, product, min,
or max of the computed elements. For deduction of ranges, see section 11.2.2.1; and for using types as
ranges see section 11.2.2.2.

Table 10.3: Reduction expressions with iterators. (The least and greatest values of Real are
available as -Modelica.Constants.inf and Modelica.Constants.inf, respectively.)

Reduction  Restriction on expressionl Result for empty expression2
sum Integer or Real zeros(...)
product Scalar Integer or Real 1
min Scalar enumeration, Boolean, Integer or Real Greatest value of type
max Scalar enumeration, Boolean, Integer or Real Least value of type
[Example:

sum(i for i in 1:10) // Gives > ,0 i=1+2+...+10=55
// Read it as: compute the sum of i for i in the range 1 to 10.
sum(i~2 for i in {1,3,7,6}) // Gives Zie{l 3 7 6}# =1+9+49+36=95

{product(j for j in 1:i) for i in 0:4} // Gives {1,1,2,6,24}
max(i~2 for i imn {3,7,6}) // Gives 49

10.3.5 Matrix and Vector Algebra Functions

Functions for matrix and vector algebra are listed below. The function transpose can be applied to any
matrix. The functions outerProduct, symmetric, cross and skew require Real vector(s) or matrix as
input(s) and return a Real vector or matrix.
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FExpression \ Description Details
transpose (A) Matrix transpose Operator 10.24
outerProduct(xz, y) | Vector outer product Function 10.1
symmetric(A) Symmetric matrix, keeping upper part Function 10.2
cross(x, y) Cross product Function 10.3
skew(z) Skew symmetric matrix associated with vector Function 10.4

Operator 10.24 transpose
transpose (A)

Permutes the first two dimensions of array A. It is an error if array A does not have at least 2
dimensions.

Function 10.1 outerProduct
outerProduct (z, y)
Returns the outer product of vectors x and y, that is: matrix(x) * transpose(matrix(y))
Function 10.2 symmetric
symmetric (A)
Returns a symmetric matrix which is identical to the square matrix A on and above the diagonal.
That is, if B := symmetric(A), then B is given by:
st - {402 1<
Alj,il iti>j

Function 10.3 cross
cross (z, y)
Returns the cross product of the 3-vectors z and y:

vector ([ x[2] * y[3] - x[3] * y[2] ;
x[3] * y[1] - x[1] * y[3] ;
z[1] * y[2] - z[2] * y[1] 1)

Function 10.4 skew
skew (x)

Returns the 3 x 3 skew symmetric matrix associated with a 3-vector, i.e., cross(z, y) = skew(
z) * y. Equivalently, skew(x) is given by:

[ o, -x[3]1, z[2] ;
x[3], O, -z [1]
-zx[2], z[1], O ]

10.4 Vector, Matrix and Array Constructors

The array constructor function array(A, B, C, ...) constructs an array from its arguments according
to the following rules:

e Size matching: All arguments must have the same sizes, i.e., size(A) = size(B) = size(C) = ...

e All arguments must be type compatible expressions (section 6.7) giving the type of the elements.
The data type of the result array is the maximally expanded type of the arguments. Real and
Integer subtypes can be mixed resulting in a Real result array where the Integer numbers have
been transformed to Real numbers.

e Each application of this constructor function adds a one-sized dimension to the left in the result
compared to the dimensions of the argument arrays, i.e., ndims (array(A, B, C)) = ndims(A) +
1 = ndims(B) + 1, ...
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e {A, B, C, ...} is a shorthand notation for array(A, B, C, ...).
e There must be at least one argument.

[The reason array() or {} is not defined is that at least one argument is needed to determine the
type of the resulting array.]

[Example:

{1, 2, 3} 4s a 3-vector of type Integer.
{{11, 12, 13}, {21, 22, 23}} 4s a 2 ¢ 3 matriz of type Integer
{{{1.0, 2.0, 3.0}}} 4s a1z 1z 3 array of type Real.

Real [3] v = array (1, 2, 3.0);

type Angle = Real(unit="rad");

parameter Angle alpha = 2.0; // type of alpha is Real.

// array(alpha, 2, 3.0) or {alpha, 2, 3.0} is a 3—vector of type Real
Angle[3] a = {1.0, alpha, 4}; // type of a is Real[3].

10.4.1 Array Constructor with Iterators

An expression:

‘"{" expression for iterators "1}"

or

array "(" expression for iterators ")"

is an array constructor with iterators. The expressions inside the iterators of an array constructor shall
be vector expressions. They are evaluated once for each array constructor, and are evaluated in the scope
immediately enclosing the array constructor.

For an iterator:

IDENT in array_expression

the loop-variable, IDENT, is in scope inside expression in the array construction. The loop-variable may
hide other variables, as in for-clauses. The loop-variable has the same type as the type of the elements
of array_expression; and can be simple type as well as a record type. The loop-variable will have the
same type for the entire loop — i.e., for an array_expression {1, 3.2} the iterator will have the type
of the type-compatible expression (Real) for all iterations. For deduction of ranges, see section 11.2.2.1;
and for using types as range see section 11.2.2.2.

10.4.1.1 Array Constructor with One Iterator

If only one iterator is used, the result is a vector constructed by evaluating expression for each value of
the loop-variable and forming an array of the result.

[Example:

array(i for i in 1:10)

// Gives the vector 1:10={1,2,3,...,10}

{r for r in 1.0 : 1.5 : 5.5}
// Gives the vector 1.0:1.5:5.5={1.0, 2.5, 4.0, 5.5}

{i~2 for i in {1,3,7,6}}
// Gives the vector {1, 9, 49, 36}
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10.4.1.2 Array Constructor with Several Iterators

The notation with several iterators is a shorthand notation for nested array constructors. The notation
can be expanded into the usual form by replacing each ’,” by '} for’ and prepending the array constructor
with a '{’.

[Example:

Real toeplitz[:,:]1={i-j for i in 1:n, j in 1:n};
Real toeplitz2[:,:]={{i-j for i in 1:n} for j in 1:mn};

]

10.4.2 Array Concatenation

The function cat(k, A, B, C, ...) concatenates arrays A, B, C, ...along dimension k according to the
following rules:

e Arrays A, B, C, ... must have the same number of dimensions, i.e., ndims(A) = ndims(B) = ...

e Arrays A, B, C, ... must be type compatible expressions (section 6.7) giving the type of the elements
of the result. The maximally expanded types should be equivalent. Real and Integer subtypes
can be mixed resulting in a Real result array where the Integer numbers have been transformed
to Real numbers.

e [ has to characterize an existing dimension, i.e., 1 < k < ndims(A) = ndims(B) = ndims(C); k
shall be a parameter expression of Integer type.

e Size matching: Arrays A, B, C, ... must have identical array sizes with the exception of the size of
dimension k, i.e., size(A, j) = size(B, j), for 1 < j < ndims(A) and j # k.

[Example:

Real[2,3] r1 = cat(1, {{1.0, 2.0, 3}}, {{4, 5, 6}});
Real [2,6] r2 cat (2, r1, 2*xri1);

]

Formally, the concatenation R = cat(k, A, B, C, ...) is defined as follows. Let n = ndims(A) =
ndims (B) = ndims(C) = ... Then the size of R is given by

size(R,k)
size(R,j)

size(A,k) + size(B,k) + size(C,k) + ...
size(A,j) = size(B,j) = size(C,j) = ... for 1 <j<n and j#k

and the array elements of R are given by

Rl41, ooy Tky oous nl = Ali1, ...y ks vouyr inl
for 0 <ix < size(A,k)
R[’il, ey ik, ey Zn] = B[il, ey Zk - size(A,k), ceey Zn]
for size(A,k) <ix < size(A,k) + size(B,k)
R[é1, ...y ks ..., tp) = Clé1, ..., @ - size(A,k) - size(B,k), ..., inl

for size(A,k) + size(B,k) < i < size(A,k) + size(B,k) + size(C,k)

where 1 <i; < size(R,j) for 1 <j <n.

10.4.2.1 Array Concatenation along First and Second Dimensions
For convenience, a special syntax is supported for the concatenation along the first and second dimensions:

e Concatenation along first dimension:
[A; B; C; ...] = cat(l, promote(A, n), promote(B, n), promote(C, n), ...) wheren =
max(2, ndims(A), ndims(B), ndims(C), ...). If necessary, 1-sized dimensions are added to the
right of A, B, C before the operation is carried out, in order that the operands have the same number
of dimensions which will be at least two.
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#  Language

e Concatenation along second dimension:
[A, B, C, ...] = cat(2, promote(A, n), promote(B, n), promote(C, n), ...) wheren =
max(2, ndims(A), ndims(B), ndims(C), ...). If necessary, 1-sized dimensions are added to the
right of A, B, C before the operation is carried out, especially that each operand has at least two
dimensions.

e The two forms can be mixed. [..., ...] has higher precedence than [...; ...],e.g., [a, b; c, d]
is parsed as [[a, b]; [c, dll.

e [A] = promote(A, max(2, ndims(A))), i.e., [A]l = A, if A has 2 or more dimensions, and it is a
matrix with the elements of A, if A is a scalar or a vector.

e There must be at least one argument (i.e. [] is not defined).

[Example:

Real s1, s2, vi[n1], v2[n2], M1i[ml,n],
M2[m2,n], M3[n,m1], M4[n,m2], Ki[mil,n,k],

K2 [m2,n,k];

[vi;v2] is a (n1+n2) x 1 matrix
[M1;M2] is a (m1+m2) x n matrix
[M3,M4] is a n x (m1+m2) matrix
[K1;K2] is a (m1+m2) x n x k array
[s1;s82] is a 2 x 1 matrix

[s1,s81] is a 1 x 2 matrix

[s1] is a 1 x 1 matrix

[vi] is a n1 x 1 matrix

Real [3] v1 = array(1l, 2, 3);

Real[3] v2 = {4, 5, 6};

Real[3,2] m1 = [v1, v2];

Real[3,2] m2 (vi, [4;5;6]11; // ml =m2
Real[2,3] m3 = [1, 2, 3; 4, 5, 6];
Real[1,3] m4 = [1, 2, 3];

Real[3,1] m5 [1; 2; 31;

10.4.3 Vector Construction

Vectors can be constructed with the general array constructor, e.g.,

Real[3] v = {1, 2, 3};

The range vector operator or colon operator of simple-expression can be used instead of or in combi-
nation with this general constructor to construct Real, Integer, Boolean or enumeration type vectors.
Semantics of the colon operator:

e j : kisthe Integer vector {j, j+1, ..., k}, if j and k are of type Integer.

e j : k is the Real vector {j, j+ 1.0, ..., j+n}, with n = floor(k — j), if j and/or k are of
type Real.

e j : kis aReal, Integer, Boolean, or enumeration type vector with zero elements, if j > k.

j : d : kis the Integer vector {j, j+d, ..., j+nd}, with n =div(k — j,d), if j, d, and k
are of type Integer.

j : d : kis the Real vector {j, j+d, ..., j+nd}, with n = floor((k — j)/d), if j, d, or k
are of type Real. In order to avoid rounding issues for the length it is recommended to use {j +
d * i for i in O : n} or linspace(j, k, n + 1) — if the number of elements are known.

j + d : kis aReal or Integer vector with zero elements, if d > 0 and j > k or if d < 0 and
Jj<k.

false : true is the Boolean vector {false, true}.

j ¢ jis{j}if j is Real, Integer, Boolean, or enumeration type.
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e E.ei : E.ej is the enumeration type vector {E.ei, ..., E.ej} where E.ej > E.ei, and ei and
ej belong to some enumeration type E = enumeration(..., ei, ..., ej, ...).
[Example:

Real v1[5] = 2.7 : 6.8;
Real v2[5] = {2.7, 3.7, 4.7, 5.7, 6.7}; // = same as vl

Boolean b1[2] = false:true;
Colors = enumeration (red,blue,green);
Colors ec[3] = Colors.red : Colors.green;

10.5 Array Indexing

The array indexing operator namel[...] is used to access array elements for retrieval of their values or
for updating these values. An indexing operation is subject to upper and lower array dimension index
bounds (section 10.1.1). The indexing operator takes two or more operands, where the first operand is
the array to be indexed and the rest of the operands are index (or subscript) expressions:

arrayname Lindexezpr,, indexexpry, ...]

A colon (‘:’) is used to denote all indices of one dimension. A vector expression can be used to pick out
selected rows, columns and elements of vectors, matrices, and arrays. The number of dimensions of the
expression is reduced by the number of scalar index arguments. If the number of index arguments is
smaller than the number of dimensions of the array, the trailing indices will use ‘:’.

It is also possible to use the array access operator to assign to element/elements of an array in algorithm
sections. This is called an indeved assignment statement. If the index is an array the assignments take
place in the order given by the index array. For assignments to arrays and elements of arrays, the entire
right-hand side and the index on the left-hand side are evaluated before any element is assigned a new
value.

[An indexing operation is assumed to take constant time, i.e., largely independent of the size of the array.]

[Example: Array indexing expressions:

al:, jl // Vector of the j—th column of a.

aljl // Vector of the j—th row of a. Same as: a[j, :]
alj : kI // Same as: {a[j], a[j+1], ..., a[k]}

al:, j + X1 // Same as: [a[:, j], a[:, j+1], ..., a[:, k]]

The range vector operator is just a special case of a vector expression:

v[2 : 2 : 8] // Same as: v[{2, 4, 6, 8}]

Array indexing in assignment statements:

vI{j, k}1 := {2, 3}; // Same as: v[j] 2; v[k] = 3;
v[{1, 1}] := {2, 3}; // Same as: v[1l] := 3;

If x is a vector, x[1] is a scalar, but the slice x[1:5] is a vector (a vector-valued or colon index expression
causes a vector to be returned).]
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Table 10.4: Examples of scalars vs. array slices created with the colon index. The examples make
use of the array variables x[n,m], v[k], and z[i,7,p].

FExpression # dims  Description

x[1, 1] 0 Scalar

x[:, 1] 1 n-vector

x[1, :] or x[1] 1 m-vector

v[1:p] 1 p-vector

x[1:p, :] 2 p X m matrix
x[1:1, :] 2 1 X m “row” matrix
x[{1, 3, 5}, :1 2 3 X m matrix

x[:, vl 2 n X k matrix

z[:, 3, :] 2 1 X p matrix
x[scalar([1]), :] 1 m-vector
x[vector([1]), :] 2 1 X m “row” matrix

10.5.1 Indexing with Boolean or Enumeration Values

Arrays can be indexed using values of enumeration types or the Boolean type, not only by Integer.
The type of the index should correspond to the type used for declaring the dimension of the array.

[Example:

type ShirtSizes = enumeration(small, medium, large, xlarge);
Real [ShirtSizes] w;
Real [Boolean] b2;

algorithm
w[ShirtSizes.large] := 2.28; // Assign a value to an element of w
b2[true] := 10.0;
b2[ShirtSizes.medium] := 4; // Error, b2 was declared with Boolean dimension
wl[1] := 3; // Error, w was declared with ShirtSizes dimension

10.5.2 Indexing with end

The expression end may only appear inside array subscripts, and if used in the i:th subscript of an array
expression A it is equivalent to the upper bound of the i:th dimension of A. If used inside nested array
subscripts it refers to the most closely nested array.

[If indices to A are a subtype of Integer il is equivalent to size(A, 1i).]

[Example:

Alend - 1, end] is A[size(A,1) - 1, size(A,2)]
Alv[lend]l, end] is Al[v[size(v,1)], size(A,2)] // First end %s referring to end of wv.

Real B[Boolean];
B[end] is B[truel

10.6 Scalar, Vector, Matrix, and Array Operator Functions

The mathematical operations defined on scalars, vectors, and matrices are the subject of linear algebra.

The term numeric or numeric class is used below for a subtype of the Real or Integer type classes. The
standard type coercion defined in section 10.6.13 applies.
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10.6.1 Equality and Assignment

Equality a = b and assignment a := b of scalars, vectors, matrices, and arrays is defined element-wise
and require both objects to have the same number of dimensions and corresponding dimension sizes. See
section 10.5 regarding assignments to array variables with vector of subscripts.

The operands need to be type equivalent. This is legal for the simple types and all types satisfying the

requirements for a record, and is in the latter case applied to each component-element of the records.

Table 10.5: Equality and assignment of arrays and scalars. The scalar Operation applies for all j
inl,...,nandkinl, ..., m.

Size of a Size of b \ Size of a = b Operation

Scalar Scalar Scalar a=>b

n-vector n-vector n-vector alj] = blj]

n X m matrix n X m matrix | n X m matrix alj, k] = blj, k]
nXmx... nXmx... nxXmx... alj, k, ...1 =bvly, k, ...]

10.6.2 Array Element-wise Addition, Subtraction, and String Concatenation

Addition a + b and subtraction a - b of numeric scalars, vectors, matrices, and arrays is defined
element-wise and require size(a) = size(b) and a numeric type for a and b. Unary plus and mi-
nus are defined element-wise. Addition a + b of string scalars, vectors, matrices, and arrays is defined
as element-wise string concatenation of corresponding elements from a and b, and require size(a) =
size(b).

Table 10.6: Array addition, subtraction, and string concatenation. In this table the symbolic

operator + represents either + or -. The scalar Operation applies for all j in 1, ..., n and k in

1, ..., m.

Size of a Size of b \ Size of a £ b Operation ¢ := a £ b

Scalar Scalar Scalar c:=axb

n-vector n-vector n-vector clj1 := alj]l + bly]

n X m matrix n X m matrix | n X m matrix c[j, k] := alj, k] + blj, kI

nxmx... nxXmx... nxXmx ... clyj, k, ...] :=alj, k, ...1] £ blj, k, ...]
Element-wise addition a .+ b and subtraction a .- b of numeric scalars, vectors, matrices or arrays a

and b requires a numeric type class for a and b and either size(a) = size(b) or scalar a or scalar b.
Element-wise addition a .+ b of string scalars, vectors, matrices, and arrays is defined as element-wise

string concatenation of corresponding elements from a and b, and require either size(a) = size(b) or
scalar a or scalar b.

Table 10.7: Array element-wise addition, subtraction, and string concatenation. In this table the
symbolic operator + represents either + or -, and when preceded by a dot (.+), either .+ or .-.

The scalar Operation applies for all j in1,...,nand kin 1, ..., m.

Size of a Size of b \ Size ofa .+ b Operationc := a .£ b

Scalar Scalar Scalar c:=atb

Scalar nXmX ... | nXmx... clyj, k, ...] :=a + bly, k, ...]
nxmxX... Scalar nxXmx ... clyj, k, ... :=alj, k, ..] £ b
nXmX... nXmMmX... | nxXxmx... clyj, k, ...] :=alj, k, ...] £ blj, k, ]
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Table 10.8: Unary operators. In this table the symbolic operator & represents either unary + or
unary -. The element-wise (.+, .-) and normal (+, -) operators give the same results. The scalar
Operation applies for all j in 1, ..., nand kin1, ..., m.

Size of a \ Size of + a  Operation ¢ := + a

Scalar Scalar c :=+ a
nxXmx... | nxmx... cly, k, ... ] =+ alj, k, ...]

10.6.3 Array Element-wise Multiplication

Scalar multiplication s * a or a * s with numeric scalar s and numeric scalar, vector, matrix or array
a is defined element-wise:

Table 10.9: Scalar and scalar to array multiplication of numeric elements. The scalar Operation
applies for all jin1,...,nandkinl, ..., m.

Size of s Size of a \ Size of s * aanda * s Operationc := s * aorc := a * s
Scalar Scalar Scalar C :=s8 * a

Scalar n-vector n-vector clj] := s * aly]

Scalar n X m matrix | n X m matrix clyj, kK1 :=s * alj, k]

Scalar nXxXmx ... nXmxX... cly, k, ...1 :=s x aly, k, ...]

Element-wise multiplication a .* b of numeric scalars, vectors, matrices or arrays a and b requires a
numeric type class for a and b and either size(a) = size(b) or scalar a or scalar b.

Table 10.10: Array element-wise multiplication. The scalar Operation applies for all j in 1, ..., n
and kinl, ..., m.

Size of a Size of b \ Size of a .* b Operation ¢ := a .*x b

Scalar Scalar Scalar c:=axb

Scalar nNXmX...| nxmx... cly, k, ...] =a*b[], , een]

nXxXmx... Scalar nXmX... clj, k, ...1 :=alj, k, ...1 Db

nNXmMmX... nmXmX...| nxXxmx... clyj, k, ...] :=alj, k, ...] * blj, k, ...]

10.6.4 Matrix and Vector Multiplication of Numeric Arrays

Multiplication a * b of numeric vectors and matrices is defined only for the following combinations:

Table 10.11: Matrix and vector multiplication of arrays with numeric elements. The scalar Op-

eration applies for all i in 1, ..., 1 and j in 1, ..., n, and the summation over k goes from 1 to
m.

Size of a Size of b \ Size of a * b Operation ¢ := a x b

m-vector m-vector Scalar c := ), alkl * blk]

m~vector m X n matrix | n-vector cljl := >, alkl * blk, jl

[ X m matrix m-vector l-vector clil := >, ali, k1 * blk]

I x m matrix m x n matrix | [ x n matrix  cli, j1 := >, ali, k1 * blk, j]

[Example:

Real AI[3, 31, x[3]1, b[3], vI[3];

A ¥ x = Db;

x * A = b; // same as transpose ([x])*Axb

[vl * transpose([v]) // outer product

v x A xv // scalar

tranpose ([v]) * A x v // vector with one element
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10.6.5 Division of Scalars or Numeric Arrays by Numeric Scalars

Division a / s of numeric scalars, vectors, matrices, or arrays a and numeric scalars s is defined element-
wise. The result is always of Real type. In order to get integer division with truncation, use the function
div.
Table 10.12: Division of scalars and arrays by numeric elements. The scalar Operation applies for
alljinl, ..., nandkinl, ..., m.

Size of a Size of s \ Size of a / s Operationc := a / s

Scalar Scalar Scalar c:=a/s

n-vector Scalar n-vector clk]l := alk]l / s

n X m matrix Scalar n X m matrix cl[j, k] := alj, k] / s

nxXmx ... Scalar nxXmx ... clyj, k, ...] :=alj, k, ...1 / s

10.6.6 Array Element-wise Division

Element-wise division a ./ b of numeric scalars, vectors, matrices or arrays a and b requires a numeric
type class for a and b and either size(a) = size(b) or scalar a or scalar b. The result is always of
Real type. In order to get integer division with truncation, use the function div.

Table 10.13: Element-wise division of arrays. The scalar Operation applies for all j in 1, ..., n
and kinl, ..., m.

Size of a Size of b \ Size ofa ./ b Operation ¢ := a ./ b

Scalar Scalar Scalar c:=al/b

Scalar nXMmMX... | nxXmx... clyj, k, ...] =a/b[], , o]

nxmx... Scalar nxmx... cly, k, ... := alj, k, ...] / b

NXMX ... mXmX... | nxmx... clyj, k, ...] :=alj, k, ...] / vlj, k, ...]

[Example: Element-wise division by scalar (./) and division by scalar (/) are identical: a ./ s = a / s:

2./01, 2; 3, 41 // error; same as 2.0 / [1, 2; 3, 4]
2 ./[1, 2; 3, 41 // fine; element—wise division

This is a consequence of the parsing rules, since 2.’ is a lexical unit. Using a space after the literal
solves the problem.]

10.6.7 Exponentiation of Scalars of Numeric Elements

Exponentiation a ~ b is defined as pow(double a, double b) in the ANSI C library if both a and b are
Real scalars. A Real scalar value is returned. If a or b are Integer scalars, they are automatically
promoted to Real. Consequences of exceptional situations, such as (a = 0.0 and b < 0.0, a < 0 and b is
not an integer) or overflow are undefined.

Element-wise exponentiation a .~ b of numeric scalars, vectors, matrices, or arrays a and b requires a
numeric type class for a and b and either size(a) = size(b) or scalar a or scalar b.

Table 10.14: Element-wise exponentiation of arrays. The scalar Operation applies for all j in

1,...,nand kinl, ... m.
Size of a Size of b \ Size ofa .~ b Operation c := a .~ b
Scalar Scalar Scalar c:=a"~b
Scalar nXMmMX... | nXmXx... clyj, k, ...] :=a "~ vlj, k, ...]
nxmX ... Scalar nxmx... clyj, k, ...] :=alj, k, ...1 b
nXmMmX... nXmX...| nxXxmx... clj, k, ...1 := alj, k, ...1 -~ vlj, k, ...]
[Example:
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2.7[1, 2; 3, 41 // error; same as 2.0 "~ [1, 2; 3, 4]
2 .~[1, 2; 3, 4] // fine; element—wise exponentiation

This is a consequence of the parsing rules, i.e. since 2. could be a lexical unit it seen as a lexical unit;
using a space after literals solves the problem.]

10.6.8 Scalar Exponentiation of Square Matrices of Numeric Elements

Exponentiation a ~ s is defined if a is a square numeric matrix and s is a scalar as a subtype of Integer
with s > 0. The exponentiation is done by repeated multiplication, e.g.:

a3 = a *x a *x a;

a0 = identity(size(a, 1));

assert(size(a, 1) == size(a, 2), "Matrix must be square");
a1l = a;

[Non-Integer exponents are forbidden, because this would require computing the eigenvalues and eigen-
vectors of a and this is no longer an elementary operation.

10.6.9 Slice Operation
The following holds for slice operations:

e If a is an array containing scalar components and m is a component of those components, the
expression a.m is interpreted as a slice operation. It returns the array of components {a[1] .m,

.}

e Ifmis also an array component, the slice operation is valid only if size(a[1] .m) = size(a[2] .m)

e The slicing operation can be combined with indexing, e.g. a.m[1]. It returns the array of compo-
nents {al1].m[1], al[2].m[1], ...}, and does not require that size(al1].m) = size(a[2].m).
The number of subscripts on m must not be greater than the number of array dimension for m (the
number can be smaller, in which case the missing trailing indices are assumed to be ‘:’), and is
only valid if size(a[1] .m[...]) = size(al[2].m[...]).

[Example: The size-restriction on the operand is only applicable if the indexing on the second operand
uses vectors or colon as in the example:

constant Integer m=3;
Modelica.Blocks.Continuous.LowpassButterworth tf[m](n=2:(m+1));
Real yl[m];
Real y2,y3;
equation
// Extract the x1 slice even though different x1's have different lengths

y = tf.x1[1] ; // Legal, = {tf[1].x1[1], tf[2].x1[1], ... tf[m].x1[1]};
y2 = sum(tf.x1[:1); // Illlegal to extract all elements since they have
// different lengths. Does not satisfy:
// size(tf[1].x1[:]) = size(tf[2].x1[:]) = ... = size(tf[m].x1[:])
y3 = sum(tf.x1[1:2]); // Legal.
// Since x1 has at least 2 elements in all tf, and
/] size(tf[1].x1[1:2]) = size(tf[2].x1[1:2]) = ... = size(tf[m].x1[1:2]) =
{2}

In this example the different x1 wvectors have different lengths, but it is still possible to perform some
operations on them.]

10.6.10 Relational Operators

Relational operators <, <=, > >= == <> are only defined for scalar operands of simple types, not for
arrays, see section 3.5
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10.6.11 Boolean Operators

The operators and and or take expressions of Boolean type, which are either scalars or arrays of matching
dimensions. The operator not takes an expression of Boolean type, which is either scalar or an array. The
result is the element-wise logical operation. For short-circuit evaluation of and and or, see section 3.3.

10.6.12 Vectorized Calls of Functions
See section 12.4.6.

10.6.13 Standard Type Coercion

In all contexts that require an expression which is a subtype of Real, an expression which is a subtype
of Integer can also be used; the Integer expression is automatically converted to Real.

This also applies to arrays of Real, and for fields of record expressions. There is no similar rule for
sub-typing.

[Example:

record RealR
Real x,y;

end RealR;

record IntegerR
Integer x,y;

end IntegerR;

parameter Integer a = 1;

Real y(start=a); // Ok, a is automatically coerced to Real
RealR rl = IntegerR(a, a); // Ok, record is automatically coerced
RealR r2 = RealR(a, a); // Ok, a is automatically coerced to Real

10.7 Empty Arrays

Arrays may have dimension sizes of 0. For example:

Real x[0]; // an empty vector
Real A[O, 3], B[5, 0], C[O, 0]; // empty matrices

Empty matrices can be constructed with the fill function. For example:

Real A[:,:] = £i11(0.0, O, 1); // a Real 0 x 1 matrix
Boolean B[:, :, :] = fill(false, 0, 1, 0); // a Boolean 0 x 1 x 0 matrix

It is not possible to access an element of an empty matrix, e.g. v[j, k] cannot be evaluated if v = []
because the assertion fails that the index must be bigger than one.

Size-requirements of operations, such as +, -, must also be fulfilled if a dimension is zero. For example:

Real[3, 0] A, B;

Real [0, 0] C;

A+ B // fine, result is an empty matrix
A+ C // error, sizes do not agree

Multiplication of two empty matrices results in a zero matrix of corresponding numeric type if the result
matrix has no zero dimension sizes, i.e.,

Real [0, m] * Real[m, nl]

Real[m, n] * Reall[n, O]

Real[m, O] * Reall[O, n]
).

Real [0, n] (empty matrix)
Real[m, 0] (empty matrix)
£i11(0.0, m, n) (non-empty matrix, with zero elements

[Example:
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Real ulpl, x[nl, ylql, Aln, nl, Bln, pl, Clq, nl, DIlq, pl;
der(x) = A *x x + B * u
y =C* x + D *x u

Assumen=0,p >0, q>0: Results iny = D * u.]
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Chapter 11

Statements and Algorithm Sections

Whereas equations are very well suited for physical modeling, there are situations where computations
are more conveniently expressed as algorithms, i.e., sequences of statements. In this chapter we describe
the algorithmic constructs that are available in Modelica.

Statements are imperative constructs allowed in algorithm sections.

11.1  Algorithm Sections

An algorithm section is a part of a class definition comprised of the keyword algorithm followed by a
sequence of statements. The formal syntax is as follows:

algorithm-section
[ initial ] algorithm { statement ";" | annotation ";" }

Like an equation, an algorithm section relates variables, i.e., constrains the values that these variables
can take simultaneously. In contrast to an equation section, an algorithm section distinguishes inputs
from outputs: An algorithm section specifies how to compute output variables as a function of given
input variables. A Modelica tool may actually invert an algorithm section, i.e., compute inputs from
given outputs, e.g., by search (generate and test), or by deriving an inverse algorithm symbolically.

Equation equality = or any other kind of equation (see chapter 8) shall not be used in an algorithm
section.

11.1.1 Initial Algorithm Sections

See section 8.6 for a description of both initial algorithm sections and initial equation sections.

11.1.2 Execution of an algorithm in a model

An algorithm section is conceptually a code fragment that remains together and the statements of an
algorithm section are executed in the order of appearance. Whenever an algorithm section is invoked,
all variables appearing on the left hand side of the assignment operator := are initialized (at least
conceptually):

e A continuous-time variable is initialized with its start value (i.e. the value of the start attribute).
e A discrete-time variable v is initialized with pre(v).

e If at least one element of an array appears on the left hand side of the assignment operator, then
the complete array is initialized in this algorithm section.

e A parameter assigned in an initial algorithm, section 8.6, is initialized with its start-value (i.e. the
value of the start attribute).

[Initialization is performed, in order that an algorithm section cannot introduce a “memory” (except in
the case of discrete-time variables assigned in the algorithm), which could invalidate the assumptions of
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a numerical integration algorithm. Note, a Modelica tool may change the evaluation of an algorithm
section, provided the result is identical to the case, as if the above conceptual processing is performed.

An algorithm section is treated as an atomic vector-equation, which is sorted together with all other
equations. For the sorting process (BLT), every algorithm section with N different left-hand side variables,
is treated as an atomic N-dimensional vector-equation containing all variables appearing in the algorithm
section. This guarantees that all N equations end up in an algebraic loop and the statements of the
algorithm section remain together.

Ezxample:

model Test // wrong Modelica model (has 4 equations for 2 unknowns)
Real x[2](start={-11, -22});
algorithm // conceptually: x = {1,—-22}

x[1] := 1;

algorithm // conceptually: x = {—11,2}
x[2] := 2;

end Test;

The conceptual part indicate that if the variable is assigned unconditionally in the algorithm before it
is used the initialization can be omitted. This is usually the case, except for algorithms with when-
statements, and especially for initial algorithms.]

11.1.3 Execution of the algorithm in a function

See section 12.4.4 Initialization and Binding Equations of Components in Functions.

11.2 Statements

Statements are imperative constructs allowed in algorithm sections. A flattened statement is identical
to the corresponding nonflattened statement.

Names in statements are found as follows:

e If the name occurs inside an expression: it is first found among the lexically enclosing reduction
functions (see section 10.3.4) in order starting from the inner-most, and if not found it proceeds as
if it were outside an expression:

e Names in a statement are first found among the lexically enclosing for-statements in order starting
from the inner-most, and if not found:

e Names in a statement shall be found by looking up in the partially flattened enclosing class of the
algorithm section.

The syntax of statements is as follows:

statement
( component-reference ( ":=" expression | function-call-args )
| "(" output-expression-list ")" ":=" component-reference
function-call-args
break
return

for-statement
while-statement
| when-statement )
comment

|
|
| if-statement
|
|

11.2.1 Simple Assignment Statements

The syntax of simple assignment statement is as follows:

component-reference ":=" expression
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The expression is evaluated. The resulting value is stored into the variable denoted by component-reference.
The expression must not have higher variability than the assigned component, see section 3.8.

Assignment to array variables with subscripts is described in section 10.5.

11.2.1.1 Assignments from Called Functions with Multiple Results

There is a special form of assignment statement that is used only when the right-hand side contains a call
to a function with multiple results. The left-hand side contains a parenthesized, comma-separated list of
variables receiving the results from the function call. A function with n results needs m<=n receiving
variables on the left-hand side, and the variables are assigned from left to right.

(outl, out2, out3d) := function_name(inl, in2, in3, in4);

It is possible to omit receiving variables from this list:

(outl, , out3) := function_name(inl, in2, in3, in4);

[Example: The function £ called below has three results and two inputs:

(a, b, c) := £(1.0, 2.0);
(x[1], x[2]1, x[1]) := £(3, 4);

In the second example above x[1] is assigned twice: first with the first output, and then with the third
output. For that case the following will give the same result:

(, x[2], x[1]) := £(3,4);

]

The syntax of an assignment statement with a call to a function with multiple results is as follows:

"(" output-expression-list ")" ":=" component-reference function-call-args

[Also see section 8.3.1 regarding calling functions with multiple results within equations.]

11.2.1.2 Restrictions on assigned variables

Only components of the specialized classes type, record, operator record, and connector may appear
as left-hand-side in algorithms. This applies both to simple assignment statements, and the parenthe-
sized, comma-separated list of variables for functions with multiple results.

11.2.2 For-statement

The syntax of a for-statement is as follows:

for for-indices 1loop
{ statement ";" }
end for

For-statements may optionally use several iterators (for-indices), see section 11.2.2.3 for more infor-
mation:

for-indices:
for-index {"," for-index}

for-index:
IDENT [ in expression ]

The following is an example of a prefix of a for-statement:

for IDENT in expression loop

The rules for for-statements are the same as for for-expressions in section 8.3.2.1 — except that the
expression of a for-statement is not restricted to a parameter expression.

[Example:
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for i in 1 : 10 loop // i takes the values 1, 2, 3, ..., 10
for r in 1.0 : 1.5 : 5.5 loop // r takes the values 1.0, 2.5, 4.0, 5.5
for i in {1, 3, 6, 7} loop // i takes the values 1, 3, 6, 7
for i in TwoEnums loop // i takes the values TwoEnums.one, TwoEnums.two
// for TwoEnums = enumeration(one, two)

The loop-variable may hide other variables as in the following example. Using another name for the
loop-variable is, however, strongly recommended.

constant Integer j = 4;
Real x[j1;
equation
for j in 1:j loop // The loop—variable j takes the values 1, 2, 3, 4
x[j] = j; // Uses the loop—variable j
end for;

11.2.2.1 Implicit Iteration Ranges

An iterator IDENT in range-expr without the in range-expr requires that the IDENT appears as the
subscript of one or several subscripted expressions, where the expressions are not part of an array in
a component of an expandable connector. The dimension size of the array expression in the indexed
position is used to deduce the range-expr as 1:size(array-expression,indexpos) if the indices are
a subtype of Integer, or as E.el:E.en if the indices are of an enumeration type E = enumeration(
el, ..., en), or as false:true if the indices are of type Boolean. If it is used to subscript several
expressions, their ranges must be identical. The IDENT may also, inside a reduction-expression, array
constructor expression, for-statement, or for-equation, occur freely outside of subscript positions, but
only as a reference to the variable IDENT, and not for deducing ranges.

The IDENT may also be used as a subscript for an array in a component of an expandable connector but
it is only seen as a reference to the variable IDENT and cannot be used for deducing ranges.

[Example:
Real x[4];
Real xsquared[:] = {x[i] * x[i] for i};
// Same as: {x[i] * x[i] for i in 1 : size(x, 1)}

Real xsquared2[size(x, 1)];
Real xsquared3[size(x, 1)];
equation

for i loop // Same as: for i in 1 : size(x, 1) loop
xsquared2[i] = x[1i]72;
end for;
algorithm
for i loop // Same as: for i in 1 : size(x, 1) loop
xsquared3[i] := x[i]"2;
end for;
type FourEnums = enumeration(one, two, three, four);
Real xe[FourEnums] = x;
Real xsquared3[FourEnums] = {xe[i] * xe[i] for il};

{xe[i] * xe[i] for i in FourEnums};
{x[i] * x[i] for i};

Real xsquared4 [FourEnums]
Real xsquared5[FourEnums]

]

The size of an array — the iteration range — is evaluated on entry to the for-loop and the array size shall
not change during the execution of the for-loop.

11.2.2.2 Types as Iteration Ranges

The iteration range can be specified as Boolean or as an enumeration type. This means iteration over
the type from min to max, i.e. for Boolean it is the same as false:true and for an enumeration E it is
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the same as E.min:E.max. This can be used for for loops and reduction expressions.

[Example:

type FourEnums = enumeration(one, two, three, four);

Real xe[FourEnums];

Real xsquaredl[FourEnums];

Real xsquared2[FourEnums] = {xe[i] * xe[i] for i in FourEnums};
equation

for i in FourEnums loop

xsquaredl1[i] = xe[i]"2;
end for;

11.2.2.3 Nested For-Loops and Reduction Expressions with Multiple Iterators

The notation with several iterators is a shorthand notation for nested for-statements or for-equations
(or reduction-expressions). For for-statements or for-equations it can be expanded into the usual form
by replacing each ‘,” by “loop for” and adding extra “end for”. For reduction-expressions it can be
expanded into the usual form by replacing each *,’ by “) for” and prepending the reduction-expression
with “functionName(”.

[Example:

Real x[4,3];
algorithm
for j, i in 1:2 loop
// The loop—variable j takes the values 1,2,3,4 (due to use)
// The loop—variable i takes the values 1,2 (given range)
x[j,1i1 := j+i;
end for;

11.2.3 While-Statement

The while-statement has the following syntax:

while expression loop
{ statement ";" %}
end while

The expression of a while-statement shall be a scalar Boolean expression. The while-statement corre-
sponds to while-statements in programming languages, and is formally defined as follows:

1. The expression of the while-statement is evaluated.
2. If the expression of the while-statement is false, the execution continues after the while-statement.

3. If the expression of the while-statement is true, the entire body of the while-statement is exe-
cuted (except if a break-statement, see section 11.2.4, or a return-statement, see section 11.2.5, is
executed), and then execution proceeds at step 1.

11.2.4 Break-Statement

The break-statement breaks the execution of the innermost while- or for-loop enclosing the break-
statement and continues execution after the while- or for-loop. It can only be used in a while- or
for-loop in an algorithm section. It has the following syntax:

‘break;

[Example: (Note that this could alternatively use return).
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function findValue "Returns position of val or O if not found"
input Integer x[:];
input Integer val;
output Integer index;

algorithm
index := size(x, 1);
while index >= 1 loop
if x[index] == val then
break;
else
index := index - 1;
end if;

end while;
end findValue;

11.2.5 Return-Statements

Can only be used inside functions, see section 12.1.2.

11.2.6 If-Statement

If-statements have the following syntax:

if expression then

{ statement ";" }

{ elseif expression then
{ statement ";" }

}

[ else
{ statement ";" }

]

end if;

The expression of an if- or elseif-clause must be scalar Boolean expression. One if-clause, and zero or
more elseif-clauses, and an optional else-clause together form a list of branches. One or zero of the bodies
of these if-, elseif- and else-clauses is selected, by evaluating the conditions of the if- and elseif-clauses
sequentially until a condition that evaluates to true is found. If none of the conditions evaluate to true
the body of the else-clause is selected (if an else-clause exists, otherwise no body is selected). In an
algorithm section, the selected body is then executed. The bodies that are not selected have no effect
on that model evaluation.

11.2.7 When-Statements

A when-statement has the following syntax:

when expression then

{ statement ";" }
{ elsewhen expression then
{ statement ";" } }

end when

The expression of a when-statement shall be a discrete-time Boolean scalar or vector expression. The
algorithmic statements within a when-statement are activated when the scalar or any one of the elements
of the vector-expression becomes true.

[Example: Algorithms are activated when x becomes > 2:

when x > 2 then

y1 sin(x);

y3 = 2*x + yl+y2;
end when;
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The statements inside the when-statement are activated on the positive edge of any of the expressions
x > 2, sample(0, 2), orx < 5:

when {x > 2, sample(0,2), x < 5} then
yl := sin(x);
y3 = 2*%xx + yl+y2;

end when;

For when-statements in algorithm sections the order is significant and it is advisable to have only one
assignment within the when-statement and instead use several algorithm sections having when-statements
with identical conditions, e.g.:

algorithm
when x > 2 then
yl := sin(x);

end when;
equation
y2 = sin(y1);

algorithm
when x > 2 then
y3 = 2%xx +yl+y2;

end when;

Merging the when-statements can lead to less efficient code and different models with different behavior
depending on the order of the assignment to y1 and y3 in the algorithm.)

11.2.7.1 Restrictions on Where a When-statement may occur
e A when-statement shall not be used within a function.
¢ When-statements shall not occur inside initial algorithms.
e When-statements cannot be nested.
e When-statements shall not occur inside while, if, and for-clauses in algorithms.

[Example: The following nested when-statement is invalid:

when x > 2 then
when yl1 > 3 then
y2 := sin(x);
end when;
end when;

11.2.7.2 Restrictions on Statements within When-Statements
[In contrast to when-equations, section 8.3.5.3, there are no additional restrictions within when-statements:
e In algorithms, all assignment statements are already restricted to left-hand-side variables.

o If at least one element of an array appears on the left-hand-side of the assignment operator inside a
when-statement, it is as if the entire array appears in the left-hand-side according to section 11.1.2.
Thus, there is no need to restrict the indices to parameter expressions.

o For-clauses and if-clauses are not problematic inside when-statements in algorithms, since all left-
hand-side variables inside when-statements are assigned to their pre-values before the start of the
algorithm, according to section 11.1.2.

11.2.7.3 Defining When-Statements by If-Statements

A when-statement:
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algorithm
when {x>1, ..., y>p} then

elsewhen x > y.start then

end when;

is similar to the following special if-statement, where Boolean b1[N]; and Boolean b2; are necessary
because edge can only be applied to variables

Boolean bil[N](start={x.start>1, ...,

y.start>p});

Boolean b2(start=x.start>y.start);
algorithm

bl:={x>1, ..., y>p};

b2:=x>y.start;

if edge(b1[1]) or edge(bl[2]) or

edge (b1 [N]) then

elseif edge(b2) then

end if;

with edge(A)= A and not pre(A) and the additional guarantee, that the statements within this special
if-statement are only evaluated at event instants. The difference compared to the when-statements is
that e.g. pre may only be used on continuous-time real variables inside the body of a when-clause and
not inside these if-statements.

11.2.8 Special Statements

These special statements have the same form and semantics as the corresponding equations, apart from
the general difference in semantics between equations and statements.

11.2.8.1 Assert Statement

See section 8.3.7. A failed assert stops the execution of the current algorithm.

11.2.8.2 Terminate Statement

See section 8.3.8. The terminate statement shall not be in functions. In an algorithm outside a function
it does not stop the execution of the current algorithm.
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Chapter 12

Functions

This chapter describes the Modelica function construct.

12.1 Function Declaration

A Modelica function is a specialized class (section 12.2) using the keyword function. The body of a
Modelica function is an algorithm section that contains procedural algorithmic code to be executed when
the function is called, or alternatively an external function specifier (section 12.9). Formal parameters
are specified using the input keyword, whereas results are denoted using the output keyword. This
makes the syntax of function definitions quite close to Modelica class definitions, but using the keyword
function instead of class.

[The structure of a typical function declaration is sketched by the following schematic function example:

function  functionname
input TypelIl ini;
input Typel2 in2;
input TypeI3 in3 = default_exprl "Comment" annotation(...);

output TypeOl outil;
output Type02 out2 = default_expr2;

protected
<local wvariables>
algorithm
<statements>

end functionname ;

]

Optional explicit default values can be associated with any input or output formal parameter through
binding equations. Comment strings and annotations can be given for any formal parameter declaration,
as usual in Modelica declarations.

[Explicit default values are shown for the third input parameter and the second output parameter in the
example above.]

[All internal parts of a function are optional; i.e., the following is also a legal function:

function functionname
end functionname ;
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12.1.1 Ordering of Formal Parameters

The relative ordering between input formal parameter declarations is significant since that determines the
matching between actual arguments and formal parameters at function calls with positional parameter
passing. Likewise, the relative ordering between the declarations of the outputs is significant since
that determines the matching with receiving variables at function calls of functions with multiple results.
However, the declarations of the inputs and outputs can be intermixed as long as these internal orderings
are preserved.

[Mizing declarations in this way is not recommended, however, since it makes the code hard to read.)

[Example:

function <functionname>
output TypeO1l outl; // Intermixed declarations of inputs and outputs

input TypeIl inl; // not recommended since code becomes hard to read
input TypelI2 in2;

output Type02 out2;
input TypeI3 in3;

end < functionname>;

12.1.2 Function return-statements

The return-statement terminates the current function call, see section 12.4. It can only be used in an
algorithm section of a function. It has the following form:

return;

[Example: (Note that this could alternatively use break:)

function findValue "Returns position of val or O if not found"
input Integer x[:];
input Integer val;
output Integer index;
algorithm
for i in 1l:size(x,1) loop
if x[i] == val then
index := 1i;
return;
end if;
end for;
index := 0;
return;
end findValue;

12.1.3 Inheritance of Functions

It is allowed for a function to inherit and/or modify another function following the usual rules for
inheritance of classes (chapter 7).

[For example, it is possible to modify and extend a function class to add default values for input vari-
ables.]

12.2 Function as a Specialized Class

The function concept in Modelica is a specialized class (section 4.6).
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[The syntaz and semantics of a function have many similarities to those of the block specialized class.
A function has many of the properties of a general class, e.g. being able to inherit other functions, or to
redeclare or modify elements of a function declaration.]

Modelica functions have the following restrictions compared to a general Modelica class:

Only input and output formal parameters are allowed in the function’s public variable section.

Input formal parameters are read-only after being bound to the actual arguments or default values,
i.e., they shall not be assigned values in the body of the function.

A function shall not be used in connections, shall not have equations, shall not have initial algo-
rithms.

A function can have at most one algorithm section or one external function interface (not both),
which, if present, is the body of the function.

A function may only contain components of the specialized classes type, record, operator record,
and function; and it must not contain, e.g., model, block, operator or connector components.

A function may not contain components of type Clock.
The elements of a function shall not have prefixes inner, or outer.

A function may have zero or one external function interface, which, if present, is the external
definition of the function.

For a function to be called in a simulation model, the function shall not be partial, and the output
variables must be assigned inside the function either in binding equations or in an algorithm section,
or have an external function interface as its body, or be defined as a function partial derivative.
The output variables of a function should be computed.

[It is a quality of implementation how much analysis a tool performs in order to determine if the
output variables are computed.]

A function cannot contain calls to the Modelica built-in operators der, initial, terminal, sample
, pre, edge, change, reinit, delay, cardinality, inStream, actualStream, to the operators of
the built-in package Connections, to the operators defined in chapter 16 and chapter 17, and is
not allowed to contain when-statements.

The dimension sizes not declared with (:) of each array result or array local variable (i.e., a
non-input components) of a function must be either given by the input formal parameters, or
given by constant or parameter expressions, or by expressions containing combinations of those
(section 12.4.4).

For initialization of local variables of a function see section 12.4.4).

Components of a function will inside the function behave as though they had discrete-time vari-
ability.

Modelica functions have the following enhancements compared to a general Modelica class:

Functions can be called, section 12.4.
— The calls can use a mix of positional and named arguments, see section 12.4.1.
— Instances of functions have a special meaning, see section 12.4.2.
— The lookup of the function class to be called is extended, see section 5.3.2.

A function can be recursive.

A formal parameter or local variable may be initialized through a binding (=) of a default value in
its declaration, see section 12.4.4. Using assignment (:=) is deprecated. If a non-input component
in the function uses a record class that contain one or more binding equations they are viewed as
initialization of those component of the record component.

A function is dynamically instantiated when it is called rather than being statically instantiated
by an instance declaration, which is the case for other kinds of classes.
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A function may have an external function interface specifier as its body.

A function may have a return statement in its algorithm section body.

A function allows dimension sizes declared with (:) to be resized for non-input array variables, see
section 12.4.5.

A function may be defined in a short function definition to be a function partial derivative.

12.3 Pure Modelica Functions

Modelica functions are normally pure which makes it easy for humans to reason about the code since
they behave as mathematical functions, and possible for compilers to optimize.

e Pure Modelica functions always give the same output values or errors for the same input values and
only the output values influence the simulation result, i.e. is seen as equivalent to a mathematical
map from input values to output values. Some input values may map to errors. Pure functions are
thus allowed to fail by calling assert, or ModelicaError in C code, or dividing by zero. Such errors
will only be reported when and if the function is called. Pure Modelica functions are not assumed
to be thread-safe.

e A Modelica function which does not have the pure function properties is impure.
The declaration of functions follow these rules:

e Functions defined in Modelica (non-external) are normally assumed to be pure (the exception is
the deprecated case below), if they are impure they shall be marked with the impure keyword.
They can be explicitly marked as pure.

[However, since functions as default are pure it is not recommended to explicitly declare them as
pure.]

e External functions must be explicitly declared with pure or impure.
e If a function is declared as impure any function extending from it shall be declared as impure.

e A deprecated semantics is that external functions (and functions defined in Modelica directly or
indirectly calling them) without pure or impure keyword are assumed to be impure, but without
any restriction on calling them. Except for the function Modelica.Utilities.Streams.print,
diagnostics must be given if called in a simulation model.

Calls of pure functions used inside expression may be skipped if the resulting expression will not depend
on the possible returned value; ignoring the possibility of the function generating an error.

A call to a function with no declared outputs is assumed to have desired side-effects or assertion checks.

[A tool shall thus not remove such function calls, with exception of non-triggered assert calls. A pure
function, used in an expression or used with a non-empty left hand side, need not be called if the output
from the function call do not mathematically influence the simulation result, even if errors would be
generated if it were called.]

[Comment 1: This property enables writing declarative specifications using Modelica. It also makes
it possible for Modelica compilers to freely perform algebraic manipulation of expressions containing
function calls while still preserving their semantics. For example, a tool may use common subexpression
elimination to call a pure function just once, if it is called several times with identical input arguments.
However, since functions may fail we can e.g. only move a common function call from inside a loop to
outside the loop if the loop is run at least once.]

[Comment 2: The Modelica translator is responsible for maintaining this property for pure non-external
functions. Regarding external functions, the external function implementor is responsible. Note that
external functions can have side-effects as long as they do not influence the internal Modelica simulation
state, e.g. caching variables for performance or printing trace output to a log file.)

With the prefix keyword impure it is stated that a Modelica function is impure and it is only allowed to
call such a function from within:
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e Another function marked with the prefix impure.

e A when-equation.

e A when-statement.

e pure(impureFunctionCall(...)) — which allows calling impure functions in any pure context.
e Initial equations and initial algorithms.

¢ Binding equations for components declared as parameter — which is seen as syntactic sugar for
having a parameter with fixed=false and the binding as an initial equation.

[Thus, evaluation of the same function call at a later time during simulation is not guaranteed to
result in the same value as when the parameter was initialized, seemingly breaking the declaration
equation.]

¢ Binding equations for external objects.

For initial equations, initial algorithms, and bindings it is an error if the function calls are part of systems
of equations and thus have to be called multiple times.

[A tool is not allowed to perform any optimizations on function calls to an impure function, e.g., re-
ordering calls from different statements in an algorithm or common subexpression elimination is not
allowed.]

By section 6.6, it follows that an impure function can only be passed as argument to a function formal
parameter of impure type. A function having a formal function parameter that is impure must be marked
pure or impure.

[Comment: The semantics are undefined if the function call of an impure function is part of an algebraic
loop.]

[Example:

function evaluatelinear // pure function
input Real a0;
input Real al;
input Real x;
output Real y;
algorithm
y := a0 + al*x;
end evaluatelinear;

impure function receiveRealSignal // impure function
input HardwareDriverID id;
output Real y;

external "C"
y = receiveSignal(id);

end receiveRealSignal;

Ezxamples of allowed optimizations of pure functions:

model M // Assume sin, cos, asin are pure functions with normal derivatives.
input Real x[2];
input Real w;

Real y[2] = [cos(w), sin(w); -sin(w), cos(w)] * x;
Real z[2] = der(y);
Real a = 0 * asin(w);

end M;

A tool only needs to generate one call of the pure function cos(w) in the model M — a single call used for
both the two elements of the matriz, as well as for the derivative of that matriz. A tool may also skip
the possible error for asin(w) and assume that a is zero.

Ezxamples of restrictions on optimizing pure functions:
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Real x =
if noEvent(abs(x)) < 1 then
asin(x) // Cannot move asin(x) out of if—branch.
else
0;
algorithm
assertCheck(p, T); // Must call function
algorithm
if b then
y := 2 * someOtherFunction(x);
end if;
y =y + asin(x);
y := y + someOtherFunction(x);
// Cannot evaluate someOtherFunction(x) before asin(x) — unless b is true
// The reason is that asin(x) may fail and someOtherFunction may hang,
// and it might be possible to recover from this error.

12.4 Function Call

Function classes and record constructors (section 12.6) and enumeration type conversions (section 4.8.5.3)
can be called as described in this section.

12.4.1 Positional or Named Input Arguments of Functions

A function call has optional positional arguments followed by zero, one or more named arguments, such
as

£(3.5, 5.76, arg3=5, arg6=8.3);

The formal syntax of a function call (simplified by removing reduction expression, section 10.3.4.1):

primary
component-reference function-call-args

function-call-args
"(" [ function-arguments ] ")"

function-arguments
function-argument [ "," function-arguments]
| named-arguments

named-arguments: named-argument [ "," named-arguments ]
named-argument: IDENT "=" function-argument
function-argument : function-partial-application | expression

The interpretation of a function call is as follows: First, a list of unfilled slots is created for all formal
input parameters. If there are N positional arguments, they are placed in the first N slots, where the
order of the parameters is given by the order of the component declarations in the function definition.
Next, for each named argument identifier = expression, the identifier is used to determine the
corresponding slot. The value of the argument is placed in the slot, filling it (it is an error if this slot
is already filled). When all arguments have been processed, the slots that are still unfilled are filled
with the corresponding default value of the function definition. The default values may depend on other
inputs (these dependencies must be acyclical in the function) — the values for those other inputs will then
be substituted into the default values (this process may be repeated if the default value for that input
depend on another input). The default values for inputs shall not depend on non-input variables in the
function. The list of filled slots is used as the argument list for the call (it is an error if any unfilled slots
still remain).
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Special purpose operators with function syntax defined in the specification shall not be called with named
arguments, unless otherwise noted.

The type of each argument must agree with the type of the corresponding parameter, except where the
standard type coercion, section 10.6.13, can be used to make the types agree. (See also section 12.4.6 on
applying scalar functions to arrays.)

[Example: Assume a function RealToString is defined as follows to convert a Real number to a String:

function RealToString
input Real number;
input Real precision = 6 "number of significantdigits";
input Real length = 0 "minimum length of field";
output String string "number as string";

end RealToString;

Then the following applications are equivalent:

RealToString (2.0);

RealToString (2.0, 6, 0);

RealToString (2.0, 6);

RealToString (2.0, precision=6) ;

RealToString (2.0, length=0);

RealToString (2.0, 6, precision=6); // error: slot is used twice

12.4.2 Functional Input Arguments to Functions

A functional input argument to a function is an argument of function type. The declared type of such an
input formal parameter in a function can be the type-specifier of a partial function that has no replaceable
elements. It cannot be the type-specifier of a record or enumeration (i.e., record constructor functions
and enumeration type conversions are not allowed in this context). Such an input formal parameter of
function type can also have an optional functional default value.

[Example:

function quadrature "Integrate function y=integrand(x) from x1 to x2"
input Real x1;
input Real x2;
input Integrand integrand; // Integrand is a partial function,
see below
// With default: input Integrand integrand =
Modelica.Math.sin;
output Real integral;

algorithm
integral :=(x2-xl1)*(integrand(xl) + integrand(x2))/2;

end quadrature;

partial function Integrand
input Real u;
output Real y;

end Integrand;

]

A functional argument can be provided in one of the following forms to be passed to a scalar formal
parameter of function type in a function call:

a) as a function type-specifier (Parabola example below),
b) as a function partial application (section 12.4.2.1 below),

c) as a function that is a component (i.e., a formal parameter of function type of the enclosing
function),
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d) as a function partial application of a function that is a component (example in section 12.4.2.1
below).

In all cases the provided function must be function-compatible (definition 6.8) with the corresponding
formal parameter of function type.

[Example: A function as a positional input argument according to case (a):

function Parabola
extends Integrand;
algorithm
y 1= X*¥X;
end Parabola;
area = quadrature(0, 1, Parabola);

The quadrature2 example below uses a function integrand that is a component as input argument
according to case (c):

function quadrature2 "Integrate function y=integrand(x) from x1 to x2"
input Real x1;
input Real x2;
input Integrand integrand; // Integrand is a partial function type
output Real integral;
algorithm
integral := quadrature(xl, (x1+x2)/2, integrand)+ quadrature((x1+x2)/2, x2,
integrand) ;
end quadrature2;

12.4.2.1 Function Partial Application

A function partial application is similar to a function call with certain formal parameters bound to
expressions, the specific rules are specified in this section and are not identical to the ones for function
call in section 12.4.1. A function partial application returns a partially evaluated function that is also a
function, with the remaining not bound formal parameters still present in the same order as in the original
function declaration. A function partial application is specified by the function keyword followed by a
function call to func_name giving named formal parameter associations for the formal parameters to be
bound, e.g.:

function func_name(..., formal_parameter_name = expr, ...)

[Note that the keyword function in a function partial application differentiates the syntax from a normal
function call where some parameters have been left out, and instead supplied via default values.]

The function created by the function partial application acts as the original function but with the
bound formal input parameters(s) removed, i.e., they cannot be supplied arguments at function call.
The binding occurs when the partially evaluated function is created. A partially evaluated function is
function-compatible (definition 6.8) with the same function where all bound arguments are removed.

[Thus, for checking function type compatibility, bound formal parameters are ignored.]

[Example: Function partial application as argument, positional argument passing, according to case (b)
above:

model Test
parameter Integer N;
Real area;
algorithm
area := 0;
for i in 1:N loop
area := area + quadrature(0, 1, function Sine(A=2, w=i*time));
end for;
end Test;

function Sine "y = Sine(x,A,w)"
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extends Integrand;
input Real A;
input Real w;
algorithm
y:=A*Modelica.Math.sin(w*x);
end Sine;

Call with function partial application as named input argument:

area := area + quadrature(0, 1, integrand = function Sine(A=2, w=i*time));

]

[Example: Function types are matching after removing the bound arguments A and w in a function partial
application:

function Sine2 "y = Sine2(A,w,x)"
input Real Aj;
input Real w;
input Real x; // Note: x is now last in argument list.
output Real y;
algorithm
y:=A*Modelica.Math.sin(w*x) ;
end Sine?2;
area = quadrature(0, 1, integrand = function Sine2(A=2, w=3));

The partially evaluated Sine2 has only one argument: x — and is thus type compatible with Integrand.|

[Example: Function partial application of a function that is a component, according to case (d) above:

partial function SurfacelIntegrand
input Real x;
input Real y;
output Real z;

end Surfacelntegrand;

function quadratureOnce

input Real x;

input Real y1;

input Real y2;

input Surfacelntegrand integrand;

output Real z;
algorithm

z := quadrature(yl, y2, function integrand(y=x));

// This is according to case (d) and needs to bind the 2nd argument
end quadratureOnce;

function surfaceQuadrature
input Real x1;
input Real x2;
input Real y1;
input Real y2;
input Surfacelntegrand integrand;
output Real integral;

algorithm
integral := quadrature(xl, x2,
function quadratureOnce(yl=yl, y2=y2, integrand=integrand));
// Case (b) and (c)

end surfaceQuadrature;

12.4.3 Output Formal Parameters of Functions

A function may have more than one output component, corresponding to multiple return values. The
only way to use more than the first return value of such a function is to make the function call the right
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hand side of an equation or assignment. In this case, the left hand side of the equation or assignment
shall contain a list of component references within parentheses:

(outl, out2, out3) = £(...);

The component references are associated with the output components according to their position in the
list. Thus output component i is set equal to, or assigned to, component reference i in the list, where
the order of the output components is given by the order of the component declarations in the function
definition. The type of each component reference in the list must agree with the type of the corresponding
output component.

A function application may be used as expression whose value and type is given by the value and type
of the first output component, if at least one return result is provided.

It is possible to omit left hand side component references and/or truncate the left hand side list in order
to discard outputs from a function call.

[Optimizations to avoid computation of unused output results can be automatically deduced by an opti-
mizing compiler.]

[Example: Function eigen to compute eigenvalues and optionally eigenvectors may be called in the
following ways:

ev = eigen(A); // calculate eigenvalues

x = isStable(eigen(A)); // used in an expression
(ev, vr) = eigen(A) // calculate eigenvectors
(ev,vr,vl) = eigen(A) // and also left eigenvectors
(ev,,vl) = eigen(A) // no right eigenvectors

The function may be defined as:

function eigen "calculate eigenvalues and optionally eigenvectors"
input Real A[:, size(A,1)];
output Real eigenValuesl[size(A,1),2];
output Real rightEigenVectors[size(A,1),size(A,1)];
output Real leftEigenVectors [size(A,1),size(A,1)];

algorithm
// The output variables are computed separately (and not, e.g., by one
// call of a Fortran function) in order that an optimizing compiler can
remove
// unnecessary computations, if one or more output arguments are missing
// compute eigenvalues
// compute right eigenvectors using the computed eigenvalues
// compute left eigenvectors using the computed eigenvalues

end eigen;

]

The only permissible use of an expression in the form of a list of expressions in parentheses, is when it
is used as the left hand side of an equation or assignment where the right hand side is an application of
a function.

[Example: The following are illegal:

(x+1, 3.0, z/y) = £(1.0, 2.0); // Not a list of component references.
(x, y, z) + (u, v, w) // Not LHS of suitable eqn/assignment.

12.4.4 Initialization and Binding Equations of Components in Functions
Components in a function can be divided into three groups:

e Public components which are input formal parameters.

e Public components which are output formal parameters.

e Protected components which are local variables, parameters, or constants.
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When a function is called components of a function do not have start-attributes. However, a binding
equation (= expression) with an expression may be present for a component.

[Declaration assignments of the form := expression are deprecated, but otherwise identical to binding
equations.]

A binding equation for a non-input component initializes the component to this expression at the start
of every function invocation (before executing the algorithm section or calling the external function).
These bindings must be executed in an order where a variable is not used before its binding equations
has been executed; it is an error if no such order exists (i.e. the binding must be acyclic).

Binding equations can only be used for components of a function. If no binding equation is given for a
non-input component the variable is uninitialized (except for record components where modifiers may
also initialize that component). It is an error to use (or return) an uninitialized variable in a function.
Binding equations for input formal parameters are interpreted as default arguments, as described in
section 12.4.1.

[1t is recommended to check for use of uninitialized variables statically — if this is not possible a warning
is recommended combined with a run-time check.)

[The properties of components in functions described in this section are also briefly described in sec-
tion 12.2.]

12.4.5 Flexible Array Sizes and Resizing of Arrays in Functions
[Flexible setting of array dimension sizes of arrays in functions is also briefly described in section 12.2.]

A dimension size not specified with colon(:) for a non-input array component of a function must be
given by the inputs or be constant.

[Example:

function joinThreeVectors

input Real vi[:],v2[:],v3[:];

output Real vres[size(vl,1)+size(v2,1)+size(v3,1)];
algorithm

vres := cat (1,v1,v2,v3);
end joinThreeVectors;

e A non-input array component declared in a function with a dimension size specified by colon(:)
and no binding equation, can change size according to these special rules:Prior to execution of the
function algorithm the dimension size is zero.

e The entire array (without any subscripts) may be assigned with a corresponding array with arbi-
trary dimension size (the array variable is re-sized).

These rules also apply if the array component is an element of a record component in a function.

[Example: A function to collect the positive elements in a vector:

function collectPositive
input Real x[:];
output Real xpos[:];
algorithm
for i in 1l:size(x,1) loop
if x[i]>0 then
xpos:=cat (1,xpos,x[i:1i]);
end if;
end for;
end collectPositive;
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12.4.6 Scalar Functions Applied to Array Arguments

Functions with one scalar return value can be applied to arrays element-wise, e.g. if A is a vector of
reals, then sin(A) is a vector where each element is the result of applying the function sin to the
corresponding element in A. Only function classes that are transitively non-replaceable (section 6.3.1
and section 7.1.4) may be called vectorized.

Consider the expression f(argl, ..., argn), an application of the function f to the arguments argi,
.., argn. Potential vectorization of this call is defined as follows. For each passed argument, the type
of the argument is checked against the type of the corresponding formal parameter of the function:

1. If the types match, nothing is done.

2. If the types do not match, and a type conversion can be applied, it is applied. Continue with
step 1.

3. If the types do not match, and no type conversion is applicable, the passed argument type is checked
to see if it is an n-dimensional array of the formal parameter type. If it is not, the function call is
invalid. If it is, we call this a foreach argument.

4. For all foreach arguments, the number and sizes of dimensions must match. If they do not match,
the function call is invalid.

5. If no foreach argument exists, the function is applied in the normal fashion, and the result has the
type specified by the function definition.

6. The result of the function call expression is an n-dimensional array e with the same dimension
sizes as the foreach arguments. Each element e[i, ..., j] is the result of applying f to arguments
constructed from the original arguments in the following way:

e If the argument is not a foreach argument, it is used as-is.
e If the argument is a foreach argument, the element at index [, ..., j] is used.

If more than one argument is an array, all of them have to be the same size, and they are traversed in
parallel.

[Example:

sin({a, b, c}) {sin(a), sin(b), sin(c)} // argument is a vector
sin([a, b, ¢]) = [sin(a), sin(b), sin(c)] // argument may be a matrix
atan2({a, b, ¢}, {d, e, f}) = {atan2(a, d), atan2(b, e), atan2(c, f)}

This works even if the function is declared to take an array as one of its arguments. If pval is defined
as a function that takes one argument that is a Real vector and returns a Real, then it can be used with
an actual argument which is a two-dimensional array (a vector of vectors). The result type in this case
will be a vector of Real.

pval([1,2;3,4]) = [pval([1,2]); pval([3,4]1)]
sin([1,2;3,4]1) = [sin({1,2}); sin({3,4})]
= [sin(1), sin(2); sin(3), sin(4)]

function Add

input Real el, e2;

output Real suml;
algorithm

suml := el + e2;
end Add;

Add(1, [1,2,3]) adds one to each of the elements of the second argument giving the result [2,3,4]
However, it is illegal to write 1 + [1,2,3], because the rules for the built-in operators are more
restrictive.]

12.4.7 Empty Function Calls

An empty function call is a call that does not return any results.
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[An empty call is of limited use in Modelica since a function call without results does not contribute
to the simulation, but it is useful to check assertions and in certain cases for desired side-effects, see
section 12.3.]

An empty call can occur either as a kind of “null equation” or “null statement”.

[Example: The empty calls to eigen() are examples of a “null equation” and a “null statement”:

equation

Modelica.Math.Matrices.eigen(A); // Empty function call as an equation
algorithm

Modelica.Math.Matrices.eigen(A); // Empty function call as a statement

12.5 Built-in Functions

There are basically four groups of built-in functions in Modelica:
e Intrinsic mathematical and conversion functions, see section 3.7.1.
e Derivative and special operators with function syntax, see section 3.7.4.
e Event-related operators with function syntax, see section 3.7.5.
e Built-in array functions, see section 10.3.

Note that when the specification references a function having the name of a built-in function it
references the built-in function, not a user-defined function having the same name.

12.6 Record Constructor Functions

Whenever a record is defined, a record constructor function with the same name and in the same scope
as the record class is implicitly defined according to the following rules:

The declaration of the record is partially flattened including inheritance, modifications, redeclarations,
and expansion of all names referring to declarations outside of the scope of the record to their fully
qualified names.

[The partial flattening is performed in order to remove potentially conflicting import-clauses in the record
constructor function due to flattening the inheritance tree.]

All record elements (i.e., components and local class definitions) of the partially flattened record decla-
ration are used as declarations in the record constructor function with the following exceptions:

e Component declarations which do not allow a modification (such as final parameter Real) are
declared as protected components in the record constructor function.

e Prefixes (constant, parameter, final, discrete, ...) of the remaining record components are
removed.

e The prefix input is added to the public components of the record constructor function.

An instance of the record is declared as output parameter using a name not appearing in the record,
together with a modification. In the modification, all input parameters are used to set the corresponding
record variables.

A record constructor can only be called if the referenced record class is found in the global scope, and
thus cannot be modified.

[This allows constructing an instance of a record, with an optional modification, at all places where a
function call is allowed.

Ezxamples:
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record Complex "Complex number"
Real re "real part";
Real im "imaginary part";

end Complex;

function add

input Complex u, v;

output Complex w(re=u.re + v.re, im=u.im+v.re);
end add;

Complex cl, c2;
equation
c2 = add(cl, Complex(sin(time), cos(time));

In the following example, a convenient data sheet library of components is built up:

package Motors
record MotorData "Data sheet of a motor"
parameter Real inertia;
parameter Real nominalTorque;
parameter Real maxTorque;
parameter Real maxSpeed;
end MotorData;

model Motor "Motor model" // using the generic MotorData
MotorData data;

equation
end Motor;

record MotorI123 = MotorData( // data of a specific motor
inertia = 0.001,
nominalTorque = 10,
maxTorque = 20,
maxSpeed = 3600) "Data sheet of motor I123";

record MotorI145 = MotorData( // data of another specific motor
inertia = 0.0015,
nominalTorque = 15,
maxTorque = 22,
maxSpeed = 3600) "Data sheet of motor I145";

end Motors

model Robot
import Motors.*;
Motor motorl(data MotorI123()); // just refer to data sheet
Motor motor2(data = MotorI123(inertia=0.0012));
// data can still be modified (if no final declaration in record)
Motor motor3(data = MotorI145());

end Robot;

Example showing most of the situations, which may occur for the implicit record constructor function
creation. With the following record definitions:

package Demo;
record Recordl;
parameter Real r0 = O;
end Recordl;

record Record2
import Modelica.Math.x*;
extends Recordil;
final constant Real cl1 = 2.0;
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constant Real c2;

parameter Integer nl = 5;
parameter Integer n2;
parameter Real rl "comment";

parameter Real r2 = sin(cl);
final parameter Real r3 = cos(r2);
Real r4;

Real r5 = 5.0;
Real r6[ni1];
Real r7[n2];
end Record2;
end Demo;

The following record constructor functions are implicitly defined (the name of the output, given in italic
below, is not defined; it should be chosen to not cause any conflict):

package Demo;
function Recordl
input Real r0 = 0;
output Recordl result(r0 = r0);
end Recordil;

function Record2
input Real r0 = 0;
input Real c2;
input Integer nl = 5;
input Integer n2;
input Real rl "comment"; // the comment also copied from record
input Real r2 = Modelica.Math.sin(cl);
input Real r4;
input Real r5 = 5.0;
input Real r6[ni1];
input Real r7[n2];
output Record2 result (r0=r0,c2=c2,nl=nl,n2=n2,rl=rl,r2=r2,rd4=r4,r5=r5,r6=r6,

r7=r7);

protected
final constant Real cl1 = 2.0; // referenced from r2
final parameter Real r3 = Modelica.Math.cos(r2);

end Record?2;
end Demo;

and can be applied in the following way

Demo.Record2 r1l = Demo.Record2(r0=1, c2=2, nl1=2, n2=3, ri=1, r2=2,r4=5, r5=5,
ré6={1,2}, r7={1,2,3});

Demo.Record2 r2 = Demo.Record2(1,2,2,3,1,2,5,5,{1,2},{1,2,3});

parameter Demo.Record2 r3 = Demo.Record2(c2=2, n2=1, ri=1,r4=4, r6=1:5, r7={1})

>

The above example is only used to show the different variants appearing with prefives, but it is not very
meaningful, because it is simpler to just use a direct modifier.)

12.6.1 Casting to Record

A constructor of a record R can be used to cast an instance m of a model, block, connector class
M to a value of type R, provided that for each component defined in R (that do not have a default
value) there is also a public component defined in M with identical name and type. A nested record
component of R is handled as follows, if the corresponding component of M is a model/block/connector

a nested record constructor is called — otherwise the component is used directly; and the resulting
call/component is used as argument to the record constructor R. If the corresponding component of R in
M is a conditional component, it is an error. The instance m is given as single (un-named) argument to
the record constructor of R. The interpretation is that R(m) is replaced by a record constructor of type
R where all public components of M that are present in R are assigned to the corresponding components
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of R. The record cast can be used in vectorized form according to section 12.4.6.

[The problem if R would be a conditional component is that the corresponding binding would be illegal
since it is not a connect-statement.]

[The record cast operation is uniquely distinguished from a record constructor call, because an argument
of the record constructor cannot be a model, block or connector instance.]

[Example:

connector Flange
Real phi;
flow Real tau;
end Flange;

model Modell
Real mil;
Boolean bil;
Flange flange;
end Modell;

model Model2
Real ril;
Real r2;
Integer i2
Pin pl1l, p2;
Modell subl;
protected
Integer il;

end Model2;

record MyFlange
Real tau;
end MyFlange;

record MyRecordl
Boolean bl;
MyFlange flange;
end MyRecordil;

record MyRecord2
Real ri;
Integer 1i2;
MyRecordl subl;

end MyRecord2;

model Model
Model2 s1;
Model2 s2[2];
MyRecord2 recl = MyRecord2(sl);
MyRecord2 rec2[2] = MyRecord2(s2);

end Model;

// Model is conceptually mapped to

model ModelExpanded
Model2 si;
Model2 s2[2];
MyRecord2 recl = MyRecord2(rl=sil.rl, i2=s1.i2,
subl = MyRecordl(bl=sl.subl.bl,
flange = MyFlange (tau=s1.subl.flange.tau));
MyRecord2 rec2[2] = {MyRecord2(ri=s2[1].r1, i2=s2[1].1i2,
subl = MyRecordl(bl=s2[1].subl.bl,
flange = MyFlange(tau=s1[1].subl.flange.tau)),
MyRecord2(r1=s2[2].r1, i2=s2([2].1i2,

169




Modelica Language Specification 3.5 (RC1)
Modelica 12.7. Declaring Derivatives of Functions

subl = MyRecordl(bl=s2[2].subl.bil,
flange = MyFlange (tau=s2[2].subl.flange.tau)};

end ModelExpanded;

12.7 Declaring Derivatives of Functions

Derivatives of functions can be declared explicitly using the derivative annotation, see section 12.7.1,
whereas a function can be defined as a partial derivative of another function using the der-operator in
a short function definition, see section 12.7.2.

12.7.1 Using the Derivative Annotation

A function declaration can have an annotation derivative specifying the derivative function or prefer-
ably, for a function written in Modelica, use the smoothOrder annotation to indicate that the tool can
construct the derivative function automatically, section 18.3. The derivative annotation can influence
simulation time and accuracy and can be applied to both functions written in Modelica and to external
functions. A derivative annotation can state that it is only valid under certain restrictions on the
input arguments. These restrictions are defined using the following optional attributes: order (only
a restriction if order>1, the default for order is 1), noDerivative, and zeroDerivative. The given
derivative-function can only be used to compute the derivative of a function call if these restrictions are
satisfied. There may be multiple restrictions on the derivative, in which case they must all be satis-
fied. The restrictions also imply that some derivatives of some inputs are excluded from the call of the
derivative (since they are not necessary). A function may supply multiple derivative functions subject
to different restrictions, the first one that can be used (i.e. satisfying the restrictions) will be used for
each call.

[This means that the most restrictive derivatives should be written first.]

[Example:

function fooO annotation(derivative=fool);
end foo0;

function fool annotation(derivative (order=2)=fo002);
end fool;

function foo2 end foo02;

]

The inputs to the derivative function of order 1 are constructed as follows:

e First are all inputs to the original function, and after all them we will in order append one derivative
for each input containing reals. These common inputs must have the same name, type, and
declaration order for the function and its derivative.

e The outputs are constructed by starting with an empty list and then in order appending one
derivative for each output containing reals. The outputs must have the same type and declaration
order for the function and its derivative.

If the Modelica function call is a nth derivative (n>=1), i.e. this function call has been derived from
an (n-1)th derivative by differentiation inside the tool, an annotation(order=n+1)=..., specifies the
(n+1)th derivative, and the (n+1)th derivative call is constructed as follows:

e The input arguments are appended with the (n+1)th derivative, which are constructed in order
from the nth order derivatives.

e The output arguments are similar to the output argument for the nth derivative, but each output
is one higher in derivative order. The outputs must have the same type and declaration order for
the function and its derivative.
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[The restriction that only the result of differentiation can use higher-order derivatives ensures that the
derivatives x, der_x, ... are in fact derivatives of each other. Without that restriction we would have
both der (x) and x_der as inputs (or perform advanced tests to verify that they are the same).|

[Ezample: Given the declarations

function fooO

input Real x;

input Boolean linear;
input ...;

output Real y;

annotation(derivative=fool);
end foo0;

function fool

input Real x;

input Boolean linear;
input ...;

input Real der_x;

output Real der_y;

annotation(derivative (order=2)=f002);
end fool;

function foo2

input Real x;
input Boolean linear;
input ...;
input Real der_x;
-

input Real der_2_x;

output Real der_2_y;

the equation

implies that:

(.. dléif), ) = fool(en, w(8) by oees dflit), )
d?y(t) B dx(t) d2x(t)
(..., w2 ) =foo2(..., x(t), b, ..., T TaE )

]

An input or output to the function may be any simple type (Real, Boolean, Integer, String and
enumeration types) or a record. For a record containing Real values, the corresponding derivative
uses a derivative record that only contains the real-predefined types and sub-records containing reals
(handled recursively) from the original record. When using smoothOrder, then the derivative record is
automatically constructed. The function must have at least one input containing reals. The output list
of the derivative function shall not be empty.

[Example: Here is one example use case with records mizing Real and non-Real as inputs and outputs:

record ThermodynamicState "Thermodynamic state"
SpecificEnthalpy h "Specific enthalpy";
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AbsolutePressure p "Pressure";
Integer phase(min=1, max=2, start=1);
end ThermodynamicState;

record ThermoDynamicState_der "Derivative"
SpecificEnthalpyDerivative h "Specific enthalphy derivative";
PressureDerivative p "Pressure derivative';
// Integer input is skipped

end ThermodynamicState_der;

function density
input ThermodynamicState state "Thermodynamic state";
output Density d "Density";

algorithm

annotation(derivative=density_der);
end density;

function density_der
input ThermodynamicState state "Thermodynamic state";
input ThermodynamicState_der state_der;
output DensityDerivative d "Density derivative";
algorithm

end density_der;

function setState_ph

input Pressure p;

input SpecificEnthalpy h;

input Integer phase = 0;

output ThermodynamicState state;
algorithm

annotation(derivative = setState_ph_der);
end setState_ph;

function setState_ph_der

input Pressure p;

input SpecificEnthalpy h;

input Integer phase;

input PressureDerivative p_der;

input SpecificEnthalpyDerivative h_der;

output ThermodynamicState_der state_der;
algorithm

end setState_ph_der;

ThermodynamicState statel = setState_ph(p=..., h=..., phase=...);
Density rhol=density(statel);

DensityDerivative d_rhol=der (rhol);

Density rho2=density(setState_ph(p=..., h=..., phase=...));
DensityDerivative d_rho2=der (rho2);

® zeroDerivative = inputVarl { , zeroDerivative = inputVar2 }

The derivative function is only valid if inputVarl (and inputVar2 etc.) are independent of the variables
the function call is differentiated with respect to (i.e. that the derivative of inputVarl is zero). The
derivative of inputVarl (and inputVar2 etc.) are excluded from the argument list of the derivative-
function. If the derivative-function also specifies a derivative the common variables should have consistent
zeroDerivative.

[Assume that function £ takes a matriz and a scalar. Since the matriz argument is usually a parameter
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expression it is then useful to define the function as follows (the additional derivative = f_general _der
is optional and can be used when the derivative of the matriz or offset is non-zero). Note that £_der
must have zeroDerivative for both y and offset, but f_general_der shall not have zeroDerivative
for either of them (it may zeroDerivative for x_der, y_der, or offset_der).

function f "Simple table lookup"
input Real x;
input Real y[:, 2];
input Real offset;
output Real z;
algorithm

annotation(derivative (zeroDerivative=y, zeroDerivative=offset)= f_der,
derivative=f_general_der);
end f;

function f_der "Derivative of simple table lookup"
input Real x;
input Real yl[:, 2];
input Real offset;
input Real x_der;
output Real z_der;
algorithm

annotation(derivative (zeroDerivative=y, zeroDerivative=offset, order=2) =
f_der2);
end f_der;

function f_der2 "Second derivative of simple table lookup"
input Real x;
input Real y[:, 2];
input Real offset;
input Real x_der;
input Real x_der2;
output Real z_der2;
algorithm

end f_der2;

function f_general_der "Derivative of table lookup taking
into account varying tables"

input Real x;

input Real y[:, 2];

input Real offset;

input Real x_der;

input Real y_der[:, 2];

input Real offset_der;

output Real z_der;
algorithm

//annotation(derivative(order=2) = f_general_der2);
end f_general_der;

e noDerivative = inputVarl

The derivative of inputVarl is excluded from the argument list of the derivative-function. This relies on
assumptions on the arguments to the function; and the function should document these assumptions (it
is not always straightforward to verify them). In many cases even the undifferentiated function will only
behave correctly under these assumptions.

The inputs excluded using zeroDerivative or noDerivative may be of any type (including types not
containing reals).

173



Modelica Language Specification 3.5 (RC1)

Modelica 12.7. Declaring Derivatives of Functions
angiase

[Assume that function £g is defined as a composition £(x, g(x)). When differentiating £ it is useful to
give the derivative under the assumption that the second argument is defined in this way:

function fg

input Real x;

output Real z;
algorithm

z := f(x, g(x));
end fg;

function £

input Real x;

input Real y;

output Real z;
algorithm

annotation(derivative (noDerivative = y) = f_der);
end f;

function f_der
input Real x;
input Real y;
input Real x_der;
output Real z_der;
algorithm

end f_der;

This is useful if g represents the major computational effort of £g.]

12.7.2 Partial Derivatives of Functions
A class defined as:

IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment

is the partial derivative of a function, and may only be used as declarations of functions.

The semantics is that a function (and only a function) can be specified in this form, defining that it is
the partial derivative of the function to the right of the equal sign (looked up in the same way as a short
class definition, and the looked up name must be a function), and partially differentiated with respect
to each IDENT in order (starting from the first one). The IDENT must be Real inputs to the function.

The comment allows a user to comment the function (in the info-layer and as one-line description, and
as icon).

[Example: The specific enthalpy can be computed from a Gibbs-function as follows:

function Gibbs
input Real p, T;
output Real g;

algorithm

end Gibbs;
function Gibbs_T = der (Gibbs, T);
function specificEnthalpy

input Real p, T;

output Real h;
algorithm

h := Gibbs(p, T) - T * Gibbs_T(p, T);
end specificEnthalpy;
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12.8 Declaring Inverses of Functions

Every function with one output formal parameter may have one or more inverse annotations to define
inverses of this function:

function fi
input A1 ui;

input 711 ug;
input Am Um = am;
input Ap Un;
output T y;

algorithm

annotation(inverse(ur = fo(..., y, ...0, wi = faC..., y, ...), ...));
end fi1;

The meaning is that function fs is one inverse to function f; where the previous output y is now an
input and the previous input uy is now an output. More than one inverse can be defined within the same
inverse annotation. Several inverses are separated by commas.

[The inverse requires that for all valid values of the input arguments of fo(..., y, ...) and uy being
calculated asuy, := fo(..., y, ...) implies the equalityy = f1(..., ug, ...) up to a certain precision.]

Function f; can have any number and types of formal parameters with and without default value. The
restriction is that the number of unknown variables (see section 4.7) in the output formal parameter of
both f; and fy must be the same and that fo should have a union of output and formal parameters that
is the same or a sub-set of that union for fi, but the order of the formal parameters may be permuted.

[Ezample: Same union of variables:

function h_pTX
input Real p "pressure";
input Real T "temperature';
input Real X[:] "mass fractions";
output Real h "specific enthalpy";
algorithm

annotation(inverse(T = T_phX(p,h,X)));
end h_pTX;

function T_phX
input Real p "pressure";
input Real h "specific enthalpy";
input Real X[:] "mass fractions";
output Real T "temperature";
algorithm

end T_phX;

]

The sub-set case is useful if f; computes the inverse of fo within a region, or up to a certain tolerance.
Then, f; may specify fo as inverse with fewer arguments, skipping the arguments for tolerance and/or
the region.

[Example:

function inv_sine

input Real x;

input Real angleOrig;

output Real angle;

// Finds sine(angle) = x with angle closest to angleOrig.
algorithm
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annotation(inverse(x = sine(angle)));
end inv_sine;

function sine

input Real angle;

output Real x;
algorithm

x := sin(angle);

// Note: No inverse.
end sine;

12.9 External Function Interface

Here, the word function is used to refer to an arbitrary external routine, whether or not the routine has
a return value or returns its result via output parameters (or both). The Modelica external function call
interface provides the following:

e Support for external functions written in C (specifically C89) and FORTRAN 77. Other languages,
e.g. C++ and Fortran 90, may be supported in the future, and provided the function is link-
compatible with C89 or FORTRAN 77 it can be written in any language.

e Mapping of argument types from Modelica to the target language and back.

e Natural type conversion rules in the sense that there is a mapping from Modelica to standard
libraries of the target language.

e Handling arbitrary parameter order for the external function.

e Passing arrays to and from external functions where the dimension sizes are passed as explicit
integer parameters.

e Handling of external function parameters which are used both for input and output, by passing an
output that has a binding equation to the external function.

[Binding equations are executed prior to calling the external function.]

The format of an external function declaration is as follows.

function IDENT description-string

{ component-clause ";" }

[ protected { component-clause ";" } ]
external [ language-specification ]

[ external-function-call ]

[annotation ] ";"

[ annotation ";" ]

end IDENT;

Components in the public part of an external function declaration shall be declared either as input or
output.

[This is just as for any other function. The components in the protected part allow local variables for
temporary storage to be declared.)

The language-specification must currently be one of "builtin" (deprecated), "C", "C..." (for one of
the specific C standards like C89, C99, and C11 — specifying that it relies on the C standard library of
that version) or "FORTRAN 77". Unless the external language is specified, it is assumed to be "C".

[The intended use of e.g. C99 is to detect if the user tries to link with a C99-function using a C89
compiler-.)

The deprecated "builtin" specification is only used for the elementary mathematical functions described
in section 3.7.3. The external function call mechanism for "builtin" functions is implementation-defined.
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[Typically, for functions from the standard C library, the prototype of the function is provided but no
Library annotation. Currently, there are no other builtin functions defined in Modelica.]

[Example:

package Modelica
package Math
function sin
input Real x;
output Real y;
external "builtin"
y = sin(x);
end sin;
end Math;
end Modelica;

model UserModel
parameter Real p = Modelica.Math.sin(2);
end UserModel;

]

The external-function-call specification allows functions whose prototypes do not match the default
assumptions as defined below to be called. It also gives the name used to call the external function. If
the external call is not given explicitly, this name is assumed to be the same as the Modelica name.

The only permissible kinds of expressions in the argument list are component references, scalar constants,
and the function size applied to an array and a constant dimension number. The annotations are used
to pass additional information to the compiler when necessary.

A component reference to a component that is part of an input or output is treated the same way as a
top-level input or output in the external call.

If the function has annotation(Include="includeDirective"), section 12.9.4 it is assumed that it
contains an actual prototype and no prototype shall be automatically generated. In that case the input
argument pointers shall be const pointers (indicating that they do not modify the inputs), and non-const
pointers are deprecated. The optional external-function-call is still used for determining the name of
the function, and order of arguments, as described below.

12.9.1 Argument type Mapping

The arguments of the external function are declared in the same order as in the Modelica declaration,
unless specified otherwise in an explicit external function call. Protected variables (i.e. temporaries) are
passed in the same way as outputs, whereas constants and size-expression are passed as inputs.

12.9.1.1 Simple Types

Arguments of simple types are by default mapped as follows for C:

Modelica c
Input Output

Real double double *

Integer int int *

Boolean int int *

String const char * | const char *x
Enumeration type | int int *

An exception is made when the argument is of the form size(..., ...). In this case the corresponding

C type is size_t.

Strings are NUL-terminated (i.e., terminated by >\0?) to facilitate calling of C functions. When returning
a non-literal string, see section 12.9.6.2 for details on memory allocation.

Boolean values are mapped to C such that false in Modelica is 0 in C and true in Modelica is 1 in C.
If the returned value from C is 0 it is treated as false in Modelica; otherwise as true.
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[1t is recommended that the C function should interpret any non-zero value as true.)

Arguments of simple types are by default mapped as follows for FORTRAN 77:

Modelica FORTRAN 77
Input Output
Real DOUBLE PRECISION | DOUBLE PRECISION
Integer INTEGER INTEGER
Boolean LOGICAL LOGICAL
String Special Not available
Enumeration type | INTEGER INTEGER

Sending string literals to FORTRAN 77 subroutines/functions is supported for Lapack/Blas-routines,
and the strings are NUL-terminated for compatibility with C. Returning strings from FORTRAN 77
subroutines/functions is currently not supported.

Enumeration types used as arguments are mapped to type int when calling an external C function, and
to type INTEGER when calling an external FORTRAN function. The i:th enumeration literal is mapped
to integer value i, starting at 1.

Return values are mapped to enumeration types analogously: integer value 1 is mapped to the first enu-
meration literal, 2 to the second, etc. Returning a value which does not map to an existing enumeration
literal for the specified enumeration type is an error.

12.9.1.2 Arrays

Unless an explicit function call is present in the external-clause, an array is passed by its address followed
by n arguments of type size_t with the corresponding array dimension sizes, where n is the number of
dimensions.

[The type size_t is a C unsigned integer type.]

Arrays are by default stored in row-major order when calling C functions and in column-major order
when calling FORTRAN 77 functions. These defaults can be overridden by the arrayLayout annotation.
See the example below.

The table below shows the mapping of an array argument in the absence of an explicit external function
call when calling a C function. The type T is allowed to be any of the simple types which can be passed
to C as defined in section 12.9.1.1 or a record type as defined in section 12.9.1.3 and it is mapped to the
type T” as defined in these sections for input arguments. Array inputs to C-functions are const-pointers,
indicating that the arrays shall not be changed.

Modelica C
Input

Output

T *, size_t dim.

T[dim]
TL[dim1, dims]
TL..., dim,]

const T’ *, size_t dim,
T =, size_t dimi, size_t dimas
T *, ..

const T’ *, size_t dimi, size_t dimo
const T’ *,

..., size_t dimn ., size_t dimn

The method used to pass array arguments to FORTRAN 77 functions in the absence of an explicit
external function call is similar to the one defined above for C: first the address of the array, then the
dimension sizes as integers. See the table below. The type T is allowed to be any of the simple types
which can be passed to FORTRAN 77 as defined in section 12.9.1.1 and it is mapped to the type T" as
defined in that section.

Modelica FORTRAN 77
Input and output
T[dim1] T’, INTEGER dim,
Tldimy1, dimsl T', INTEGER dim., INTEGER dimo
TlLdimy, ..., dim,] | T', INTEGER dimi, ..., INTEGER dim,

[Example: The following two examples illustrate the default mapping of array arguments to external C
and FORTRAN 77 functions.

‘function foo
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#  Language

input Real al:,:,:];
output Real x;
external;

end foo;

The corresponding C prototype is as follows:

double foo(const double *, size_t, size_t, size_t);

If the external function is written in FORTRAN 77, i.e.:

function foo
input Real al:,:,:];
output Real x;
external "FORTRAN 77";
end foo;

the default assumptions correspond to a FORTRAN 77 function defined as follows:

FUNCTION foo(a, d1, d2, d3)
DOUBLE PRECISION(d1l, 42, d43) a

INTEGER d1

INTEGER d2

INTEGER d3

DOUBLE PRECISION foo
END

]

When an explicit call to the external function is present, the array and the sizes of its dimensions must
be passed explicitly.

[Example: This example shows how arrays can be passed explicitly to an external FORTRAN 77 function
when the default assumptions are unsuitable.

function foo

input Real x[:];

input Real yl[size(x,1),:];

input Integer 1ij;

output Real ull[size(y,1)];

output Integer u2[size(y,2)];
external "FORTRAN 77"

myfoo(x, y, size(x,1), size(y,2), ul, i, u2);
end foo;

The corresponding FORTRAN 77 subroutine would be declared as follows:

SUBROUTINE myfoo(x, y, n, m, ul, i, u2)

DOUBLE PRECISION(n) x

DOUBLE PRECISION(n,m) y

INTEGER n

INTEGER m

DOUBLE PRECISION(n) ul

INTEGER i

DOUBLE PRECISION(m) u?2

END

This example shows how to pass an array in column major order to a C function.

function fie

input Reall[:,:] a;

output Real b;

external;

annotation(arrayLayout = "columnMajor");
end fie;
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This corresponds to the following C prototype:

double fie(const double *, size_t, size_t);

12.9.1.3 Records

Mapping of record types is only supported for C. A Modelica record class that contains simple types,
other record elements, is mapped as follows:

e The record class is represented by a struct in C.
e Fach element of the Modelica record is mapped to its corresponding C representation.
e The elements of the Modelica record class are declared in the same order in the C struct.
e Arrays cannot be mapped.
Records are passed by reference (i.e. a pointer to the record is being passed).

[Example:

record R
Real x;
Real z;

end R;

is mapped to:

struct R {
double x;
double z;

};

12.9.2 Return Type Mapping

If there is a single output parameter and no explicit call of the external function, or if there is an explicit
external call in the form of an equation, in which case the LHS must be one of the output parameters, the
external routine is assumed to be a value-returning function. Mapping of the return type of functions is
performed as indicated in the table below. Storage for arrays as return values is allocated by the calling
routine, so the dimensions of the returned array are fixed at call time. Otherwise the external function
is assumed not to return anything; i.e., it is really a procedure or, in C, a void-function.

[In the case of an external function not returning anything, argument type mapping according to sec-
tion 12.9.1.1 is performed in the absence of any explicit external function call]

Return types are by default mapped as follows for C and FORTRAN 77:

Modelica \ C \ FORTRAN 77

Real double DOUBLE PRECISION
Integer int INTEGER

Boolean int LOGICAL

String const charx Not allowed
Tldimy, ..., dim,] | Not allowed Not allowed
Enumeration type int INTEGER

Record See section 12.9.1.3 | Not allowed

The element type T of an array can be any simple type as defined in section 12.9.1.1 or, for C, a record
type is returned as a value of the record type defined in section 12.9.1.3.
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12.9.3 Aliasing

Any potential aliasing in the external function is the responsibility of the tool and not the user. An
external function is not allowed to internally change the inputs (even if they are restored before the end
of the function).

[Example:

function foo
input Real x;
input Real y;
output Real z = x;
external "FORTRAN 77"
myfoo(x, y, 2z);
end foo;

The following Modelica function:

function f
input Real a;
output Real b;

algorithm

b := foo(a, a);

b := foo(b, 2 * Db);
end f;

can on most systems be transformed into the following C function:

double f (double a) {
extern void myfoo_(doublex, doublex*, double*);
double b, templ, temp2;

myfoo_(&a, &a, &b);

templ = 2 * b;

temp2 = b;

myfoo_ (&b, &templ, &temp2);

return temp2;

}

The reason for not allowing the external function to change the inputs is to ensure that inputs can be
stored in static memory and to avoid superfluous copying (especially of matrices). If the routine does
not satisfy the requirements the interface must copy the input argument to a temporary. This is rare but
occurs e.g. in dormlq in some Lapack implementations. In those special cases the writer of the external
interface have to copy the input to a temporary. If the first input was changed internally in myfoo the
designer of the interface would have to change the interface function foo to:

function foo
input Real x;
protected Real xtemp = x; // Temporary used because myfoo changes its input
public input Real y;
output Real z;
external "FORTRAN 77"
myfoo (xtemp, y, z);
end foo;

Note that we discuss input arguments for Fortran-routines even though FORTRAN 77 does not formally
have input arguments and forbid aliasing between any pair of arguments to a function (Section 15.9.3.6
of X3J3/90.4). For the few (if any) FORTRAN 77 compilers that strictly follow the standard and are
unable to handle aliasing between input variables the tool must transform the first call of foo into:

templ = a; /* Temporary to avoid aliasing x*/
myfoo_ (&a, &templ, &b);

The use of the function foo in Modelica is uninfluenced by these considerations.]
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12.9.4 Annotations for External Libraries and Include Files

The following annotations are useful in the context of calling external functions from Modelica, and they
should occur on the external-clause and no other standard annotations should occur on the external-
clause. They can all specify either a scalar value or an array of values as indicated below for the Library
annotation:

e The annotation(Library="libraryName"), used by the linker to include the library file where
the compiled external function is available.

e The annotation(Library=("libraryNamel", "libraryName2")), used by the linker to include
the library files where the compiled external function is available and additional libraries used to
implement it. For shared libraries it is recommended to include all non-system libraries in this list.

e The annotation(Include="includeDirective"), used to include source files needed for calling
the external function in the code generated by the Modelica compiler. The included code should
be valid C89 code.

[Examples of files that can be included are header files or source files that contain the functions
referenced in the external function declaration.]

e The annotation(IncludeDirectory="modelica://ModelicalibraryName/Resources/Include"
), used to specify a location for header files. The preceding one is the default and need not be
specified; but another location could be specified by using an URI name for the include directory,
see section 13.5.

e The annotation(LibraryDirectory="modelica://ModelicalibraryName/Resources/Library"
), used to specify a location for library files. The preceding one is the default and need not be
specified; but another location could be specified by using an URI name for the library directory,
see section 13.5. Different versions of one object library can be provided (e.g. for Windows and for
Linux) by providing a platform directory below the LibraryDirectory. If no platform directory
is present, the object library must be present in the LibraryDirectory. The following platform
names are standardized:

— "win32" (Microsoft Windows 32 bit)
— "win64" (Microsoft Windows 64 bit)
— "1linux32" (Linux Intel 32 bit)
— "linux64" (Linux Intel 64 bit)

e The annotation(SourceDirectory="modelica://ModelicalibraryName/Resources/Source"),
gives the location for source files. The preceding one is the default and need not be specified; but
another location could be specified by using an URI name for the source directory, see section 13.5.
It is not specified how they are built.

The win32 or win64 directories may contain gccd7, vs2010, vs2012 for specific versions of these compilers
and these are used instead of the general win32 or win64 directories, and similarly for other platforms.

The library on Windows may refer to a lib-file (static library), both a lib- and dll-file (in this case the
lib-file is an import-library), or just a dll-file. It shall not refer to an obj-file.

If the directory for the specific compiler version is missing the platform specific directory is used.

[A tool may give diagnostics if the directory corresponding to the selected compiler version is missing. The
directories may use symbolic links or use a text-file as described below: e.g. a text-file vs2008 containing
the text ../win32/vs2005 (or vs2005) suggesting that it is compatible with vs2005.]

The ModelicalLibraryName used for IncludeDirectory, LibraryDirectory, and SourceDirectory in-
dicates the top-level class where the annotation is found in the Modelica source code.

[Example: Use of external functions and of object libraries:

package ExternalFunctions
model Example
Real x(start = 1.0), y(start = 2.0);
equation
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der (x) = -ExternalFuncil(x);

der(y) = -ExternalFunc2(y);

end Example;

model OtherExample

Real x(start = 1.0);
equation

der(x) = -ExternalFunc3(x);
end OtherExample;

function ExternalFuncl
input Real x;
output Real y;
external "C"

y = ExternalFuncl_ext(x)
annotation(Library = "ExternallLibil",
Include = "#include \"ExtermalFuncil.h\"");

end ExternalFuncl;

function ExternalFunc2
input Real x;
output Real y;
external "C"
annotation(Library = "ExternalLib2",
Include = "#include \"ExtermnalFunc2.h\"");
end ExternalFunc?2;

function ExternalFunc3
input Real x;
output Real y;
external "C"
annotation(Include = "#include \"ExtermalFunc3.c\"");
end ExternalFunc3;
end ExternalFunctions;

package MyExternalFunctions
extends ExternalFunctions;
end MyExternalFunctions;

Directory structure:

ExternalFunctions
package.mo // contains the Modelica code from above
Resources
Include // contains the include files
ExternalFuncl.h // C header file
ExternalFunc2.h // C header file
ExternalFunc3.c // C source file
Library // contains the object libraries for different
platforms
win32
Externallibl.1lib // static link library for VisualStudio
Externallib2.1ib // statically linking the dynamic link library
Externallib2.d11l // dynamic link library (with manifest)
linux32
libExternallLibl.a // static link library
libExternallib2.so // shared library
MyExternalFunctions
package .mo

Note that calling MyExternalFunctions.ExternalFuncl will use header and library files from ExternalFunction
, the ExternalFunctions.Example will not use ExternalFunc3.c, and one library file may contain multiple
functions.
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Header file for the function in the dynamic link / shared library ExternalLib2 so that the desired functions
are defined to be exported for Microsoft VisualStudio and for GNU C compiler (note, for Linuz it is
recommended to use the compiler option —£PIC to build shared libraries or object libraries that are later
transformed to a shared library):

// File ExternalFunc2.h

#ifdef __cplusplus

extern "C" {

#endif

#ifdef _MSC_VER

#ifdef EXTERNAL_FUNCTION_EXPORT

# define EXTLIB2_EXPORT __declspec( dllexport )

#else

# define EXTLIB2_EXPORT __declspec( dllimport )

#endif

#elif __GNUC__ >= 4
/* In gnuc, all symbols are by default exported. It is still often useful,
to not export all symbols but only the needed ones x/

# define EXTLIB2_EXPORT __attribute__ ((visibility("default")))
#else

# define EXTLIB2_EXPORT

#endif

EXTLIB2_EXPORT void ExternalFunc2(<function arguments>);
#ifdef cplusplus

¥
#endif

]

The Library name and the LibraryDirectory name in the function annotation are mapped to a linkage
directive in a compiler-dependent way thereby selecting the object library suited for the respective
computer platform.

12.9.5 Examples
12.9.5.1 Input Parameters, Function Value

[Example: Here all parameters to the external function are input parameters. One function value is
returned. If the external language is not specified, the default is "C", as below.

function foo
input Real x;
input Integer y;
output Real w;
external;

end foo;

This corresponds to the following C prototype:

double foo(double, int);

Ezample call in Modelica:

z = foo(2.4, 3);

Translated call in C:

z = foo(2.4, 3);
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12.9.5.2 Arbitrary Placement of Output Parameters, No External Function Value

[Example: In the following example, the external function call is given explicitly which allows passing the
arguments in a different order than in the Modelica version.

function foo
input Real x;
input Integer y;
output Real ul;
output Integer u2;
external "C"
myfoo(x, ul, y, u2);
end foo;

This corresponds to the following C prototype:

void myfoo(double, double *, int, int *);

Ezxample call in Modelica:

(z1,i2) = foo(2.4, 3);

Translated call in C:

myfoo (2.4, \&zl, 3, \&i2);

]

12.9.5.3 External Function with Both Function Value and Output Variable

[Example: The following external function returns two results: one function value and one output pa-
rameter value. Both are mapped to Modelica output parameters.

function foo

input Real x;

input Integer y;

output Real funcvalue;

output Integer outl;
external "C"

funcvalue = myfoo(x, y, outl);
end foo;

This corresponds to the following C prototype:

double myfoo(double, int, int *);

Ezxample call in Modelica:

(z1,i2) = foo(2.4, 3);

Translated call in C:

z1 = myfoo (2.4, 3, \&i2);

12.9.6 Utility Functions

This section describes the utility functions declared in ModelicaUtilities.h, which can be called in external
Modelica functions written in C.

12.9.6.1 Utility Functions for Reporting Errors

The functions listed below produce a message in different ways.
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FEzxpression \ Description Details
ModelicaMessage (string) Message with fixed string
ModelicaWarning(string) Warning with fixed string Function 12.1
ModelicaError (string) Error with fixed string
ModelicaFormatMessage (format, ...) Message with printf style formatting
ModelicaFormatWarning(format, ...) Warning with printf style formatting  Function 12.2
ModelicaFormatError (format, ...) Error with printf style formatting
ModelicaVFormatMessage (format, ap) | Message with vprintf style formatting
ModelicaVFormatWarning (format, ap) | Warning with vprintf style formatting Function 12.3
ModelicaVFormatError (format, ap) Error with vprintf style formatting

The Message-functions only produce the message, but the Warning- and Error-functions combine this
with error handling as follows.

The Warning-functions view the message as a warning and can skip duplicated messages similarly as an
assert with level = AssertionLevel.Warning in the Modelica code.

The Error-functions never return to the calling function, but handle the error similarly to an assert
with level = AssertionLevel.Error in the Modelica code.

Function 12.1 ModelicaMessage, ModelicaWarning, ModelicaError

void ModelicaMessage (const charx* string)
void ModelicaWarning(const charx* string)
void ModelicaError (const char* string)

Output the fixed message string (no format control).

Function 12.2 ModelicaFormatMessage, ModelicaFormatWarning, ModelicaFormatError

void ModelicaFormatMessage (const charx format, ...)
void ModelicaFormatWarning(const charx format, ...)
void ModelicaFormatError (const charx* format, ...)

Output the message under the same format control as the C function printf.
Function 12.3 ModelicaVFormatMessage, ModelicaVFormatWarning, ModelicaVFormatError

void ModelicaVFormatMessage (const charx* format, va_list ap)
void ModelicaVFormatWarning (const char* format, va_list ap)
void ModelicaVFormatError (const charx* format, va_list ap)

Output the message under the same format control as the C function vprintf.

12.9.6.2 Utility Functions for Allocating Strings

The functions listed below are related to string allocation.

FExpression \ Description Details

ModelicaAllocateString(len) Allocate or error Function 12.4
ModelicaAllocateStringWithErrorReturn(len) Allocate or null Function 12.5
ModelicaDuplicateString(str) Duplicate or error Function 12.6
ModelicaDuplicateStringWithErrorReturn(str) | Duplicate or null  Function 12.7

Function 12.4 ModelicaAllocateString
char* ModelicaAllocateString(size_t len)

Allocate memory for a writeable non-literal string which is used as a return argument of an
external Modelica function. It allocates len + 1 characters and the last one is set to NUL. If an
error occurs, this function does not return, but calls ModelicaError.

Function 12.5 ModelicaAllocateStringWithErrorReturn

char* ModelicaAllocateStringWithErrorReturn(size_t len)
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Same as ModelicaAllocateString, except that in case of error, the function returns 0. This allows
the external function to close files and free other open resources in case of error. After cleaning
up resources, use ModelicaError or ModelicaFormatError to signal the error.

Function 12.6 ModelicaDuplicateString
char* ModelicaDuplicateString(const char* sir)

Returns a writeable duplicate of the NUL-terminated string str. If an error occurs, this function
does not return, but calls ModelicaError.

Function 12.7 ModelicaDuplicateStringWithErrorReturn
char* ModelicaDuplicateStringWithErrorReturn(const charx* sir)

Same as ModelicaDuplicateString, except that in case of error, the function returns 0. This allows
the external function to close files and free other open resources in case of error. After cleaning
up resources, use ModelicaError or ModelicaFormatError to signal the error.

The valid return values for an external function returning a String are:
e A literal String.
e A string given as String input to the external function.
e A string pointer returned by one the functions in the table above.

Thus if an external function wants to create a non-literal string it must be allocated with one of the func-
tions in this section, e.g., ModelicaAllocateString. After return of the external function, the Modelica en-
vironment is responsible for the memory allocated with ModelicaAllocateString (e.g., to free this memory,
when appropriate). It is not allowed to access memory that was allocated with ModelicaAllocateString
in a previous call of this external function.

[Memory that is not passed to the Modelica simulation environment, such as memory that is freed before
leaving the function, or in an ExternalObject, see section 12.9.7, should be allocated with the standard
C mechanisms, like calloc.]

[The reason why one should avoid, for instance, malloc for string allocation is that a Modelica simulation
environment may have its own allocation scheme, e.g., a special stack for local variables of a function.]

12.9.7 External Objects

External functions may need to store their internal memory between function calls. Within Modelica
this memory is defined as instance of the predefined class ExternalObject according to the following
rules:

e There is a predefined partial class ExternalObject.
[Since the class is partial, it is not possible to define an instance of this class.]

e An external object class shall be directly extended from ExternalObject, shall have exactly two
function definitions, called constructor and destructor, and shall not contain other elements.
The functions constructor and destructor shall not be replaceable.

e The constructor function is called exactly once before the first use of the object. For each
completely constructed object, the destructor is called exactly once, after the last use of the object,
even if an error occurs. The constructor shall have exactly one output argument in which the
constructed instance derived from ExternalObject is returned. The destructor shall have no
output arguments and the only input argument of the destructor shall be of the type derived from
ExternalObject. It is not legal to call explicitly the constructor and destructor functions. The
constructor shall initialize the object, and must not require any other calls to be made for the
initialization to be complete (e.g., from an initial algorithm or initial equation). The destructor
shall delete the object, and must not require any other calls to be made for the deletion to be
complete (e.g., from a when terminal() clause). The constructor shall not assume that pointers
sent to the external object will remain valid for the life-time of the external object. An exception is
that if the pointer to another external object is given as argument to the constructor, that pointer
will remain valid as long as the other external object lives.
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[External objects may be a protected component (or part of one) in a function. The constructor is
in that case called at the start of the function call, and the destructor when the function returns,
or when recovering from errors in the function.]

[External objects may be an input (or part of an input) to a function, in that case the destructor is
not called (since the external object is active before and after the function call). Normally this is
an external function, but it could be a non-external function as well (e.g. calling external functions
one or more times). The function input shall not have a default value using the constructor.)

An external object class shall be of the specialized class class.
[This is the only use of class.]

Classes derived from ExternalObject can neither be used in an extends-clause nor in a short class
definition.

Only the constructor may return external objects and an external object can only be bound in
component declarations and neither modified later nor assigned to.

[It follows that a function cannot return a component containing an external object, since only the
constructor may return an external object and the constructor exactly returns the external object.]

External functions may be defined which operate on the internal memory of an ExternalObject.
An ExternalObject used as input argument or return value of an external C function is mapped

to the C type voidx.

[Example: A user-defined table may be defined in the following way as an ExternalObject (the table is

read in a user-defined format from file and has memory for the last used table interval):

class MyTable
extends ExternalObject;
function constructor
input String fileName = "";
input String tableName = "";
output MyTable table;
external "C"
table = initMyTable(fileName, tableName) ;
end constructor;

function destructor "Release storage of table"
input MyTable table;
external "C"
closeMyTable (table);
end destructor;
end MyTable;

and used in the following way:

model test "Define a new table and interpolate in it"
MyTable table=MyTable(fileName ="testTables.txt",
tableName="tablel"); // call initMyTable
Real y;
equation
y = interpolateMyTable(table, time);
end test;

This requires to provide the following Modelica function:

function interpolateMyTable "Interpolate in table"
input MyTable table;
input Real u;
output Real y;
external "C"
y = interpolateMyTable(table, u);
end interpolateTable;

The external C functions may be defined in the following way:
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typedef struct { /x User—defined datastructure of the table x/
double* array; /* nrowxncolumn vector x*/
int nrow; /% number of rows %/
int ncol; /x number of columns x/
int type; /% interpolation type x*/
int lastIndex; /% last row index for search x/
} MyTable;

void* initMyTable (const char* fileName, const char* tableName) {
MyTable* table = malloc(sizeof (MyTable));
if ( table == NULL ) ModelicaError ("Not enough memory");
// read table from file and store all data in xtable
return (void*) table;

};

void closeMyTable(void* object) { /* Release table storage x/
MyTable* table = (MyTable*) object;
if ( object == NULL ) return;
free(table->array);
free(table);
}

double interpolateMyTable(void* object, double u) {
MyTable* table = (MyTable*) object;
double y;
// Interpolate using "table” data (compute y)
return y;

};
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Packages

Packages in Modelica may contain definitions of constants and classes including all kinds of specialized
classes, functions, and subpackages. By the term subpackage we mean that the package is declared inside
another package, no inheritance relationship is implied. Parameters and variables cannot be declared
in a package. The definitions in a package should typically be related in some way, which is the main
reason they are placed in a particular package. Packages are useful for a number of reasons:

Definitions that are related to some particular topic are typically grouped into a package. This
makes those definitions easier to find and the code more understandable.

Packages provide encapsulation and coarse-grained structuring that reduces the complexity of large
systems. An important example is the use of packages for construction of (hierarchical) class
libraries.

Name conflicts between definitions in different packages are eliminated since the package name is
implicitly prefixed to names of definitions declared in a package.

Information hiding and encapsulation can be supported to some extent by declaring protected
classes, types, and other definitions that are available only inside the package and therefore inac-
cessible to outside code.

Modelica defines a method for locating a package by providing a standard mapping of package
names to storage places, typically file or directory locations in the file system.

13.1 Package as Specialized Class

The package concept is a specialized class (section 4.6), using the keyword package.

13.2 Importing Definitions from a Package

The import-clause makes public classes and other public definitions declared in some package available
for use by shorter names in a class or a package. It is the only way of referring to definitions declared in
some other package for use inside an encapsulated package or class.

[Import-clauses in a package or class fill the following two needs:

e Making definitions from other packages available for use (by shorter names) in a package or class.

e Explicit declaration of usage dependences on other packages.

]

An import-clause can occur in one of the following syntactic forms:

import definitionname; (qualified import of top-level definition)

import packagename. definitionname; (qualified import)
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import packagename.{def,, defy, ..., def,}; (multiple definition import)

import packagename.*; (unqualified import)

import shortname = definitionname; (renaming import of top-level definition)

import shortname = packagename. definitionname; (renaming import)

Here packagename is the fully qualified name of the imported package including possible dot notation
and definitionname is the name of an element in a package. The multiple definition import is equivalent
to multiple single definition imports with corresponding packagename and definition names.

13.2.1 Lookup of Imported Names

This section only defines how the imported name is looked up in the import-clause. For lookup in general
— including how import-clauses are used — see section 5.3.

Lookup of the name of an imported package or class deviates from the normal lexical lookup. For example,
consider A.B.C in the clauses import A.B.C;, import D = A.B.C;, or import A.B.C.x*;. Here, lookup
starts with the lexical lookup of the first part of the name (A) at the top-level.

Qualified import-clauses may only refer to packages or elements of packages, i.e., in import A.B.C; or
import D = A.B.C;, A.B must be a package. Unqualified import-clauses may only import from packages,
i.e., in import A.B.*;  A.B must be a package.

[In import A; the class A can be any class which is an element of the unnamed top-level package.]

[For example, if the package ComplexNumbers would have been declared as a subpackage inside the package
Modelica.Math, its fully qualified name would be Modelica.Math.ComplexNumbers. definitionname is
the simple name without dot notation of a single definition that is imported. A shortname is a simple
name without dot notation that can be used to refer to the package after import instead of the presumably
much longer packagename.

The forms of import are exemplified below assuming that we want to access the addition operation of the
hypothetical package Modelica.Math.ComplexNumbers:

import Modelica.Math.ComplexNumbers; // Accessed by ComplexNumbers.Add
import Modelica.Math.ComplexNumbers.Add; // Accessed by Add

import Modelica.Math.ComplexNumbers.{Add,Sub}; // Accessed by Add and Sub
import Modelica.Math.ComplexNumbers.*; // Accessed by Add

import Co = Modelica.Math.ComplexNumbers; // Accessed by Co.Add

13.2.2 Summary of Rules for Import Clauses
The following rules apply to import-clauses:
e Import-clauses are not inherited.

e Import-clauses are not named elements of a class or package. This means that import-clauses
cannot be changed by modifiers or redeclarations.

e The order of import-clauses does not matter.

e One can only import from packages, not from other kinds of classes. Both packages and classes
can be imported into i.e., they may contain import-clauses.

e An imported package or definition should always be referred to by its fully qualified name in the
import-clause.

e Multiple qualified import-clauses shall not have the same import name.
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13.3 The Modelica Library Path - MODELICAPATH

The top-level scope implicitly contains a number of classes stored externally. If a top-level name is not
found at global scope, a Modelica translator shall look up additional classes in an ordered list of library
roots, called MODELICAPATH.

[The implementation of MODELICAPATH is tool dependent. In order that a user can work in parallel with
different Modelica tools, it is advisable to not have this list as environment variable, but as a setting
in the respective tool. Since MODELICAPATH is tool dependent, it is not specified in which way the list
of library roots is stored. Typically, on a Windows system MODELICAPATH is a string with path names
separated by ‘;’ whereas on a Linux system it is a string with path names separated by a ]

In addition a tool may define an internal list of libraries, since it is in general not advisable for a program
installation to modify global environment variables. The version information for a library (as defined in
section 18.8) may also be used during this search to search for a specific version of the library (e.g. if
Modelica library version 2.2 is needed and the first directory in MODELICAPATH contain Modelica library
version 2.1, whereas the second directory contains Modelica version 2.2, then Modelica library version
2.2 is loaded from the second directory.).

[The first part of the path A.B.C (i.e., A) is located by searching the ordered list of roots in MODELICAPATH.
If no root contains A the lookup fails. If A has been found in one of the roots, the rest of the path is
located in A; if that fails, the entire lookup fails without searching for A in any of the remaining roots in
MODELICAPATH.]

13.3.1 Example of Searching MODELICAPATH

If during lookup a top-level name is not found in the unnamed top-level scope, the search continues in
the package hierarchies stored in these directories.

[Example: Figure 13.1 below shows an example MODELICAPATH = "C:\library; C:\lib1;C:\1ib2", with three
directories containing the roots of the package hierarchies Modelica, MyLib, and ComplexNumbers. The
first two are represented as the subdirectories C:\library\ Modelica and C:\libI\MyLib, whereas the third is
stored as the file C:\lib2\ ComplexNumbers.mo.

MODELICAPATH
C:\library C:\libl C:\lib2
Modelica MyLib ComplexNumbers.mo
&

Packl Pack2

Interfaces Rotational Translational

Figure 13.1: Roots of package hierarchies, e.g., Modelica, MyLib, and ComplexNumbers in
MODELICAPATH = "C:\library;C:\lib1;C:\lib2".

Assume that we want to access the package MyLib.Pack2 in figure 13.1 above, e.g. through an import-
clause import MyLib.Pack2;. During lookup we first try to find a package MyLib corresponding to the
first part of the import name. It is not found in the top-level scope since it has not previously been loaded
into the environment.

Since the name was not found in the top-level scope the search continues in the directories in the
MODELICAPATH in the specified order. For the search to succeed, there must be a subdirectory MyLib
or a file MyLib.mo in one of the directories mentioned in the MODELICAPATH. If there is no such subdirec-
tory or file, the lookup fails. If MyLib is found in one of the directories, the rest of the name, in this case
Pack2, is located in MyLib. If that fails, the entire lookup fails without continuing the search in possibly
remaining directories.

In this example the name matches the subdirectory named MyLib in the second directory C:\lib1 mentioned
in the MODELICAPATH. This subdirectory must have a file package.mo containing a definition of the
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package MyLib, according to the Modelica rules on how to map a package hierarchy to the file system.
The subpackage Pack?2 is stored in its own subdirectory or file in the subdirectory MyLib. In this case the
search succeeds and the package MyLib.Pack?2 is loaded into the environment.]

13.4 Mapping Package/Class Structures to a Hierarchical File
System

Packages/classes may be represented in the hierarchical structure of the operating system (the file sys-
tem). For classes with version information see also section 18.8.3. The nature of such an external entity
falls into one of the following two groups:

e Directory in the file system.
e File in the file system.

Each Modelica file in the file-system is stored in UTF-8 format (defined by The Unicode Consortium;
http://www.unicode.org). A deprecated feature is that the file may start with the UTF-8 encoded BOM
(byte order mark; Oxef Oxbb Oxbf); this is treated as white-space in the grammar. Since the use of
BOM is deprecated, tools can ignore any BOM when reading, and it is recommended to never write it.

[Tools may also store classes in data-base systems, but that is not standardized.]

13.4.1 Mapping a Package/Class Hierarchy into a Directory Hierarchy (Struc-
tured Entity)

A directory shall contain a node, the file package.mo. The node shall contain a stored-definition that
defines a class A with a name matching the name of the structured entity.

[The node typically contains documentation and graphical information for a package, but may also contain
additional elements of the class A.]

A directory may also contain one or more sub-entities (directories or files). The sub-entities are mapped
as elements of the class defined by their enclosing structured entity. Two sub-entities shall not define
classes with identical names

[Example: If directory A contains the three files package.mo, B.mo and C.mo, the classes defined are A,
A.B, and A.C.]

[Example: A directory shall not contain both the sub-directory A and the file A.mo.]

In order to preserve the order of sub-entities it is advisable to create a file package.order where each line
contains the name of one class or constant (using its Modelica IDENT form). If a package.order is present
when reading a structured entity the classes and constants are added in this order; if the contents does not
exactly match the classes and constants in the package, the resulting order is tool specific and a warning
may be given. Classes and constants that are stored in package.mo are also present in package.order but
their relative order should be identical to the one in package.mo (this ensures that the relative order
between classes and constants stored in different ways is preserved).

13.4.2 Mapping a Package/Class Hierarchy into a Single File (Nonstructured
Entity)

When mapping a package or class-hierarchy to a file (e.g. the file A.mo), that file shall only define a
single class A with a name matching the name of the nonstructured entity. In a file hierarchy the files
shall have the extension .mo.

A .mo file defining more than one class cannot be part of the mapping to file-structure and it is an error
if it is loaded from the MODELICAPATH.

13.4.3 The within Clause

A within-clause has the following syntax:
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within [ packageprefixname ] ";"

A non-top-level entity shall begin with a within-clause which for the class defined in the entity specifies
the location in the Modelica class hierarchy. A top-level class may contain a within-clause with no name.
For a sub-entity of an enclosing structured entity, the within-clause shall designate the class of the
enclosing entity; and this class must exist and must not have been defined using a short class definition.

[Example: The subpackage Rotational declared within Modelica.Mechanics has the fully qualified name
Modelica.Mechanics.Rotational, which is formed by concatenating the packageprefizname with the
short name of the package. The declaration of Rotational could be given as below:

within Modelica.Mechanics;
package Rotational // Modelica.Mechanics. Rotational

13.5 External resources

In order to reference external resources from documentation (such as links and images in html-text)
and/or to reference images in the Bitmap annotation (see section 18.6.5.6). URIs should be used, for
example file:/// and the URI scheme modelica:// which can be used to retrieve resources associated with
a package. According to the URI specification scheme names are case-insensitive, but the lower-case
form should be used, that is Modelica:// is allowed but modelica:// is the recommended form.

The Modelica-scheme has the ability to reference a hierarchical structure of resources associated with
packages. The same structure is used for all kind of resource references, independent of use (external
file, image in documentation, bitmap in icon layer, and link to external file in the documentation), and
regardless of the storage mechanism.

Any Modelica-scheme URI containing a slash after the package-name is interpreted as a reference to a
resource. The authority portion of the URI is interpreted as a fully qualified package name and the path
portion of the URI is interpreted as the path (relative to the package) of the resource. Each storage
scheme can define its own interpretation of the path (but care should be taken when converting from one
storage scheme or when restructuring packages that resource references resolve to the same resource).
Any storage scheme should be constrained such that a resource with a given path should be unique for
any package name that precedes it. The first part of the path shall not be the name of a class in the
package given by the authority.

When Modelica packages are stored hierarchically in a file-system (i.e. package A in a directory A contain-
ing package.mo) the resource modelica://A/Resources/C.jpg should be stored in the file A/Resources/C.jpg,
it is not recommend to use modelica://A.B/C.jpg for referencing resources; it could be stored in the file
A/B/C.jpg — which is counter-intuitive if A.B is stored together with A. When Modelica packages are
stored in other formats a similar mapping should be defined, such that a resource with a given path should
be unique for any package name that precedes it. The first part of the path shall not be the name of a class
in the package given by the authority. As above for Modelica 3.2.1/package.mo i.e. resources starting from
Modelica 3.2.1, and modelica://Modelica.Mechanics/C.jpg is Modelica 3.2.1/Mechanics/C.jpg — regardless
of whether Modelica.Mechanics is stored in Modelica 3.2.1/package.mo, Modelica 3.2.1/Mechanics.mo,
or Modelica 3.2.1/Mechanics/package.mo.

For a Modelica-package stored as a single file, A.mo, the resource modelica://A/C.jpg refers to a file
C.jpg stored in the same directory as A.mo, but using resources in this variant is not recommended since
multiple packages will share resources.

In case the name of the class contains quoted identifiers, the single-quote ‘¢’ and any reserved characters
(L:?’ 4/a, 4?77 L\#77 4[7’ 4]a’ 4@7, 4!7, L\$)’ L\&)7 4(77 4)7’ 4*a, 4+a7 4,77 4;7’ 4=a) Should be percent—encoded as
normal in URIs.

[Example: Consider a top-level package Modelica and a class Mechanics inside it, a reference such as
modelica://Modelica. Mechanics/C.jpg is legal, while modelica://Modelica/Mechanics/C jpg is illegal. The
references modelica://Modelica.Mechanics/C.jpg and modelica://Modelica/C.jpg must also refer to two
distinct resources.]
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Overloaded Operators

A Modelica operator record can overload the behavior for operations such as constructing, adding,
multiplying etc.

The overloading is defined in such a way that ambiguities are not allowed and give an error. Furthermore,
it is sufficient to define overloading for scalars. Overloaded array operations are automatically deduced
from the overloaded scalar operations.

14.1 Overview of overloaded operators

In an operator record the definition of operations are done using the specialized class operator (a

specialized class similar to package, see section 4.6) followed by the name of the operation. Each

operator class is comprised of functions implementing different variants of the operation for the operator
record class in which the definition resides.

e Overloaded constructors, see section 14.3:
’constructor’, ’0’

e Overloaded string conversions, see section 14.4:
’String’

e Overloaded binary operations, see section 14.5:
42 2= (subtraction), *x2, > /7, 777,
—_ _ _ _

)__;’ =) , ;>;’ 7<;’ ;>_;’ ;<_;7 ’and”’

J J
, Jor

e Overloaded unary operations, see section 14.6:
-7 (negation), ’not’

The functions defined in the operator-class must take at least one component of the record class as input,
except for the constructor-functions which instead must return one component of the record class. All
of the functions shall return exactly one output.

The functions can be either called as defined in this section, or they can be called directly using the
hierarchical name. The operator or operator function must be encapsulated; this allows direct calls of
the functions and prohibits the functions from using the elements of operator record class.

The operator record may also contain additional functions, and declarations of components of the
record. It is not legal to extend from an operator record, except as a short class definition modifying
the default attributes for the component elements directly inside the operator record.

If an operator record was derived by a short class definition, the overloaded operators of this operator
record are the operators that are defined in its base class, for subtyping see chapter 6.

The precedence and associativity of the overloaded operators is identical to the one defined in table 3.1
in section 3.2.

[Note, the operator overloading as defined in this section is only a short hand notation for function calls.]
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14.2 Matching Function

All functions defined inside the operator class must return one output (based on the restriction above),
and may include functions with optional arguments, i.e. functions of the form

function f
input A1 wui;

input A, Um = Am;
input Ap Un;
output B y;

algorithm

end f;

The vector P indicates whether argument m of f has a default value (true for default value, false
otherwise). A call f(Ay, ag,..., ax, by = w1 ,..., by = wp) with distinct names b; is a valid match for
the function f, provided (treating Integer and Real as the same type)

o A; = typeOf(4;) for 1 <i <k,
e the names b; = ug;, Qj > k, Ag; = typeOf(w;) for 1 < j < p, and

e if the union of {i: 1 <i<k}, {Qj:1<j<p}, and {m: P, true and 1 < m < n } is the set {i:
1<i<n}.

[This corresponds to the mormal treatment of function calls with named arguments, requiring that all
inputs have some value given by a positional argument, named argument, or a default value (and that
positional and named arguments do not overlap). Note, that this only defines a valid call, but does not
explicitly define the set of domains.)

14.3 Overloaded Constructors

Let C denote an operator record class and consider an expression C(A;, ag, ..., ar, bi=wi, ..., b,
=wp,).
1. If there exists a unique function f in C.’constructor’ such that (4i, aq, ..., ax, bj=w1, ...,
bp=w,) is a valid match for the function f, then C(A:, a2, ..., ar, bi=wi, ..., bpy=w,) is
resolved to C.’constructor’. f(A;, a2, ..., ar, bi=wi, ..., by=wp).

2. If there is no operator C.’constructor’ the automatically generated record constructor is called.
3. Otherwise the expression is erroneous.
Restrictions:

e The operator C.’constructor’ shall only contain functions that declare one output component,
which shall be of the operator record class C.

e For an operator recordclass there shall not exist any potential call that lead to multiple matches
in item 1 above.

[How to verify this is not specified.]

e For a pair of operator record classes C and D and components ¢ and d of these classes both of
C.’constructor’(d) and D.’constructor’ (c) shall not both be legal.

[Hence, one of the two definitions must be removed.]
[By the last restriction the following problem for binary operators is avoided:

Assume there are two operator record classes C and D that both have a constructor from Real. If we
want to extend ¢ + ¢ and d + 4 to support mized operations, one variant would be to define ¢ + d and
d + c; but then ¢ + 2 becomes ambiguous (since it is not clear which instance should be converted to).
Without mized operations expressions such as ¢ + d are only ambiguous if both conversion from C to D
and back from D to C are both available, and this possibility is not allowed by the restriction above.]
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Additionally there is an operator 0’ defining the zero-value which can also be used to construct an
element. The operator >0’ for an operator record C can contain only one function, having zero inputs
and one output of type C (the called function is therefore unambiguous). It should return the identity
element of addition, and is used for generating flow-equations for connect-equations and zero elements
for matrix multiplication.

14.4 Overloaded String Conversions

Consider an expression String(A;, a2, ..., ar, bi=wi, ..., by=wp), k > 1 where A; is an element
of class A.

1. If A is a predefined type, i.e., Boolean, Integer, Real, String or an enumeration, or a type derived
from them, then the corresponding built-in operation is performed.

2. If A is an operator record class and there exists a unique function f in A.’String’ such that

A.’>String’. f(Ay, a2, ..., ag, bi=w1, ..., by=wp) is a valid match for f, then String(A4,,
az, ..., G, bi=wi, ..., by=wp) is evaluated to
A.’String’. f(Ay, a2, ..., ar, bi=wi, ..., by=wp).

3. Otherwise the expression is erroneous.
Restrictions:

e The operator A.’String’ shall only contain functions that declare one output component, which
shall be of the String type, and the first input argument shall be of the operator record class A.

e For an operator record class there shall not exist any call that lead to multiple matches in (2)
above.

[How to verify this is not specified.]

14.5 Overloaded Binary Operations

Let X denote a binary operator and consider an expression a X b where a is an instance or array of
instances of class A and b is an instance or array of instances of class B.

1. If A and B are predefined types of such, then the corresponding built-in operation is performed.

2. Otherwise, if there exists ezactly one function f in the union of A. X and B. X such that f(a, b)
is a valid match for the function f, then a X b is evaluated using this function. It is an error, if
multiple functions match. If A is not an operator record class, A. X is seen as the empty set, and
similarly for B.

[Having a union of the operators ensures that if A and B are the same, each function only appears
once.)

3. Otherwise, consider the set given by f in A. X and an operator record class C (different from B) with
a constructor, g, such that C.’constructor’.g(b) is a valid match, and f(a, C.’constructor
>.g(b)) is a valid match; and another set given by f in B.X and an operator record class D
(different from A) with a constructor, h, such that D.’constructor’.h(a) is a valid match and
f(D.’constructor’.h(a), b) is a valid match. If the sum of the sizes of these sets is one this
gives the unique match. If the sum of the sizes is larger than one it is an error.

[Informally, this means: If there is no direct match of a X b, then it is tried to find a direct
match by automatic type casts of a or b, by converting either a or b to the needed type using an
appropriate constructor function from one of the operator record classes used as arguments of the
overloaded op functions. Example using the Complex-definition below:

Real a;

Complex b;

Complex ¢ = a * b; // interpreted as:

// Complex. s« . multiply (Complex. constructor '.fromReal(a),b);
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4. Otherwise, if a or b is an array expression, then the expression is conceptually evaluated according
to the rules of section 10.6 with the following exceptions concerning section 10.6.4:

(a) wector * wvector should be left undefined.

[The scalar product of table 10.9 does not generalize to the expected linear and conjugate linear
scalar product of complex numbers.)

(b) wvector * matriz should be left undefined.

[The corresponding definition of table 10.9 does not generalize to complex numbers in the
expected way.)

(c) If the inner dimension for matriz * vector or matriz * matriz is zero, this uses the over-
loaded ’0° operator of the result array element type. If the operator 0’ is not defined for
that class it is an error if the inner dimension is zero.

[For array multiplication it is assumed that the scalar elements form a non-commutative ring that
does not necessarily have a multiplicative identity.]

5. Otherwise the expression is erroneous.

For an element-wise operator, a .op b, items 1, 4, and 5 are used; e.g. the operator .+ will always be
defined in terms of ’+’.

Restrictions:

e A function is allowed for a binary operator if and only if it has at least two inputs; at least one of
which is of the operator record class, and the first two inputs shall not have default values, and all
inputs after the first two must have default values.

e For an operator record class there shall not exist any (potential) call that lead to multiple matches
in (2) above.

14.6 Overloaded Unary Operations

Let X denote a unary operator and consider an expression X a where a is an instance or array of
instances of class A. Then X a is evaluated in the following way.

1. If A is a predefined type, then the corresponding built-in operation is performed.

2. If A is an operator record class and there exists a unique function f in A.X such that A.X . f(a)
is a valid match, then X a is evaluated to A. X . f(a). It is an error, if there are multiple valid
matches.

3. Otherwise, if a is an array expression, then the expression is conceptually evaluated according to
the rules of section 10.6.

4. Otherwise the expression is erroneous.
Restrictions:

e A function is allowed for a unary operator if and only if it has least one input; and the first input
is of the record type (or suitable arrays of such) and does not have a default value, and all inputs
after the first one must have default values.

e For an operator record class there shall not exist any (potential) call that lead to multiple matches
in (2) above.

e A binary and/or unary operator-class may only contain functions that are allowed for this binary
and/or unary operator-class; and in case of >~ it is the union of these sets, since it may define
both a unary (negation) and binary (subtraction) operator.

14.7 Example of Overloading for Complex Numbers

[Example: The rules in the previous subsections are demonstrated at hand of a record class to work
conveniently with complex numbers:
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#  Language

operator record Complex "Record defining a Complex number"
Real re "Real part of complex number";
Real im "Imaginary part of complex number";
encapsulated operator ’comnstructor’
import Complex;
function fromReal
input Real re;

input Real im := O0;
output Complex result(re=re, im=im);
algorithm

annotation(Inline=true) ;
end fromReal;
end ’constructor’;

encapsulated operator function ’+’ // short hand notation, see section 4.6
import Complex;
input Complex cil;
input Complex c2;

output Complex result "= cl + c2";

algorithm
result := Complex(cl.re + c2.re, cl.im + c2.im);
annotation(Inline=true);

end ’+7;

encapsulated operator ’-’
import Complex;
function negate
input Complex c;

output Complex result "= - c";
algorithm
result := Complex(-c.re, -c.im);

annotation(Inline=true);
end negate;

function subtract
input Complex cl;
input Complex c2;

output Complex result "= cl - c2";
algorithm
result := Complex(cl.re - c2.re, cl.im - c2.im);

annotation(Inline=true);
end subtract;
end ’-7;

encapsulated operator function ’x*’
import Complex;
input Complex c1;
input Complex c2;

output Complex result "= cl * c2";
algorithm
result := Complex(cl.re*c2.re - cl.im*c2.im, cl.re*c2.im + cl.im*c2.re);

annotation(Inline=true);
end ’x’;

encapsulated operator function ’/°
import Complex; input Complex c1l;
input Complex c2;

output Complex result "= cl / c2";

algorithm
result := Complex(( cl.rexc2.re + cl.im*c2.im)/(c2.re”2 +
c2.im"2),

(-cl.re*xc2.im + cl.im*c2.re)/(c2.re”2 + c2.im"2));
annotation(Inline=true);
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end ’/’;

encapsulated operator function
import Complex;
input Complex cl;
input Complex c2;

output Boolean result "= cl
algorithm
result := cl.re == c2.re and

annotation(Inline=true);

end ’==7;

encapsulated operator function
import Complex;
input Complex c;
input String name
string";

IlJ‘Il

output String s;
algorithm

s String(c.re,

if c.im <> 0 then

s := if c¢.im > O then s +
else s + " - ",
s := s + String(abs(c.im),
end if;
end ’String’;

encapsulated function j
import Complex;
output Complex c;
algorithm
c Complex (0,1);
annotation(Inline=true);
end j;

encapsulated operator function
import Complex;
output Complex c;

algorithm
c Complex (0,0);
annotation(Inline=true);

end ’0’;

end Complex;

function eigenValues
input Real A [:,:];
output Complex ev[size(A,
protected
Integer nx=size (A,
Real eval[nx,2];
Integer 1i;
algorithm
eval Modelica.Math.Matrices.
for i in 1:nx loop
ev[i] Complex (evalli,
end for;
end eigenValues;

11

1)

1]’

// Usage of Complex number above:
Complex j Complex.j();
Complex cl 2 + 3%j;

"Name of variable representing sqrt(-1)

input Integer significantDigits=6
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cl.im c2.im;

’String’

in the

"Number of significant digits to be shown

significantDigits=significantDigits);

nogon

significantDigits=significantDigits) + name;

)O)

eigenValues (4);

21);

evall[i,
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anguage

Complex c2 = 3 + 4xj;

Complex c3 = cl + c2;

Complex c4[:] = eigenValues ([1,2; -3,4]);
algorithm

Modelica.Utilities.Streams.print("c4 = " + String(c4d));

// results in output:
/] c4 = {2.5 + 1.93649j, 2.5 — 1.93649j}

How overloaded operators can be symbolically processed. Example:

Real a;
Complex b;
Complex ¢ = a + b;

Due to inlining of functions, the equation for c is transformed to:

¢ = Complex.’+’.add(Complex.’constructor’.fromReal(a), b);
Complex.’+’.add(Complex (re=a,im=0), b)
Complex (re=a+b.re, im=b.im);

or
c.re = a + b.re;
c.im = b.im;

These equations can be symbolically processed as other equations.

Complex can be used in a connector:

operator record ComplexVoltage = Complex(re(unit="V"),im(unit="V"));
operator record ComplexCurrent Complex (re(unit="A"),im(unit="A"));

connector ComplexPin
ComplexVoltage v;
flow ComplexCurrent 1ij;
end ComplexPin;

ComplexPin pl,p2,p3;
equation

connect (pl,p2);

connect (pl,p3);

The two connect-equations result in the following connection equations:

pl.v = p2.v;

pl.v = p3.v;

pl.i + p2.i + p3.i = Complex.’0’();

// Complex. +'(pl.i, Complex. +'(p2.i, p3.i)) = Complex.'0'();

The restrictions on extends are intended to avoid combining two variants inheriting from the same oper-
ator record, but with possibly different operations; thus ComplexVoltage and ComplexCurrent still use
the operations from Complex. The restriction that it is not legal to extend from any of its enclosing
scopes implies that:

package A
extends Icon; // Ok
operator record B ... end B;
end A;

package A2
extends A(...); // Not legal
end A2;

package A3 = A(...); // Not legal
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Stream Connectors

The two basic variable types in a connector — potential (or across) variable and flow (or through)
variable — are not sufficient to describe in a numerically sound way the bi-directional flow of matter
with convective transport of specific quantities, such as specific enthalpy and chemical composition. The
values of these specific quantities are determined from the upstream side of the flow, i.e., they depend
on the flow direction. When using across and through variables, the corresponding models would include
nonlinear systems of equations with Boolean unknowns for the flow directions and singularities around
zero flow. Such equation systems cannot be solved reliably in general. The model formulations can be
simplified when formulating two different balance equations for the two possible flow directions. This is
not possible with across and through variables though.

This fundamental problem is addressed in Modelica by introducing a third type of connector variable,
called stream wvariable, declared with the prefix stream. A stream variable describes a quantity that
is carried by a flow variable, i.e., a purely convective transport phenomenon. The value of the stream
variable is the specific property inside the component close to the boundary, assuming that matter flows
out of the component into the connection point. In other words, it is the value the carried quantity
would have if the fluid was flowing out of the connector, irrespective of the actual flow direction.

The rationale of the definition and typical use cases are described in appendix C.

15.1 Definition of Stream Connectors

If at least one variable in a connector has the stream prefix, the connector is called stream connector
and the corresponding variable is called stream variable. The following definitions hold:

e The stream prefix can only be used in a connector declaration.
e A stream connector must have exactly one scalar variable with the flow prefix.
[The idea is that all stream variables of a connector are associated with this flow variable.]

e For every outside connector (see section 9.1.2), one equation is generated for every variable with
the stream prefix (to describe the propagation of the stream variable along a model hierarchy).
For the exact definition, see the end of section 15.2.

e For inside connectors (see section 9.1.2), variables with the stream prefix do not lead to connection
equations.

e Connection equations with stream variables are generated in a model when using inStream or
actualStream, see section 15.2 and section 15.3.

[Example:

connector FluidPort
replaceable package Medium =
Modelica.Media.Interfaces.PartialMedium;
Medium.AbsolutePressure p "Pressure in connection point";
flow Medium.MassFlowRate m_flow "> 0, if flow into component";
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stream Medium.SpecificEnthalpy h_outflow "h close to port if m_flow < 0";
stream Medium.MassFraction X_outflow[Medium.nX] "X close to port if m_flow <
OII;
end FluidPort;

FluidPort is a stream connector, because some connector variables have the stream prefiz. The Medium
definition and the stream variables are associated with the only flow variable (m_flow) that defines a
fluid stream. The Medium and the stream variables are transported with this flow variable. The stream
variables h_outflow and X_outflow are the stream properties inside the component close to the boundary,
when fluid flows out of the component into the connection point. The stream properties for the other flow
direction can be inquired with the built-in inStream. The value of the stream wvariable corresponding to
the actual flow direction can be inquired through the built-in actualStream, see section 15.3.]

15.2 Stream Operator inStream and Connection Equations

In combination with the stream variables of a connector, inStream is designed to describe in a numerically
reliable way the bi-directional transport of specific quantities carried by a flow of matter.

inStream(v) is only allowed on stream variables v and is informally the value the stream variable has,
assuming that the flow is from the connection point into the component. This value is computed from
the stream connection equations of the flow variables and of the stream variables.

For the following definition it is assumed that N inside connectors m;.c (j =1,2,...,N) and M outside
connectors ¢, (k = 1,2,..., M) belonging to the same connection set (see definition in section 9.1.2)
are connected together and a stream variable h_outflow is associated with a flow variable m_flow in
connector c.

connector FluidPort

flow Real m_flow "Flow of matter; m_flow > O if flow into component";
stream Real h_outflow "Specific variable in component if m_flow < O"
end FluidPort

model FluidSystem

FluidComponent mi, m2, ..., MnN;

FluidPort ci1, c2, ..., CMm;
equation

connect(my.c, ms.c);

connect(my.c, ms.c);

connect(mi.c, my.c);
connect(mi.c, c1);
connect(mi.c, c2);

connect (mi.c, cum);

end FluidSystem;

ma C

[]
mo C

L]
ms C

Figure 15.1: Examplary FluidSystem with N = 3 and M = 2.

[The connection set represents an infinitesimally small control volume, for which the stream connection
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#  Language

equations are equivalent to the conservation equations for mass and energy.]

With these prerequisites, the semantics of the expression inStream(m;.c.h_outflow) is given implicitly
by defining an additional variable h_miz_in;, and by adding to the model the conservation equations
for mass and energy corresponding to the infinitesimally small volume spanning the connection set.
The connection equation for the flow variables has already been added to the system according to the
connection semantics of flow variables defined in section 9.2.

// Standard connection equation for flow variables
0 = sum(mj.c.m_flow for j in 1:N) + sum(-c¢y.m_flow for k in 1:M);

Whenever inStream is applied to a stream variable of an inside connector, the balance equation of the
transported property must be added under the assumption of flow going into the connector

// Implicit definition of inStream applied to inside connector i
0 =

sum(mj;.c.m_flow *
(if mj.c.m_flow > O or j==i then h_miz_in; else mj.c.h_outflow)
for j in 1:N) +
sum(-cp.m_flow =*
(if -cx.m_flow > O then h_miz_in; else inStream(ciy.h_outflow)
for k in 1:M);
inStream(m;.c.h_outflow) = h_miz_in;;

Note that the result of inStream(m;.c.h_outflow) is different for each port 7, because the assumption
of flow entering the port is different for each of them.

Additional equations need to be generated for the stream variables of outside connectors.

// Additional connection equations for outside connectors
for q in 1:M loop
0 =
sum(m;.c.m_flow *
(if mj.c.m_flow > O then h_miz_outy else mj;.c.h_outflow)
for j in 1:N) +
sum(-cx.m_flow *
(if -cx.m_flow > 0 or k==q then h_miz_outy else inStream(cyp.h_outflow))
for k in 1:M);
cq.-h_outflow = h_-miz_ouly;
end for;

Neglecting zero flow conditions, the solution of the above-defined stream conne