@
Modelica
Y 4 Language

Modelica® — A Unified Object-Oriented Language
for Systems Modeling

Language Specification

Version 3.5-dev

December 29, 2020

Modelica Association

Abstract

This document defines the Modelica! language, version 3.5-dev, which is developed by the Modelica
Association, a non-profit organization with seat in Linkoping, Sweden. Modelica is a freely available,
object-oriented language for modeling of large, complex, and heterogeneous systems. It is suited for
multi-domain modeling, for example, mechatronic models in robotics, automotive and aerospace appli-
cations involving mechanical, electrical, hydraulic control and state machine subsystems, process oriented
applications and generation and distribution of electric power. Models in Modelica are mathematically
described by differential, algebraic and discrete equations. No particular variable needs to be solved
for manually. A Modelica tool will have enough information to decide that automatically. Model-
ica is designed such that available, specialized algorithms can be utilized to enable efficient handling
of large models having more than one hundred thousand equations. Modelica is suited and used for
hardware-in-the-loop simulations and for embedded control systems. More information is available at
https://www.modelica.org.

1 Modelica is a registered trademark of the Modelica Association.

https://www.modelica.org

Modelica Language Specification 3.5-dev

"o
Modelica
ya Language

Copyright (©) 1998-2020, Modelica Association (https://www.modelica.org)

All rights reserved. Reproduction or use of editorial or pictorial content is permitted, i.e., this document
can be freely distributed especially electronically, provided the copyright notice and these conditions
are retained. No patent liability is assumed with respect to the use of information contained herein.
While every precaution has been taken in the preparation of this document no responsibility for errors
or omissions is assumed.

The contributors to this and to previous versions of this document are listed in appendix D. All contrib-
utors worked voluntarily and without compensation.

https://www.modelica.org

Contents

Preface
1 Introduction
1.1 Overview of Modelica
1.2 Scope of the Specification oL
1.3 Some Definitions e e
1.4 Notation and Grammar e e e
2 Lexical Structure
2.1 Character Set e e e
2.2 Comments e e e e e
2.3 Identifiers, Names, and Keywords,
2.4 Literal Constants
2.5 Operator Symbols e
3 Operators and Expressions
3.1 Expressions e
3.2 Operator Precedence and Associativity
3.3 Evaluation Order e
3.4 Arithmetic Operators
3.5 Equality, Relational, and Logical Operators
3.6 Miscellaneous Operators and Variables
3.7 Built-in Intrinsic Operators with Function Syntax
3.8 Variability of Expressions e
4 Classes, Predefined Types, and Declarations
4.1 Access Control — Public and Protected Elements
4.2 Double Declaration not Allowed
4.3 Declaration Order and Usage before Declaration
4.4 Component Declarations
4.5 Class Declarations s
4.6 Specialized Classes e
4.7 Balanced Models e
4.8 Predefined Types and Classes i it
5 Scoping, Name Lookup, and Flattening
5.1 Flattening Context e
5.2 Enclosing Classes o v i i i e e e e
5.3 Static Name Lookup e
5.4 Instance Hierarchy Name Lookup of Inner Declarations
5.5 Simultaneous Inner/Outer Declarations
5.6 Flattening Process e
6 Interface or Type Relationships
6.1 Interface Terminology L
6.2 The Concepts of Type, Interface and Subtype
6.3 Interface or Type e
6.4 Interface Compatibility or Subtyping

10
11
12

13
13
13
14
15
15
16
18
31

34
34
35
35
35
41
45
46
93

59
99
99
59
61
63
64

Modelica Language Specification 3.5-dev

ﬂlod/Le)’i?cu Contents
6.5 Plug-Compatibility or Restricted Subtyping 75
6.6 Function-Compatibility or Function-Subtyping for Functions 76
6.7 Type Compatible Expressions 77
7 Inheritance, Modification, and Redeclaration 79
7.1 Inheritance — Extends Clause L 79
7.2 Modifications e 82
7.3 Redeclaration e 87
8 Equations 95
8.1 Equation Categories 95
8.2 Flattening and Lookup in Equations 95
8.3 Equations in Equation Sections e 95
8.4 Synchronous Data-flow Principle and Single Assignment Rule 103
8.5 Events and Synchronization L oL 103
8.6 Initialization, initial equation, and initial algorithm 105
9 Connectors and Connections 109
9.1 Connect-Equations and Connectors L oo 109
9.2 Generation of Connection Equations L oo L. 115
9.3 Restrictions of Connections and Connectors 117
9.4 Equation Operators for Overconstrained Connection-Based Equation Systems 120
10 Arrays 126
10.1 Array Declarations e 126
10.2 Flexible Array Sizes o oo 129
10.3 Built-in Array Functions o 129
10.4 Vector, Matrix and Array Constructors 134
10.5 Array Indexing 138
10.6 Scalar, Vector, Matrix, and Array Operator Functions 139
10.7 Empty Atrays o oo e e e e e e 144
11 Statements and Algorithm Sections 145
11.1 Algorithm Sections e 145
11.2 Statements e e e e e 146
12 Functions 153
12.1 Function Declaration e 153
12.2 Function as a Specialized Class 154
12.3 Pure Modelica Functions L 156
12.4 Function Call o o 158
12.5 Built-in Functions oL oo 165
12.6 Record Constructor Functions 165
12.7 Declaring Derivatives of Functions L. 169
12.8 Declaring Inverses of Functions o o oo 174
12.9 External Function Interface o o 175
13 Packages 189
13.1 Package as Specialized Class 189
13.2 Importing Definitions from a Package 0oL 189
13.3 The Modelica Library Path — MODELICAPATH 191
13.4 Mapping Package/Class Structures to a Hierarchical File System 192
13.5 External resources e e e e e e e e e e e 193
14 Overloaded Operators 194
14.1 Overview of overloaded operators L 194
14.2 Matching Function L 195
14.3 Overloaded Constructors 195
14.4 Overloaded String Conversions o 196

Modelica Language Specification 3.5-dev

m,°°’§!£ﬁ§‘! Contents
14.5 Overloaded Binary Operations L 196
14.6 Overloaded Unary Operations o 197
14.7 Example of Overloading for Complex Numbers 197
15 Stream Connectors 201
15.1 Definition of Stream Connectors. 201
15.2 Stream Operator inStream and Connection Equations 202
15.3 Stream Operator actualStream 206
16 Synchronous Language Elements 207
16.1 Rationale for Clocked Semantics 208
16.2 Definitions L e e e e 209
16.3 Clock Constructors o e e e e e 212
16.4 Clocked State Variables 215
16.5 Partitioning Operators L L 215
16.6 Clocked When-Clause et 219
16.7 Clock Partitioning L e 219
16.8 Continuous-Time Equations in Clocked Partitions 222
16.9 Initialization of Clocked Partitions 226
16.10 Other Operators e 226
16.11 Semantics e e e e e 227
17 State Machines 230
17.1 Transitions Lo e e e e e 230
17.2 State Machine Graphics L e 232
17.3 State Machine Semantics 233
18 Annotations 242
18.1 Vendor-Specific Annotations L oL 242
18.2 Annotations for Documentation 242
18.3 Annotations for Code Generation 247
18.4 Annotations for Simulations 249
18.5 Annotation for single use of class oL L 250
18.6 Annotations for Graphical Objects L 250
18.7 Annotations for the Graphical User Interface 260
18.8 Anmnnotations for Version Handling o L. 265
18.9 Annotations for Access Control to Protect Intellectual Property 271
18.10 Annotations for Functions 275
18.11 Annotation Choices for Modifications and Redeclarations 275
18.12 Annotation for External Libraries and Include Files 275
19 Unit Expressions 276
19.1 The Syntax of Unit Expressions 276
19.2 Examples o L e e e 277
20 The Modelica Standard Library 278
A Modelica Concrete Syntax 279
A1l Lexical conventions e e 279
A2 Grammar e e e e e 280
B Modelica DAE Representation 287
C Derivation of Stream Equations 290
D Modelica Revision History 295
Bibliography 324
Index 325

Preface

Modelica is a freely available, object-oriented language for modeling of large, complex, and heterogeneous
physical systems. From a user’s point of view, models are described by schematics, also called object
diagrams. Examples are shown below:

lossyRavigneaux
Star2
C4 lossyPlanetary
R3 ‘m
L:_Jc-w } e = -
Gras ™ R=0,0001 -
) o AMC1 | 0-1.9189
electrical circuits elecirical machmes
drive trains, e.g. planetary gears
<
- . s
- o A TA T é . o FlowsSource Volurme Sink
") | : 3 O O
pu:lp I > X - Walve
— e m . .
N thermo-fluid pipe flow, e.g.
hydraulic circuits power plants, air conditioning systems
>
fitter Pl intislStep transtion step transition2
feedback I X I]
-» N |/ }*) I iv
. x
f_cut=5 TI;TJ?_I timer '
] /I. = . .
) state machines I 3-dim. mechanical systems
block diagrams T

A schematic consists of connected components, like a resistor, or a hydraulic cylinder. A component has
connectors (often also called ports) that describe the interaction possibilities, e.g., an electrical pin, a
mechanical flange, or an input signal. By drawing connection lines between connectors a physical system
or block diagram model is constructed. Internally a component is defined by another schematic, or on
“bottom” level, by an equation-based description of the model in Modelica syntax.

The Modelica language is a textual description to define all parts of a model and to structure model
components in libraries, called packages. An appropriate Modelica simulation environment is needed to
graphically edit and browse a Modelica model (by interpreting the information defining a Modelica model)
and to perform model simulations and other analysis. Information about such environments is available at
www.modelica.org/tools. Basically, all Modelica language elements are mapped to differential, algebraic
and discrete equations. There are no language elements to describe directly partial differential equations,
although some types of discretized partial differential equations can be reasonably defined, e.g., based on
the finite volume method and there are Modelica libraries to import results of finite-element programs.

This document defines the details of the Modelica language. It is not intended to learn the Model-
ica language with this text. There are better alternatives, such as the Modelica books referenced at
www.modelica.org/publications. This specification is used by computer scientist to implement a Mod-
elica translator and by modelers who want to understand the exact details of a particular language
element.

https://www.modelica.org/tools
https://www.modelica.org/publications

Modelica Language Specification 3.5-dev
Modelica Contents

The text directly under the chapter headings are non-normative introductions to the chapters.

The Modelica language has been developed since 1996. This document describes version 3.4 of the
Modelica language. A complete summary is available in appendix D.1.

Chapter 1

Introduction

1.1 Overview of Modelica

Modelica is a language for modeling of physical systems, designed to support effective library development
and model exchange. It is a modern language built on acausal modeling with mathematical equations
and object-oriented constructs to facilitate reuse of modeling knowledge.

1.2 Scope of the Specification

The semantics of the Modelica language is specified by means of a set of rules for translating any class
described in the Modelica language to a flat Modelica structure.

A class (of specialized class model, class or block) intended to be simulated on its own is called a
simulation model.

The flat Modelica structure is also defined for other cases than simulation models; including functions
(can be used to provide algorithmic contents), packages (used as a structuring mechanism), and partial
models (used as base-models). This allows correctness to be verified for those classes, before using them
to build the simulation model.

There are specific semantic restrictions for a simulation model to ensure that the model is complete; they
allow its flat Modelica structure to be further transformed into a set of differential, algebraic and discrete
equations (= flat hybrid DAE). Note that satisfying the semantic restrictions does not guarantee that
the model can be initialized from the initial conditions and simulated.

Modelica was designed to facilitate symbolic transformations of models, especially by mapping basically
every Modelica language construct to continuous or instantaneous equations in the flat Modelica struc-
ture. Many Modelica models, especially in the associated Modelica Standard Library, are higher index
systems, and can only be reasonably simulated if symbolic index reduction is performed, i.e., equations
are differentiated and appropriate variables are selected as states, so that the resulting system of equa-
tions can be transformed to state space form (at least locally numerically), i.e., a hybrid DAE of index
zero. In order to allow this structural analysis, a tool may reject simulating a model if parameters cannot
be evaluated during translation — due to calls of external functions or initial equations/initial algorithms
for fixed=false parameters. Accepting such models is a quality of implementation issue. The Modelica
specification does not define how to simulate a model. However, it defines a set of equations that the
simulation result should satisfy as well as possible.

The key issues of the translation (or flattening) are:
e Expansion of inherited base classes
e Parameterization of base classes, local classes and components
e Generation of connection equations from connect-equations

The flat hybrid DAE form consists of:

Modelica Language Specification 3.5-dev
Modelica 1.3. Some Definitions

Language

e Declarations of variables with the appropriate basic types, prefixes and attributes, such as parameter
Real v=b.

e Equations from equation sections.

e Function invocations where an invocation is treated as a set of equations which involves all input
and all result variables (number of equations = number of basic result variables).

e Algorithm sections where every section is treated as a set of equations which involves the variables
occurring in the algorithm section (number of equations = number of different assigned variables).

e When-clauses where every when-clause is treated as a set of conditionally evaluated equations, also
called instantaneous equations, which are functions of the variables occurring in the clause (number
of equations = number of different assigned variables).

Therefore, a flat hybrid DAE is seen as a set of equations where some of the equations are only condition-
ally evaluated (e.g. instantaneous equations are only evaluated when the corresponding when-condition
becomes true). Initial setup of the model is specified using start-values and instantaneous equations that
hold at the initial time only.

A Modelica class may also contain annotations, i.e. formal comments, which specify graphical represen-
tations of the class (icon and diagram), documentation text for the class, and version information.

1.3 Some Definitions

The semantic specification should be read together with the Modelica grammar. Non-normative text,
i.e., examples and comments, are enclosed in [...] and set in italics. Explanations of many terms can be
found using the document index in appendix D.13.5. Some important terms are defined below.

Definition 1.1. Component. An element defined by the production component-clause in the Mod-
elica grammar (basically a variable or an instance of a class) O

Definition 1.2. Element. Class definitions, extends-clauses and component-clauses declared in a class
(basically a class reference or a component in a declaration). O

Definition 1.3. Flattening. The translation of a model described in Modelica to the corresponding
model described as a hybrid DAE, involving expansion of inherited base classes, parameterization of base
classes, local classes and components, and generation of connection equations from connect-equations
(basically, mapping the hierarchical structure of a model into a set of differential, algebraic and discrete

equations together with the corresponding variable declarations and function definitions from the model).
O

1.4 Notation and Grammar

The meta symbols (of the extended BNF-grammar) are defined in appendix A.1.

Boldface denotes keywords of the Modelica language. Keywords are reserved words and shall not be used
as identifiers, with the exception of initial which is a keyword in section headings, and der which is a
keyword for declaration functions, but it is also possible to call the functions initial and der.

See appendix A for a full lexical specification and grammar.

Chapter 2

Lexical Structure

This chapter describes several of the basic building blocks of Modelica such as characters and lexical
units including identifiers and literals. Without question, the smallest building blocks in Modelica are
single characters belonging to a character set. Characters are combined to form lexical units, also called
tokens. These tokens are detected by the lexical analysis part of the Modelica translator. Examples of
tokens are literal constants, identifiers, and operators. Comments are not really lexical units since they
are eventually discarded. On the other hand, comments are detected by the lexical analyzer before being
thrown away.

The information presented here is derived from the more formal specification in appendix A.

2.1 Character Set

The character set of the Modelica language is Unicode, but restricted to the Unicode characters corre-
sponding to 7-bit ASCII characters in several places; for details see appendix A.1.

2.2 Comments

There are two kinds of comments in Modelica which are not lexical units in the language and therefore
are treated as white-space by a Modelica translator. The white-space characters are space, tabulator,
and line separators (carriage return and line feed); and white-space cannot occur inside tokens, e.g., <=
must be written as two characters without space or comments between them. The following comment
variants are available:

// comment & Characters from // to the end of the line are ignored.
/% comment %/ & Characters between /% and %/ are ignored, including line
terminators.

[The comment syntaz is identical to that of C++.]

Modelica comments do not nest, i.e., /* */ cannot be embedded within /* */. The following is invalid:

/* Commented out — erroneous comment, invalid nesting of comments!
/* This is an interesting model %/
model interesting

end interesting;

*/

There is also a description-string, that is part of the Modelica language and therefore not ignored by
the Modelica translator. Such a description-string may occur at the end of a declaration, equation, or
statement or at the beginning of a class definition. For example:

model TempResistor "Temperature dependent resistor"

Modelica Language Specification 3.5-dev
Modelica 2.3. Identifiers, Names, and Keywords

Language

parameter Real R "Resistance for reference temp.";

end TempResistor;

2.3 Identifiers, Names, and Keywords

Identifiers are sequences of letters, digits, and other characters such as underscore, which are used for
naming various items in the language. Certain combinations of letters are keywords represented as
reserved words in the Modelica grammar and are therefore not available as identifiers.

2.3.1 Identifiers

Modelica identifiers, used for naming classes, variables, constants, and other items, are of two forms.
The first form always starts with a letter or underscore (‘’), followed by any number of letters, digits,
or underscores. Case is significant, i.e., the identifiers Inductor and inductor are different. The second
form (Q-IDENT) starts with a single quote, followed by a sequence of any printable ASCII character,
where single-quote must be preceded by backslash, and terminated by a single quote, e.g. >12H?, > 13\’
H’, >+foo’. Control characters in quoted identifiers have to use string escapes. The single quotes are
part of the identifier, i.e., ’x’ and x are distinct identifiers. The redundant escapes (’\?’ and ’\"?)
are the same as the corresponding non-escaped variants (°?? and ’"?), but are only for use in Modelica
source code. A full BNF definition of the Modelica syntax and lexical units is available in appendix A.

IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT

Q-IDENT = "’" { Q-CHAR | S-ESCAPE } "’"

NONDIGIT = "_" | letters "a" ... "z" | letters "A" ... "Z"

DIGIT =0l 112131415161 713812?9

Q—CHAR = NONDIGIT | DIGIT I wyn | ngn | n$n | ||%|| I ngn I ||(n | ll)ll | Ny n |
ngn | " s [| n_n | non I n/u I n.n | " ; " | nen | nsn I [T] | non | nQ" | [[n
| ||] " | n-n | n{n | u}n | n | n | n~n I non | nnn

S-ESCAPE = Il\)ll | ll\ll n | n\?n I ll\\ll I Il\all | ll\bll | ll\fll I ll\nll I Il\rll | ll\tll
I "\V"

2.3.2 Names

A name is an identifier with a certain interpretation or meaning. For example, a name may denote
an Integer variable, a Real variable, a function, a type, etc. A name may have different meanings in
different parts of the code, i.e., different scopes. The interpretation of identifiers as names is described
in more detail in chapter 5. The meaning of package names is described in more detail in chapter 13.

[Ezample: A name: Ele.Resistor]

A component reference is an expression containing a sequence of identifiers and indices. A component
reference is equivalent to the referenced object, which must be a component. A component reference is
resolved (evaluated) in the scope of a class (section 4.4), or expression for the case of a local iterator
variable (section 10.6.9).

[Example: A component reference: Ele.Resistor.u[21].r]

2.3.3 Modelica Keywords

The following Modelica keywords are reserved words and shall not be used as identifiers, except as listed
in appendix A.1:

10

Modelica Language Specification 3.5-dev

ﬂ'l’od/é?igcg 2.4. Literal Constants

algorithm discrete false loop pure

and each final model record
annotation else flow not redeclare

elseif for operator replaceable

block elsewhen function or return
break encapsulated if outer stream
class end import output then
connect enumeration impure package true
connector equation in parameter type
constant expandable initial partial when
constrainedby extends inner protected while

der external input public within

2.4 Literal Constants

Literals (or literal constants) are unnamed constants used to build expressions, and have different forms
depending on their type. Each of the predefined types in Modelica has a way of expressing unnamed
constants of the corresponding type, which is presented in the ensuing subsections. Additionally, array
literals and record literals can be expressed.

2.4.1 Floating Point Numbers

A floating point number is expressed as a decimal number in the form of a sequence of decimal digits
followed by a decimal point, followed by decimal digits, followed by an exponent indicated by E or e
followed by a sign and one or more decimal digits. The various parts can be omitted, see UNSIGNED-REAL
in appendix A.l for details and also the examples below. The minimal recommended range is that
of IEEE double precision floating point numbers, for which the largest representable positive number
is 1.7976931348623157 x 103%® and the smallest positive number is 2.2250738585072014 x 1073%%. For
example, the following are floating point number literal constants:

22.5, 3.141592653589793, 1.2E-35

The same floating point number can be represented by different literals. For example, all of the following
literals denote the same number:

13., 13E0, 1.3el, 0.13E2, .13E2

The last variant shows that that the leading zero is optional (in that case decimal digits must be present).
Note that 13 is not in this list, since it is not a floating point number, but can be converted to a floating
point number.

2.4.2 Integer Literals

Literals of type Integer are sequences of decimal digits, e.g. as in the integer numbers 33, 0, 100,
30030044. The range of supported Integer literals shall be at least large enough to represent the largest
positive IntegerType value, see section 4.8.2.

[Negative numbers are formed by unary minus followed by an integer literal.]

2.4.3 Boolean Literals

The two Boolean literal values are true and false.

2.4.4 Strings

String literals appear between double quotes as in "between". Any character in the Modelica language
character set (see appendix A.1 for allowed characters) apart from double quote (") and backslash (\
), including new-line, can be directly included in a string without using an escape sequence. Certain
characters in string literals can be represented using escape sequences, i.e., the character is preceded by
a backslash (\) within the string. Those characters are:

11

Modelica Language Specification 3.5-dev
Modelica 2.5. Operator Symbols

Language

Character Description

\’ Single quote, may also appear without backslash in string constants
\" Double quote

\7 Question-mark, may also appear without backslash in string constants
\\ Backslash itself

\a Alert (bell, code 7, ctrl-G)

\b Backspace (code 8, ctrl-H)

\f Form feed (code 12, ctrl-L)

\n Newline (code 10, ctrl-J), same as literal newline

\r Carriage return (code 13, ctrl-M)

\t Horizontal tab (code 9, ctrl-I)

\v Vertical tab (code 11, ctrl-K)

For example, a string literal containing a tab, the words: This is, double quote, space, the word: between,
double quote, space, the word: us, and new-line, would appear as follows:

"\tThis is\" between\" us\n"

Concatenation of string literals in certain situations (see the Modelica grammar) is denoted by the +
operator in Modelica, e.g. "a" + "b" becomes "ab". This is useful for expressing long string literals that
need to be written on several lines.

The "\n" character is used to conceptually indicate the end of a line within a Modelica string. Any
Modelica program that needs to recognize line endings can check for a single "\n" character to do so on
any platform. It is the responsibility of a Modelica implementation to make any necessary transformations
to other representations when writing to or reading from a text file.

[For example, a "\n" is written and read as-is in a Uniz or Linuz implementation, but written as "\r\n"
pair, and converted back to "\n" when read in a Windows implementation.|

[For long string comments, e.g., the info annotation to store the documentation of a model, it would be
very inconvenient, if the string concatenation operator would have to be used for every line of documen-
tation. It is assumed that a Modelica tool supports the non-printable newline character when browsing
or editing a string literal. For example, the following statement defines one string that contains (non-
printable) newline characters:

assert (noEvent (length > s_small),
"The distance between the origin of frame_a and the origin of frame_b
of a LineForceWithMass component became smaller as parameter s_small
(= a small number, defined in the
\"Advanced\" menu). The distance is
set to s_small, although it is smaller, to avoid a division by zero
when computing the direction of the line force.",

level = Assertionlevel.warning);

2.5 Operator Symbols

The predefined operator symbols are formally defined on page 279 and summarized in the table of
operators in section 3.2.

12

Chapter 3

Operators and Expressions

The lexical units are combined to form even larger building blocks such as expressions according to the
rules given by the expression part of the Modelica grammar in appendix A. For example, they can be
built from operators, function references, components, or component references (referring to components)
and literals. Each expression has a type and a variability.

This chapter describes the evaluation rules for expressions, the concept of expression variability, built-in
mathematical operators and functions, and the built-in special Modelica operators with function syntax.

Expressions can contain variables and constants, which have types, predefined or user defined. The
predefined built-in types of Modelica are Real, Integer, Boolean, String, and enumeration types
which are presented in more detail in section 4.8.

3.1 Expressions

Modelica equations, assignments and declaration equations contain expressions.

Expressions can contain basic operations, +, -, *, /, ~, etc. with normal precedence as defined in the
Table in section 3.2 and the grammar in appendix A. The semantics of the operations is defined for both
scalar and array arguments in section 10.6.

It is also possible to define functions and call them in a normal fashion. The function call syntax for both
positional and named arguments is described in section 12.4.1 and for vectorized calls in section 12.4.4.
The built-in array functions are given in section 10.1.1 and other built-in operators in section 3.7.

3.2 Operator Precedence and Associativity

Operator precedence determines the order of evaluation of operators in an expression. An operator with
higher precedence is evaluated before an operator with lower precedence in the same expression.

The following table presents all the expression operators in order of precedence.

13

Modelica Language Specification 3.5-dev
Modelica 3.3. Evaluation Order

Language

Table 3.1: Operators in order of precedence from highest to lowest, as derived from the Modelica
grammar in appendix A. All operators are binary except the postfix operators and those shown
as unary together with expr, the conditional operator, the array construction operator { } and
concatenation operator [1, and the array range constructor which is either binary or ternary.
Operators with the same precedence occur at the same table row.

Operator group Operator syntax Ezxamples
Postfix array index operator [] arr[index]
Postfix access operator . a.b
Postfix function call funcName (functionArguments) sin(4.36)
Array construction {expressions} {2, 3}
Horizontal concatenation [expressions] [5, 6]
Vertical concatenation [expressions; expressions...] [2, 3; 7, 8]
Exponentiation - 2~ 3
Multiplicative * / 2 %32/ 3
Elementwise multiplicative kL / [1, 2; 3, 4] .x [2, 3; 5, 6]
Additive + - 1+ 2
Additive unary +exrpr —erpr -0.5
Array elementwise additive 4o [1, 2; 3, 4] .+ [2, 3; 5, 6]
Relational < <= > >= == <> a<ba<=ba>hb,...
Unary negation not expr not b1l
Logical and and bl and b2
Logical or or bl or b2
Array range exrpr : expr 1:5

expr . exrpr . expr start : step : stop
Conditional if expr then expr else expr if b then 3 else x
Named argument ident = expr x = 2.26

The conditional operator may also include elseif-clauses. Equality = and assignment := are not expression
operators since they are allowed only in equations and in assignment statements respectively. All binary
expression operators are left associative, except exponentiation which is non-associative. The array range
operator is non-associative.

[The unary minus and plus in Modelica is slightly different than in Mathematica' and in MATLAB?,
since the following expressions are illegal (whereas in Mathematica and in MATLAB these are valid
expressions):

2x-2 // = —4 in Mathematica/MATLAB; is illegal in Modelica
--2 // = 2 in Mathematica/MATLAB; is illegal in Modelica
++2 // = 2 in Mathematica/MATLAB; is illegal in Modelica
2--2 // = 4 in Mathematica/MATLAB; is illegal in Modelica

Non-associative exponentiation and array range operator:

"y z // Not legal, use parenthesis to make it clear
c:d:e:f:g // Not legal, and scalar arguments gives no legal interpretation.

3.3 Evaluation Order

A tool is free to solve equations, reorder expressions and to not evaluate expressions if their values
do not influence the result (e.g. short-circuit evaluation of Boolean expressions). If-statements and
if-expressions guarantee that their clauses are only evaluated if the appropriate condition is true, but
relational operators generating state or time events will during continuous integration have the value
from the most recent event.

1 Mathematica is a registered trademark of Wolfram Research Inc.
2MATLAB is a registered trademark of MathWorks Inc.

14

Modelica Language Specification 3.5-dev
Modelica 3.4. Arithmetic Operators

Language

If a numeric operation overflows the result is undefined. For literals it is recommended to automatically
convert the number to another type with greater precision.

3.3.1 Example: Guarding Expressions Against Incorrect Evaluation

[Example: If one wants to guard an expression against incorrect evaluation, it should be guarded by an
if:

Boolean v[n];
Boolean b;
Integer I;
equation
b=(I>=1 and I<=n) and vI[I]; // Invalid
b=if (I>=1 and I<=n) then v[I] else false; // Correct

To guard square against square root of negative number use noEvent:

der (h)=if h>0 then -c*sqrt(h) else 0; // lIncorrect
der(h)=if noEvent(h>0) then -c*sqrt(h) else 0; // Correct

3.4 Arithmetic Operators

Modelica supports five binary arithmetic operators that operate on any numerical type:

Operator ‘ Description

Exponentiation
Multiplication
Division
Addition

- Subtraction

+ N %

Some of these operators can also be applied to a combination of a scalar type and an array type, see
section 10.6.

The syntax of these operators is defined by the following rules from the Modelica grammar:

arithmetic-expression
[add-operator] term { add-operator term }

add-operator
ngn | n_n

term
factor { mul-operator factor }

mul-operator
Ny n | ||/||

factor
primary [""" primary]

3.5 Equality, Relational, and Logical Operators

Modelica supports the standard set of relational and logical operators, all of which produce the standard
boolean values true or false:

15

Modelica Language Specification 3.5-dev
Modelica 3.6. Miscellaneous Operators and Variables

Language

Operator ‘ Description

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal to

== Equality within expressions
<> Inequality

A single equals sign = is never used in relational expressions, only in equations (chapter 8, section 10.6.1)
and in function calls using named parameter passing (section 12.4.1).

The following logical operators are defined:

Operator ‘ Description

not Logical negation (unary operator)
and Logical and (conjunction)
or Logical or (disjunction)

The grammar rules define the syntax of the relational and logical operators.

logical-expression
logical-term { or logical-term }

logical-term
logical-factor { and logical-factor }

logical-factor
[not] relation

relation
arithmetic-expression [relational-operator arithmetic-expression]

relational-operator
ngn | ng=mn | nyn I ny=n | N—=n | ngsn

The following holds for relational operators:

e Relational operators <, <=,> >= == <> are only defined for scalar operands of simple types. The
result is Boolean and is true or false if the relation is fulfilled or not, respectively.

e For operands of type String, strl op str2 is for each relational operator, op, defined in terms
of the C function strcmp as strcmp(strl, str2) op 0.

e For operands of type Boolean, false < true.

e For operands of enumeration types, the order is given by the order of declaration of the enumeration
literals.

e In relations of the form vl == v2 or vi <> v2, vl or v2 shall, unless used in a function, not be
a subtype of Real.

[The reason for this rule is that relations with Real argquments are transformed to state events
(see Events, section 8.5) and this transformation becomes unnecessarily complicated for the ==
and <> relational operators (e.g. two crossing functions instead of one crossing function needed,
epsilon strategy needed even at event instants). Furthermore, testing on equality of Real variables
s questionable on machines where the number length in registers is different to number length in
main memory.)

e Relational operators can generate events, see section 3.8.3.

3.6 Miscellaneous Operators and Variables

Modelica also contains a few built-in operators which are not standard arithmetic, relational, or logical
operators. These are described below, including time, which is a built-in variable, not an operator.

16

Modelica Language Specification 3.5-dev
Modelica 3.6. Miscellaneous Operators and Variables

Language

3.6.1 String Concatenation
Concatenation of strings (see the Modelica grammar) is denoted by the + operator in Modelica.

[Example: "a" + "b" becomes "ab".]

3.6.2 Array Constructor Operator

The array constructor operator { ... } is described in section 10.4.

3.6.3 Array Concatenation Operator

The array concatenation operator [...] is described in section 10.4.2.

3.6.4 Array Range Operator

The array range constructor operator : is described in section 10.4.3.

3.6.5 If-Expressions

An expression

if expressionl then expression2 else expression3

is one example of if-expression. First expressionl, which must be Boolean expression, is evaluated. If
expressionl is true expression?2 is evaluated and is the value of the if-expression, else expression3
is evaluated and is the value of the if-expression. The two expressions, expression2 and expression3,
must be type compatible expressions (section 6.7) giving the type of the if-expression. If-expressions
with elseif are defined by replacing elseif by else if. For short-circuit evaluation see section 3.3.

[elseif in expressions has been added to the Modelica language for symmetry with if-clauses.)

[Example:

Integer ij;
Integer sign_of_il=if i<0 then -1 elseif i==0 then 0 else 1;
Integer sign_of_i2=if i<0 then -1 else if i==0 then 0 else 1;

3.6.6 Member Access Operator
It is possible to access members of a class instance using dot notation, i.e., the . operator.

[Example: R1.R for accessing the resistance component R of resistor R1. Another use of dot notation:
local classes which are members of a class can of course also be accessed using dot notation on the name
of the class, not on instances of the class.]

3.6.7 Built-in Variable time

All declared variables are functions of the independent variable time. The variable time is a built-in
variable available in all models and blocks, which is treated as an input variable. It is implicitly defined
as:

input Real time (final quantity = "Time",
final unit = "s");

The value of the start attribute of time is set to the time instant at which the simulation is started.

[Example:

encapsulated model SineSource

import Modelica.Math.sin;

connector OutPort=output Real;

OutPort y=sin(time); // Uses the built—in variable time.
end SineSource;

17

Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

3.7 Built-in Intrinsic Operators with Function Syntax

Certain built-in operators of Modelica have the same syntax as a function call. However, they do not
behave as a mathematical function, because the result depends not only on the input arguments but also
on the status of the simulation.

There are also built-in functions that depend only on the input argument, but also may trigger events
in addition to returning a value. Intrinsic means that they are defined at the Modelica language level,
not in the Modelica library. The following built-in intrinsic operators/functions are available:

e Mathematical functions and conversion functions, see section 3.7.1 below.

e Derivative and special purpose operators with function syntax, see section 3.7.4 below.
e Event-related operators with function syntax, see section 3.7.5 below.

e Array operators/functions, see section 10.1.1.

Note that when the specification references a function having the name of a built-in function it references
the built-in function, not a user-defined function having the same name, see also section 12.5. With
exception of the built-in String operator, all operators in this section can only be called with positional
arguments.

3.7.1 Numeric Functions and Conversion Functions

The mathematical functions and conversion operators are listed below do not generate events.

Ezxpression \ Description Details

abs (v) Absolute value (event-free) Function 3.1
sign(v) Sign of argument (event-free) Function 3.2
sqrt (v) Square root Function 3.3
Integer(e) Conversion from enumeration to Integer Operator 3.1
EnumTypeName (¢) | Conversion from Integer to enumeration Operator 3.2
String(...) Conversion to String Operator 3.3

All of these except for the String conversion operator are vectorizable according to section 12.4.6.

Additional non-event generating mathematical functions are described in section 3.7.3, whereas the
event-triggering mathematical functions are described in section 3.7.2.

Function 3.1 abs
abs (v)

Expands into noEvent (if v >= 0 then v else -v). Argument v needs to be an Integer or
Real expression.

Function 3.2 sign
sign (v)

Expands into noEvent (if v > 0 then 1 else if v < 0 then -1 else 0). Argument v needs
to be an Integer or Real expression.

Function 3.3 sqrt
sqrt (v)

Square root of v if v > 0, otherwise an error occurs. Argument v needs to be an Integer or Real
expression.

Operator 3.1 Integer

Integer (e)

18

Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

Ordinal number of the expression e of enumeration type that evaluates to the enumeration value
E.enumvalue, where Integer(E.el) = 1, Integer(E.en) = n, for an enumeration type E =
enumeration(el, ..., en). See also section 4.8.5.2.

Operator 3.2 <EnunTypeName>
EnumTypeName (7)

For any enumeration type EnumTypeName, returns the enumeration value EnumTypeName.e such
that Integer (EnumTypeName.e) = i. Refer to the definition of Integer above.

It is an error to attempt to convert values of i that do not correspond to values of the enumeration
type. See also section 4.8.5.3.

Operator 3.3 String
String(b, <options>)
String(z, <options>)
String(r, significantDigits=d, <options>)
String(r, format=s)
String (e, <options>)

Convert a scalar non-String expression to a String representation. The first argument may be
a Boolean b, an Integer i, a Real r or an enumeration value e (section 4.8.5.2). The other
arguments must use named arguments. For Real expressions the output shall be according to the
Modelica grammar.

The optional <options> are:

e Integer minimumLength = 0: Minimum length of the resulting string. If necessary, the
blank character is used to fill up unused space.

® Boolean leftJustified = true: If true, the converted result is left justified in the string;
if false it is right justified in the string.

e Integer significantDigits = 6: Number of significant digits in the result string.

[Examples of Real wvalues formatted with 6 significant digits: 12.3456, 0.0123456, 12345600,
1.23456E-10.]

The format string corresponding to <options> is:

e For Real:
(if leftJustified then "-" else "") + String(minimumLength)
+ "." + String(signficantDigits) + "g"

e For Integer:
(if leftJustified then "-" else "") + String(minimumLength) + "d"

Form of the format string: According to ANSI-C the format string specifies one conversion
specifier (excluding the leading %), shall not contain length modifiers, and shall not use ‘*’ for
width and/or precision. For all numeric values the format specifiers ‘£’, ‘e’, ‘E’, ‘g’, ‘G’ are allowed.
For integral values it is also allowed to use the ‘d’, ‘1’, ‘o’, ‘x’, ‘X’ ‘v’, and ‘c’ format specifiers (for
non-integral values a tool may round, truncate or use a different format if the integer conversion

characters are used).

The ‘x’/X’ formats (hexa-decimal) and ¢ (character) for Integer values give results that do not
agree with the Modelica grammar.

3.7.2 Event Triggering Mathematical Functions

The operators listed below trigger events if used outside of a when-clause and outside of a clocked
discrete-time partition (see section 16.8.1).

19

Modelica Language Specification 3.5-dev

nlo’deﬁcq 3.7. Built-in Intrinsic Operators with Function Syntax

FExpression \ Description Details

div(z, y) Division with truncation toward zero Operator 3.4
mod(x, y) Integer modulus Operator 3.5
rem(z, y) Integer remainder Operator 3.6
ceil(x) Smallest integer Real not less than z Operator 3.7
floor(x) Largest integer Real not greater than z Operator 3.8
integer(x) | Largest Integer not greater than x Operator 3.9

These expression for div, ceil, floor, and integer are event generating expression. The event gen-
erating expression for mod(x,y) is floor(x/y), and for rem(x,y) it is div(x,y) — i.e. events are not
generated when mod or rem changes continuously in an interval, but when they change discontinuously
from one interval to the next.

[If this is not desired, the noEvent operator can be applied to them. E.g. noEvent (integer (v)).]
Operator 3.4 div
div(z, u)
Algebraic quotient z/y with any fractional part discarded (also known as truncation toward zero).

[This is defined for / in C99; in C89 the result for negative numbers is implementation-defined,
so the standard function div must be used.)

Result and arguments shall have type Real or Integer. If either of the arguments is Real the
result is Real otherwise Integer.

Operator 3.5 mod
mod (z, y)

Integer modulus of z/y, i.e. mod(z, y) = x - floor(z / y) * y. Result and arguments shall
have type Real or Integer. If either of the arguments is Real the result is Real otherwise
Integer.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously. Examples: mod(3, 1.4) = 0.2, mod(-3, 1.4) = 1.2, mod(3, -1.4) = -1.2.]

Operator 3.6 rem
rem(z, y)

Integer remainder of x/y, such that div(z, y) * y + rem(x, y) = x. Result and arguments
shall have type Real or Integer. If either of the arguments is Real the result is Real otherwise
Integer.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously. Examples: rem(3, 1.4) = 0.2, rem(-3, 1.4) = -0.2]

Operator 3.7 ceil
ceil (x)
Smallest integer not less than z. Result and argument shall have type Real.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously.]

Operator 3.8 floor
floor (x)
Largest integer not greater than z. Result and argument shall have type Real.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously.]

Operator 3.9 integer

integer (x)

20

Modelica Language Specification 3.5-dev

Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

Largest integer not greater than z. The argument shall have type Real. The result has type
Integer.

[Note, outside of a when-clause state events are triggered when the return value changes discon-
tinuously.]

3.7.3 Elementary Mathematical Functions

The functions listed below are elementary mathematical functions. Tools are expected to utilize well
known properties of these functions (derivatives, inverses, etc) for symbolic processing of expressions and
equations.

FExpression \ Description Details
sin(x) Sine

cos(x) Cosine

tan(x) Tangent (z shall not be: ..., -7/2, /2, 37/2, ...)

asin(x) Inverse sine (—1 <z < 1)

acos (z) Inverse cosine (—1 <z < 1)

atan(z) Inverse tangent

atan2(y, x) | Principal value of the arc tangent of y/x Function 3.4
sinh(x) Hyperbolic sine

cosh(x) Hyperbolic cosine

tanh (x) Hyperbolic tangent

exp(x) Exponential, base e

log(x) Natural (base e) logarithm (z > 0)

logl0(x) Base 10 logarithm (z > 0)

These functions are the only ones that can also be called using the deprecated "builtin" external
language, see section 12.9.

[End user oriented information about the elementary mathematical functions can be found for the corre-
sponding functions in the Modelica.Math package.]

Function 3.4 atan2
atan2 (y, x)

Principal value of the arc tangent of y/x, using the signs of the two arguments to determine the
quadrant of the result. The result ¢ is in the interval [—m, | and satisfies:

|(z, y)| cos(p) =z
|(z, y)| sin(p) =y

3.7.4 Derivative and Special Purpose Operators with Function Syntax

The operators listed below include the derivative operator and special purpose operators with function
syntax.

Ezxpression \ Description Details

der Cexpr) Time derivative Operator 3.10
delay(expr, ...) Time delay Operator 3.11
cardinality(c) Number of occurrences in connect-equations Operator 3.12

Operator 3.13
Operator 3.14

homotopy (actual, simplified)
semilinear(z, kt, k™)

Homotpy initialization
Sign-dependent slope

inStream(v) Stream variable flow into component Operator 3.15
actualStream(v) Actual value of stream variable Operator 3.16
spatialDistribution(...) Variable-speed transport Operator 3.17
getInstanceName () Name of instance at call site Operator 3.18

The special purpose operators with function syntax where the call below uses named arguments can be
called with named arguments (with the specified names), or with positional arguments (the inputs of
the functions are in the order given in the calls below).

21

Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

Operator 3.10 der
der (expr)

The time derivative of expr. If the expression expr is a scalar it needs to be a subtype of Real.
The expression and all its time-varying subexpressions must be continuous and semi-differentiable.
If expr is an array, the operator is applied to all elements of the array. For non-scalar arguments
the function is vectorized according to section 10.6.12.

[For Real parameters and constants the result is a zero scalar or array of the same size as the
variable.|

Operator 3.11 delay

delay Cexpr, delayTime, delayMax)
delay (expr, delayTime)

Evaluates to expr(time - delayTime) for time > time.start + delayTime and expr(time.
start) for time < time.start+delayTime. The arguments, i.e., expr, delayTime and delayMaz,
need to be subtypes of Real. delayMax needs to be additionally a parameter expression. The
following relation shall hold: 0 < delayTime < delayMaz, otherwise an error occurs. If delayMax
is not supplied in the argument list, delayTime needs to be a parameter expression. For non-
scalar arguments the function is vectorized according to section 10.6.12. For further details, see
section 3.7.4.1.

Operator 3.12 cardinality
cardinality (c)

[This is a deprecated operator. It should no longer be used, since it will be removed in one of the
next Modelica releases.]

Returns the number of (inside and outside) occurrences of connector instance ¢ in a connect-
equation as an Integer number. For further details, see section 3.7.4.3.

Operator 3.13 homotopy
homotopy (actual=actual, simplified=simplified)

The scalar expressions actual and simplified are subtypes of Real. A Modelica translator should
map this operator into either of the two forms:

1. Returns actual (trivial implementation).

2. In order to solve algebraic systems of equations, the operator might during the solution
process return a combination of the two arguments, ending at actual.

[Example: actual - A + simplified - (1 —), where X is a homotopy parameter going from 0 to
1.

The solution must fulfill the equations for homotopy returning actual.

For non-scalar arguments the function is vectorized according to section 12.4.6. For further details,
see section 3.7.4.4.

Operator 3.14 semilinear
semilinear (z, kt, k)

Returns: smooth(0, if x >= 0 then kT * z else k=~ * z). The result is of type Real. For
non-scalar arguments the function is vectorized according to section 10.6.12. For further details,
see section 3.7.4.5 (especially in the case when = = 0).

Operator 3.15 inStream
inStream (v)

inStream(v) is only allowed for stream variables v defined in stream connectors, and is the value
of the stream variable v close to the connection point assuming that the flow is from the connection
point into the component. This value is computed from the stream connection equations of the

22

Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

flow variables and of the stream variables. The operator is vectorizable. For further details, see
section 15.2.

Operator 3.16 actualStream
actualStream (v)

actualStream(v) returns the actual value of the stream variable v for any flow direction. The
operator is vectorizable. For further details, see section 15.3.

Operator 3.17 spatialDistribution

spatialDistribution (
inO=in0, inl=inl, x=x,

positiveVelocity=...,
initialPoints=...,
initialValues=...)

spatialDistribution allows approximation of variable-speed transport of properties. For further
details, see section 3.7.4.2.

Operator 3.18 getInstanceName
getInstanceName ()

Returns a string with the name of the model/block that is simulated, appended with the fully qual-
ified name of the instance in which this function is called. For further details, see section 3.7.4.6.

A few of these operators are described in more detail in the following.

3.7.4.1 delay

[delay allows a numerical sound implementation by interpolating in the (internal) integrator polynomi-
als, as well as a more simple realization by interpolating linearly in a buffer containing past values of
expression expr. Without further information, the complete time history of the delayed signals needs to
be stored, because the delay time may change during simulation. To avoid excessive storage requirements
and to enhance efficiency, the maximum allowed delay time has to be given via delayMaz.

This gives an upper bound on the values of the delayed signals which have to be stored. For real-time
simulation where fized step size integrators are used, this information is sufficient to allocate the necessary
storage for the internal buffer before the simulation starts. For variable step size integrators, the buffer
size is dynamic during integration. In principle, delay could break algebraic loops. For simplicity, this
is not supported because the minimum delay time has to be give as additional argument to be fized at
compile time. Furthermore, the mazimum step size of the integrator is limited by this minimum delay
time in order to avoid extrapolation in the delay buffer.]

3.7.4.2 spatialDistribution

[Many applications involve the modelling of variable-speed transport of properties. One option to model
this infinite-dimensional system is to approximate it by an ODE, but this requires a large number of
state variables and might introduce either numerical diffusion or numerical oscillations. Another option
is to use a built-in operator that keeps track of the spatial distribution of z(x,t), by suitable sampling,
interpolation, and shifting of the stored distribution. In this case, the internal state of the operator is

hidden from the ODE solver.]

spatialDistribution allows the infinite-dimensional problem below to be solved efficiently with good
accuracy

9z(y,1) _
5 +v(t) oy 0.0
2(0.0,t) = ing(t) if v >0

2(1.0,t) =iny (¢) if v < 0

where z(y, t) is the transported quantity, y is the normalized spatial coordinate (0.0 <y < 1.0), ¢ is the
time, v(t) = der(z) is the normalized transport velocity and the boundary conditions are set at either

23

Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

y = 0.0 or y = 1.0, depending on the sign of the velocity. The calling syntax is:

(out0, outl) = spatialDistribution(in0O, inl, x, positiveVelocity,
initialPoints = {0.0, 1.0},
initialValues = {0.0, 0.0});

where in0, in1, out0, outl, x, v are all subtypes of Real, positiveVelocityis a Boolean, initialPoints
and initialValues are arrays of subtypes of Real of equal size, containing the y coordinates and the
z values of a finite set of points describing the initial distribution of z(y, t0). The out0 and outl are
given by the solutions at 2(0.0,¢) and 2(1.0,¢); and in0 and inl are the boundary conditions at z(0.0,t)
and z(1.0,¢) (at each point in time only one of in0 and in1 is used). Elements in the initialPoints
array must be sorted in non-descending order. The operator can not be vectorized according to the
vectorization rules described in section 12.4.6. The operator can be vectorized only with respect to the
arguments in0 and inl (which must have the same size), returning vectorized outputs outO and outl
of the same size; the arguments initialPoints and initialValues are vectorized accordingly.

The solution, z, can be described in terms of characteristics:

t+8
z(y + / v(a)da,t + B) = z(y,t), for all 8 as long as staying inside the domain
t

This allows the direct computation of the solution based on interpolating the boundary conditions.

spatialDistribution can be described in terms of the pseudo-code given as a block:

block spatialDistribution
input Real inO;
input Real inil;
input Real x;
input Boolean positiveVelocity;
parameter Real initialPoints(each min=0, each max=1)[:] = {0.0, 1.0};
parameter Real initialValues[:] = {0.0, 0.0};
output Real outO;
output Real outl;
protected
Real points[:];
Real values[:];
Real x0;
Integer m;
algorithm
/* The notation
* x <and then> vy
* is used below as a shorthand for

* if x then y else false
* also known as "short—circuit evaluation of x and y".
*/
if positiveVelocity then

outl := interpolate(points, values, 1 - (x - x0));

out0 := values[1]; // Similar to in0 but avoiding algebraic loop.
else

outO := interpolate(points, values, 0 - (x - x0));

outl := values[end]; // Similar to inl but avoiding algebraic loop.
end if;

when <acceptedStep> then
if x > x0 then
m := size(points, 1);
while m > 0 <and then> points([m] + (x - x0) >= 1 loop
m :=m - 1;
end while;
values := cat (1,
{in0},
values [1:m],
{interpolate(points, values, 1 - (x - x0))1});
points := cat(1, {0}, points[l:m] .+ (x-x0), {1});

24

Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

elseif x < x0 then
m := 1;
while m < size(points, 1) <and then> points[m] + (x - x0) <= 0 loop
m :=m + 1;
end while;
values := cat (1,
{interpolate (points, values, 0 - (x - x0))},
values[m:end],
{in1});
points := cat (1, {0}, points[m:end] .+ (x - x0), {1});
end if;
x0 := x;
end when;
initial algorithm
x0 := x;
points := initialPoints;
values := initialValues;
end spatialDistribution;

[Note that the implementation has an internal state and thus cannot be described as a function in Mod-
elica; initialPoints and initialValues are declared as parameters to indicate that they are only used
during initialization.

The infinite-dimensional problem stated above can then be formulated in the following way:

der(x) = v;
(out0, outl) = spatialDistribution(inO, inl, x, v >= 0,
initialPoints, initialValues);

Events are generated at the exact instants when the velocity changes sign — if this is not needed, noEvent
can be used to suppress event generation.

If the velocity is known to be always positive, then outO can be omitted, e.g.:

der (x)

= v;
(, outl) =

spatialDistribution(in0O, O, x, true, initialPoints, initialValues);

Technically relevant use cases for the use of spatialDistribution are modeling of electrical trans-
mission lines, pipelines and pipeline networks for gas, water and district heating, sprinkler systems,
impulse propagation in elongated bodies, conveyor belts, and hydraulic systems. Vectorization is needed
for pipelines where more than one quantity is transported with velocity v in the example above.]

3.7.4.3 cardinality (deprecated)

[cardinality is deprecated for the following reasons and will be removed in a future release:
o Reflective operator may make early type checking more difficult.
o Almost always abused in strange ways
e Not used for Bond graphs even though it was originally introduced for that purpose.

]

[cardinality allows the definition of connection dependent equations in a model, for example:

connector Pin
Real v;
flow Real ij;
end Pin;
model Resistor
Pin p, n;
equation
assert (cardinality(p) > 0 and cardinality(m) > O,
"Connectors p and n of Resistor must be connected");
// Equations of resistor

25

Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

‘end Resistor;

]

The cardinality is counted after removing conditional components, and shall not be applied to expandable
connectors, elements in expandable connectors, or to arrays of connectors (but can be applied to the
scalar elements of array of connectors). cardinality should only be used in the condition of assert and
if-statements that do not contain connect and similar operators, see section 16.8.1).

3.7.4.4 homotopy

[During the initialization phase of a dynamic simulation problem, it often happens that large nonlinear
systems of equations must be solved by means of an iterative solver. The convergence of such solvers
critically depends on the choice of initial guesses for the unknown variables. The process can be made
more robust by providing an alternative, simplified version of the model, such that convergence is possible
even without accurate initial guess values, and then by continuously transforming the simplified model
into the actual model. This transformation can be formulated using expressions of this kind:

A-actual + (1 — \) - simplified

in the formulation of the system equations, and is usually called a homotopy transformation. If the
simplified expression is chosen carefully, the solution of the problem changes continuously with X\, so by
taking small enough steps it is possible to eventually obtain the solution of the actual problem.

The operator can be called with ordered arguments or preferably with named arguments for improved
readability.

It is recommended to perform (conceptually) one homotopy iteration over the whole model, and not
several homotopy iterations over the respective non-linear algebraic equation systems. The reason is that
the following structure can be present:

w = fi(x) // has homotopy
0 fa(der(x), x, z, w)

Here, a non-linear equation system fo is present. homotopy is, however used on a variable that is an
“input” to the mon-linear algebraic equation system, and modifies the characteristics of the non-linear
algebraic equation system. The only useful way is to perform the homotopy iteration over fi and fo
together.

The suggested approach is “conceptual”, because more efficient implementations are possible, e.g. by
determining the smallest iteration loop, that contains the equations of the first BLT block in which
homotopy is present and all equations up to the last BLT block that describes a non-linear algebraic
equation system.

A trivial implementation of homotopy is obtained by defining the following function in the global scope:

function homotopy
input Real actual;
input Real simplified;
output Real y;
algorithm
y := actual;
annotation(Inline = true);
end homotopy;

]

[Example 1: In electrical systems it is often difficult to solve non-linear algebraic equations if switches are
part of the algebraic loop. An idealized diode model might be implemented in the following way, by starting
with a “flat” diode characteristic and then move with homotopy to the desired “steep” characteristic:

model IdealDiode

parameter Real Goff = 1le-5;
protected

26

Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

Real Goff_flat = max(0.01, Goff);
Real Goff2;
equation
off = s < 0;
Goff2 = homotopy(actual=Goff, simplified=Goff_flat);
u = s*(if off then 1 else Ron2) + Vknee;
i = s*x(if off then Goff2 else 1) + Goff2*Vknee;

end IdealDiode;

]

[Example 2: In electrical systems it is often useful that all voltage sources start with zero voltage and all
current sources with zero current, since steady state initialization with zero sources can be easily obtained.
A typical voltage source would then be defined as:

model ConstantVoltageSource
extends Modelica.Electrical.Analog.Interfaces.0OnePort;
parameter Modelica.Units.SI.Voltage V;

equation
v = homotopy(actual=V, simplified=0.0);

end ConstantVoltageSource;

]

[Example 3: In fluid system modelling, the pressure/flowrate relationships are highly nonlinear due to
the quadratic terms and due to the dependency on fluid properties. A simplified linear model, tuned on
the nominal operating point, can be used to make the overall model less nonlinear and thus easier to solve
without accurate start values. Named arguments are used here in order to further improve the readability.

model Pressureloss
import Modelica.Units.SI;

parameter SI.MassFlowRate m_flow_nominal "Nominal mass flow rate";
parameter SI.Pressure dp_nominal "Nominal pressure drop";
SI.Density rho "Upstream density";
SI.DynamicViscosity lambda "Upstream viscosity";

equation

m_flow = homotopy(actual = turbulentFlow_dp(dp, rho, lambda),
simplified = dp/dp_nominal*m_flow_nominal);

end Pressureloss;

]

[Example /: Note that homotopy shall not be used to combine unrelated expressions, since this can
generate singular systems from combining two well-defined systems.

model DoNotUse

Real x;

parameter Real x0 = O0;
equation

der(x) = 1-x;
initial equation

0 = homotopy(der(x), x - x0);
end DoNotUse;

The initial equation is expanded into
0= Axder(z)+ (1 — A)(z — x0)
and you can solve the two equations to give

_)\+()\—1)$0
o 22— 1

27

Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

which has the correct value of xg at X = 0 and of 1 at A = 1, but unfortunately has a singularity at
A=0.5.]

3.7.4.5 semiLinear

(See definition of semilinear in section 3.7.4). In some situations, equations with semilinear become
underdetermined if the first argument (x) becomes zero, i.e., there are an infinite number of solutions.
It is recommended that the following rules are used to transform the equations during the translation
phase in order to select one meaningful solution in such cases:

e The equations

y = semilinear(x, sa, sl1);
y = semilinear(x, sl, s2);
y = semilinear(x, s2, s3);
y = semilinear(x, sN, sb);

may be replaced by

sl = if x >= 0 then sa else sb
s2 = s1;
s3 = s2;

SN = SN—-1;
y = semilinear(x, sa, sb);

e The equations

x = 0;
y =0
y = semilinear(x, sa, sb);

may be replaced by

x =0
y = 0;
sa = sb;

[For symbolic transformations, the following property is useful (this follows from the definition):

semilinear (m_flow, port_h, h);

s identical to:

-semilinear (-m_flow, h, port_h);

The semilinear function is designed to handle reversing flow in fluid systems, such as

H_flow = semilinear (m_flow, port.h, h);

i.e., the enthalpy flow rate H_flow is computed from the mass flow rate m_flow and the upstream specific
enthalpy depending on the flow direction.]
3.7.4.6 getInstanceName

Returns a string with the name of the model/block that is simulated, appended with the fully qualified
name of the instance in which this function is called.

[Example:

package MyLib
model Vehicle
Engine engine;

end Vehicle;

28

Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

model Engine
Controller controller;

end Engine;
model Controller
equation
Modelica.Utilities.Streams.print ("Info from: " + getInstanceName());
end Controller;
end MyLib;

If MyLib.Vehicle is simulated, the call of getInstanceName() returns "Vehicle.engine.controller
n]

If this function is not called inside a model or block (e.g. the function is called in a function or in a
constant of a package), the return value is not specified.

[The simulation result should not depend on the return value of this function.)

3.7.5 Event-Related Operators with Function Syntax

The operators listed below are event-related operators with function syntax. The operators noEvent,
pre, edge, and change, are vectorizable according to section 12.4.6.

FExpression Description Details

initial() Predicate for the initialization phase Operator 3.19
terminal () Predicate for the end of a successful analysis Operator 3.20
noEvent (expr) Evaluate expr without triggering events Operator 3.21
smooth(p, expr) Treat ezpr as p times continuously differentiable Operator 3.22
sample (start, interval) | Periodic triggering of events Operator 3.23
pre(y) Left limit y(¢~) of variable y(t) Operator 3.24
edge (b) Expands into (b and not pre(b)) Operator 3.25
change (v) Expands into (v <> pre(v)) Operator 3.26
reinit(x, expr) Reinitialize x with expr Operator 3.27

Operator 3.19 initial
initial ()
Returns true during the initialization phase and false otherwise.
[Hereby, initial () triggers a time event at the beginning of a simulation.]
Operator 3.20 terminal
terminal ()
Returns true at the end of a successful analysis.
[Hereby, terminal () ensures an event at the end of successful simulation.]
Operator 3.21 noEvent
noEvent (expr)

Real elementary relations within expr are taken literally, i.e., no state or time event is triggered.
No zero crossing functions shall be used to monitor any of the normally event-generating subex-
pressions inside expr. See also operator 3.22 smooth and section 8.5.

Operator 3.22 smooth
smooth (p, expr)

If p > 0 smooth(p, expr) returns ezpr and states that expr is p times continuously differentiable,
i.e.: expr is continuous in all Real variables appearing in the expression and all partial derivatives
with respect to all appearing real variables exist and are continuous up to order p. The argument
p should be a scalar Integer parameter expression. The only allowed types for expr in smooth

29

Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

are: Real expressions, arrays of allowed expressions, and records containing only components of
allowed expressions.

smooth should be used instead of noEvent in order to avoid events for efficiency reasons. A tool
is free to not generate events for expressions inside smooth. However, smooth does not guarantee
that no events will be generated, and thus it can be necessary to use noEvent inside smooth.

[Note that smooth does not guarantee a smooth output if any of the occurring variables change
discontinuously.]

[Example:

Real x, y, z;
parameter Real p;
equation
x = if time < 1 then 2 else time - 2;
z smooth (0, if time < O then 0 else time);
y smooth (1, noEvent(if x < O then 0 else sqrt(x) * x)); // noEvent is
necessary .

]

Operator 3.23 sample
sample (start, interval)

Returns true and triggers time events at time instants start + i - interval for ¢ = 0, 1 ..., and
is only true during the first event iteration at those times. At event iterations after the first
one at each event and during continuous integration the operator always returns false. The
starting time start and the sample interval interval must be parameter expressions and need to
be a subtype of Real or Integer. The sample interval interval must be a positive number.

Operator 3.24 pre
pre (y)

Returns the left limit y(t~) of variable y(t) at a time instant t. At an event instant, y(¢~) is the
value of y after the last event iteration at time instant ¢ (see comment below). Any subscripts in
the component expression y must be parameter expressions. pre can be applied if the following
three conditions are fulfilled simultaneously: (a) variable y is either a subtype of a simple type
or is a record component, (b) y is a discrete-time expression (c) the operator is not applied in a
function class.

[This can be applied to continuous-time variables in when-clauses, see section 3.8.3 for the defi-
nition of discrete-time expression.

The first value of pre(y) is determined in the initialization phase.

A new event is triggered if there is at least for one variable v such that pre(v) <> v after the
active model equations are evaluated at an event instant. In this case the model is at once
reevaluated. This evaluation sequence is called event iteration. The integration is restarted once
pre(v) == v for all v appearing inside pre(...).

[If v and pre(v) are only used in when-clauses, the translator might mask event iteration for
variable v since v cannot change during event iteration. It is a quality of implementation to find
the minimal loops for event iteration, i.e., not all parts of the model need to be reevaluated.

The language allows mized algebraic systems of equations where the unknown variables are of
type Real, Integer, Boolean, or an enumeration. These systems of equations can be solved by a
global fix point iteration scheme, similarly to the event iteration, by fixing the Boolean, Integer,
and/or enumeration unknowns during one iteration. Again, it is a quality of implementation to
solve these systems more efficiently, e.g., by applying the fix point iteration scheme to a subset of
the model equations.]

Operator 3.25 edge
edge (b)

30

Modelica Language Specification 3.5-dev
Modelica 3.8. Variability of Expressions

Language

Expands into (b and not pre(d)) for Boolean variable b. The same restrictions as for pre apply
(e.g. not to be used in function classes).

Operator 3.26 change
change (v)
Expands into (v <> pre(v)). The same restrictions as for pre apply.
Operator 3.27 reinit
reinit (x, expr)

In the body of a when clause, reinitializes x with expr at an event instant. = is a scalar or array
Real variable that is implicitly defined to have StateSelect.always.

[1t is an error if the variable cannot be selected as a state.]

expr needs to be type-compatible with . reinit can only be applied once for the same variable
— either as an individual variable or as part of an array of variables. It can only be applied in the
body of a when clause in an equation section. See also section 8.3.6.

3.8 Variability of Expressions

The concept of variability of an expression indicates to what extent the expression can vary over time. See
also section 4.4.4 regarding the concept of variability. There are four levels of variability of expressions,
starting from the least variable:

e constant variability

e parameter variability

e discrete-time variability

e continuous-time variability

While many invalid models can be rejected based on the declared variabilities of variables alone (without
the concept of expression variability), the following rules both help enforcing compliance of computed
solutions to declared variability, and impose additional restrictions that simplify reasoning and reporting
of errors:

e For an assignment v := expr or binding equation v = expr, v must be declared to be at least as
variable as expr.

e When determining whether an equation can contribute to solving for a variable v (for instance,
when applying the perfect matching rule, see section 8.4), the equation can only be considered
contributing if the resulting solution would be at most as variable as v.

e The right-hand side expression in a binding equation (that is, expr) of a parameter component
and of the base type attributes (such as start) needs to be a parameter or constant expression.

e If v is a discrete-time component then expr needs to be a discrete-time expression.

3.8.1 Constant Expressions

Constant expressions are:
e Real, Integer, Boolean, String, and enumeration literals.
e Variables declared as constant.

e Except for the special built-in operators initial, terminal, der, edge, change, sample, and pre,
a function or operator with constant subexpressions as argument (and no parameters defined in
the function) is a constant expression.

e Some function calls are constant expressions regardless of the arguments:

— ndims (A)

31

Modelica Language Specification 3.5-dev
Modelica 3.8. Variability of Expressions

Language

Components declared as constant shall have an associated declaration equation with a constant expres-
sion, if the constant is directly in the simulation model, or used in the simulation model. The value
of a constant can be modified after it has been given a value, unless the constant is declared final or
modified with a final modifier. A constant without an associated declaration equation can be given
one by using a modifier.

3.8.2 Parameter Expressions
Parameter expressions are:

e Constant expressions.

Variables declared as parameter.

Input variables in functions behave as though they were parameter expressions.

Except for the special built-in operators initial, terminal, der, edge, change, sample, and pre,
a function or operator with parameter subexpressions is a parameter expression.

Some function calls are parameter expressions even if the arguments are not:
— cardinality(c), see restrictions for use in section 3.7.4.3.
— end in A[... end ...] if A is variable declared in a non-function class.

— size(A) (including size (A, j) where j is parameter expression) if A is variable declared in
a non-function class.

— Connections.isRoot(A.R)

— Connections.rooted(A.R)

3.8.3 Discrete-Time Expressions
Discrete-time expressions are:
e Parameter expressions.

e Discrete-time variables, i.e., Integer, Boolean, String variables and enumeration variables, as
well as Real variables assigned in when-clauses.

e Function calls where all input arguments of the function are discrete-time expressions.
e Expressions where all the subexpressions are discrete-time expressions.
e Expressions in the body of a when-clause, initial equation, or initial algorithm.

e Uunless inside noEvent: Ordered relations (>, <, >=, <=) and the event generating functions ceil,
floor, div, and integer, if at least one argument is non-discrete time expression and subtype of
Real.

[These will generate events, see section 8.5. Note that rem and mod generate events but are not
discrete-time expressions. In other words, relations inside noEvent, such as noEvent (x>1), are
not discrete-time expressions.]

e The functions pre, edge, and change result in discrete-time expressions.
e Expressions in functions behave as though they were discrete-time expressions.

For an equation exprl = expr2 where neither expression is of base type Real, both expressions must
be discrete-time expressions. For record equations the equation is split into basic types before applying
this test.

[This restriction guarantees that noEvent cannot be applied to Boolean, Integer, String, or enumeration
equations outside of a when-clause, because then one of the two expressions is not discrete-time.]

Inside an if-expression, if-clause, while-statement or for-clause, that is controlled by a non-discrete-
time (that is continuous-time, but not discrete-time) switching expression and not in the body of a

32

Modelica Language Specification 3.5-dev
Modelica 3.8. Variability of Expressions

Language

when-clause, it is not legal to have assignments to discrete-time variables, equations between discrete-
time expressions, or real elementary relations/functions that should generate events.

[The restriction above is necessary in order to guarantee that all equations for discrete-time variable are
discrete-time expressions, and to ensure that crossing functions do not become active between events.]

[Example: The (underdetermined) model Test below illustrates two kinds of consequences due to variabil-
ity constraints. First, it contains variability errors for declaration equations and assignments. Second, it

illustrates the impact of variability on the matching of equations to variables, which can lead to violation
of the perfect matching rule.

model Constants
parameter Real pl = 1;
constant Real cl1 = pl + 2; // error, not a constant expression
parameter Real p2 pl + 2; // fine
end Constants;
model Test
Constants c1(pl1=3); // fine
Constants c2(p2=7); // fine, declaration equation can be modified

Real x;

Boolean bl = noEvent(x > 1); // error, since bl is a discrete—time variable
// and noEvent(x > 1) is not discrete—time.

Boolean b2;

Integer il;
Integer 1i2;

algorithm
il := x; // error, assignment to variable of lesser variability.

equation
b2 = noEvent(x > 1); // no variability error, but equation cannot be matched.
i2 = x; // no variability error, and can be matched to x.

end Test;

3.8.4 Continuous-Time Expressions

All expressions are continuous-time expressions including constant, parameter and discrete expressions.

The term non-discrete-time expression refers to expressions that are neither constant, parameter nor
discrete-time expressions.

33

Chapter 4

Classes, Predefined Types, and
Declarations

The fundamental structuring unit of modeling in Modelica is the class. Classes provide the structure
for objects, also known as instances. Classes can contain equations which provide the basis for the
executable code that is used for computation in Modelica. Conventional algorithmic code can also be
part of classes. All data objects in Modelica are instantiated from classes, including the basic data types
—Real, Integer, String, Boolean — and enumeration types, which are built-in classes or class schemata.

Declarations are the syntactic constructs needed to introduce classes and objects (i.e., components).

4.1 Access Control — Public and Protected Elements

Members of a Modelica class can have two levels of visibility: public or protected. The default is
public if nothing else is specified.

A protected element, P, in classes and components shall not be accessed via dot notation (e.g., A.P, a.P,
a[1].P, a.b.P, .A.P; but there is no restriction on using P or P.x for a protected element P). They
shall not be modified or redeclared except for modifiers applied to protected elements in a base-class
modification (not inside any component or class) and the modifier on the declaration of the protected
element.

[Example:

package A
model B
protected
parameter Real x;
end B;
protected
model C end C;
public
model D
C c; // Legal use of protected class C from enclosing scope
extends A.B(x=2); // Legal modifier for x in derived class
// also x.start=2 and x(start=2) are legal.
Real y=x; // Legal use of x in derived class
end D;
model E
A.B a(x=2); // Illegal modifier, also x.start=2 and x(start=2) are illegal
A.C c; // lllegal use of protected class C
model F=A.C; // Illlegal use of protected class C
end E;
end A;

34

Modelica Language Specification 3.5-dev
Modelica 4.2. Double Declaration not Allowed

Language

All elements defined under the heading protected are regarded as protected. All other elements (i.e.,
defined under the heading public, without headings or in a separate file) are public (i.e. not protected).
Regarding inheritance of protected and public elements, see section 7.1.2.

4.2 Double Declaration not Allowed

The name of a declared element shall not have the same name as any other element in its partially
flattened enclosing class. However, the internal flattening of a class can in some cases be interpreted as
having two elements with the same name; these cases are described in section 5.5, and section 7.3.

[Example:

record R
Real x;
end R;
model M // wrong Modelica model
R R; // not correct, since component name and type specifier are identical
equation
R.x = 0;
end M;

4.3 Declaration Order and Usage before Declaration

Variables and classes can be used before they are declared.

[In fact, declaration order is only significant for:
e Functions with more than one input variable called with positional arguments, section 12.4.1.
o Functions with more than one output variable, section 12.4.3.
e Records that are used as arguments to external functions, section 12.9.1.3.

e Enumeration literal order within enumeration types, section 4.8.5.

4.4 Component Declarations

Component declarations are described in this section.

A component declaration is an element of a class definition that generates a component. A component
declaration specifies (1) a component name, i.e., an identifier, (2) the class to be flattened in order
to generate the component, and (3) an optional Boolean parameter expression. Generation of the
component is suppressed if this parameter expression evaluates to false. A component declaration may
be overridden by an element-redeclaration.

A component or variable is an instance (object) generated by a component declaration. Special kinds of
components are scalar, array, and attribute.

4.4.1 Syntax and Examples of Component Declarations

The formal syntax of a component declaration clause is given by the following syntactic rules:

component-clause:
type-prefix type-specifier [array-subscripts] component-list

type-prefix
[flow | stream]
[discrete | parameter | constant] [input | output]

35

Modelica Language Specification 3.5-dev

rrlodLei;cu 4.4. Component Declarations
s

type-specifier
name

component-list
component-declaration { "," component-declaration 1}

component-declaration
declaration [condition-attribute] comment

condition-attribute:
if expression

declaration
IDENT [array-subscripts] [modification]

[The declaration of a component states the type, access, variability, data flow, and other properties of
the component. A component-clause i.e., the whole declaration, contains type prefizes followed by a
type-specifier with optional array-subscripts followed by a component-list.

There is no semantic difference between variables declared in a single declaration or in multiple declara-
tions. For example, regard the following single declaration (component-clause) of two matriz variables:

Real[2,2] A, B;

That declaration has the same meaning as the following two declarations together:

Real[2,2] A;
Real[2,2] B;

The array dimension descriptors may instead be placed after the variable name, giving the two declarations
below, with the same meaning as in the previous example:

Real A[2,2];
Real B[2,2];

The following declaration is different, meaning that the variable a is a scalar but B is a matriz as above:

‘Real a, B[2,2];

]

4.4.2 Component Declaration Static Semantics

If the type-specifier of the component declaration denotes a built-in type (RealType, IntegerType,
etc.), the flattened or instantiated component has the same type.

A class defined with partial in the class-prefixes is called a partial class. Such a class is allowed to
be incomplete, and cannot be instantiated in a simulation model; useful, e.g., as a base-class.

If the type-specifier of the component does not denote a built-in type, the name of the type is looked up
(section 5.3). The found type is flattened with a new environment and the partially flattened enclosing
class of the component. It is an error if the type is partial in a simulation model, or if a simulation model
itself is partial. The new environment is the result of merging

e the modification of enclosing class element-modification with the same name as the component
e the modification of the component declaration

in that order.

Array dimensions shall be scalar non-negative parameter expressions of type Integer, a reference to a
type (which must an enumeration type or Boolean, see section 4.8.5), or the colon operator denoting
that the array dimension is left unspecified (see section 10.1). All variants can also be part of short class
definitions.

[Example of variables with array dimensions.

36

Modelica Language Specification 3.5-dev
Modelica 4.4. Component Declarations

Language

model ArrayVariants
type T=Reall[:]; // Unspecified size for type
parameter T x=omnes (4);
parameter T y[3]=ones(3, 4);

parameter Real al[2]=ones(2); // Specified using Integer
parameter Real b[2, Ol=omnes(2, 0); // Size 0 is allowed
parameter Real c[:]=ones (0); // Unspecified size for variable

parameter Integer n=0;
Real x[n*2]=cat(1l,ones(n),zeros(n)};// Parameter expressions are allowed
Boolean notV[Boolean]l={true,false}; // Indexing with type

end ArrayVariants;

]

The rules for components in functions are described in section 12.2.

Conditional declarations of components are described in section 4.4.5.

4.4.2.1 Declaration Equations

An environment that defines the value of a component of built-in type is said to define a declaration equa-
tion associated with the declared component. The declaration equation is of the form x = expression
defined by a component declaration, where expression must not have higher variability than the de-
clared component x (see section 3.8). Unlike other equations, a declaration equation can be overridden
(replaced or removed) by an element modification.

For declarations of vectors and matrices, declaration equations are associated with each element.

Only components of the specialized classes type, record, operator record, and connector, or com-
ponents of classes inheriting from ExternalObject may have declaration equations. See also the corre-
sponding rule for algorithms, section 11.2.1.2.

4.4.2.2 Prefix Rules

A prefiz is property of an element of a class definition which can be present or not be present, e.g.,
final, public, flow.

Variables declared with the flow or the stream type prefix shall be a subtype of Real.

Type prefixes (that is, flow, stream, discrete, parameter, constant, input, output) shall only be
applied for type, record and connector components — see also record specialized class, section 4.6.

An exception is input for components whose type is of the special class function type (these can only
be used for function formal parameters and has special semantics, see section 12.4.2), and the input
prefix is not applied to the elements of the component and is allowed even if the elements have input or
output prefix.

In addition, instances of classes extending from ExternalObject may have type prefixes parameter and
constant, and in functions also type prefixes input and output, see section 12.9.7.

The type prefixes flow, stream, input and output of a structured component (except as described
above) are also applied to the elements of the component (this is done after verifying that the type
prefixes occurring on elements of the component are correct; e.g. the £1low prefix can be used on a record
component and all the record elements will generate zero-sum equations, even if elements of a record
shall not be declared with the flow prefix). When any of the type prefixes flow, stream, input and
output are applied for a structured component, no element of the component may have any of these
type prefixes. The corresponding rules for the type prefixes discrete, parameter and constant are
described in section 4.4.4.1 for structured components.

[Example: input can only be used, if none of the elements has a flow, stream, input or output type
prefix.]

The prefixes input and output have a slightly different semantic meaning depending on the context
where they are used:

37

Modelica Language Specification 3.5-dev
Modelica 4.4. Component Declarations

Language

e In functions, these prefixes define the computational causality of the function body, i.e., given the
variables declared as input, the variables declared as output are computed in the function body,
see section 12.4.

e In simulation models and blocks (i.e., on the top level of a model or block that shall be simulated),
these prefixes define the interaction with the environment where the simulation model or block is
used. Especially, the input prefix defines that values for such a variable have to be provided from
the simulation environment and the output prefix defines that the values of the corresponding
variable can be directly utilized in the simulation environment, see the notion of globally balanced
in section 4.7.

e In component models and blocks, the input prefix defines that a binding equation has to be provided
for the corresponding variable when the component is utilized in order to guarantee a locally
balanced model (i.e., the number of local equations is identical to the local number of unknowns),
see section 4.7.

[Example:

block FirstOrder
input Real u;

end FirstOrder;
model UseFirstOrder
FirstOrder firstOrder (u=time); // binding equation for u

end UseFirstOrder;

]

The output prefix does not have a particular effect in a model or block component and is ignored.

e In connectors, prefixes input and output define that the corresponding connectors can only be
connected according to block diagram semantics, see section 9.1 (e.g., a connector with an output
variable can only be connected to a connector where the corresponding variable is declared as
input). There is the restriction that connectors which have at least one variable declared as input
must be externally connected, see section 4.7 (in order to get a locally balanced model, where the
number of local unknowns is identical to the number of unknown equations). Together with the
block diagram semantics rule this means, that such connectors must be connected exactly once
externally.

e In records, prefixes input and output are not allowed, since otherwise a record could not be, e.g.,
passed as input argument to a function.

4.4.3 Acyclic Bindings of Constants and Parameters

The unexpanded binding equations for parameters and constants in the translated model must be acyclic
after flattening; except that cycles are allowed if the cycles disappear when evaluating parameters having
annotation Evaluate = true that are not part of the cycle. Thus it is not possible to introduce equations
for parameters by cyclic dependencies.

[There is no exception for parameters with fixed = false, despite the fact that such parameters are
generally allowed to be initialized from systems of dependent equations. However, a parameter with £fixed
= false can use an initial equation instead of a binding equation, allowing for cyclic dependencies.]

[Example:

constant Real p = 2 * q;
constant Real g sin(p); // lllegal since p =2 % q, q = sin(p) are cyclical

model ABCD

parameter Real A[n, nl;

parameter Integer n = size(A, 1);
end ABCD;

final ABCD a;

38

Modelica Language Specification 3.5-dev
Modelica 4.4. Component Declarations

Language

// lllegal since cyclic dependencies between size(a.A,1) and a.n

ABCD b(redeclare Real A[2, 2] = [1, 2; 3, 4]1);
// Legal since size of A is no longer dependent on n.

ABCD c(n = 2); // Legal since n is no longer dependent on the size of A.
parameter Real r = 2 * sin(r); // lllegal , since r =2 % sin(r) is cyclic

partial model PartialLumpedVolume
parameter Boolean use_T_start = true "= true, use T_start, otherwise h_start"
annotation(Dialog(tab = "Initialization"), Evaluate = true);
parameter Medium.Temperature T_start=if use_T_start then system.T_start else
Medium. temperature_phX(p_start ,h_start,X_start)
annotation(Dialog(tab = "Initialization", enable = use_T_start));
parameter Medium.SpecificEnthalpy h_start=if use_T_start then
Medium.specificEnthalpy_pTX(p_start, T_start, X_start) else Medium.
h_default
annotation(Dialog(tab = "Initialization", enable = not use_T_start));
end PartialLumpedVolume;
// Cycle for T_start and h_start, but ok since disappears
// when evaluating use_T _start

// lllegal since the unexpanded bindings have cycles for both x and y
// (even if they would disappear if bindings were expanded).
model HasCycles
parameter Integer n = 10;
final constant Real A[3, 3] = [0, O, O; 1, O, O0; 2, 3, 0];
parameter Real y[3] = A *x y + ones(3);
parameter Real x[n] = cat(1l, {3.4}, x[1:(n-1)1);
end HasCycles;

4.4.4 Component Variability Prefixes discrete, parameter, constant

The prefixes discrete, parameter, constant of a component declaration are called variability prefizes
and define in which situation the variable values of a component are initialized (see section 8.5 and
section 8.6) and when they are changed in transient analysis (= solution of initial value problem of the
hybrid DAE):

e A variable vc declared with constant prefix remains constant during transient analysis, with a
value that is unaffected by the initialization problem.

e A variable vc declared with the parameter prefix remains constant during transient analysis, with
a value determined by the initialization problem.

e A discrete-time variable vd has a vanishing time derivative between events. Note that this is not
the same as saying that der(vd)=0 almost everywhere, as the derivative is not even defined at
the events, and it is not legal to apply der to discrete-time variables as they are not continuous.
During transient analysis the variable can only change its value at event instants (see section 8.5).

e A continuous-time variable vn may have a non-vanishing time derivative (der (vn)<>0 possible) and
may also change its value discontinuously at any time during transient analysis (see section 8.5).
If there are any discontinuities the variable is not differentiable.

If a Real variable is declared with the prefix discrete it must in a simulation model be assigned in a
when-clause, either by an assignment or an equation. The variable assigned in a when-clause shall not
be defined in a sub-component of model or block specialized class. (This is to keep the property of
balanced models.)

A Real variable assigned in a when-clause is a discrete-time variable, even though it was not declared
with the prefix discrete. A Real variable not assigned in any when-clause and without any type prefix
is a continuous-time variable.

39

Modelica Language Specification 3.5-dev
Modelica 4.4. Component Declarations

Language

The default variability for Integer, String, Boolean, or enumeration variables is discrete-time, and it
is not possible to declare continuous-time Integer, String, Boolean, or enumeration variables.

[The restriction that discrete-valued variables (of type Boolean, etc) cannot be declared with continuous-
time variability is one of the foundations of the expression variability rules that will ensure that any
discrete-valued expression has at most discrete-time variability, see section 3.8.]

The variability of expressions and restrictions on variability for definition equations is given in section 3.8.

[A discrete-time variable is a piecewise constant signal which changes its values only at event instants
during simulation. Such types of wvariables are needed in order that special algorithms, such as the
algorithm of Pantelides for index reduction, can be applied (it must be known that the time derivative of
these variables is identical to zero). Furthermore, memory requirements can be reduced in the simulation
environment, if it is known that a component can only change at event instants.

A parameter wariable is constant during simulation. This prefix gives the library designer the possibility
to express that the physical equations in a library are only valid if some of the used components are
constant during simulation. The same also holds for discrete-time and constant variables. Additionally,
the parameter prefix allows a convenient graphical user interface in an experiment environment, to
support quick changes of the most important constants of a compiled model. In combination with an
if-clause, a parameter prefix allows removing parts of a model before the symbolic processing of a model
takes place in order to avoid variable causalities in the model (similar to #ifdef in C). Class parameters
can be sometimes used as an alternative.

Ezample:

model Inertia
parameter Boolean state = true;

equation
Jxa = t1 - t2;
if state then // code which is removed during symbolic

der(v) = a; // processing, if state=false
der(r) = v;
end if;

end Inertia;

A constant variable is similar to a parameter with the difference that constants cannot be changed after
translation and usually not changed after they have been given a value. It can be used to represent
mathematical constants, e.g.

final constant Real PI=4%atan (1) ;

There are no continuous-time Boolean, Integer or String wariables. In the rare cases they are needed
they can be faked by using Real variables, e.g.:

Boolean offl, offla;
Real off2;
equation
offl = s1 < 0;
offla = noEvent(sl < 0); // error, since offla is discrete
off2 = if noEvent(s2 < 0) then 1 else 0; // possible
ul = if offl then s1 else 0; // state events
u2 = if noEvent(off2 > 0.5) then s2 else 0; // no state events

Since off1 is a discrete-time variable, state events are generated such that of£1 is only changed at event
instants. Variable of£2 may change its value during continuous integration. Therefore, ul is guaranteed
to be continuous during continuous integration whereas no such guarantee exists for u2.]

4.4.4.1 Variability of Structured Entities

For elements of structured entities with variability prefixes the most restrictive of the variability prefix
and the variability of the component wins (using the default variability for the component if there is no
variability prefix on the component).

40

Modelica Language Specification 3.5-dev
Modelica 4.5. Class Declarations

Language

[Example:

record A
constant Real pi=3.14;
Real y;
Integer ij;

end A;

parameter A a;
// a.pi is a constant
// a.y and a.i are parameters

b’
// b.pi is a constant

// b.y is a continuous—time variable
// b.i is a discrete—time variable

4.4.5 Conditional Component Declaration
A component declaration can have a condition-attribute: if expression.

[Example:

parameter Integer level(min=1)=1;
Motor motor;

Levell componentl(J=J) if level==1 "Conditional component";

Level2 component2 if level==2 "Conditional component";

Level3 component3(J=componentl.J) if level<2 "Conditional component";
// lllegal modifier on component3 since componentl.J is conditional

// Even if we can see that componentl always exist if component3 exist
equation

connect (componentl..., ...) "Connection to conditional component 1";

connect (component2.n, motor.n) "Connection to conditional component 2";

connect (component3.n, motor.n) "Connection to conditional component 3";

componentl.u=0; // lIllegal

]

The expression must be a Boolean scalar expression, and must be a parameter expression.
[A parameter expression is required since it shall be evaluated at compile time.]

A redeclaration of a component shall not include a condition attribute; and the condition attribute is
kept from the original declaration (see section 6.4).

If the Boolean expression is false the component (including its modifier) is removed from the flattened
DAE, and connections to/from the component are removed. A component declared with a condition-
attribute can only be modified and/or used in connections.

[Adding the component and then removing it ensures that the component is valid.

If a connect equation defines the connection of a non-conditional component c1 with a conditional com-
ponent c2 and c2 is de-activated, then c1 must still be a declared element.]

If the condition is true for a public connector containing flow variables the connector must be connected
from the outside.

[The reason for this restriction is that the default flow equation is probably incorrect (since it could
otherwise be an unconditional connector) and the model cannot check that connector is connected.)

4.5 Class Declarations

Essentially everything in Modelica is a class, from the predefined classes Integer and Real, to large
packages such as the Modelica standard library. The description consists of a class definition, a modi-

41

Modelica Language Specification 3.5-dev
Modelica 4.5. Class Declarations

Language

fication environment that modifies the class definition, an optional list of dimension expressions if the
class is an array class, and a lexically enclosing class for all classes.

The object generated by a class is called an instance. An instance contains zero or more components
(i.e., instances), equations, algorithms, and local classes. An instance has a type (section 6.3).

[Example: A rather typical structure of a Modelica class is shown below. A class with a name, containing
a number of declarations followed by a number of equations in an equation section.

class ClassName
Declarationil
Declaration?2

equation
equationl
equation?2

end ClassName;

]

The following is the formal syntax of class definitions, including the special variants described in later
sections.

An element is part of a class definition, and is one of: class definition, component declaration, or extends
clause. Component declarations and class definitions are called named elements. An element is either
inherited from a base class or local.

class-definition
[encapsulated] class-prefixes
class-specifier

class-prefixes
[partial 1]

(class | model | [operator] record | block | [expandable] connector |
type |
package | [(pure | impure)] [operator] function | operator)

class-specifier
long-class-specifier | short-class-specifier | der-class-specifier

long-class-specifier
IDENT description-string composition end IDENT
| extends IDENT [class-modification] description-string
composition end IDENT

short-class-specifier

IDENT "=" base-prefix name [array-subscripts]
[class-modification] comment
| IDENT "=" enumeration "(" ([enum-1list] | ":") ")" comment

der-class-specifier
IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment

base-prefix
[input | output]

enum-list : enumeration-literal { "," enumeration-literal}
enumeration-literal : IDENT comment
composition

element-list

{ public element-list |
protected element-list |

42

Modelica Language Specification 3.5-dev
Modelica 4.5. Class Declarations

Language

equation-section |
algorithm-section

}

[external [language-specification]

[external-function-call] [annotation] ";" 1]
[annotation ";"]

4.5.1 Short Class Definitions

A class definition of the form

class IDENT1 = IDENT2 class-modification;

is identical, except that IDENT2 may be replaceable and for the lexical scope of modifiers, where the
short class definition does not introduce an additional lexical scope for modifiers, to the longer form

class IDENT1
extends IDENT2 class-modification;
end IDENT1;

An exception to the above is that if the short class definition is declared as encapsulated, then the
modifiers follow the rules for encapsulated classes and cannot be looked up in the enclosing scope.

[Example: Demonstrating the difference in scopes:

model Resistor
parameter Real R;

end Resistor;
model A
parameter Real R;
replaceable model Load=Resistor (R=R) constrainedby TwoPin;
// Correct, sets the R in Resistor to R from model A.
replaceable model LoadError
extends Resistor (R=R);
// Gives the singular equation R=R, since the right—hand side R
// is searched for in LoadError and found in its base—class Resistor.
end LoadError constrainedby TwoPin;
encapsulated model Load2=.Resistor(R=2); // Ok
encapsulated model LoadR=.Resistor(R=R); // Illegal
Load a,b,c;
ConstantSource ...;

end A;

]

A short class definition of the form

type TN = T[N] (optional modifier);

where N represents arbitrary array dimensions, conceptually yields an array class

>array’ TN
T[n] _ (optional modifiers);
’end’ TN;

Such an array class has exactly one anonymous component (_); see also section 4.5.2. When a component
of such an array class type is flattened, the resulting flattened component type is an array type with the
same dimensions as _ and with the optional modifier applied.

[Example: The types of £1 and £2 are identical:

type Force = Real[3](unit={"Nm","Nm","Nm"});
Force f1;
Real f2[3] (unit={"Nm","Nm","Nm"});

43

Modelica Language Specification 3.5-dev
Modelica 4.5. Class Declarations

Language

]

If a short class definition inherits from a partial class the new class definition will be partial, regardless
of whether it is declared with the keyword partial or not.

[Example:

replaceable model Load=TwoPin;
Load R; // Error unless Load is redeclared since TwoPin is a partial class.

]

If a short class definition does not specify any specialized class the new class definition will inherit the
specialized class (this rule applies iteratively and also for redeclare).

A base-prefix applied in the short-class definition does not influence its type, but is applied to components
declared of this type or types derived from it; see also section 4.5.2.

[Example:

type InArgument = input Real;
type OutArgument = output Real [3];

function foo

InArgument u; // Same as: input Real u
OutArgument y; // Same as: output Real[3] vy
algorithm
y:=£fill(u,3);
end foo;

Real x[:]=foo(time) ;

4.5.2 Restriction on combining base-classes and other elements

It is not legal to combine other components or base-classes with an extends from an array class, a class
with non-empty base-prefix, a simple type (Real, Boolean, Integer, String and enumeration types),
or any class transitively extending from an array class, a class with non-empty base-prefix, or a simple

type.
[Example:

model Integrator
input Real u;
output Real y = x;
Real x;

equation
der(x) = u;

end Integrator;

model Integrators = Integrator[3]; // Legal

model IllegalModel

extends Integrators;

Real x; // lllegal combination of component and array class
end IllegalModel;

connector IllegalConnector

extends Real;

Real y; // lllegal combination of component and simple type
end IllegalConnector;

44

Modelica Language Specification 3.5-dev
Modelica 4.6. Specialized Classes

Language

4.5.3 Local Class Definitions — Nested Classes

The local class should be statically flattenable with the partially flattened enclosing class of the local class
apart from local class components that are partial or outer. The environment is the modification of
any enclosing class element modification with the same name as the local class, or an empty environment.

The unflattened local class together with its environment becomes an element of the flattened enclosing
class.

[Example: The following example demonstrates parameterization of a local class:

model C1
type Voltage = Real(nominal=1);
Voltage vl, v2;

end C1;

model C2
extends Cl(Voltage (nominal=1000));
end C2;

Flattening of class C2 yields a local class Voltage with nominal-modifier 1000. The variables v1 and v2
are instances of this local class and thus have a nominal value of 1000.]

4.6 Specialized Classes

Specialized kinds of classes (earlier known as restricted classes) record, type, model, block, package,
function and connector have the properties of a general class, apart from restrictions. Moreover, they
have additional properties called enhancements. The definitions of the specialized classes are given below
(additional restrictions on inheritance are in section 7.1.3):

e record — Only public sections are allowed in the definition or in any of its components (i.e.,
equation, algorithm, initial equation, initial algorithm and protected sections are not
allowed). The elements of a record shall not have prefixes input, output, inner, outer, streamn,
or flow. Enhanced with implicitly available record constructor function, see section 12.6. The
components directly declared in a record may only be of specialized class record or type.

e type — May only be predefined types, enumerations, array of type, or classes extending from type.
e model — The normal modeling class in Modelica.

e block — Same as model with the restriction that each connector component of a block must have
prefixes input and/or output for all connector variables.

[The purpose is to model input/output blocks of block diagrams. Due to the restrictions on input
and output prefizes, connections between blocks are only possible according to block diagram se-
mantic.]

e function — See section 12.2 for restrictions and enhancements of functions. Enhanced to allow the
function to contain an external function interface.

[Non-function specialized classes do not have this property.]

e connector — Only public sections are allowed in the definition or in any of its components (i.e.,
equation, algorithm, initial equation, initial algorithm and protected sections are not
allowed).

Enhanced to allow connect to components of connector classes. The elements of a connector shall
not have prefixes inner, or outer. May only contain components of specialized class connector,
record and type.

e package — May only contain declarations of classes and constants. Enhanced to allow import of
elements of packages. (See also chapter 13 on packages.)

e operator record — Similar to record; but operator overloading is possible, and due to this the
typing rules are different, see chapter 6. It is not legal to extend from an operator record (or
connector inheriting from operator record), except if the new class is an operator record

45

Modelica Language Specification 3.5-dev
Modelica 4.7. Balanced Models

Language

or connector that is declared as a short class definition, whose modifier is either empty or only
modify the default attributes for the component elements directly inside the operator record.
An operator record can only extend from an operator record. It is not legal to extend from
any of its enclosing scopes. (See chapter 14).

e operator — Similar to package; but may only contain declarations of functions. May only be
placed directly in an operator record. (See also chapter 14).

e operator function — Shorthand for an operator with exactly one function; same restriction as
function class and in addition may only be placed directly in an operator record.

[A function declaration

operator function foo ... end foo;

is conceptually treated as

operator foo function fool

end fool; end foo;

}

Additionally only components which are of specialized classes record, type, operator record, and
connector classes based on any of those can be used as component references in normal expressions and
in the left hand side of assignments, subject to normal type compatibility rules. Additionally components
of connectors may be arguments of connect-equations, and any component can be used as argument to
the ndims and size-functions, or for accessing elements of that component (possibly in combination
with array indexing).

[Example: Use of operator:

operator record Complex
Real re;
Real im;

encapsulated operator function ’x*’
import Complex;
input Complex c1;
input Complex c2;
output Complex result

algorithm
result := Complex(re=cl.re*xc2.re - cl.im*c2.im,
im=cl.re*xc2.im + cl.im*c2.re);

end %’ ;

end Complex;
record MyComplex
extends Complex; // Error; extending from enclosing scope.
Real k;
end MyComplex;
operator record ComplexVoltage = Complex(re(unit="V"),im(unit="V")); // allowed

4.7 Balanced Models

[In this section restrictions for model and block classes are present, in order that missing or too many
equations can be detected and localized by a Modelica translator before using the respective model or block
class. A non-trivial case is demonstrated in the following example:

partial model BaseCorrelation
input Real x;
Real y;

end BaseCorrelation;

46

Modelica Language Specification 3.5-dev
Modelica 4.7. Balanced Models

Language

model SpecialCorrelation // correct in Modelica 2.2 and 3.0
extends BaseCorrelation(x=2);

equation
y=2/x%x;

end SpecialCorrelation;

model UseCorrelation // correct according to Modelica 2.2
// not valid according to Modelica 3.0
replaceable model Correlation=BaseCorrelation;
Correlation correlation;

equation
correlation.y=time;

end UseCorrelation;

model Broken // after redeclaration, there is 1 equation too much in Modelica
2.2
UseCorrelation example(redeclare Correlation=SpecialCorrelation);
end Broken;

In this case one can argue that both UseCorrelation (adding an acausal equation) and SpecialCorrelation

(adding a default to an input) are correct. Still, when combined they lead to a model with too many
equations, and it is not possible to determine which model is incorrect without strict rules — as the ones
defined here.

In Modelica 2.2, model Broken will work with some models. However, by just redeclaring it to model
SpecialCorrelation, an error will occur and it will be very difficult in a larger model to figure out the
source of this error.

In Modelica 3.0, model UseCorrelation is no longer allowed and the translator will give an error. In
fact, it is guaranteed that a redeclaration cannot lead to an unbalanced model any more.)

The restrictions below apply after flattening — i.e. inherited components are included — possibly modified.
The corresponding restrictions on connectors and connections are in section 9.3.

Definition 4.1. Local number of unknowns. The local number of unknowns of a model or block
class is the sum based on the components:

e For each declared component of specialized class type (Real, Integer, String, Boolean, enumer-
ation and arrays of those, etc.) or record, or operator record not declared as outer, it is the
number of unknown variables inside it (i.e., excluding parameters and constants and counting the
elements after expanding all records, operator record, and arrays to a set of scalars of primitive
types).

e Each declared component of specialized class type or record declared as outer is ignored.

[Le., all variables inside the component are treated as known.]

e For each declared component of specialized class connector component, it is the number of un-
known variables inside it (i.e., excluding parameters and constants and counting the elements after
expanding all records and arrays to a set of scalars of primitive types).

e For each declared component of specialized class block or model, it is the sum of the number of
inputs and flow variables in the (top level) public connector components of these components (and
counting the elements after expanding all records and arrays to a set of scalars of primitive types).

O

Definition 4.2. Local equation size. The local equation size of a model or block class is the sum of
the following numbers:

e The number of equations defined locally (i.e. not in any model or block component), including
binding equations, and equations generated from connect-equations.

[This includes the proper count for when-clauses (see section 8.3.5), and algorithms (see sec-
tion 11.1), and is also used for the flat Hybrid DAE formulation (see appendiz B).]

47

Modelica Language Specification 3.5-dev
Modelica 4.7. Balanced Models

Language

e The number of input and flow variables present in each (top-level) public connector component.
[This represents the number of connection equations that will be provided when the class is used.]

e The number of (top level) public input variables that neither are connectors nor have binding
equations.

[Le., top-level inputs are treated as known variables. This represents the number of binding equa-
tions that will be provided when the class is used.]

O

[To clarify top-level inputs without binding equation (for non-inherited inputs binding equation is identical
to declaration equation, but binding equations also include the case where another model extends M and
has a modifier on u giving the value):

model M
input Real u;
input Real u2=2;
end M;

Here u and u2 are top-level inputs and not connectors. The variable u2 has a binding equation, but u
does not have a binding equation. In the equation count, it is assumed that an equation for u is supplied
when using the model.]

Definition 4.3. Locally balanced. A model or block class is locally balanced if the local number of
unknowns is identical to the local equation size for all legal values of constants and parameters. O

[Here, legal values must respect final bindings and min/max-restrictions. A tool shall verify the locally
balanced property for the actual values of parameters and constants in the simulation model. It is a
quality of implementation for a tool to verify this property in general, due to arrays of (locally) undefined
sizes, conditional declarations, for-loops etc.]

Definition 4.4. Globally balanced. Similarly as locally balanced, but including all unknowns and
equations from all components. The global number of unknowns is computed by expanding all unknowns
(i.e. excluding parameters and constants) into a set of scalars of primitive types. This should match the
global equation size defined as:

e The number of equations defined (included in any model or block component), including equations
generated from connect-equations.

e The number of input and flow variables present in each (top-level) public connector component.

e The number of (top level) public input variables that neither are connectors nor have binding
equations.

[Le., top-level inputs are treated as known variables.)

The following restrictions hold:

e In a non-partial model or block, all non-connector inputs of model or block components must
have binding equations.

[E.g. if the model contains a component, firstOrder (of specialized class model) and firstOrder
has input Real u then there must be a binding equation for firstOrder.u.]

e A component declared with the inner or outer prefix shall not be of a class having top-level public
connectors containing inputs.

e In a declaration of a component of a record, connector, or simple type, modifiers can be applied to
any element, and these are also considered for the equation count.

[Ezample:

Flange support(phi=phi, tau=torquel+torque2) if use_support;

48

Modelica Language Specification 3.5-dev
Modelica 4.7. Balanced Models

Language

If use_support=true, there are two additional equations for support.phi and support.tau via
the modifier.]

e In other cases (declaration of a component of a model or block class, modifiers on extends, and
modifier on short-class-definitions): Modifiers for components shall only contain redeclarations of
replaceable elements and binding equations. The binding equations in modifiers for components
may in these cases only be for parameters, constants, inputs and variables having a default binding
equation.

e All non-partial model and block classes must be locally balanced.
[This means that the local number of unknowns equals the local equation size.]
Based on these restrictions, the following strong guarantee can be given:
e All simulation models and blocks are globally balanced.

[Therefore the number of unknowns equal to the number of equations of a simulation model or block,
provided that every used non-partial model or block class is locally balanced.]

[Example: Example 1:

connector Pin
Real v;
flow Real ij;
end Pin;

model Capacitor
parameter Real C;
Pin p, n;

Real u;
equation

0 =p.i+ n.i;

u=p.v - n.v;

Cxder(u) = p.i;
end Capacitor;

Model Capacitor is a locally balanced model according to the following analysis:
Locally unknown variables: p.i, p.v, n.i, n.v, u

Local equations:

0=p.i+ n.i;
u = p.v— n.u;
C - der(u) = p.i;

and 2 equations corresponding to the 2 flow variables p.i and n.1i.

These are 5 equations in 5 unknowns (locally balanced model). A more detailed analysis would reveal
that this is structurally non-singular, i.e. that the hybrid DAFE will not contain a singularity independent
of actual values.

If the equationu = p.v - n.v would be missing in the Capacitor model, there would be 4 equations in
5 unknowns and the model would be locally unbalanced and thus simulation models in which this model
s used would be usually structurally singular and thus not solvable.

If the equation u = p.v - n.v would be replaced by the equation u = 0 and the equation Cxder (u) =
p.1i would be replaced by the equation Cxder(u) = 0, there would be 5 equations in 5 unknowns (locally
balanced), but the equations would be singular, regardless of how the equations corresponding to the flow
variables are constructed because the information that u is constant is given twice in a slightly different
form.]

[Ezample: Example 2:

connector Pin
Real v;

49

Modelica Language Specification 3.5-dev
Modelica 4.7. Balanced Models

Language

flow Real ij;
end Pin;

partial model TwoPin
Pin p,n;
end TwoPin;

model Capacitor
parameter Real C;
extends TwoPin;
Real u;

equation
0 =p.1i + n.i;
u = p.v - n.v;
Cxder(u) = p.i;

end Capacitor;

model Circuit
extends TwoPin;
replaceable TwoPin t;
Capacitor c(C=12);

equation
connect(p, t.p);
connect(t.n, c.p);
connect(c.n, n);

end Circuit;

Since t is partial we cannot check whether this is a globally balanced model, but we can check that Circuit
is locally balanced.

Counting on model Circuit results in the following balance sheet:

Locally unknown variables (8): p.i, p.v, n.i, n.v, and 2 flow variables for t (t.p.i, t.n.i), and 2
flow variables for ¢ (c.p.i, c.n.i).

Local equations:

p.v=1.p.V;
0=p.i—tp.y
c.p.v=t.n.uv
0= c.p.i+ t.n.g
n.v = C.Nn.v;

0=n.1—c.n.z
and 2 equation corresponding to the flow variables p.i, n.1.

In total we have 8 scalar unknowns and 8 scalar equations, i.e., a locally balanced model (and this feature
holds for any models used for the replaceable component t).

Some more analysis reveals that this local set of equations and unknowns is structurally non-singular.
However, this does not provide any guarantees for the global set of equations, and specific combinations
of models that are locally non-singular may lead to a globally singular model.)

[Example: Example 3:

import Modelica.Units.SI;

partial model BaseProperties
"Interface of medium model for all type of media"
parameter Boolean preferredMediumStates=false;
constant Integer nXi "Number of independent mass fractions";

InputAbsolutePressure P;
InputSpecificEnthalpy h;
InputMassFraction Xi[nXil;

50

Modelica Language Specification 3.5-dev

MoYelica 4.7. Balanced Models
anguage

SI.Temperature T;

SI.Density d;

SI.SpecificInternalEnergy u;

connector InputAbsolutePressure = input SI.AbsolutePressure;
connector InputSpecificEnthalpy = input SI.SpecificEnthalpy;
connector InputMassFraction = input SI.MassFraction;

end BaseProperties;

The use of connector here is a special design pattern. The variables p, h, Xi are marked as input to
get correct equation count. Since they are connectors they should neither be given binding equations in
derived classes nor when using the model. The design pattern is to give textual equations for them (as
below); using connect-equations for these connectors would be possible (and would work) but is not part
of the design.

This partial model defines that T, d, u can be computed from the medium model, provided p, h, Xi are
given. Fvery medium with one or multiple substances and one or multiple phases, including incompress-
ible media, has the property that T, d, u can be computed from p, h, Xi. A particular medium may
have different “independent variables” from which all other intrinsic thermodynamic variables can be
recursively computed. For example, a simple air model could be defined as:

model SimpleAir "Medium model of simple air. Independent variables: p,T"
extends BaseProperties(nXi = O,
p(stateSelect = if preferredMediumStates then StateSelect.prefer
else StateSelect.default),
T(stateSelect = if preferredMediumStates then StateSelect.prefer
else StateSelect.default));
constant SI.SpecificHeatCapacity R = 287;
constant SI.SpecificHeatCapacity cp = 1005.45;
constant SI.Temperature TO = 298.15

equation
d = p/(RxT);
h = cp*(T-TO);

u="h - p/d;
end Simplelir;

The local number of unknowns in model SimpleAir (after flattening) is:
e 3 (T, 4, u: variables defined in BaseProperties and inherited in SimpleAir), plus

e 2+nXi (p, h, Xi: variables inside connectors defined in BaseProperties and inherited in SimpleAir

)

resulting in 5 4+ nXi unknowns. The local equation size is:

e 3 (equations defined in SimpleAir), plus

e 2+ nXi (input variables in the connectors inherited from BaseProperties)
Therefore, the model is locally balanced.

The generic medium model BaseProperties is used as a replaceable model in different components,
like a dynamic volume or a fized boundary condition:

import Modelica.Units.SI;

connector FluidPort
replaceable model Medium = BaseProperties;
SI.AbsolutePressure p;
flow SI.MassFlowRate m_flow;
SI.SpecificEnthalpy h;
flow SI.EnthalpyFlowRate H_flow;
SI.MassFraction Xi [Medium.nXi] "Independent mixture mass fractions";

flow SI.MassFlowRate mXi_flow[Medium.nXil] "Independent subst. mass flow rates

" .
s

end FluidPort;

o1

Modelica Language Specification 3.5-dev
Modelica 4.7. Balanced Models

Language

model DynamicVolume
parameter SI.Volume V;
replaceable model Medium = BaseProperties;
FluidPort port(redeclare model Medium = Medium) ;
Medium medium(preferredMediumStates=true); // No modifier for p,h, Xi
SI.InternalEnergy U;
SI.Mass M;
SI.Mass MXil[medium.nXil;
equation

U = medium.ux*M;
M = medium.d*V;
MXi = medium.Xix*M;

der (U) = port.H_flow; // Energy balance

der(M) = port.m_flow; // Mass balance

der (MXi) = port.mXi_flow; // Substance mass balance
// Equations binding to medium (inputs)

medium.p = port.p;

medium.h = port.h;

medium.Xi = port.Xi;
end DynamicVolume;

The local number of unknowns of DynamicVolume is:

e 442 -nXi (inside the port connector), plus

e 2+ nXi (variables U, M and MXi), plus

e 2+ nXi (the input variables in the connectors of the medium model)
resulting in 8 + 4 - nXi unknowns; the local equation size is

e 6+ 3 nXi from the equation section, plus

e 2+ nXi flow variables in the port connector.
Therefore, DynamicVolume is a locally balanced model.

Note, when the DynamicVolume ¢s used and the Medium model is redeclared to SimpleAir, then a tool
will try to select p, T as states, since these variables have StateSelect.prefer in the SimpleAir model
(this means that the default states U, M are derived quantities). If this state selection is performed, all
intrinsic medium variables are computed from medium.p and medium.T, although p and h are the input
arguments to the medium model. This demonstrates that in Modelica input/output does not define the
computational causality. Instead, it defines that equations have to be provided here for p, h, Xi, in
order that the equation count is correct. The actual computational causality can be different as it is
demonstrated with the SimpleAir model.

model FixedBoundary_pTX
parameter SI.AbsolutePressure p "Predefined boundary pressure";
parameter SI.Temperature T "Predefined boundary temperature";
parameter SI.MassFraction Xi[medium.nXil]
"Predefined boundary mass fraction";
replaceable model Medium = BaseProperties;
FluidPort port(redeclare model Medium = Medium) ;
Medium medium;
equation
port.p = p;
port.H_flow = semilinear (port.m_flow, port.h , medium.h);
port.MXi_flow = semilinear (port.m_flow, port.Xi, medium.Xi);
// Equations binding to medium (note: T is not an input).
medium.p = p;
medium.T = T;
medium.Xi = Xi;
end FixedBoundary_pTX;

The number of local variables in FixedBoundary_pTX is:

52

Modelica Language Specification 3.5-dev
Modelica 4.8. Predefined Types and Classes

Language

e 442 -nXi (inside the port connector), plus

e 2+ nXi (the input variables in the connectors of the medium model)
resulting in 6 + 3 - nXi unknowns, while the local equation size is

e 4+ 2.nXi from the equation section, plus

e 2+ nXi flow variables in the port connector.

Therefore, FixedBoundary_pTX is a locally balanced model. The predefined boundary variables p and
Xi are provided via equations to the input arguments medium.p and medium.Xi, n addition there is an
equation for T in the same way — even though T is not an input. Depending on the flow direction, either
the specific enthalpy in the port (port.h) or h is used to compute the enthalpy flow rate H_flow. h
is provided as binding equation to the medium. With the equation medium.T = T, the specific enthalpy
h of the reservoir is indirectly computed via the medium equations. Again, this demonstrates, that an
input just defines the number of equations have to be provided, but that it not necessarily defines the
computational causality.)

4.8 Predefined Types and Classes

The attributes of the predefined variable types (Real, Integer, Boolean, String) and enumeration types
are described below with Modelica syntax although they are predefined. All attributes are predefined and
attribute values can only be defined using a modification, such as in Real x(unit = "kg"). Attributes
cannot be accessed using dot notation, and are not constrained by equations and algorithm sections.
E.g. in Real x(unit = "kg") = y; only the values of x and y are declared to be equal, but not their
unit attributes, nor any other attribute of x and y.

It is not possible to combine extends from the predefined types, enumeration types, or this Clock type
with other components.

The names Real, Integer, Boolean and String are reserved such that it is illegal to declare an element
with these names.

[Hence, it is possible to define a normal class called Clock in a package and extend from it.]
[1t also follows that the only way to declare a subtype of e.g. Real is to use the extends mechanism.]

The definitions use RealType, IntegerType, BooleanType, StringType, EnumType as mnemonics corre-
sponding to machine representations. These are called the primitive types.

4.8.1 Real Type
The following is the predefined Real type:

type Real // Note: Defined with Modelica syntax although predefined
RealType value; // Accessed without dot—notation
parameter StringType quantity = """,

parameter StringType unit = "" "Unit used in equations";
parameter StringType displayUnit = "" "Default display unit";
parameter RealType min = -Inf, max = +Inf; // Inf denotes a large value
parameter RealType start = 0; // Initial value
parameter BooleanType fixed = true, // default for parameter/constant;
= false; // default for other variables

parameter RealType nominal; // Nominal value
parameter BooleanType unbounded = false; // For error control
parameter StateSelect stateSelect = StateSelect.default;

equation

assert (value >= min and value <= max, "Variable value out of limit");
end Real;

The nominal attribute is meant to be used for scaling purposes and to define tolerances in relative terms,
see section 4.8.6.

53

Modelica Language Specification 3.5-dev
Modelica 4.8. Predefined Types and Classes

Language

[For external functions in C89, RealType maps to double. In the mapping proposed in Annex F of the
C99 standard, RealType /double matches the IEC 60559:1989 (ANSI/IEEE 754-1985) double format.]

4.8.2 Integer Type
The following is the predefined Integer type:

type Integer // Note: Defined with Modelica syntax although predefined
IntegerType value; // Accessed without dot—notation
parameter StringType quantity = "";
parameter IntegerType min=-Inf, max=+Inf;
parameter IntegerType start = 0; // Initial value
parameter BooleanType fixed true, // default for parameter/constant;
false; // default for other variables

equation
assert (value >= min and value <= max, "Variable value out of limit");
end Integer;

The minimal recommended number range for IntegerType is from -2147483648 to +2147483647, corre-
sponding to a two’s-complement 32-bit integer implementation.

4.8.3 Boolean Type
The following is the predefined Boolean type:

type Boolean // Note: Defined with Modelica syntax although predefined
BooleanType value; // Accessed without dot—notation
parameter StringType quantity = "";
parameter BooleanType start = false; // Initial value
parameter BooleanType fixed = true, // default for parameter/constant;
false, // default for other variables

end Boolean;

4.8.4 String Type
The following is the predefined String type:

type String // Note: Defined with Modelica syntax although predefined
StringType value; // Accessed without dot—notation
parameter StringType quantity = "";
parameter StringType start = ""; // Initial value
parameter BooleanType fixed true, // default for parameter/constant;
false, // default for other variables

end String;

4.8.5 Enumeration Types

A declaration of the form

type E = enumeration([enum-1list]);

defines an enumeration type E and the associated enumeration literals of the enum-list. The enumeration
literals shall be distinct within the enumeration type. The names of the enumeration literals are defined
inside the scope of E. Each enumeration literal in the enum-1ist has type E.

[Example:
type Size = enumeration(small, medium, large, xlarge);
Size t_shirt_size = Size.medium;

]

An optional comment string can be specified with each enumeration literal.

[Example:

54

Modelica Language Specification 3.5-dev
Modelica 4.8. Predefined Types and Classes

Language

type Size2 = enumeration(small "1st", medium "2nd", large "3rd", xlarge "4th");

]

An enumeration type is a simple type and the attributes are defined in section 4.8.5.1. The Boolean
type name or an enumeration type name can be used to specify the dimension range for a dimension
in an array declaration and to specify the range in a for-loop range expression; see section 11.2.2.2. An
element of an enumeration type can be accessed in an expression.

[Uses of elements of enumeration type in expressions include indexing into an array.]

[Example:
type DigitalCurrentChoices = enumeration(zero, omne);
// Similar to Real, Integer

Setting attributes:

type DigitalCurrent = DigitalCurrentChoices(quantity="Current",

start = DigitalCurrentChoices.one, fixed = true)
H
DigitalCurrent c(start = DigitalCurrent.one, fixed = true);
DigitalCurrentChoices c(start = DigitalCurrentChoices.one, fixed = true);

Using enumeration types as expressions:

Real x[DigitalCurrentChoices];
// Example using the type name to represent the range
for e in DigitalCurrentChoices loop
x[e] := 0.;
end for;
for e loop // Equivalent example using short form
x[e] := 0.;

end for;

// Equivalent example using the colon range constructor

for e in DigitalCurrentChoices.zero : DigitalCurrentChoices.one loop
x[e] := 0.;
end for;

model Mixingl "Mixing of multi-substance flows, alternative 1"
replaceable type E=enumeration(:)"Substances in Fluid";
input Real c1[E], c2[E], mdotl, mdot2;
output Real c3[E], mdot3;

equation
0O = mdotl + mdot2 + mdot3;
for e in E loop

0 = mdotl*cl[e] + mdot2*c2[e]l+ mdot3*c3[e];
end for;
/* Array operations on enumerations are NOT (yet) possible:
zeros(n) = mdotlxcl + mdot2xc2 + mdot3%xc3 // error
*
/

end Mixingl;

model Mixing2 "Mixing of multi-substance flows, alternative 2"
replaceable type E=enumeration(:)"Substances in Fluid";
input Real c1[E], c2[E], mdotl, mdot2;
output Real c3[E], mdot3;

protected
// No efficiency loss, since ccl, cc2, cc3
// may be removed during translation
Real ccl[:]=cl, cc2[:]=c2, cc3[:]=c3;

55

Modelica Language Specification 3.5-dev

Modelica 4.8. Predefined Types and Classes
Lenguage

final parameter Integer n = size(ccl,1);
equation

0 = mdotl + mdot2 + mdot3;

zeros(n) = mdotl*ccl + mdot2*cc2 + mdot3*cc3

end Mixing2;

4.8.5.1 Attributes of Enumeration Types

For each enumeration:

type E=enumeration(el, e2, ..., en);

a new simple type is conceptually defined as

type E // Note: Defined with Modelica syntax although predefined
EnumType value; // Accessed without dot—notation
parameter StringType quantity = "";
parameter EnumType min=el, max=en;
parameter EnumType start = el; // Initial value
parameter BooleanType fixed = true, // default for parameter/constant;
false; // default for other variables

constant EnumType el=...;

constant EnumType en=...;
equation

assert(value >= min and value <= max, "Variable value out of limit");
end E;

[Since the attributes and enumeration literals are on the same level, it is not possible to use the enumer-
ation attribute names (quantity, min, max, start, fixed) as enumeration literals.]

4.8.5.2 Type Conversion of Enumeration Values to String or Integer

The type conversion function Integer (<expression of enumeration type>) returns the ordinal num-
ber of the enumeration value E. enumvalue, to which the expression is evaluated, where Integer(E.el)
= 1, Integer(E.en) = n, for an enumeration type E = enumeration(el, ..., en).

String(E.enumvalue) gives the String representation of the enumeration value.
[Example: String(E.Small) gives "Small".]

See also section 3.7.1.

4.8.5.3 Type Conversion of Integer to Enumeration Values

Whenever an enumeration type is defined, a type conversion function with the same name and in the
same scope as the enumeration type is implicitly defined. This function can be used in an expression to
convert an integer value to the corresponding (as described in section 4.8.5.2) enumeration value.

For an enumeration type named EnumTypeName, the expression EnumTypeName (<Integer expression>)
returns the enumeration value EnumTypeName.e such that Integer (EnumTypeName.e) is equal to the
original integer expression.

Attempting to convert an integer argument that does not correspond to a value of the enumeration type
is an error.

[Example:

type Colors = enumeration (RED, GREEN, BLUE, CYAN, MAGENTA, YELLOW);

Conwverting from Integer to Colors:

Colors (i) ;
Colors (10); // An error

56

Modelica Language Specification 3.5-dev
Modelica 4.8. Predefined Types and Classes

Language

4.8.5.4 Unspecified enumeration

An enumeration type defined using enumeration(:) is unspecified and can be used as a replaceable
enumeration type that can be freely redeclared to any enumeration type. There can be no enumeration
variables declared using enumeration(:) in a simulation model.

4.8.6 Attributes start, fixed, nominal, and unbounded

The attributes start and fixed define the initial conditions for a variable. fixed = false means an
initial guess, i.e., value may be changed by static analyzer. fixed = true means a required value. The
resulting consistent set of values for all model variables is used as initial values for the analysis to be
performed.

The attribute nominal gives the nominal value for the variable. The user need not set it even though the
standard does not define a default value. The lack of default allows the tool to propagate the nominal
attribute based on equations, and if there is no value to propagate the tool should use a non-zero value,
it may use additional information (e.g. min attribute) to find a suitable value, and as last resort use 1. If
unbounded = true it indicates that the state may grow without bound, and the error in absolute terms
shall be controlled.

[The nominal value can be used by an analysis tool to determine appropriate tolerances or epsilons, or
may be used for scaling. For example, the tolerance for an integrator could be computed as tol * (abs
(nominal) + (if x.unbounded then 0 else abs(x))). A default value is not provided in order that
in cases such as a = b, where b has a nominal value but not a, the nominal value can be propagated to
the other variable).]

4.8.7 Other Predefined Types
4.8.7.1 StateSelect

The predefined StateSelect enumeration type is the type of the stateSelect attribute of the Real
type. It is used to explicitly control state selection.

type StateSelect = enumeration(
never "Do not use as state at all.",
avoid "Use as state, if it cannot be avoided (but only if variable appears
differentiated and no other potential state with attribute
default, prefer, or always can be selected).",
default "Use as state if appropriate, but only if variable appears
differentiated.",
prefer "Prefer it as state over those having the default value
(also variables can be selected, which do not appear
differentiated). ",
always "Do use it as a state."

)

4.8.7.2 ExternalObject

See section 12.9.7 for information about the predefined type ExternalObject.

4.8.7.3 AssertionLevel

The predefined AssertionLevel enumeration type is used together with assert, section 8.3.7.

type Assertionlevel = enumeration(warning, error);

4.8.7.4 Connections

The package Connections is used for over-constrained connection graphs, section 8.3.9.

57

Modelica Language Specification 3.5-dev
ca 4.8. Predefined Types and Classes

4.8.7.5 Graphical Annotation Types

A number of “predefined” record types and enumeration types for graphical annotations are described in
chapter 18. These types are not predefined in the usual sense since they cannot be referenced in ordinary
Modelica code, only within annotations.

4.8.7.6 Clock Types

See section 16.2.1 and section 16.3.

58

Chapter 5

Scoping, Name Lookup, and
Flattening

This chapter describes the scope rules, and most of the name lookup and flattening of Modelica.

5.1 Flattening Context

Flattening is made in a context which consists of a modification environment (section 7.2.2) and an
ordered set of enclosing classes.

5.2 Enclosing Classes

The classes lexically enclosing an element form an ordered set of enclosing classes. A class defined inside
another class definition (the enclosing class) precedes its enclosing class definition in this set.

Enclosing all class definitions is an unnamed enclosing class that contains all top-level class definitions,
and not-yet read classes defined externally as described in section 13.4. The order of top-level class
definitions in the unnamed enclosing class is undefined.

During flattening, the enclosing class of an element being flattened is a partially flattened class.
[For example, this means that a declaration can refer to a name inherited through an extends-clause.)

[Example:

class C1 ... end Ci1;
class C2 ... end C2;
class C3

Real x=3;

Cl y;

class C4

Real z;

end C4;

end C3;

The unnamed enclosing class of class definition C3 contains C1, C2, and C3 in arbitrary order. When
flattening class definition C3, the set of enclosing classes of the declaration of x is the partially flattened
class C3 followed by the unnamed enclosing class with C1, C2, and C3. The set of enclosing classes of z
is C4, C3 and the unnamed enclosing class in that order.]

5.3 Static Name Lookup

Names are looked up at class flattening to find names of base classes, component types, etc. Implicitly
defined names of record constructor functions and enumeration type conversion functions are ignored

59

Modelica Language Specification 3.5-dev
Modelica 5.3. Static Name Lookup

Language

during type name lookup. Names of record classes and enumeration types are ignored during function
name lookup.

[The reason to ignore the implicitly defined names is that a record and the implicitly created record
constructor function, see section 12.6, and an enumeration type and the implicitly created conversion
function (section 4.8.5.3), have the same name.]

5.3.1 Simple Name Lookup

A class declared with the keyword encapsulated (see class-definition in the grammar) is called an
encapsulated class. By restricting name lookup inside a restricted class in ways defined in this chapter,
the meaning of the class is made independent of where it is placed in a package hierarchy.

When an element, equation, or section is flattened, any simple name (not composed using dot notation) is
first looked up sequentially among iteration variables (if any; see below), and then looked up sequentially
in each member of the ordered set of instance scopes (see section 5.6.1.1) corresponding to lexically
enclosing classes until a match is found or an enclosing class is encapsulated. In the latter case the
lookup stops except for the predefined types, functions and operators defined in this specification. For
these cases the lookup continues in the global scope, where they are defined.

The iteration variables are the implicitly declared iteration variable(s) if inside the body of a for-loop,
section 8.3.2 and section 11.2.2; or the body of a reduction expression, section 10.3.4.

Reference to variables successfully looked up in an enclosing class is only allowed for variables declared as
constant. The values of modifiers are thus resolved in the instance scope of which the modifier appears;
if the use is in a modifier on a short class definition, see section 4.5.1.

This lookup in each instance scope is performed as follows:

e Among declared named elements (class-definition and component-declaration) of the class
(including elements inherited from base-classes).

e Among the import names of qualified import-clauses in the instance scope. The import name of
import A.B.C;is C and the import name of import D=A.B.C; is D.

e Among the public members of packages imported via unqualified import-clauses in the instance
scope. It is an error if this step produces matches from several unqualified imports.

Import statements defined in inherited classes are ignored for the lookup, i.e. import-clauses are not
inherited.

5.3.2 Composite Name Lookup
For a composite name of the form A.B or A.B.C, etc. lookup is performed as follows:
e The first identifier (A) is looked up as defined above.

e If the first identifier denotes a component, the rest of the name (e.g., B or B.C) is looked up among
the declared named component elements of the component.

e Ifnot found, and if the first identifier denotes a scalar component, or component[j] where component
is an array of components and the indices j can be evaluated at translation time and component|j]
is a scalar; and if the composite name is used as a function call, the lookup is also performed among
the declared named class elements of the scalar component, and must find a non-operator function.
All identifiers of the rest of the name (e.g., B and B.C) must be classes.

e If the identifier denotes a class, that class is temporarily flattened (as if instantiating a component
without modifiers of this class, see section 7.2.2) and using the enclosing classes of the denoted
class. The rest of the name (e.g., B or B.C) is looked up among the declared named elements of
the temporary flattened class. If the class does not satisfy the requirements for a package, the
lookup is restricted to encapsulated elements only. The class we look inside shall not be partial in
a simulation model.

[The temporary class flattening performed for composite names follow the same rules as class flattening
of the base class in an extends-clause, local classes and the type in a component clause, except that the

60

Modelica Language Specification 3.5-dev
Modelica 5.4. Instance Hierarchy Name Lookup of Inner Declarations

Language

environment is empty. See also MoistAir2 example in section 7.8 for further explanations regarding
looking inside partial packages.]

[Example: Components and classes are part of the same name-space and thus a component cannot have
the same name as its class or the first part of the class-name as that would prevent lookup of the class
name.

model A
M M; // lllegal , component 'M' prevents finding class 'M’
P.Q P; // lllegal , component 'P’' prevents finding package 'P’
R R; // Legal, see next section

S.Q Q; // Legal

Y a; // lllegal , component 'Y' (below) prevents finding class 'Y’
Y.X b; // lllegal , component 'Y' (below) prevents finding package 'Y’
.Y c; // Legal, see next section
Real Y;

end A;

5.3.3 Global Name Lookup
For a name starting with dot, e.g.: .A (or .A.B, .A.B.C etc.) lookup is performed as follows:

e The first identifier (4) is looked up in the global scope. This is possible even if the class is encap-
sulated and import-clauses are not used for this. If there does not exist a class A in global scope
this is an error.

e If the name is simple then the class A is the result of lookup.

e [f the name is a composite name then the class A is temporarily flattened with an empty environment
(i.e. no modifiers, see section 7.2.2) and using the enclosing classes of the denoted class. The rest
of the name (e.g., B or B.C) is looked up among the declared named elements of the temporary
flattened class. If the class does not satisfy the requirements for a package, the lookup is restricted
to encapsulated elements only. The class we look inside shall not be partial.

[The package-restriction ensures that global name lookup of component references can only find global
constants.]

5.3.4 Lookup of Imported Names

See section 13.2.1.

5.4 Instance Hierarchy Name Lookup of Inner Declarations
An element declared with the prefix outer references an element instance with the same name but using
the prefix inner which is nearest in the enclosing instance hierarchy of the outer element declaration.

Outer component declarations shall not have modifications (including binding equations). Outer class
declarations should be defined using short-class definitions without modifications. However, see also
section 5.5.

If the outer component declaration is a disabled conditional component (section 4.4.5) it is also ignored
for the automatic creation of inner component (neither causing it; nor influencing the type of it).

An outer element reference in a simulation model requires that one corresponding inner element dec-
laration exist or can be created in a unique way:

e If there are two (or more) outer declarations with the same name, both lacking matching inner
declarations, and the outer declarations are not of the same class it is in error.

e If there is one (or more) outer declarations of a partial class it is an error.

61

Modelica Language Specification 3.5-dev
Modelica 5.4. Instance Hierarchy Name Lookup of Inner Declarations

Language

e In other cases, i.e. if a unique non-partial class is used for all outer declarations of the same name
lacking a matching inner declaration, then an inner declaration of that class is automatically added
at the top of the model and diagnostics is given.

e The annotations defined in section 18.7 does not affect this process, other than that:
— missingInnerMessage can be used for the diagnostic (and possibly error messages)

An outer element component may be of a partial class (but the referenced inner component must be
of a non-partial class).

[inner /outer components may be used to model simple fields, where some physical quantities, such as
gravity vector, environment temperature or environment pressure, are accessible from all components
in a specific model hierarchy. Inner components are accessible throughout the model, if they are not
“shadowed” by a corresponding inner declaration in a more deeply nested level of the model hierarchy.]

[Example: Simple Example:

class A
outer Real TO;

end A;

class B
inner Real TO0=1;
A a1, a2; // B.TO, B.al.TO and B.a2.T0 will have the same value
A a3(T0=4); // lllegal as TO is an outer variable.

end B;

More complicated example:

class A
outer Real TI;
class B
Real TI;
class C
Real TI;
class D
outer Real TI; //
end D;
D d;
end C;
C c;
end B;
B b;
end A;

class E
inner Real TI;
class F
inner Real TI;
class G
Real TI;
class H
A a;
end H;
H h;
end G;
G g;
end F;
F f;
end E;

class I
inner Real TI;
E e;

62

Modelica Language Specification 3.5-dev
Modelica 5.5. Simultaneous Inner/Outer Declarations

Language

// e.f.g.h.a.Tl, e.f.g.h.a.b.c.d.Tl, and e.f. Tl is the same variable
// But e.f.Tl, e. Tl and Tl are different variables
A a; // a.Tl, a.b.c.d.Tl, and TI is the same variable

end I;

]

The inner component shall be a subtype of the corresponding outer component.

[If the two types are not identical, the type of the inner component defines the instance and the outer
component references just part of the inner component.)

[Example:

class A
inner Real TI;
class B
outer Integer TI; // error, since A.Tl is no subtype of A.B.TI
end B;
end A;

5.4.1 Example of Field Functions using Inner/Outer

[Inner declarations can be used to define field functions, such as position dependent gravity fields, e.g.:

partial function A
input Real u;
output Real y;

end A;

function B // B is a subtype of A
extends A;
algorithm

end B;
class D
outer function fc = A;
equation
y = fc(u);
end D;

class C
inner function fc = B; // define function to be actually used
D d; // The equation is now treated as y = B(u)

end C;

5.5 Simultaneous Inner/Outer Declarations

An element declared with both the prefixes inner and outer conceptually introduces two declarations
with the same name: one that follows the above rules for inner and another that follows the rules for
outer.

[Local references for elements with both the prefix inner and outer references the outer element. That
in turn references the corresponding element in an enclosing scope with the prefiz inner.]

Modifications of elements declared with both the prefixes inner and outer may have modifications,
those modifications are only applied to the inner declaration.

[Example:

63

Modelica Language Specification 3.5-dev
Modelica 5.6. Flattening Process

Language

class A
outer parameter Real p=2; // error, since modification
end A;

Intent of the following example: Propagate enabled through the hierarchy, and also be able to disable
subsystems locally.

model ConditionalIntegrator "Simple differential equation if isEnabled"
outer Boolean isEnabled;
Real x(start=1);

equation
der(x)=if isEnabled then -x else 0;

end ConditionallIntegrator;

model SubSystem "subsystem that ’enable’ its conditional integrators"

Boolean enableMe = time<=1;
// Set inner isEnabled to outer isEnabled and enableMe
inner outer Boolean isEnabled = isEnabled and enableMe;

ConditionalIntegrator conditionallntegrator;
ConditionalIntegrator conditionallntegrator2;
end SubSystem;

model System
SubSystem subSystem;
inner Boolean isEnabled = time>=0.5;
// subSystem.conditionallntegrator.isEnabled will be
// 'isEnabled and subSystem.enableMe’
end System;

5.6 Flattening Process

In order to guarantee that elements can be used before they are declared and that elements do not
depend on the order of their declaration (section 4.3) in the enclosing class, the flattening proceeds in
the following two major steps:

1. Instantiation process
2. Generation of the flat equation system

The result is an equation system of all equations/algorithms, initial equations/algorithms and instances
of referenced functions. Modifications of constants, parameters and variables are included in the form of
equations.

The constants, parameters and variables are defined by globally unique identifiers and all references are
resolved to the identifier of the referenced variable. No other transformations are performed.

5.6.1 Instantiation

The instantiation is performed in two steps. First a class tree is created and then from that an instance
tree for a particular model is built up. This forms the basis for derivation of the flat equation system.

An implementation may delay and/or omit building parts of these trees, which means that the different
steps can be interleaved. If an error occurs in a part of the tree that is not used for the model to be
instantiated the corresponding diagnostics can be omitted (or be given). However, errors that should
only be reported in a simulation model must be omitted there, since they are not part of the simulation
model.

5.6.1.1 The Class Tree

All necessary libraries including the model which is to be instantiated are loaded from e.g. file system
and form a so called class tree. This tree represents the syntactic information from the class definitions.

64

Modelica Language Specification 3.5-dev
Modelica 5.6. Flattening Process

Language

It contains also all modifications at their original locations in syntactic form. The builtin classes are put
into the unnamed root of the class tree.

[The class tree is built up directly during parsing of the Modelica texts. For each class a local tree is
created which is then merged into the one big tree, according to the location of the class in the class
hierarchy. This tree can be seen as the abstract syntax tree (AST) of the loaded libraries.]

5.6.1.2 The Instance Tree

The output of the instantiation process is an instance tree. The instance tree consists of nodes repre-
senting the elements of a class definition from the class tree. For a component the subtree of a particular
node is created using the information from the class of the component clause and a new modification
environment as result of merging the current modification environment with the modifications from the
current element declaration (see section 7.2.3).

The instance tree has the following properties:

e It contains the instantiated elements of the class definitions, with redeclarations taken into account
and merged modifications applied.

e Each instance knows its source class definition from the class tree and its modification environment.
e Each modification knows its instance scope.

The instance tree is used for lookup during instantiation. To be prepared for that, it has to be based on
the structure of the class tree with respect to the class definitions. The builtin classes are instantiated
and put in the unnamed root prior to the instantiation of the user classes, to be able to find them.

[The existence of the two separate trees (instance tree and class tree) is conceptual. Whether they really
exist or are merged into only one tree or the needed information is held completely differently is an
implementation detail. It is also a matter of implementation to have only these classes instantiated
which are needed to instantiate the class of interest.]

A node in the instance tree is the instance scope for the modifiers and elements syntactically defined in
the class it is instantiated from. The instance scope is the starting point for name lookup.

[If the name is not found the lookup is continued in the instance scope corresponding to the lexically
enclosing class. Extends clauses are treated as unnamed nodes in the instance tree — when searching for
an element in an instance scope the search also recursively examines the elements of the extends clauses.
Ezcept that inherited import-clauses are ignored.]

5.6.1.3 The Instantiation Procedure.
The instantiation is a recursive procedure with the following inputs:
e the class to be instantiated (current class)

e the modification environment with all applicable redeclarations and merged modifications (initially
empty)

e areference to the node of the instance tree, which the new instance should go into (parent instance)

The instantiation starts with the class to be instantiated, an empty modification environment, and an
unnamed root node as parent node.

During instantiation all lookup is performed using the instance tree, starting from the instance scope of
the current element. References in modifications and equations are resolved later (during generation of
flat equation system) using the same lookup.

5.6.1.4 Steps of Instantiation

The element itself A partially instantiated class or component is an element that is ready to be
instantiated; a partially instantiated element (i.e. class or component) is comprised of a reference to the
original element (from the class tree) and the modifiers for that element (including a possible redeclara-
tion).

The possible redeclaration of the element itself takes effect.

65

Modelica Language Specification 3.5-dev
Modelica 5.6. Flattening Process

Language

The class of a partially instantiated component is found in the instance tree (using the redeclaration if
any), modifiers merged to that class forming a new partially instantiated class that is instantiated as
below.

The local contents of the element For local classes and components in the current class, instance
nodes are created and inserted into the current instance. Modifiers (including class redeclarations) are
merged and associated with the instance and the element is partially instantiated.

[The partially instantiated elements are used later for lookup during the generation of the flat equation
system and are instantiated fully, if necessary, using the stored modification environment.]

Equations, algorithms, and annotations of the class and the component declaration are copied to the
instance without merging.

[The annotations can be relevant for simulations, e.g. annotations for code generation (section 18.3.),
simulation experiments (section 18.4.1) or functions (section 12.7, section 12.8 and section 12.9).]

Extends clauses are not looked up, but empty extends clause nodes are created and inserted into the
current instance (to be able to preserve the declaration order of components).

The inherited contents of the element Classes of extends clauses of the current class are looked
up in the instance tree, modifiers (including redeclarations) are merged, the contents of these classes are
partially instantiated using the new modification environment, and are inserted into an extends clause
node, which is an unnamed node in the current instance that only contains the inherited contents from
that base-class.

The classes of extends-clauses are looked up before and after handling extends-clauses; and it is an error
if those lookups generate different results.

At the end, the current instance is checked whether their children (including children of extends-clauses)
with the same name are identical and only the first one of them is kept. It is an error if they are not
identical.

[Only keeping the first among the children with the same name is important for function arguments where
the order matters.]

Recursive instantiation of components Components (local and inherited) are recursively instan-
tiated.

[Example: As an example, consider:

model M
model B
A a;
replaceable model A
type E = Boolean;
end B;
B b(redeclare model A
partial model C
E e;
end C;

]
Q

D (p=1));

model D
extends C;
parameter E p;
type E = Integer;
end D;

type E = Real;
end M;

To recursively instantiate M allowing the generation of flat equation system we have the following steps
(not including checks):

66

Modelica Language Specification 3.5-dev
ca 5.6. Flattening Process

1. Instantiate M: which partially instantiates B, b, C, D, and E.
2. Instantiate M.b:

2.1. First find the class B in M (the partially instantiated elements have correct name allowing
lookup)

2.2. instantiate the partially instantiated M.B with the modifier redeclare model A=D(p=1)
2.3. partially instantiate M.b.a (no modifier), and M.b.A (with modifier =D (p=1))
3. Instantiate M.b.a:

3.1. First find the class A in M.b (the partially instantiated elements have correct name allowing
lookup)

3.2. Instantiate the partially instantiated M.b. A with the modifier =D (p=1).

8.2.1. Find the base-class =D from the modifier. This performs lookup for D in M, and finds the
partially instantiated class D

3.2.2. Instantiate the base-class M.D with modifier p=1, and insert as unnamed node in M.b.A.
3.2.2.1. Partially instantiate the component p with modifier =1

3.2.2.2. Find the base-class C in M.D. Since there is no local element called C the search is
then continued in M and finds the partially instantiated class M.C

3.2.2.8. Instantiate the base-class M.C as below
4. Instantiate the base-class M.C inserting the result into unnamed node in M.b.a
4.1. Partially instantiate e

4.2. Instantiate e which requires finding E. First looking for E in the un-named node for extends

M.C, and, since there is no local element E the search is then continued in M (which lezically

encloses M.C) and finds E class inheriting from Real. The e is then instantiated using class E
inheriting from Real.

5. Instantiate M.b.a.p
5.1. First the class E in M.b.a finding E class inheriting from Integer.
5.2. Instantiate the M.b.a.p using the class E inheriting from Integer with modifier =1
5.8. Instantiate the base-class Integer with modifier =1, and insert as unnamed node in M.b.a.p.

An implementation can use different heuristics to be more efficient by re-using instantiated elements as
long as the resulting flat equation system is identical.

Note that if D was consistently replaced by A in the example above the result would be identical (but harder
to read due to two different classes called A).]

5.6.2 Generation of the flat equation system

During this process, all references by name in conditional declarations, modifications, dimension defini-
tions, annotations, equations and algorithms are resolved to the real instance to which they are referring
to, and the names are replaced by the global unique identifier of the instance.

[This identifier is normally constructed from the names of the instances along a path in the instance tree
(and omitting the unnamed nodes of extends clauses), separated by dots. Fither the referenced instance
belongs to the model to be simulated the path starts at the model itself, or if not, it starts at the unnamed
root of the instance tree, e.g. in case of a constant in a package.]

[To resolve the names, a name lookup using the instance tree is performed, starting at the instance scope
(unless the name is fully qualified) of the modification, algorithm or equation. If it is not found locally the
search is continued at the instance of the lexically enclosing class of the scope (this is normally not equal
to the parent of the current instance), and then continued with their parents as described in section 5.3.
If the found component is an outer declaration, the search is continued using the direct parents in the

67

Modelica Language Specification 3.5-dev
Modelica 5.6. Flattening Process

Language

instance tree (see section 5.4). If the lookup has to look into a class which is not instantiated yet (or
only partially instantiated), it is instantiated in place.]

The flat equation system consists of a list of variables with dimensions, flattened equations and algo-
rithms, and a list of called functions which are flattened separately. A flattened function consists of
algorithm or external-clause and top-level variables (variables directly declared in the function or one of
its base-classes) — which recursively can contain other variables; the list of non-top level variables is not
needed.

The instance tree is recursively walked through as follows for elements of the class (if necessary a partially
instantiated component is first instantiated):

e At each visited component instance, the name is inserted into the variables list. Then the condi-
tional declaration expression is evaluated if applicable.

— The variable list is updated with the actual instance

— The variability information and all other properties from the declaration are attached to this
variable.

— Dimension information from the declaration and all enclosing instances are resolved and at-
tached to the variable to define their complete dimension.

— If it is of record or simple type (Boolean, Integer, enumeration, Real, String, Clock,
ExternalObject):

* In the modifications of value attribute references are resolved using the instance scope of
the modification. An equation is formed from a reference to the name of the instance and
the resolved modification value of the instance, and included into the equation system.
Except if the value for an element of a record is overridden by the value for an entire
record; section 7.2.3.

— Ifit is of simple type (Boolean, Integer, enumeration, Real, String, Clock, ExternalObject
):

* In the modifications of non-value attributes, e.g. start, fixed etc. references are resolved

using the instance scope of the modification. An equation is formed from a reference to

the name of the instance appended by a dot and the attribute name and the resolved
modification value of the instance, and included into the equation system.

— If it is of a non-simple type the instance is recursively handled.

o If there are equation or algorithm sections in the class definition of the instance, references are
resolved using the instance scope of the instance and are included in the equation system. Some
references — in particular to non simple, non record objects like connectors in connect-equations
and states in transition equations are not resolved yet and handled afterwards.

e Instances of local classes are ignored.
e The unnamed nodes corresponding to extends-clauses are recursively handled.

o Ifthere are function calls encountered during this process, the call is filled up with default arguments
as defined in section 12.4.1. These are built from the modifications of input arguments which are
resolved using their instance scope. The called function itself is looked up in the instance tree. All
used functions are flattened and put into the list of functions.

e Conditional components with false condition are removed afterwards and they are not part of the
simulation model.

[Thus e.g. parameters don’t need values in them. However, type-error can be detected.]

e Each reference is checked, whether it is a valid reference, e.g. the referenced object belongs to or
is an instance, where all existing conditional declaration expressions evaluate to true or it is a
constant in a package.

[Conditional components can be used in connect-equations, and if the component is conditionally
disabled the connect-statement is removed.]

68

Modelica Language Specification 3.5-dev
Modelica 5.6. Flattening Process

Language

This leads to a flattened equation system, except for connect and transition equations. These have
to be transformed as described in chapter 9 and chapter 17. This may lead to further changes in the
instance tree (e.g. from expandable connectors (section 9.1.3)) and additional equations in the flattened

equation system (e.g. connect-equations (section 9.2), generated equations for state machine semantics
(section 17.3.4)).

[After flattening, the resulting equation system is self contained and covers all information needed to
transform it to a simulatable model, but the class and instance trees are still needed: in the transformation
process, there might be the need to instantiate further functions, e.g. from derivative annotation or from
inverse annotation etc., on demand.]

69

Chapter 6

Interface or Type Relationships

A class or component, e.g. denoted A, can in some cases be used at a location designed for another class
or component, e.g. denoted B. In Modelica this is the case for replaceable classes (see section 7.3) and for
inner/outer elements (see section 5.4). Replaceable classes are the primary mechanism to create very
flexible models. In this chapter, the precise rules are defined when A can be used at a location designed
for B. The restrictions are defined in terms of compatibility rules (section 6.4 and section 6.5) between
“interfaces” (section 6.2); this can also be viewed as sub-typing (section 6.2).

6.1 Interface Terminology

In this chapter, two kinds of terminology is used for identical concepts to get better understanding (e.g.
by both engineers and computer scientists). A short summary of the terms is given in the following
table. The details are defined in the rest of this chapter.

Definition 6.1. Type or interface. The “essential” part of the public declaration sections of a class
that is needed to decide whether A can be used instead of B.

[E.g. a declaration Real x is part of the type (also called interface), but import A is not.] O

Definition 6.2. Class type or inheritance interface. The “essential” part of the public and
protected declaration sections of a class that is needed to decide whether A can be used instead of B.
The class type, also called inheritance interface, is needed when inheritance takes place, since then the
protected declarations have to be taken into account. O

Definition 6.3. Subtype or compatible interface. A is a subtype of B, or equivalently, the interface
of A is compatible to the interface of B, if the “essential” part of the public declaration sections of B is
also available in A.

[E.g., if B has a declaration Real x, this declaration must also be present in A. If A has a declaration
Real vy, this declaration must not be present in B.] O

If A is a subtype of B, then B is said to be a supertype of A.

Definition 6.4. Restricted subtype or plug compatible interface. A is a restricted subtype of B,
or equivalently, the interface of A is plug compatible to the interface of B, if A is a subtype of B and if
connector components in A that are not in B, are default connectable.

[E.g. it is not allowed that these connectors have variables with the input prefiz, because then they must
be connected.]

A model or block A cannot be used instead of B, if the particular situation does not allow to make a
connection to these additional connectors. In such a case the stricter plug compatible is required for a
redeclaration. O

Definition 6.5. Function subtype or function compatible interface. A is a function subtype of
B, or equivalently, the interface of A is function compatible to the interface of B, if A is a subtype of B

70

Modelica Language Specification 3.5-dev
Modelica 6.2. The Concepts of Type, Interface and Subtype

Language

and if the additional arguments of function A that are not in function B are defined in such a way, that
A can be called at places where B is called.

[E.g. an additional argument must have a default value.] O

6.2 The Concepts of Type, Interface and Subtype

A type can conceptually be viewed as a set of values. When we say that the variable x has the type Real,
we mean that the value of x belongs to the set of values represented by the type Real i.e., roughly the
set of floating point numbers representable by Real, for the moment ignoring the fact that Real is also
viewed as a class with certain attributes. Analogously, the variable b having Boolean type means that
the value of b belongs to the set of values {false, true}. The built-in types Real, Integer, String,
Boolean are considered to be distinct types.

The subtype relation between types is analogous to the subset relation between sets. A type Al being a
subtype of type A means that the set of values corresponding to type Al is a subset of the set of values
corresponding to type A.

The type Integer is not a subtype of Real in Modelica even though the set of primitive integer values is
a subset of the primitive real values since there are some attributes of Real that are not part of Integer
(section 4.8).

The concept of interface as defined in section 6.3 and used in this document is equivalent to the notion
of type based on sets in the following sense:

An element is characterized by its interface defined by some attributes (section 6.3). The type of the
element is the set of values having the same interface, i.e. the same attributes.

A subtype A1l in relation to another type A, means that the elements of the set corresponding to A1l is
a subset of the set corresponding to A, characterized by the elements of that subset having additional
properties.

[Example: A record R: record R Boolean b; Real x; end R;
Another record called R2: R2 Boolean b; Real x; Real y; end R2;
An instance r: R r;

An instance r2: R2 r2;

The type R of r can be viewed as the set of all record values having the attributes defined by the interface
of R, e.g. the infinite set {R(b=false,x=1.2), R(b=false, x=3.4), R(b=true, x=1.2), R(b=true, x
=1.2, y=2), R(b=true, x=1.2, a=2),...). The statement that r has the type (or interface) R means
that the value of r s to this infinite set.

The type R2 is a subtype of R since its instances fulfill the additional property of having the component
Real y; in all its values.

Type R: Records with at least
components named x and b

instance r

Type R2: Records with at least
components named x, b and y

instance r2

Figure 6.1: The type R can be defined as the set of record values containing x and b. The subtype
R2 is the subset of values that all contain x, b, and y.

71

Modelica Language Specification 3.5-dev
Modelica 6.3. Interface or Type

Language

6.3 Interface or Type

Based on a flattened class or component we can construct an interface for that flattened class or compo-
nent. The interface or type (the terms interface and type are equivalent and can be used interchangeably,
and are different from inheritance interface and class type) is defined as the following information about
the flattened element itself:

e Whether it is replaceable or not.

e Whether the class itself or the class of the component is transitively non-replaceable (section 6.3.1),
and if not, the reference to the replaceable class it refers to.

e Whether it is a component or a class.
e Additional information about the element:
— The flow or stream prefix.
— Declared variability (constant, parameter, discrete).
— The prefixes input and output.
— The prefixes inner and/or outer.
— Whether the declaration is final, and in that case its semantics contents.
— Array sizes (if any).
— Condition of conditional components (if any).
— Which kind of specialized class.

— For an enumeration type or component of enumeration type the names of the enumeration
literals in order.

— Whether it is a built-in type and the built-in type (RealType, IntegerType, StringType or
BooleanType).

e Only for an operator record class and classes derived from ExternalObject: the full name of
the operator record base-class (i.e. the one containing the operations), or the derived class. See
chapter 14 and section 12.9.7.

The following item does not apply for an operator record class or class derived from ExternalObject
, since the type is already uniquely defined by the full name.

e For each named public element of the class or component (including both local and inherited named
elements) a tuple comprised of:

— Name of the element.
— Interface or type of the element.

[This might have been modified by modifiers and is thus not necessarily identical to the interface
of the original declaration.]

The corresponding constraining interface is constructed based on the constraining type (section 7.3.2)
of the declaration (if replaceable — otherwise same as actual type) and with the constraining interface
for the named elements.

In a class all references to elements of that class should be limited to their constraining interface.

[The constraining interface consists of only the public elements, and if the declaration is replaceable the
element is limited to the constraining interface.)

[The public interface does not contain all of the information about the class or component. When using a
class as a base-class we also need protected elements, and for internal type-checking we need e.g. import-
elements. However, the information is sufficient for checking compatibility and for using the class to
flatten components.)

72

Modelica Language Specification 3.5-dev
Modelica 6.3. Interface or Type

Language

6.3.1 Transitively non-Replaceable

[In several cases it is important that no new elements can be added to the interface of a class, especially
considering short class definitions. Such classes are defined as transitively non-replaceable.]

A class reference is transitively non-replaceable iff (i.e. if and only if) all parts of the name satisfy the
following:

e If the class definition is long it is transitively non-replaceable if not declared replaceable.

e If the class definition is short (i.e. class A = P.B) it is transitively non-replaceable if it is non-
replaceable and equal to class reference (P.B) that is transitively non-replaceable.

[According to section 7.1.4, for a hierarchical name all parts of the name must be transitively non-
replaceable, i.e. in extends A.B.C this implies that A.B.C must be transitively non-replaceable, as well
as A and A.B, with the exception of the class extends redeclaration mechanism see section 7.3.1.]

6.3.2 Inheritance Interface or Class Type

For inheritance, the interface also must include protected elements; this is the only change compared to
above.

Based on a flattened class we can construct an inheritance interface or class type for that flattened class.
The inheritance interface or class type is defined as the following information about the flattened element
itself:

e Whether it is replaceable or not.

e Whether the class itself or the class of the component is transitively non-replaceable (section 6.3.1),
and if not the reference to replaceable class it refers to.

e For each named element of the class (including both local and inherited named elements) a tuple
comprised of:

Name of the element.

— Whether the element is component or a class.
— For elements that are classes: Inheritance interface or class type of the element.

[This might have been modified by modifiers and is thus not necessarily identical to the interface
of the original declaration.]

For elements that are components: interface or type of the element.

[This might have been modified by modifiers and is thus not necessarily identical to the interface
of the original declaration.]

e Additional information about the element:
— The flow or stream prefix.
— Declared variability (constant, parameter, discrete).
— The prefixes input and output.
— The prefixes inner and/or outer.
— Whether the declaration is final, and in that case its semantics contents.
— Array sizes (if any).
— Condition of conditional components (if any).
— Which kind of specialized class.

— For an enumeration type or component of enumeration type the names of the enumeration
literals in order.

— Whether it is a built-in type and the built-in type (RealType, IntegerType, StringType or
BooleanType).

73

Modelica Language Specification 3.5-dev
Modelica 6.4. Interface Compatibility or Subtyping

Language

— Visibility (public or protected).

6.4 Interface Compatibility or Subtyping

An interface of a class or component A is compatible with an interface of a class or component B (or the
constraining interface of B), or equivalently that the type of A is a subtype of the type of B, iff:

e Ais a class if and only if B is a class (and thus: A is a component if and only if B is a component).

e If A has an operator record base-class then B must also have one and it must be the same. If A
does not have an operator record base-class then B shall not have one. See chapter 14.

o If A is derived from ExternalObject, then B must also be derived from ExternalObject and have
the same full name. If A is not derived from ExternalObject then B shall not be derived from
ExternalObject. See section 12.9.7.

e If B is not replaceable then A shall not be replaceable.

e If B is transitively non-replaceable then A must be transitively non-replaceable (section 6.3.1). For
all elements of the inheritance interface of B there must exist a compatible element with the same
name and visibility in the inheritance interface of A. The interface of A shall not contain any other
elements.

[We might even extend this to say that A and B should have the same contents, as in the additional
restrictions below.]

e If B is replaceable then for all elements of the component interface of B there must exist a plug-
compatible element with the same name in the component interface of A.

e If B is neither transitively non-replaceable nor replaceable then A must be linked to the same class,
and for all elements of the component interface of B there must thus exist a plug-compatible element
with the same name in the component interface of A.

e Additional restrictions on the additional information. These elements should either match or have
a natural total order:

— If B is a non-replaceable long class definition A must also be a long class definition.
— The flow or stream prefix should be matched for compatibility.

— Declared variability is ordered constant < parameter < discrete < continuous-time (Real
without prefix), and A is only compatible with B if the declared variability in A is less than or
equal the variability in B.

[For a redeclaration of an element the variability prefix is as default inherited by the redecla-
ration (i.e. no need to repeat parameter when redeclaring a parameter).]

— The input and output prefixes must be matched. This ensures that the rules regarding
inputs/outputs for matching connectors and (non-connector inputs) are preserved, as well as
the restriction on blocks.

[For a redeclaration of an element the input or output prefiz is inherited from the original
declaration.]

— The inner and/or outer prefixes should be matched.

[For a redeclaration of an element the inner and/or outer prefizes are inherited from the
original declaration (since it is not possible to have inner and/or outer as part of a redeclare).]

— If B is final A must also be final and have the same semantic contents.
— The number of array dimensions in A and B must be matched.

— Conditional components are only compatible with conditional components. The conditions
must have equivalent contents (similar to array sizes, except there is no : for conditional
components).

[For a redeclaration of an element the conditional part is inherited from the original.]

74

Modelica Language Specification 3.5-dev
Modelica 6.5. Plug-Compatibility or Restricted Subtyping

Language

— A function class is only compatible with a function class, a package class only compatible
with a package class, a connector class only with a connector class, a model or block class
only compatible with a model or block class, and a type or record class only compatible
with a type or record class.

— If B is an enumeration type A must also be an enumeration type and vice versa. If B is an
enumeration type not defined as (:) then A must have the same enumeration literals in the
same order; if B is an enumeration type defined as (:) then there is no restriction on the
enumeration type A.

— If B is a built-in type then A must also be of the same built-in type and vice versa.

[Intuitively, that the type A is a subtype of the type of B means that all important elements of B are be
present in A.]

Plug-compatibility is a further restriction of compatibility (subtyping) defined in section 6.5, and further
restricted for functions, see section 6.6. For a replaceable declaration or modifier the default class must
be compatible with the constraining class.

For a modifier the following must apply:
e The modified element should exist in the element being modified.

e The modifier should be compatible with the element being modified, and in most cases also plug-
compatible, section 6.5.

[If the original constraining flat class is legal (no references to unknown elements and no illegal use of
class/component), and modifiers legal as above, then the resulting flat class will be legal (no references to
unknown elements and no illegal use of class/component and compatible with original constraining class)
and references refer to similar entities.]

6.5 Plug-Compatibility or Restricted Subtyping

[If a sub-component is redeclared, see section 7.3, it is impossible to connect to any new connector.
A connector with input prefix must be connected to, and since one cannot connect across hierarchies,
one should not be allowed to introduce such a connector at a level where a connection is not possible.
Therefore all public components present in the interface A that are not present in B must be connected by
default.]

Definition 6.6. Plug-compatibility (= restricted subtyping). An interface A is plug-compatible
with (a restricted subtype of) an interface B (or the constraining interface of B) iff:

e A is compatible with (subtype of) B.
e All public components present in A but not in B must be default-connectable (as defined below).
O
Definition 6.7. Default connectable. A component of an interface is default-connectable iff:
e All of its components are default connectable.
e A connector component must not be an input.
[Otherwise a connection to the input will be missing.)
e A connector component must not be of an expandable connector class.
[The expandable connector does potentially have inputs.]

e A parameter, constant, or non-connector input must either have a binding equation or all of its
sub-components must have binding equations.

O
Based on the above definitions, there are the following restrictions:

e A redeclaration of an inherited top-level component must be compatible with (subtype of) the
constraining interface of the element being redeclared.

(0]

Modelica Language Specification 3.5-dev
Modelica 6.6. Function-Compatibility or Function-Subtyping for Functions

Language

e In all other cases redeclarations must be plug-compatible with the constraining interface of the
element being redeclared.

[The reason for the difference is that for an inherited top-level component it is possible to connect to the
additional connectors, either in this class or in a derived class.

Ezample:

partial model TwoFlanges
Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a;
Modelica.Mechanics.Rotational.Interfaces.Flange_b flange_b;
end TwoFlanges;

partial model FrictionElement
extends TwoFlanges;

end FrictionElement;

model Clutch "compatible - but not plug-compatible with FrictionElement"
Modelica.Blocks.Interfaces.Reallnput pressure;
extends FrictionElement;

end Clutch;

model DriveLineBase

extends TwoFlanges;

Inertia J1;

replaceable FrictionElement friction;
equation

connect (flange_a, Jl.flange_a);

connect(J1.flange_b, friction.flange_a);

connect (friction.flange_b, flange_b);
end DrivelLineBase;

model DriveLine
extends DrivelLineBase(redeclare Clutch friction);
Constant const;
equation
connect (const.y, frition.pressure);
// Legal connection to new input connector.
end DriveLine;

model UseDriveLine "illegal model"
DrivelLineBase base(redeclare Clutch friction);
// Cannot connect to friction.pressure

end UseDriveline;

If a subcomponent is redeclared, it is impossible to connect to any new connector. Thus any new con-
nectors must work without being connected, i.e., the default connection of flow variables. That fails for
inputs (and expandable connectors may contain inputs). For parameters and non-connector inputs it
would be possible to provide bindings in a derived class, but that would require hierarchical modifiers and
it would be bad modeling practice that a hierarchical modifier must be used in order to make a model
valid. A replaceable class might be used as the class for a sub-component, therefore plug-compatibility is
required not only for replaceable sub-components, but also for replaceable classes.]

6.6 Function-Compatibility or Function-Subtyping for Functions

[Functions may be called with either named or positional arguments, and thus both the name and order
is significant. If a function is redeclared, see section 7.3, any new arguments must have defaults (and be
at the end) in order to preserve the meaning of existing calls.)

Definition 6.8. Function-compatibility or function-subtyping for functions. A function class
A is function-compatible with or a function subtype of function class B iff (the terms function-compatible

76

Modelica Language Specification 3.5-dev
Modelica 6.7. Type Compatible Expressions

Language

and function subtype of are synonyms and used interchangeably):
e A is compatible to (subtype of) B.

e All public input components of B have correspondingly named public input components of A in the
same order and preceding any additional public input components of A.

e All public output components of B have correspondingly named public output components of A in
the same order and preceding any additional public output components of A.

e A public input component of A must have a binding assignment if the corresponding named element
has a binding assignment in B.

e A public input component of A not present in B must have a binding assignment.

e If A is impure, then B must also be impure, compare section 12.3.

Based on the above definition the following restriction holds:

e The interface of a redeclared function must be function-compatible with or a function subtype of
the constraining interface of the function being redeclared.

[Example: Demonstrating a redeclaration using a function-compatible function

function GravityInterface

input Modelica.Units.SI.Position position[3];

output Modelica.Units.SI.Acceleration acceleration[3];
end GravityInterface;

function PointMassGravity

extends GravityInterface;

input Modelica.Units.SI.Mass m;
algorithm

acceleration := -Modelica.Constants.G*m*position/(position*position)~1.5;
end PointMassGravity;

model Body
model UseDrivelLine "illegal model"
DrivelLineBase base(redeclare Clutch friction);
// Cannot connect to friction.pressure
end UseDrivelLine;
Modelica.Mechanics.MultiBody.Interface.Frame_a frame_a;

replaceable function gravity = GravityInterface;
equation

frame_a.f = gravity(frame_a.r0);

// or gravity(position=frame_a.r0);

frame_a.t = zeros(3);
end Body;

model PlanetSimulation
function sunGravity = PointMassGravity (m=2e30);
Body planetl(redeclare function gravity = sunGravity);
Body planet2(redeclare function gravity = PointMassGravity (m=2e30));

end PlanetSimulation;

Note: PointMassGravity is not function-compatible with GravityInterface (no default for m), but
sunGravity inside PlanetSimulation is function-compatible with GravityInterface.]

6.7 Type Compatible Expressions

Certain expressions consist of an operator applied to two or more type compatible sub-expressions (A and
B), including binary operators, e.g. A + B, if-expressions, e.g. if x then A else B, and array expres-

7

Modelica Language Specification 3.5-dev

Modelica 6.7. Type Compatible Expressions

Language

sions, e.g. {A, B}. The resulting type of the expression in case of two type compatible subexpressions A
and B is defined as follows:

If A is a record-expression B must also be a record-expression with the same named elements. The
type compatible expression is a record comprised of named elements that are compatible with the
corresponding named elements of both A and B. In an array expression the two records may contain
elements with different sizes, but apart from that they must be of compatible types. That generates
a heterogenous array of records, see chapter 10.

If A is an array expression then B must also be an array expression, and ndims(A) = ndims(B).
The type compatible expression is an array expression with elements compatible with the elements
of both A and B. If both size(A) and size(B) are known and size(A) = size(B) then this defines
the size of the type compatible expression, otherwise the size of the expression is not known until
the expression is about to be evaluated. In case of an if-expression the size of the type compatible
expression is defined based on the branch selected, and for other cases size(A) = size(B) must
hold at this point.

If A is a scalar expression of a simple type B must also be a scalar expression of a simple type.

If A is a Real expression then B must be a Real or Integer expression and the type compatible
expression is Real, compare section 10.6.13.

If A is an Integer expression then B must be a Real or Integer expression. For exponentiation and
division the type compatible expression is Real (even if both A and B are Integer) see section 10.6.7
and section 10.6.5, in other cases the type compatible expression is Real or Integer (same as B),
compare section 10.6.13.

If Ais a Boolean expression then B must be a Boolean expression and the type compatible expression
is Boolean.

If A is a String expression then B must be a String expression and the type compatible expression
is String.

If A is an enumeration expression then B must be an enumeration expression and the type compatible
expression is enumeration expression, and all enumeration expressions must be defined in terms of
an enumeration type with the same enumeration literals in the same order.

If A has an operator record base-class then B must also have an operator record base-class,
and it must be the same, and otherwise neither A nor B may have an operator record base-class.
This is also the operator record base-class for the expression e.g. for if (cond) then A else B.

If A is derived from ExternalObject then B must also be derived from ExternalObject and they
must have the same full name; and otherwise neither A nor B may be derived from ExternalObject.
The common full name also defines the type of the expression, e.g. for if (cond) then A else B.

78

Chapter 7

Inheritance, Modification, and
Redeclaration

One of the major benefits of object-orientation is the ability to extend the behavior and properties of
an existing class. The original class, known as the base class, is extended to create a more specialized
version of that class, known as the derived class. In this process, the data and behavior of the original
class in the form of variable declarations, equations, and certain other contents are reused, or inherited,
by the derived class. In fact, the inherited contents is copied from the superclass into the derived class,
but before copying certain operations, such as type expansion, checking, and modification, are performed
on the inherited contents when appropriate. This chapter describes the inheritance concept in Modelica,
together with the related concepts modification and redeclaration.

7.1 Inheritance — Extends Clause

The class A is called a base class of B, if B extends A. The converse relation is then expressed as B being a
derived class of A, or as B being derived from A. This relation is specified by an extends-clause in B or in
one of B’s base classes. A class inherits all elements from its base classes, and may modify all non-final
elements inherited from base classes, as explained below.

The extends-clause is used to specify inheritance from a base class into an (enclosing) class containing
the extends-clause. It is an unnamed element of a class definition that uses a name and an optional
modification to specify a base class of the class defined using the class definition. The syntax of the
extends-clause is as follows:

extends-clause
extends name [class-modification] [annotation]

The name of the base class is looked up in the partially flattened enclosing class (section 5.2) of the
extends-clause. The found base class is flattened with a new environment and the partially flattened
enclosing class of the extends-clause. The new environment is the result of merging

e arguments of all enclosing class environments that match names in the flattened base class
e the optional class-modification of the extends-clause
in that order.

[Example:

class A
parameter Real a, b;
end A;

class B
extends A(b = 2);
end B;

79

Modelica Language Specification 3.5-dev
Modelica 7.1. Inheritance — Extends Clause

Language

class C
extends B(a = 1);
end C;

]

The elements of the flattened base class become elements of the flattened enclosing class, and are added
at the place of the extends-clause: specifically components and classes, the equation sections, algorithm
sections, optional external-clause, and the contents of the annotation at the end of the class, but excluding
import-clauses.

[From the example above we get the following flattened class:

class Cinstance
parameter Real a
parameter Real b
end Cinstance;

1;
2;

The ordering of the merging rules ensures that, given classes A and B defined above,

class C2
B bcomp(b = 3);
end C2;

yields an instance with bcomp.b = 3, which overridesb = 2.
The declaration elements of the flattened base class shall either:
e Not already exist in the partially flattened enclosing class (i.e., have different names).
e The new element is a long form of redeclare or uses the class extends A syntax, see section 7.3.

e Be exactly identical to any element of the flattened enclosing class with the same name and the
same level of protection (public or protected) and same contents. In this case, the first element in
order (can be either inherited or local) is kept. It is recommended to give a warning for this case;
unless it can be guaranteed that the identical contents will behave in the same way.

Otherwise the model is incorrect.

[Clarifiying order:

function A
input Real a;
input Real b;

end A;

function B
extends A;
input Real a;
end B;
// The inputs of B are "a, b” in that order; and the "input Real a;” is ignored

]

Equations of the flattened base class that are syntactically equivalent to equations in the flattened
enclosing class are discarded. This feature is deprecated, and it is recommended to give a warning
when discarding them and for the future give a warning about all forms of equivalent equations due to
inheritance.

[Equations that are mathematically equivalent but not syntactically equivalent are not discarded, hence
yield an overdetermined system of equations.]

7.1.1 Multiple Inheritance

Multiple inheritance is possible since multiple extends-clauses can be present in a class.

80

Modelica Language Specification 3.5-dev
Modelica 7.1. Inheritance — Extends Clause

Language

7.1.2 Inheritance of Protected and Public Elements

If an extends-clause is used under the protected heading, all elements of the base class become protected
elements of the current class. If an extends-clause is a public element, all elements of the base class are
inherited with their own protection. The eventual headings protected and public from the base class
do not affect the consequent elements of the current class (i.e., headings protected and public are not
inherited).

7.1.3 Restrictions on the Kind of Base Class

Since specialized classes of different kinds have different properties, see section 4.6, only specialized
classes that are in some sense compatible to each other can be derived from each other via inheritance.
The following table shows which kind of specialized class can be used in an extends clause of another
kind of specialized class (the grey cells mark the few exceptional cases, where a specialized class can be
derived from a specialized class of another kind):

Base Class
Derived package | operator | function operaFor type | record operator | expandable connector | block | model | class
Class function record connector
package yes yes
operator yes yes
function yes yes
operator
function yes yes yes
type yes yes
record yes yes
operator
record yes yes
expandable
yes yes
connector
connector yes yes yes yes yes
block yes yes yes
model yes yes yes yes
class yes

If a derived class is inherited from another type of specialized class, then the result is a specialized class
of the derived class type.

[For example, if a block inherits from a record, then the result is a block.]

All specialized classes can be derived from class, provided that the resulting class fulfills the restriction
of the specialized class. A class may only contain class-definitions, annotations, and extends-clauses
(having any other contents is deprecated).

[1t is recommended to use the most specific specialized class.]

The specialized classes package, operator, function, type, record, operator record, and expandable
connector can only be derived from their own kind and from class.

[E.g. a package can only be base class for packages. All other kinds of classes can use the import-clause
to use the contents of a package.]

[Example:

record RecordA

end RecordA;

package PackageA

end Packagel;

package PackageB

extends PackagelA; // fine

end PackageB;

model ModelA

extends RecordA; // fine
end ModelA;

81

Modelica Language Specification 3.5-dev
Modelica 7.2. Modifications

Language

model ModelB
extends PackageA; // error, inheritance not allowed
end ModelB;

7.1.4 Restrictions on Base Classes and Constraining Types to be Transitively
Non-Replaceable

The class name used after extends for base-classes and for constraining classes must use a class reference
considered transitively non-replaceable, see definition in section 6.3.1. For a replaceable component
declaration without constraining clause the class must use a class reference considered transitively non-
replaceable.

[The requirement to use a transitively non-replaceable name excludes the long form of redeclare, i.e.
redeclare model extends M... where M must be an inherited replaceable class.]

[The rule for a replaceable component declaration without constraining clause implies that constraining
classes are always transitively non-replaceable — both if explicitly given or implicitly by the declaration.)

7.2 Modifications

A modification is part of an element. It modifies the instance generated by that element. A modifica-
tion contains element modifications (e.g., vec(unit = "V") = 1000) and element-redeclarations (e.g.,
redeclare type Voltage = Real(unit="V")).

There are three kinds of constructs in the Modelica language in which modifications can occur:
e Variable declarations.
e Short class declarations.
e Extends-clauses.

A modifier modifies one or more declarations from a class by changing some aspect(s) of the declarations.
The most common kind of modifier just changes the default value or the start value in a binding equation;
the value and/or start-value should be compatible with the variable according to section 6.7.

An element modification overrides the declaration equation in the class used by the instance generated
by the modified element.

[Example: Modifying the default start value of the altitude variable:

Real altitude(start = 59404);

]

A modification (e.g., C1 c1(x = 5)) is called a modification equation, if the modified variable (here:
cl.x) is a non-parameter variable.

[The modification equation is created, if the modified component (here: cl) is also created (see sec-
tion 4.5). In most cases a modification equation for a non-parameter variable requires that the variable
was declared with a declaration equation, see section 4.7; in those cases the declaration equation is re-
placed by the modification equation.]

A more dramatic change is to modify the type and/or the prefizes and possibly the dimension sizes of a
declared element. This kind of modification is called an element-redeclaration (section 7.3) and requires
the special keyword redeclare to be used in the modifier in order to reduce the risk for accidental
modeling errors. In most cases a declaration that can be redeclared must include the prefix replaceable
(section 7.3). The modifier value (and class for redeclarations) is found in the context in which the
modifier occurs, see also section 5.3.1.

[Example: Scope for modifiers:

82

Modelica Language Specification 3.5-dev

rrlod/;?cq 7.2. Modifications
anguage
model B
parameter Real Xx;
package Medium = Modelica.Media.PartialMedium;
end B;
model C
parameter Real x = 2;
package Medium = Modelica.Media.PartialMedium;
B b(x = x, redeclare package Medium = Medium);
// The 'x' and "Medium' being modified are declared in the model B.
// The modifiers '= x' and '= Medium’' are found in the model C.
end C;
model D
parameter Real x = 3;
package Medium = Modelica.Media.PartialMedium;
C c(b(x = x, redeclare package Medium = Medium));
// The 'x' and 'Medium' being modified are declared in the model B.
// The modifiers '= x' and '= Medium’ are found in the model D.
end D;

]

When present, the description-string of a modifier overrides the existing description.

7.2.1 Syntax of Modifications and Redeclarations
The syntax is defined in the grammar, appendix A.2.5.

7.2.2 Modification Environment

The modification environment of a class contains arguments which modify elements of the class (e.g.,
parameter changes) when the class is flattened. The modification environment is built by merging class
modifications, where outer modifications override inner modifications.

[This should not be confused with inner outer prefizes described in section 5.4.]

7.2.3 Merging of Modifications

Merging of modifiers means that outer modifiers override inner modifiers. The merging is hierarchical,
and a value for an entire non-simple component overrides value modifiers for all components, and it is an
error if this overrides a final prefix for a component, or if value for a simple component would override
part of the value of a non-simple component. When merging modifiers each modification keeps its own
each prefix.

[Example: The following larger example demonstrates several aspects:

class C1
class C11
parameter Real x;
end C11;
end C1;

class C2
class C21

end C21;
end C2;

class C3
extends C1;
Ci11 t(x = 3); // ok, Cll has been inherited from C1
€21 u; // ok, even though C21 is inherited below

83

Modelica Language Specification 3.5-dev
Modelica 7.2. Modifications

Language

extends C2;
end C3;

The following example demonstrates overriding part of non-simple component:

record A
parameter Real x;
parameter Real y;
end A;

model B
parameter A a = A(2, 3);
end B;

model C
B bi(a(x = 4)); // Error since attempting to override value for a.x when a
has a value.
end C;

The modification environment of the declaration of t is (x = 3). The modification environment is built
by merging class modifications, as shown by:

class C1
parameter Real a;
end C1;

class C2
parameter Real b;
parameter Real c;
end C2;

class C3

parameter Real x1; // No default value

parameter Real x2 = 2; // Default value 2

parameter Cl x3; // No default value for x3.a

parameter C2 x4(b = 4); // x4.b has default value 4

parameter C1 x5(a = 5); // x5.a has default value 5

extends Cl; // No default value for inherited element a

extends C2(b = 6, ¢ = 77); // Inherited b has default value 6
end C3;

class C4
extends C3(x2 = 22, x3(a = 33), x4(c = 44), x5 = x3, a = 55, b = 66);
end C4;

Outer modifications override inner modifications, e.g., b = 66 overrides the nested class modification of
extends C2(b = 6). This is known as merging of modifications: merge((b = 66), (b = 6)) becomes
(b = 66).

A flattening of class C4 will give an object with the following variables:

Variable ‘ Default value

x1 none
x2 22
x3.a 33
x4.b 4
x4.c 44
x5.a x3.a
a %)
66
c 77

84

Modelica Language Specification 3.5-dev
Modelica 7.2. Modifications

Language

7.2.4 Single Modification

Two arguments of a modification shall not modify the same element, attribute, or description-string.
When using qualified names the different qualified names starting with the same identifier are merged
into one modifier. If a modifier with a qualified name has the each or final prefix, that prefix is only
seen as applied to the final part of the name.

[Example:

class C1
Real x[3];
end C1;
class C2 = C1(x = ones(3), x = ones(3)); // Error: x designated twice
class C3
class C4
Real x;
end C4;
C4 a(final x.unit = "V", x.displayUnit = "mV", x = 5.0);
// Ok, different attributes designated (unit, displayUnit and value)
// identical to:
C4 b(x(final unit = "V", displayUnit = "mV") = 5.0));
end C3;

The following examples are incorrect:

mi(r = 1.5, 1.6) // Multiple modifier for r (its value)
mi(r = 1.5, = 1.5) // Multiple modifier for r (its value) — even if identical
ml(r.start = 2, r(start = 3)) // Multiple modifier for r.start
mi(x.r = 1.5 "x", x.r(start = 2.0) "y")) // Multiple description—string for x.r
mi(r = RO, r(y = 2)) // Multiple modifier for r.y — both direct value and

// part of record

r
r

The following examples are correct:

mi(r = 1.5, r(start = 2.0))
mi(r = 1.6, r "x")
mi(r = RO, r(y(min = 2)))

7.2.5 Modifiers for Array Elements
The following rules apply to modifiers:

e The each keyword on a modifier requires that it is applied in an array declaration/modification,
and the modifier is applied individually to each element of the enclosing array (with regard to the
position of each). In case of nested modifiers this implies it is applied individually to each element
of each element of the enclosing array; see example. If the modified element is a vector and the
modifier does not contain the each-prefix, the modification is split such that the first element in the
vector is applied to the first element of the vector of elements, the second to the second element,
until the last element of the vector-expression is applied to the last element of the array; it is an
error if these sizes do not match. Matrices and general arrays of elements are treated by viewing
those as vectors of vectors etc.

e If a nested modifier is split, the split is propagated to all elements of the nested modifier, and
if they are modified by the each-keyword the split is inhibited for those elements. If the nested
modifier that is split in this way contains re-declarations that are split it is illegal.

[Example:

model C
parameter Real a [3];
parameter Real 4;

end C;

model B

85

Modelica Language Specification 3.5-dev
Modelica 7.2. Modifications

Language

C c[5](each a = {1, 2, 3}, 4 = {1, 2, 3, 4, 5});
parameter Real b = 0;
end B;

This implies c[i] .al[j] = j and c[i].d = i.

model D
B b(each c.a = {3, 4, 5}, c.d = {2, 3, 4, 5, 6});
// Equivalent to:
B b2(c(each a = {3, 4, 5}, d = {2, 3, 4, 5, 6}));
end D;

This implies b.c[i].al[j] = 2+j andb.c[i].d = 1+i.

model E

B b[2] (each c(each a = {1, 2, 3}, d = {1, 2, 3, 4, 5}), p = {1, 2});

// Without the first each one would have to use:

B b2[2](c(each a = {1, 2, 3}, d = fil1({1, 2, 3, 4, 5}, 2)), p = {1, 2});
end E;

This implies b[k] .c[i]l.alj] = j, blk].c[i]l.d = i, and b[k].p = k. For c.a the additional (outer)
each has no effect, but it is necessary for c.d.

Specifying array dimensions after the type works the same as specifying them after the variable name.

model F
Real faill[2](each start = {1, 2}); // lllegal
Real workl[2](each start = 1); // Legal
Real [2] fail2(each start = {1, 2}); // Illegal
Real [2] work2(each start = 2); // Legal
end F;

7.2.6 Final Element Modification Prevention

An element defined as final by the final prefix in an element modification or declaration cannot be
modified by a modification or by a redeclaration. All elements of a final element are also final.

[Setting the value of a parameter in an experiment environment is conceptually treated as a modifica-
tion. This implies that a final modification equation of a parameter cannot be changed in a simulation
environment.)

[Example: Final component modification.

type Angle =
Real(final quantity = "Angle", final unit = "rad", displayUnit = "deg");

model TransferFunction
parameter Real b[:]
parameter Real al:]

{1} "numerator coefficient vector";
{1, 1} "denominator coefficient vector";

end TransferFunction;

model PI "PI controller"

parameter Real k = 1 "gain";

parameter Real T = 1 "time constant";

TransferFunction tf(final b = k * {T, 1}, final a = {T, 0});
end PI;

model Test

PI ci(k = 2, T = 3); // fine, will indirectly change tf.b to 2 x {3, 1}
PI c2(tf(b = {1})); // error, b is declared as final
end Test;

86

Modelica Language Specification 3.5-dev
Modelica 7.3. Redeclaration

Language

]

[Example: Final class declaration.

model Test2
final model MyTF = TransferFunction(b = {1, 2});
/* Equivalently:
final model MyTF = TransferFunction(final a, final b = {1, 2});

*/
MyTF tf1; // fine
MyTF tf2(a = {1, 2}); // error, all elements in MyTF are final
model M = MyTF(a = {4}); // error, all elements in MyTF are final
model TFX

extends MyTF; // fine

Real foo = 1.0;
end TFX;
TFX tfx(foo = 2.0); // fine, foo is not from MyRF
TFX tfx2(a = {1, 3}); // error, all elements from MyTF are final
model TFX3 = TFX(a = {1, 4}); // error, all elements from MyTF are final

end Test2;

7.3 Redeclaration

A redeclare construct in a modifier replaces the declaration of a local class or component with another
declaration. A redeclare construct as an element replaces the declaration of a local class or component
with another declaration. Both redeclare constructs work in the same way. The redeclare construct
as an element requires that the element is inherited, and cannot be combined with a modifier of the same
element in the extends-clause. For modifiers the redeclare of classes uses a special short-class-definition
construct; that is a subset of normal class definitions and semantically behave as the corresponding
class-definition.

A modifier with the keyword replaceable is automatically seen as being a redeclare.

In redeclarations some parts of the original declaration is automatically inherited by the new declaration.
This is intended to make it easier to write declarations by not having to repeat common parts of the
declarations, and does in particular apply to prefixes that must be identical. The inheritance only applies
to the declaration itself and not to elements of the declaration.

The general rule is that if no prefix within one of the following groups is present in the new declaration
the old prefixes of that kind are preserved.

The groups that are valid for both classes and components:

e public, protected

e inner, outer

e constraining type according to rules in section 7.3.2.
The groups that are only valid for components:

o flow, stream

e discrete, parameter, constant

e input, output

e array dimensions

Note that if the old declaration was a short class definition with array dimensions the array dimensions
are not automatically preserved, and thus have to be repeated in the few cases they are used.

Replaceable component array declarations with array sizes on the left of the component are seen as
syntactic sugar for having all arrays sizes on the right of the component; and thus can be redeclared in
a consistent way.

87

Modelica Language Specification 3.5-dev
Modelica 7.3. Redeclaration

Language

[Note: The inheritance is from the original declaration. In most cases replaced or original does not
matter. It does matter if a user redeclares a variable to be a parameter and then redeclares it without
parameter.]

[

model HeatExchanger
replaceable parameter GeometryRecord geometry;
replaceable input Real ul[2];

end HeatExchanger;

HeatExchanger (
/*xredeclarex/ replaceable /xparameterx/ GeoHorizontal geometry,
redeclare /+input*/ Modelica.Units.SI.Angle u /+[2]x/);
// The semantics ensure that parts in /%.x/ are automatically added
// from the declarations in HeatExchanger.

Ezxample of arrays on the left of the component name:

model M
replaceable Real [4] x[2];
// Seen as syntactic sugar for "replaceable Real x[2, 4];”
// Note the order.
end M;
M m(redeclare Modelica.Units.SI.Length x[2, 4]); // Valid redeclare of the type

7.3.1 The class extends Redeclaration Mechanism

A class declaration of the type redeclare class extends B(...), where class as usual can be replaced
by any other specialized class, replaces the inherited class B with another declaration that extends
the inherited class where the optional class-modification is applied to the inherited class. Inherited
B here means that the class containing redeclare class extends B(...) should also inherit another
declaration of B from one of its extends-clauses. The new declaration should explicitly include redeclare.

[Since the rule about applying the optional class-modification implies that all declarations are inherited
with modifications applied, there is no need to apply modifiers to the new declaration.]

For redeclare class extends B(...) the inherited class is subject to the same restrictions as a rede-
clare of the inherited element, and the original class B should be replaceable, and the new element is only
replaceable if the new definition is replaceable. In contrast to normal extends it is not subject to the
restriction that B should be transitively non-replaceable (since B should be replaceable).

The syntax rule for class extends construct is in the definition of the class-specifier nonterminal
(see also class declarations in section 4.5):

class-definition
[encapsulated] class-prefixes
class-specifier

class-specifier : long-class-specifier |
long-class-specifier

| extends IDENT [class-modification] description-string
composition end IDENT

The nonterminal class-definition is referenced in several places in the grammar, including the fol-
lowing case which is used in some examples below, including package extends and model extends:

element
import-clause |
extends-clause |
[redeclare]
[final 1]

88

Modelica Language Specification 3.5-dev
Modelica 7.3. Redeclaration

Language

[inner] [outer 1]
((class-definition | component-clause) |
replaceable (class-definition | component-clause)
[constraining-clause comment])

[Example to extend from existing packages:

package PowerTrain // library from someone else
replaceable package GearBoxes

end GearBoxes;
end PowerTrain;

package MyPowerTrain
extends PowerTrain; // use all classes from PowerTrain
redeclare package extends GearBoxes // add classes to sublibrary

end GearBoxes;
end MyPowerTrain;

Ezxample for an advanced type of package structuring with constraining types:

partial package PartialMedium "Generic medium interface"
constant Integer nX "number of substances";
replaceable partial model BaseProperties
Real XI[nX];

end BaseProperties;

replaceable partial function dynamicViscosity
input Real p;
output Real eta;...
end dynamicViscosity;
end PartialMedium;

package MoistAir "Special type of medium"
extends PartialMedium (nX=2);

redeclare model extends BaseProperties(T(stateSelect = StateSelect.prefer))
// replaces BaseProperties by a new implementation and
// extends from Baseproperties with modification
// note, nX =2 (I)
equation
X = {0, 1};

end BaseProperties;

redeclare function extends dynamicViscosity
// replaces dynamicViscosity by a new implementation and
// extends from dynamicViscosity
algorithm
eta := 2 * p;
end dynamicViscosity;
end MoistAir;

Note, since MostAir extends from PartialMedium, constant nX = 2 in package MoistAir and the model
BaseProperties and the function dynamicViscosity is present in MoistAir. By the following defini-
tions, the available BaseProperties model is replaced by another implementation which extends from the
BaseProperties model that has been temporarily constructed during the extends of package MoistAir
from PartialMedium. The redeclared BaseProperties model references constant nX which is 2, since by
construction the redeclared BaseProperties model is in a package with nX = 2.

This definition is compact but is difficult to understand. At a first glance an alternative exists that is
more straightforward and easier to understand:

89

Modelica Language Specification 3.5-dev
Modelica 7.3. Redeclaration

Language

package MoistAir2 "Alternmative definition that does not work"
extends PartialMedium(nX=2,
redeclare model BaseProperties = MoistAir_BaseProperties,
redeclare function dynamicViscosity = MoistAir_dynamicViscosity);

model MoistAir_BaseProperties
// wrong model since nX has no value
extends PartialMedium.BaseProperties;
equation
X = {1, 0};
end MoistAir_BaseProperties;

model MoistAir_dynamicViscosity
extends PartialMedium.dynamicViscosity;
algorithm
eta := p;
end MoistAir_dynamicViscosity;
end MoistAir2;

Here, the usual approach is used to extend (here from PartialMedium) and in the modifier perform all
redeclarations. In order to perform these redeclarations, corresponding implementations of all elements of
PartialMedium have to be given under a different name, such as MoistAir2.MoistAir_BaseProperties
, since the name BaseProperties already exists due to extends PartialMedium. Then it is possible in
the modifier to redeclare PartialMedium.BaseProperties to MoistAir2.MoistAir_BaseProperties.
Besides the drawback that the namespace is polluted by elements that have different names but the same
implementation (e.g. MoistAir2.BaseProperties is identical to MoistAir2.MoistAir_BaseProperties
) the whole construction does not work if arrays are present that depend on constants in PartialMedium,
such as X[nX]: The problem is that MoistAir_BaseProperties exrtends from PartialMedium.BaseProperties
where the constant nX does not yet have a value. This means that the dimension of array X is unde-
fined and model MoistAir_BaseProperties is wrong. With this construction, all constant definitions
have to be repeated whenever these constants shall be used, especially in MoistAir_BaseProperties and
MoistAir_dynamicViscosity. For larger models this is not practical and therefore the only practically
useful definition is the complicated construction in the previous example with redeclare model extends
BaseProperties.

To detect this issue the rule on lookup of composite names (section 5.3.2) ensures that PartialMedium.
dynamicViscosity is incorrect in a simulation model.)

7.3.2 Constraining Type

In a replaceable declaration the optional constraining-clause defines a constraining type. Any mod-
ifications following the constraining type name are applied both for the purpose of defining the actual
constraining type and they are automatically applied in the declaration and in any subsequent redecla-
ration. The precedence order is that declaration modifiers override constraining type modifiers.

If the constraining-clause is not present in the original declaration (i.e., the non-redeclared declara-
tion):

e The type of the declaration is also used as a constraining type.

e The modifiers for subsequent redeclarations and constraining type are the modifiers on the com-
ponent or short-class-definition if that is used in the original declaration, otherwise empty.

The syntax of a constraining-clause is as follows:

constraining-clause
constrainedby name [class-modification]

[Example: Merging of modifiers:

class A
parameter Real x;
end A;

90

Modelica Language Specification 3.5-dev
7.3. Redeclaration

¢
Modelica
language

class B
parameter Real x = 3.14, y; // B is a subtype of A
end B;

class C
replaceable A a(x = 1);
end C;

class D
extends C(redeclare B a(y = 2));
end D;

which is equivalent to defining D as

class D
Ba(x =1, y = 2);
end D;

A modification of the constraining type is automatically applied in subsequent redeclarations:

model ElectricalSource
replaceable SineSource source constrainedby MO(final n=5);

end ElectricalSource;

model TrapezoidalSource

extends ElectricalSource(

redeclare Trapezoidal source); // source.n=5
end TrapezoidalSource;

A modification of the base type without a constraining type is automatically applied in subsequent redec-
larations:

model Circuit
replaceable model NonlinearResistor = Resistor (R=100) ;

end Circuit;

model Circuit2
extends Circuit(
redeclare replaceable model NonlinearResistor
= ThermoResistor (TO = 300));
// As a result of the modification on the base type,
// the default value of R is 100
end Circuit2;

model Circuit3
extends Circuit2(
redeclare replaceable model NonlinearResistor
= Resistor (R = 200));
// The TO modification is not applied because it did not
// appear in the original declaration
end Circuit3;

Circuit?2 is intended to illustrate that a user can still select any resistor model (including the original
one, as is done in Circuit3), since the constraining type is kept from the original declaration if not
specified in the redeclare. Thus it is easy to select an advanced resistor model, without limiting the
possible future changes.

A redeclaration can redefine the constraining type:

model Circuit4
extends Circuit2(
redeclare replaceable model NonlinearResistor

91

Modelica Language Specification 3.5-dev
Modelica 7.3. Redeclaration

Language

= ThermoResistor constrainedby ThermoResistor);
end Circuité;

model Circuitb
extends Circuit4(
redeclare replaceable model NonlinearResistor = Resistor); // illegal
end Circuith;

]

The class or type of component shall be a subtype of the constraining type. In a redeclaration of
a replaceable element, the class or type of a component must be a subtype of the constraining type.
The constraining type of a replaceable redeclaration must be a subtype of the constraining type of the
declaration it redeclares. In an element modification of a replaceable element, the modifications are
applied both to the actual type and to the constraining type.

In an element-redeclaration of a replaceable element the modifiers of the replaced constraining type are
merged to both the new declaration and to the new constraining type, using the normal rules where
outer modifiers override inner modifiers.

When a class is flattened as a constraining type, the flattening of its replaceable elements will use the
constraining type and not the actual default types.

The number of dimension in the constraining type should correspond to the number of dimensions in
the type-part. Similarly the type used in a redeclaration must have the same number of dimensions as
the type of redeclared element.

[Example:

replaceable T1 x[n] constrainedby T2;
replaceable type T=T1[n] constrainedby T2;
replaceable T1[n] x constrainedby T2;

In these examples the number of dimensions must be the same in T1 and T2, as well as in a redeclaration.
Normally T1 and T2 are scalar types, but both could also be defined as array types (with the same number
of dimensions). Thus if T2 is a scalar type (e.g. type T2 = Real) then T1 must also be a scalar type,
and if T2 is defined as vector type (e.g. type T2 = Reall3]) then T1 must also be vector type.]

7.3.2.1 Constraining-clause annotations

Description and annotations on the constraining-clause are applied to the entire declaration, and it is an
error if they also appear on the definition.

[The intent is that the description and/or annotation are at the end of the declaration, but it is not
straightforward to specify this in the grammar.)

[Example:

replaceable model Loadl =

Resistor constrainedby TwoPin "The Load"; // Recommended
replaceable model Load2 =

Resistor "The Load" constrainedby TwoPin; // ldentical to Loadl
replaceable model Load3 =

Resistor "The Load" constrainedby TwoPin "The Load"; // Error

replaceable Resistor loadl

constrainedby TwoPin "The Load"; // Recommended
replaceable Resistor load2

"The Load" comnstrainedby TwoPin; // ldentical to loadl
replaceable Resistor load3

"The Load" constrainedby TwoPin "The Load!"; // Error

]

See also the examples in section 7.3.4.

92

Modelica Language Specification 3.5-dev
Modelica 7.3. Redeclaration

Language

7.3.3 Restrictions on Redeclarations
The following additional constraints apply to redeclarations (after prefixes are inherited, section 7.3):

e Only classes and components declared as replaceable can be redeclared with a new type, which
must have an interface compatible with the constraining interface of the original declaration, and
to allow further redeclarations one must use redeclare replaceable.

[Redeclaration with the same type can be used to restrict variability and/or change array dimen-
sions.]

e An element declared as constant cannot be redeclared.
e An element declared as final shall not be modified, and thus not redeclared.

e Modelica does not allow a protected element to be redeclared as public, or a public element to be
redeclared as protected.

e Array dimensions may be redeclared; provided the sub-typing rules in section 6.4 are satisfied.

[This is one example of redeclaration of non-replaceable elements.)

7.3.4 Annotation Choices for Suggested Redeclarations and Modifications

A declaration can have an annotation choices containing modifiers on choice, where each of them
indicates a suitable redeclaration or modifications of the element.

This is a hint for users of the model, and can also be used by the user interface to suggest reasonable
redeclaration, where the string comments on the choice declaration can be used as textual explanations
of the choices. The annotation is not restricted to replaceable elements but can also be applied to
non-replaceable elements, enumeration types, and simple variables. For a Boolean variable, a choices
annotation may contain the definition checkBox = true, meaning to display a checkbox to input the
values false or true in the graphical user interface.

The annotation choicesAllMatching = true on a replaceable element indicates that tools should auto-
matically construct a menu with choices of elements usable for replacing it. Exact criteria for inclusion in
such a menu are not defined, but there shall be a a way to at least get a selection of classes, A.B..... X.Z,
that are either directly or indirectly derived by inheritance from the constraining class of the declaration,
where A to X are non-partial packages, and Z is non-partial. This menu can be disabled using annotation
choicesAllMatching = false.

[The behavior when choicesAllMatching is not specified; ideally it should present (at least) the same
choices as for choicesAllMatching = true; but if it takes (too long) time to present the list it is better
to have choicesAllMatching = false.|

[Example:
replaceable model MyResistor = Resistor
annotation (choices (
choice(redeclare model MyResistor=1ib2.Resistor(a={2}) "..."),
choice(redeclare model MyResistor=1ib2.Resistor2 "...")));
replaceable Resistor Load(R = 2) constrainedby TwoPin
annotation(choices(
choice(redeclare 1ib2.Resistor Load(a={2}) "..."),
choice(redeclare Capacitor Load(L=3) "...")));
replaceable FrictionFunction a(func = exp) constrainedby Friction
annotation(choices(
choice(redeclare ConstantFriction a(c=1) "..."),
choice(redeclare TableFriction a(table="...") "..."),
choice(redeclare FunctionFriction a(func=exp) "...")));

replaceable package Medium = Modelica.Media.Water.ConstantPropertyLiquidWater
constrainedby Modelica.Media.Interfaces.PartialMedium
annotation(choicesAllMatching = true);

93

o
Modelica
Language

Modelica Language Specification 3.5-dev
7.3. Redeclaration

It can also be applied to nonreplaceable declarations, e.g. to describe enumerations.

type KindOfController =
annotation(choices(

choice =1 "P",
choice = 2 "PI",
choice = 3 "PID"))

model A
parameter KindOfController x;
end A;

A a(x = 3 "PID");

Integer (min =

1, max = 3)

3

It can also be applied to Boolean wvariables to define a check box.

parameter Boolean useHeatPort =

false annotation(choices (checkBox

true));

94

Chapter 8

Equations

An equation is part of a class definition. A scalar equation relates scalar variables, i.e., constrains
the values that these variables can take simultaneously. When n-1 variables of an equation containing n
variables are known, the value of the n:th variable can be inferred (solved for). In contrast to a statement
in an algorithm section, an equation does not define for which of its variable it is to be solved. Special
cases are: initial equations, instantaneous equations, declaration equations.

An equation or statement is instantaneous if it holds only at events, i.e., at single points in time. The
equations and statements of a when-clause are instantaneous, see section 8.3.5 and section 11.2.7.

8.1 Equation Categories

Equations in Modelica can be classified into different categories depending on the syntactic context in
which they occur:

e Normal equality equations occurring in equation sections, including connect-equations and other
equation types of special syntactic form (section 8.3).

e Declaration equations, which are part of variable, parameter, or constant declarations (section 4.4.2.1).
¢ Modification equations, which are commonly used to modify attributes of classes (section 7.2).

e Binding equations, which include both declaration equations and element modification for the value
of the variable itself. These are considered equations when appearing outside functions, and then
a component with a binding equation has its value bound to some expression. (Binding equations
can also appear in functions, see section 12.4.4.)

e Initial equations, which are used to express equations for solving initialization problems (sec-
tion 8.6).
8.2 Flattening and Lookup in Equations

A flattened equation is identical to the corresponding nonflattened equation.

Names in an equation shall be found by looking up in the partially flattened enclosing class of the
equation.

8.3 Equations in Equation Sections

An equation section is comprised of the keyword equation followed by a sequence of equations. The
formal syntax is as follows:

equation-section
[initial] equation { equation ";" }

The following kinds of equations may occur in equation sections. The syntax is defined as follows:

95

Modelica Language Specification 3.5-dev
Modelica 8.3. Equations in Equation Sections

Language

equation
(simple-expression "=" expression
| if-equation
| for-equation
| connect-clause
| when-equation
| component-reference function-call-args)
comment

No statements are allowed in equation sections, including the assignment statement using the := operator.

8.3.1 Simple Equality Equations

Simple equality equations are the traditional kinds of equations known from mathematics that express an
equality relation between two expressions. There are two syntactic forms of such equations in Modelica.
The first form below is equality equations between two expressions, whereas the second form is used
when calling a function with several results. The syntax for simple equality equations is as follows:

simple-expression "=" expression

The types of the left-hand-side and the right-hand-side of an equation need to be compatible in the same
way as two arguments of binary operators (section 6.7).

Three examples:
e simple_exprl = expr2;
e (if pred then altl else alt2) = expr2;
e (outl, out2, out3) = function_name(inexprl, inexpr2);

[Note: According to the grammar the if-then-else expression in the second example needs to be enclosed
in parentheses to avoid parsing ambiguities. Also compare with section 11.2.1.1 about calling functions
with several results in assignment statements.)

8.3.2 For-Equations — Repetitive Equation Structures

The syntax of a for-equation is as follows:

for for-indices 1loop
{ equation ";" }
end for ";"

For-equations may optionally use several iterators (for-indices), see section 11.2.2.3 for more information:

for-indices:
for-index {"," for-index}

for-index:
IDENT [in expression]

The following is one example of a prefix of a for-equation:

for IDENT in expression loop

8.3.2.1 Explicit Iteration Ranges of For-Equations

The expression of a for-equation shall be a vector expression, where more general array expressions
are treated as vector of vectors or vector of matrices. It is evaluated once for each for-equation, and is
evaluated in the scope immediately enclosing the for-equation. The expression of a for-equation shall be
a parameter expression. The iteration range of a for-equation can also be specified as Boolean or as an
enumeration type, see section 11.2.2.2 for more information. The loop-variable (IDENT) is in scope inside
the loop-construct and shall not be assigned to. For each element of the evaluated vector expression, in
the normal order, the loop-variable gets the value of that element and that is used to evaluate the body
of the for-loop.

96

Modelica Language Specification 3.5-dev

Modelica 8.3. Equations in Equation Sections

Lenguage

[Example:

for i in 1 : 10 loop // i takes the values 1, 2, 3, ..., 10

for r in 1.0 : 1.5 : 5.5 loop // r takes the values 1.0, 2.5, 4.0, 5.5

for i in {1, 3, 6, 7} loop // i takes the values 1, 3, 6, 7

for i in TwoEnums loop // 1 takes the values TwoEnums.one, TwoEnums.two
// for TwoEnums = enumeration (one,two)

The loop-variable may hide other variables as in the following example. Using another name for the
loop-variable is, however, strongly recommended.

constant Integer j = 4;
Real x[j]
equation
for j in 1:j loop // The loop—variable j takes the values 1,2,3,4
x[3]1 = j; // Uses the loop—variable j
end for;

8.3.2.2 Implicit Iteration Ranges of For-Equations

The iteration range of a loop-variable may sometimes be inferred from its use as an array index. See
section 11.2.2.1 for more information.

[Example:
Real x[n],y[nl;

for i loop // Same as: for i in 1l:size(x ,1) loop
x[i] = 2*y[i];

end for;

8.3.3 Connect-Equations

A connect-equation has the following syntax:

connect "(" component-reference "," component-reference ")" ";"

These can be placed inside for-equations and if-equations; provided the indices of the for-loop and
conditions of the if-clause are parameter expressions that do not depend on cardinality, rooted,
Connections.rooted, or Connections.isRoot. The for-equations/if-equations are expanded. Connect-
equations are described in detail in section 9.1.

The same restrictions apply to Connections.branch, Connections.root, and Connections.potentialRoot
; which after expansion are handled according to section 9.4.

8.3.4 If-Equations

If-equations have the following syntax:

if expression then
{ equation ";" }
{ elseif expression then
{ equation ";" } }
[else
{ equation ";" }
]
end if ";"

The expression of an if- or elseif-clause must be a scalar Boolean expression. One if-clause, and zero or
more elseif-clauses, and an optional else-clause together form a list of branches. One or zero of the bodies
of these if-, elseif- and else-clauses is selected, by evaluating the conditions of the if- and elseif-clauses
sequentially until a condition that evaluates to true is found. If none of the conditions evaluate to true

97

Modelica Language Specification 3.5-dev
Modelica 8.3. Equations in Equation Sections

Language

the body of the else-clause is selected (if an else-clause exists, otherwise no body is selected). In an
equation section, the equations in the body are seen as equations that must be satisfied. The bodies that
are not selected have no effect on that model evaluation.

If-equations in equation sections which do not have exclusively parameter expressions as switching condi-
tions shall have the same number of equations in each branch (a missing else is counted as zero equations
and the number of equations is defined after expanding the equations to scalar equations).

[If this condition is violated, the single assignment rule would not hold, because the number of equations
may change during simulation although the number of unknowns remains the same.]

8.3.5 When-Equations

When-equations have the following syntax:

when expression then

{ equation ";" }
{ elsewhen expression then
P
{ equation ";" } }

end when ";"

The expression of a when-equation shall be a discrete-time Boolean scalar or vector expression. The
statements within a when-equation are activated when the scalar expression or any of the elements of
the vector expression becomes true.

[Example: The order between the equations in a when-equation does not matter, e.g.

equation
when x > 2 then
y3 = 2*x +yl+y2; // Order of yl and y3 equations does not matter
yl = sin(x);
end when;
y2 = sin(yl);

8.3.5.1 Defining When-Equations by If-Expressions in Equality Equations

A when-equation:

equation
when x > 2 then
vl = expril;
v2 = expr2;
end when;

is conceptually equivalent to the following equations containing special if-expressions

// Not correct Modelica
Boolean b(start = x.start > 2);
equation
b = x > 2;
vl if edge(b) then exprl else pre(vl);
v2 if edge(b) then expr2 else pre(v2);

[The equivalence is conceptual since pre(...) of a non discrete-time Real variable or expression can only
be used within a when-clause. Example:

/* discrete x/ Real x;
input Real u;
output Real y;
equation
when sample() then
x = a *x pre(x) + b * pre(u);
end when;

y = x;

98

Modelica Language Specification 3.5-dev
Modelica 8.3. Equations in Equation Sections

Language

Here, x is a discrete-time variable (whether it is declared with the discrete prefix or not), but u and
y cannot be discrete-time variables (since they are not assigned in when-clauses). However, pre(u) is
legal within the when-clause, since the body of the when-clause is only evaluated at events, and thus all
expressions are discrete-time expressions.]

The start-values of the introduced Boolean variables are defined by the taking the start-value of the
when-condition, as above where b is a parameter variable. The start-value of the special functions
initial, terminal, and sample is false.

8.3.5.2 Restrictions on Where a When-Equation may Occur
e When-equations shall not occur inside initial equations.
e When-equations cannot be nested.

e When-equations can only occur within if-equations and for-equations if the controlling expressions
are exclusively parameter expressions.

[Example: The following when-equation is invalid:

when x > 2 then
when y1 > 3 then
y2 = sin(x);
end when;
end when;

8.3.5.3 Restrictions on Equations within When-Equations
The equations within the when-equation must have one of the following forms:
® vV = expr;
e (outl, out2, out3, ...) = function_call_name(inl, in2, ...);
e Operators assert, terminate, reinit.
e For- and if-equations if the equations within the for- and if-equations satisfy these requirements.

e The different branches of when/elsewhen must have the same set of component references on the
left-hand side.

e The branches of an if-then-else clause inside when-equations must have the same set of component
references on the left-hand side, unless the if-then-else have exclusively parameter expressions as
switching conditions.

Any left hand side reference, (v, outl, ...), in a when-clause must be a component reference, and any
indices must be parameter expressions.

[The needed restrictions on equations within a when-equation becomes apparent with the following exam-
ple:

Real x, y;
equation
x +y =5;

when condition then
2 *x x +y =7; // error: not valid Modelica
end when;

When the equations of the when-equation are not activated it is not clear which variable to hold constant,
either x ory. A corrected version of this example is:

Real x,y;
equation
x +y =5;
when condition then
y=7-2xx; // fine

99

Modelica Language Specification 3.5-dev
Modelica 8.3. Equations in Equation Sections

Language

‘ end when;

Here, variable y is held constant when the when-equation is deactivated and x is computed from the first
equation using the value of y from the previous event instant.]

[Example: The restrictions for if-equations mean that both of the following variants are illegal:

Real x, y;
equation
if time < 1 then
when sample(l, 2) then

X = time;
end when;
else
when sample(l, 3) then
y = time;
end when;
end if;

when sample(l, 2) then
if time < 1 then

y = time;
else

X = time;
end if;

end when;

whereas the restriction to parameter-expression is intended to allow:

parameter Boolean b = true;
parameter Integer n = 3;
Real x[n];
equation
if b then
for i in 1 : n loop
when sample(i, i) then
x[1i] = time;
end when;
end for;
end if;

8.3.5.4 Application of the Single-assignment Rule to When-Equations
The Modelica single-assignment rule (section 8.4) has implications for when-equations:
e Two when-equations shall not define the same variable.

[Without this rule this may actually happen for the erroneous model DoubleWhenConflict below,
since there are two equations (close = true; close = false;) defining the same variable close.
A conflict between the equations will occur if both conditions would become true at the same time
instant.

model DoubleWhenConflict
Boolean close; // Erroneous model: close defined by two equations!
equation

when conditionl then

close = true;

end when;

when condition2 then
close = false;

end when;

100

Modelica Language Specification 3.5-dev
Modelica 8.3. Equations in Equation Sections

Language

end DoubleWhenConflict;

One way to resolve the conflict would be to give one of the two when-equations higher priority. This
is possible by rewriting the when-equation using elsewhen, as in the WhenPriority model below or
using the statement version of the when-construct, see section 11.2.7.]

e When-equations involving elsewhen-parts can be used to resolve assignment conflicts since the first
of the when/elsewhen parts are given higher priority than later ones:

[Below it is well defined what happens if both conditions become true at the same time instant since
conditionl with associated conditional equations has a higher priority than condition2.

model WhenPriority
Boolean close; // Correct model: close defined by two equations!
algorithm

when conditionl then
close = true;

elsewhen condition2 then
close = false;

end when;

end WhenPriority;

8.3.6 reinit

reinit can only be used in the body of a when-equation. It has the following syntax:

reinit(x, expr);

The operator reinitializes x with expr at an event instant. x is a Real variable (or an array of Real
variables) that must be selected as a state (resp., states), i.e. reinit on x implies stateSelect =

StateSelect.always on x. expr needs to be type-compatible with x. reinit can for the same variable
(resp. array of variables) only be applied (either as an individual variable or as part of an array of
variables) in one equation (having reinit of the same variable in when and else-when of the same
variable is allowed). In case of reinit active during initialization (due to when initial), see section 8.6.

reinit does not break the single assignment rule, because reinit (x, expr) in equations evaluates expr
to a value, then at the end of the current event iteration step it assigns this value to x (this copying
from values to reinitialized state(s) is done after all other evaluations of the model and before copying x
to pre(x)).

[Example: If a higher index system is present, i.e., constraints between state variables, some state vari-
ables need to be redefined to non-state variables. During simulation, non-state variables should be chosen
in such a way that variables with an applied reinit are selected as states at least when the corresponding
when-clauses become active. If this is not possible, an error occurs, since otherwise reinit would be
applied to a non-state variable.

Ezample for the usage of reinit (bouncing ball):

der(h) = v;
der (v) if flying then -g else O;
flying = not (h <= 0 and v <= 0);
when h < 0 then

reinit(v, -e * pre(v));
end when

8.3.7 assert

An equation or statement of one of the following forms is an assertion:

101

Modelica Language Specification 3.5-dev
Modelica 8.3. Equations in Equation Sections

Language

assert (condition, message); // Uses level=AssertionlLevel.error
assert (condition, message, assertionLevel);
assert (condition, message, level = assertionLevel);

Here, condition is a Boolean expression, message is a String expression, and assertionLevel is an
optional parameter expression of the built-in enumeration type AssertionLevel. It can be used in
equation sections or algorithm sections.

[This means that assert can be called as if it were a function with three formal parameters, the third
formal parameter has the name level and the default value AssertionLevel.error.]

[A parameter expression is required for level since it shall be evaluated at compile time.]

If the condition of an assertion is true, message is not evaluated and the procedure call is ignored. If
the condition evaluates to false, different actions are taken depending on the level input:

e level = AssertionLevel.error: The current evaluation is aborted. The simulation may continue
with another evaluation. If the simulation is aborted, message indicates the cause of the error.

[Ways to continue simulation with another evaluation include using a shorter step-size, or changing
the values of iterationvariables.)

Failed assertions take precedence over successful termination, such that if the model first triggers
the end of successful analysis by reaching the stop-time or explicitly with terminate, but the
evaluation with terminal ()=true triggers an assert, the analysis failed.

e level = AssertionLevel.warning: The current evaluation is not aborted. message indicates the
cause of the warning.

[It is recommended to report the warning only once when the condition becomes false, and it is
reported that the condition is no longer violated when the condition returns to true. The assert
statement shall have no influence on the behavior of the model. For example, by evaluating the
condition and reporting the message only after accepted integrator steps. condition needs to be
implicitly treated with noEvent since otherwise events might be triggered that can lead to slightly
changed simulation results.)

[The AssertionLevel.error case can be used to avoid evaluating a model outside its limits of validity;
forinstance, a function to compute the saturated liquid temperature cannot be called with a pressure lower
than the triple point value.

The AssertionLevel.warning case can be used when the boundary of validity is not hard: for instance,
a fluid property model based on a polynomial interpolation curve might give accurate results between
temperatures of 250 K and 400 K, but still give reasonable results in the range 200 K and 500 K. When
the temperature gets out of the smaller interval, but still stays in the largest one, the user should be
warned, but the simulation should continue without any further action. The corresponding code would
be:

assert (T > 250 and T < 400, "Medium model outside full accuracy range",
AssertionlLevel .warning) ;
assert (T > 200 and T < 500, "Medium model outside feasible region");

8.3.8 terminate

The terminate equation or statement (using function syntax) successfully terminates the analysis which
was carried out, see also section 8.3.7. The termination is not immediate at the place where it is defined
since not all variable results might be available that are necessary for a successful stop. Instead, the
termination actually takes place when the current integrator step is successfully finalized or at an event
instant after the event handling has been completed before restarting the integration.

The terminate statement has a string argument indicating the reason for the success.

[Example: The intention of the terminate statement is to give more complexr stopping criteria than a
fixed point in time:

102

Modelica Language Specification 3.5-dev
Modelica 8.4. Synchronous Data-flow Principle and Single Assignment Rule

Language

model ThrowingBall
Real x(start=0);
Real y(start=1);
equation
der(x) = ...;
der (y) cel
algorithm
when y < 0 then
terminate ("The ball touches the ground");
end when;
end ThrowingBall;

8.3.9 Equation Operators for Overconstrained Connection-Based Equation
Systems

See section 9.4 for a description of this topic.

8.4 Synchronous Data-flow Principle and Single Assignment
Rule

Modelica is based on the synchronous data flow principle and the single assignment rule, which are
defined in the following way:

1. Discrete-time variables keep their values until these variables are explicitly changed. Differentiated
variables have der (x) corresponding to the time-derivative of x, and x is continuous, except when
reinit is triggered, see section 8.3.6. Variable values can be accessed at any time instant during
continuous integration and at event instants.

2. At every time instant, during continuous integration and at event instants, the equations express
relations between variables which have to be fulfilled concurrently.

3. Computation and communication at an event instant does not take time.

[If computation or communication time has to be simulated, this property has to be explicitly mod-
eled.]

4. There must exist a perfect matching of variables to equations after flattening, where a variable can
only be matched to equations that can contribute to solving for the variable (perfect matching rule
— previously called single assignment rule); see also globally balanced section 4.7.

8.5 Events and Synchronization

An event is something that occurs instantaneously at a specific time or when a specific condition occurs.
Events are for example defined by the condition occurring in a when-clause, if-clause, or if-expression.

The integration is halted and an event occurs whenever an event generation expression, e.g. x > 2 o or
floor(x), changes its value. An event generating expression has an internal buffer, and the value of the
expression can only be changed at event instants. If the evaluated expression is inconsistent with the
buffer, that will trigger an event and the buffer will be updated with a new value at the event instant.
During continuous integration event generation expression has the constant value of the expression from
the last event instant.

[A root finding mechanism is needed which determines a small time interval in which the expression
changes its value; the event occurs at the right side of this interval.]

[Example:

‘y = if u > uMax then uMax else if u < uMin then uMin else u;

103

Modelica Language Specification 3.5-dev
Modelica 8.5. Events and Synchronization

Language

During continuous integration always the same if-branch is evaluated. The integration is halted whenever
u-uMax or u-uMin crosses zero. At the event instant, the correct if-branch is selected and the integration
is restarted.

Numerical integration methods of order n (n > 1) require continuous model equations which are differen-
tiable up to order n. This requirement can be fulfilled if Real elementary relations are not treated literally
but as defined above, because discontinuous changes can only occur at event instants and no longer during
continuous integration.]

[1t is a quality of implementation issue that the following special relations

time >= discrete expression
time < discrete expression

trigger a time event at time = discrete expression, i.e., the event instant is known in advance and no
iteration is needed to find the exact event instant.]

Relations are taken literally also during continuous integration, if the relation or the expression in which
the relation is present, are the argument of noEvent. smooth also allows relations used as argument to
be taken literally. The noEvent feature is propagated to all subrelations in the scope of the noEvent
application. For smooth the liberty to not allow literal evaluation is propagated to all subrelations, but
the smoothness property itself is not propagated.

[Example:

x = if noEvent(u > uMax) then uMax elseif noEvent(u < uMin) then uMin else u;
y = noEvent(if u > uMax then uMax elseif u < uMin then uMin else u);

z = smooth (0, if u > uMax then uMax elseif u < uMin then uMin else u);

In this casex = y = z, but a tool might generate events for z. The if-expression is taken literally without
inducing state events.

The smooth operator is useful, if e.g. the modeler can guarantee that the used if-clauses fulfill at least
the continuity requirement of integrators. In this case the simulation speed is improved, since no state
event iterations occur during integration. The noEvent operator is used to guard against outside domain
errors, e.g. y = if noEvent(x >= 0) then sqrt(x) else 0.]

All equations and assignment statements within when-clauses and all assignment statements within
function classes are implicitly treated with noEvent, i.e., relations within the scope of these operators
never induce state or time events.

[Using state events in when-clauses is unnecessary because the body of a when-clause is not evaluated
during continuous integration.)

[Example:

Limitl = noEvent(xl > 1); // Error since Limitl is a discrete—time variable
when noEvent(x1>1) or x2>10 then // error, when—conditions is not a discrete—
time expression
Close = true;
end when;

]

Modelica is based on the synchronous data flow principle (section 8.4).

[The rules for the synchronous data flow principle guarantee that variables are always defined by a unique
set of equations. It is not possible that a variable is e.g. defined by two equations, which would give rise
to conflicts or non-deterministic behavior. Furthermore, the continuous and the discrete parts of a model
are always automatically “synchronized”. Ezxample:

equation // lllegal example
when conditionl then
close = true;

end when;

when condition2 then

104

Modelica Language Specification 3.5-dev
Modelica 8.6. Initialization, initial equation, and initial algorithm

Language

close = false;
end when;

This is not a valid model because rule 4 is violated since there are two equations for the single unknown
variable close. If this would be a valid model, a conflict occurs when both conditions become true at the
same time instant, since no priorities between the two equations are assigned. To become valid, the model
has to be changed to:

equation
when conditionl then

close = true;
elsewhen condition2 then
close = false;

end when;

Here, it is well-defined if both conditions become true at the same time instant (conditionl has a higher
priority than condition2).]

There is no guarantee that two different events occur at the same time instant.

[As a consequence, synchronization of events has to be explicitly programmed in the model, e.g. via
counters. Fxample:

Boolean fastSample, slowSample;

Integer ticks(start=0);
equation

fastSample = sample(0,1);

algorithm
when fastSample then
ticks := if pre(ticks) < 5 then pre(ticks)+1l else O0;
slowSample := pre(ticks) == 0;
end when;
algorithm

when fastSample then // fast sampling
end when;
algorithm

when slowSample then // slow sampling (5—times slower)

end when;

The slowSample when-clause is evaluated at every 5th occurrence of the fastSample when-clause.]

[The single assignment rule and the requirement to explicitly program the synchronization of events allow
a certain degree of model verification already at compile time.]

8.6 Initialization, initial equation, and initial algorithm

Before any operation is carried out with a Modelica model (e.g., simulation or linearization), initialization
takes place to assign consistent values for all variables present in the model. During this phase, called the
initialization problem, also the derivatives (der), and the pre-variables (pre), are interpreted as unknown
algebraic variables. The initialization uses all equations and algorithms that are utilized in the intended
operation (such as simulation or linearization).

The equations of a when-clause are active during initialization, if and only if they are explicitly enabled
with initial (), and only in one of the two forms when initial() then or when {..., initial(), ...
} then (and similarly for elsewhen and algorithms see below). In this case, the when-clause equations
remain active during the whole initialization phase. In case of a reinit(x, expr) being active during
initialization (due to being inside when initial()) this is interpreted as adding x = expr (the reinit
-equation) as an initial equation.

[If a when-clause equation v = expr; is not active during the initialization phase, the equation v =
pre(v) is added for initialization. This follows from the mapping rule of when-clause equations. If the
condition of the when-clause contains initial (), but not in one of the specific forms, the when-clause

105

Modelica Language Specification 3.5-dev
Modelica 8.6. Initialization, initial equation, and initial algorithm

Language

is not active during initialization: when not initial() then print("simulation started"); end
when;]

The algorithmic statements within a when-statement are active during initialization, if and only they are
explicitly enabled with initial (), and only in one of the two forms when initial() then or when {

.., initial(), ...} then. In this case, the algorithmic statements within the when-statement remain
active during the whole initialization phase.

An active when-clause inactivates the following elsewhen (similarly as for when-clauses during simula-
tion), but apart from that the first elsewhen initial() then or elsewhen {..., initial(), ...}
then is similarly active during initialization as when initial() then or when {..., initial(), ...}
then.

[That means that any subsequent elsewhen initial() has no effect, similarly as when false then.]

[There is no special handling of inactive when-statements during initialization, instead variables assigned
in when-statements are initialized using v := pre(v) before the body of the algorithm (since they are
discrete), see section 11.1.2.]

Further constraints, necessary to determine the initial values of all variables, can be defined in the
following ways:

1. Asequations in an initial equation section or as assignments in an initial algorithm section.
The equations and assignments in these initial sections are purely algebraic, stating constraints
between the variables at the initial time instant. It is not allowed to use when-clauses in these
sections.

2. For a non-discrete (that is continuous-time) Real variable vc, the equation pre(vc) = vc is added
to the initialization equations.

[If pre (vc) is not present in the flattened model, a tool may choose not to introduce this equation,
or if it was introduced it can eliminate it (to avoid the introduction of many dummy variables
pre(ve)).

3. Implicitly by using the start attribute for variables with fixed = true. With start given by
startExpression:

e For a non-discrete-time (that is continuous-time) Real variable vc, the equation ve = startExpression
is added to the initialization equations.

e For a discrete-time variable vd, the equation pre(vd) = startExpression is added to the
initialization equations.

e For a variable declared as constant or parameter, no equation is added to the initialization
equations.

For constants and parameters, the attribute fixed defaults to true, which is the only allowed value for
a constant. For other variables, fixed defaults to false.

start-values of variables having fixed = false can be used as initial guesses, in case iterative solvers
are used in the initialization phase.

[In case of iterative solver failure, it is recommended to specially report those variables for which the
solver needs an initial guess, but which only have the default value of the start attribute as defined in
section 4.8, since the lack of appropriate initial guesses is a likely cause of the solver failure.]

If a parameter has a modifier for the start attribute, does not have fixed = false, and neither has a
binding equation nor is part of a record having a binding equation, the modifier for the start attribute
can be used to add a parameter binding equation assigning the parameter to that start value. In this
case a diagnostic message is recommended in a simulation model.

[This is used in libraries to give non-zero defaults so that users can quickly combine models and simulate
without setting parameters; but still easily find the parameters that need to be set.]

All variables declared as parameter having fixed = false are treated as unknowns during the initial-
ization phase, i.e. there must be additional equations for them — and the start-value can be used as a
guess-value during initialization.

106

Modelica Language Specification 3.5-dev
Modelica 8.6. Initialization, initial equation, and initial algorithm

Language

[In the case a parameter has both a binding equation and fixed = false a diagnostics is recommended,
but the parameter should be solved from the binding equation.

Non-discrete (that is continuous-time) Real wvariables vc have exactly one initialization value since the
rules above assure that during initialization vc = pre(vc) = vc.startExpression (if fixed = true).

Before the start of the integration, it must be guaranteed that for all variables v, v = pre(v). If this is
not the case for some variables vi, pre(vi) := vi must be set and an event iteration at the initial time
must follow, so the model is re-evaluated, until this condition is fulfilled.

A Modelica translator may first transform the continuous equations of a model, at least conceptually, to
state space form. This may require to differentiate equations for index reduction, i.e., additional equations
and, in some cases, additional unknown variables are introduced. This whole set of equations, together
with the additional constraints defined above, should lead to an algebraic system of equations where the
number of equations and the number of all variables (including der and pre variables) is equal. Often,
this is a nonlinear system of equations and therefore it may be necessary to provide appropriate guess
values (i.e., start values and fixed = false) in order to compute a solution numerically.

It may be difficult for a user to figure out how many initial equations have to be added, especially if
the system has a higher index. A tool may add or remove initial equations automatically such that the
resulting system is structurally nonsingular. In these cases diagnostics are appropriate since the result is
not unique and not necessarily what the user expects. A missing initial value of a discrete-time variable
which does not influence the simulation result, may be automatically set to the start value or its default
without informing the user. For example, variables assigned in a when-clause which are not accessed
outside of the when-clause and where pre is not explicitly used on these variables, do not have an effect
on the simulation.)

[Example: Continuous time controller initialized in steady-state:

Real y(fixed = false); // fixed=false is redundant
equation

der(y) = a x y + b * u;
initial equation

der(y) = 0;

This has the following solution at initialization:

der(y) = 0;
y=->b/ a* u;

]

[Example: Continuous time controller initialized either in steady-state or by providing a start value for
state y:

parameter Boolean steadyState = true;
parameter Real y0O = 0 "start value for y, if not steadyState";
Real y;
equation
der(y) = a * y + b *x u;
initial equation
if steadyState then
der(y) = 0;
else
y = y0;
end if;

This can also be written as follows (this form is less clear):

parameter Boolean steadyState = true;

Real y (start = 0, fixed = not steadyState);

Real der_y(start = 0, fixed = steadyState) = der(y);
equation

der(y) = a * y + b *x u;

107

Modelica Language Specification 3.5-dev
Modelica 8.6. Initialization, initial equation, and initial algorithm

Language

]

[Example: Discrete time controller initialized in steady-state:

discrete Real y;
equation
when {initial (), sampleTrigger} then
y = a *x pre(y) + b * u;
end when;
initial equation
y = pre(y);

This leads to the following equations during initialization:

y = a *x pre(y) + b * u;
y = pre(y);

with the solution:

y := (b x u) / (1 - a);
pre(y) := y;

8.6.1 The Number of Equations Needed for Initialization

[In general, for the case of a pure (first order) ordinary differential equation (ODE) system with n
state vartables and m output variables, we will have n + m unknowns in the simulation problem. The
ODE initialization problem has n additional unknowns corresponding to the derivative variables. At
initialization of an ODE we will need to find the values of 2n + m wariables, in contrast to just n +m
variables to be solved for during simulation.]

[Example: Consider the following simple equation system:

der (x1) = f1(x1);
der (x2) = £2(x2);
y = xl+x2+u;

Here we have three variables with unknown values: two dynamic variables that also are state variables,
x1 and x2, i.e., n = 2, one output variable y, i.e., m = 1, and one input variable u with known value. A
consistent solution of the initial value problem providing initial values for x1, x2, der(x1), der(x2), and
y needs to be found. Two additional initial equations thus need to be provided to solve the initialization
problem.

Regarding DAEs, only that at most n additional equations are needed to arrive at 2n + m equations
in the initialization system. The reason is that in a higher index DAE problem the number of dynamic
continuous-time state variables might be less than the number of state variables n. As noted in section 8.6
a tool may add/remove initial equations to fulfill this requirement, if appropriate diagnostics are given.

8.6.2 Recommended selection of start-values

In general many variables have start-values that are not fixed and selecting a sub-set of these can give
a consistent set of start-values close to the user-expectations. The following gives a non-normative
procedure for finding such a sub-set.

[A model has a hierarchical component structure. FEach component of a model can be given a unique
model component hierarchy level number. The top level model has a level number of 1. The level number
increases by 1 for each level down in the model component hierarchy. The model component hierarchy
level number is used to give start values a confidence number, where a lower number means that the start
value is more confident. Loosely, if the start value is set or modified on level i then the confidence number
is 1. If a start value is set by a possibly hierarchical modifier at the top level, then this start value has
the highest confidence, namely 1 irrespectively on what level, the variable itself is declared.]

108

Chapter 9

Connectors and Connections

This chapter covers connectors, connect-equations, and connections.

Connectors and connect-equations are designed so that different components can be connected graphically
with well-defined semantics. However, the graphical part is optional and found in chapter 18.

9.1 Connect-Equations and Connectors

Connections between objects are introduced by connect-equations in the equation part of a class. A
connect-equation has the following syntax:

connect (component-reference, component-reference);

[A connector is an instance of a connector class.]

The connect-equation construct takes two references to connectors, each of which is either of the following
forms:

® C1.C3...cp, Where c; is a connector of the class, n>1 and ¢;41 is a connector element of ¢; for
i=1:(n-1).
e m.c, where m is a non-connector element in the class and c is a connector element of m.
There may optionally be array subscripts on any of the components; the array subscripts shall be
parameter expressions or the special operator :. If the connect construct references array of connectors,

the array dimensions must match, and each corresponding pair of elements from the arrays is connected
as a pair of scalar connectors.

[Example: Array usage:

connector InPort = input Real;
connector OutPort = output Real;
block MatrixGain

input InPort ulsize(A,2)];

output OutPort yl[size(A,1)];

parameter Real A[:,:] = [1];
equation

y=Ax*u;
end MatrixGain;
Modelica.Blocks.Sources.Sine sinSource[5];
MatrixGain gain (A = 5*identity(5));
MatrixGain gain2(A = ones(2,5));
OutPort x[2];

equation

connect (sinSource.y, gain.u); // Lega
connect (gain.y, gain2.u); // Legal
connect (gain2.y, x); // Lega

109

Modelica Language Specification 3.5-dev
Modelica 9.1. Connect-Equations and Connectors

Language

]

The three main tasks are to:
e Elaborate expandable connectors.
e Build connection sets from connect-equations.

e Generate equations for the complete model.

9.1.1 Connection Sets

A connection set is a set of variables connected by means of connect-equations. A connection set shall
contain either only flow variables or only non-flow variables.

9.1.2 Inside and Outside Connectors

In an element instance M, each connector element of M is called an outside connector with respect to M.
Any other connector elements that is hierarchically inside M, but not in one of the outside connectors
of M, is called an inside connector with respect to M. This is done before resolving outer elements to
corresponding inner ones.

[Example:
m6
mO
m3
ml mé
inner d
outer d _
O---1-"T _
c

m2

mb

m7

Figure 9.1: Example for inside and outside connectors.

The figure visualizes the following connect equations to the connector c in the models mi. Consider the
following connect equations found in the model for component mO:

connect(ml.c, m3.¢); // ml.c and m3.c are inside connectors
connect(m2.c, m3.c); // m2.c and m3.c are inside connectors

and in the model for component m3 (c.x is a sub-connector inside c):

connect(c, md.c); // c is an outside

connector, m4d.c is an inside connector

connect(c.x, mb.c); // c.x is an outside

connector, mb.c is an inside connector

connect(c , d) ; // c is an outside connector, d is an outside connector

and in the model for component m6:

connect(d, m7.c); // d is an outside connector, m7.c is an inside connector

110

Modelica Language Specification 3.5-dev
Modelica 9.1. Connect-Equations and Connectors

Language

9.1.3 Expandable Connectors

If the expandable qualifier is present on a connector definition, all instances of that connector are referred
to as expandable connectors. Instances of connectors that do not possess this qualifier will be referred to
as non-expandable connectors.

Before generating connection equations non-parameter scalar variables and non-parameter array elements
declared in expandable connectors are marked as only being potentially present. A non-parameter array
element may be declared with array dimensions : indicating that the size is unknown (note that the size
of such a dimension cannot be determined using size, see section 10.3.1). This applies to both variables
of simple types, and variables of structured types.

Then connections containing expandable connectors are elaborated:

e One connector in the connect equation must reference a declared component, and if the other
connector is an undeclared element in a declared expandable connector it is handled as follows
(elements that are only potentially present are not seen as declared):

— The expandable connector instance is automatically augmented with a new component having
the used name and corresponding type.

— If the undeclared component is subscripted, an array variable is created, and a connection to
the specific array element is performed. Introducing elements in an array gives an array with
at least the specified elements, other elements are either not created or have a default value
(i.e. as if they were only potentially present, and the same note regarding the use of size also
applies here).

— If the variable on the other side of the connect-equation is input or output the new component
will be either input or output to satisfy the restrictions in section 9.3 for a non-expandable
connector.

[If the existing side refers to an inside connector (i.e. a connector of a component) the new
variable will copy its causality, i.e. input if input and output if output, since the expandable
connector must be an outside connector-)

For an array the input/output property can be deduced separately for each array element.

e When two expandable connectors are connected, each is augmented with the variables that are
only declared in the other expandable connector (the new variables are neither input nor output).
This is repeated until all connected expandable connector instances have matching variables.

[Le. each of the connector instances is expanded to be the union of all connector variables.]

e The variables introduced in the elaboration follow additional rules for generating connection sets
(given in section 9.2).

e If a variable appears as an input in one expandable connector, it should appear as a non-input in
at least one other expandable connector instance in the same augmentation set. An augmentation
set is defined as the set of connected expandable connector instances that through the elaboration
will have matching variables.

[Ezample:

expandable connector EngineBus
end EngineBus;

block Sensor
RealOutput speed; // Output, i.e., non—input
end Sensor;
block Actuator
RealInput speed; // Input
end Actuator;

model Engine
EngineBus bus;
Sensor sensor;
Actuator actuator;

111

Modelica Language Specification 3.5-dev
Modelica 9.1. Connect-Equations and Connectors

Language

equation
connect (bus.speed, sensor.speed); // provides the non—input from sensor.
speed
connect (bus.speed, actuator.speed);
end Engine;

)

e All components in an expandable connector are seen as connector instances even if they are not
declared as such.

[Le. it is possible to connect to e.g. a Real variable.]

[Example:

expandable connector EngineBus // has predefined signals
import Modelica.Units.SI;
SI.AngularVelocity speed;
SI.Temperature T;

end EngineBus;

block Sensor
RealOutput speed;
end Sensor;

model Engine
EngineBus bus;
Sensor sensor;
equation
connect (bus.speed, sensor.speed);
// connection to non—connector speed is possible
// in expandable connectors
end Engine;

}

e An expandab