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Abstract

This document defines the Modelica! language, version 3.5-dev, which is developed by the Modelica
Association, a non-profit organization with seat in Linkoping, Sweden. Modelica is a freely available,
object-oriented language for modeling of large, complex, and heterogeneous systems. It is suited for
multi-domain modeling, for example, mechatronic models in robotics, automotive and aerospace appli-
cations involving mechanical, electrical, hydraulic control and state machine subsystems, process oriented
applications and generation and distribution of electric power. Models in Modelica are mathematically
described by differential, algebraic and discrete equations. No particular variable needs to be solved
for manually. A Modelica tool will have enough information to decide that automatically. Model-
ica is designed such that available, specialized algorithms can be utilized to enable efficient handling
of large models having more than one hundred thousand equations. Modelica is suited and used for
hardware-in-the-loop simulations and for embedded control systems. More information is available at
https://www.modelica.org.

1 Modelica is a registered trademark of the Modelica Association.
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Preface

Modelica is a freely available, object-oriented language for modeling of large, complex, and heterogeneous
physical systems. From a user’s point of view, models are described by schematics, also called object
diagrams. Examples are shown below:
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A schematic consists of connected components, like a resistor, or a hydraulic cylinder. A component has
connectors (often also called ports) that describe the interaction possibilities, e.g., an electrical pin, a
mechanical flange, or an input signal. By drawing connection lines between connectors a physical system
or block diagram model is constructed. Internally a component is defined by another schematic, or on
“bottom” level, by an equation-based description of the model in Modelica syntax.

The Modelica language is a textual description to define all parts of a model and to structure model
components in libraries, called packages. An appropriate Modelica simulation environment is needed to
graphically edit and browse a Modelica model (by interpreting the information defining a Modelica model)
and to perform model simulations and other analysis. Information about such environments is available at
www.modelica.org/tools. Basically, all Modelica language elements are mapped to differential, algebraic
and discrete equations. There are no language elements to describe directly partial differential equations,
although some types of discretized partial differential equations can be reasonably defined, e.g., based on
the finite volume method and there are Modelica libraries to import results of finite-element programs.

This document defines the details of the Modelica language. It is not intended to learn the Model-
ica language with this text. There are better alternatives, such as the Modelica books referenced at
www.modelica.org/publications. This specification is used by computer scientist to implement a Mod-
elica translator and by modelers who want to understand the exact details of a particular language
element.
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The text directly under the chapter headings are non-normative introductions to the chapters.

The Modelica language has been developed since 1996. This document describes version 3.4 of the
Modelica language. A complete summary is available in appendix E.1.



Chapter 1

Introduction

1.1 Overview of Modelica

Modelica is a language for modeling of physical systems, designed to support effective library development
and model exchange. It is a modern language built on acausal modeling with mathematical equations
and object-oriented constructs to facilitate reuse of modeling knowledge.

1.2 Scope of the Specification

The semantics of the Modelica language is specified by means of a set of rules for translating any class
described in the Modelica language to a flat Modelica structure.

A class (of specialized class model, class or block) intended to be simulated on its own is called a
simulation model.

The flat Modelica structure is also defined for other cases than simulation models; including functions
(can be used to provide algorithmic contents), packages (used as a structuring mechanism), and partial
models (used as base-models). This allows correctness to be verified for those classes, before using them
to build the simulation model.

There are specific semantic restrictions for a simulation model to ensure that the model is complete; they
allow its flat Modelica structure to be further transformed into a set of differential, algebraic and discrete
equations (= flat hybrid DAE). Note that satisfying the semantic restrictions does not guarantee that
the model can be initialized from the initial conditions and simulated.

Modelica was designed to facilitate symbolic transformations of models, especially by mapping basically
every Modelica language construct to continuous or instantaneous equations in the flat Modelica struc-
ture. Many Modelica models, especially in the associated Modelica Standard Library, are higher index
systems, and can only be reasonably simulated if symbolic index reduction is performed, i.e., equations
are differentiated and appropriate variables are selected as states, so that the resulting system of equa-
tions can be transformed to state space form (at least locally numerically), i.e., a hybrid DAE of index
zero. In order to allow this structural analysis, a tool may reject simulating a model if parameters cannot
be evaluated during translation — due to calls of external functions or initial equations/initial algorithms
for fixed=false parameters. Accepting such models is a quality of implementation issue. The Modelica
specification does not define how to simulate a model. However, it defines a set of equations that the
simulation result should satisfy as well as possible.

The key issues of the translation (or flattening) are:
e Expansion of inherited base classes
e Parameterization of base classes, local classes and components
e Generation of connection equations from connect-equations

The flat hybrid DAE form consists of:
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e Declarations of variables with the appropriate basic types, prefixes and attributes, such as parameter
Real v=b.

e Equations from equation sections.

e Function invocations where an invocation is treated as a set of equations which involves all input
and all result variables (number of equations = number of basic result variables).

e Algorithm sections where every section is treated as a set of equations which involves the variables
occurring in the algorithm section (number of equations = number of different assigned variables).

e When-clauses where every when-clause is treated as a set of conditionally evaluated equations, also
called instantaneous equations, which are functions of the variables occurring in the clause (number
of equations = number of different assigned variables).

Therefore, a flat hybrid DAE is seen as a set of equations where some of the equations are only condition-
ally evaluated (e.g. instantaneous equations are only evaluated when the corresponding when-condition
becomes true). Initial setup of the model is specified using start-values and instantaneous equations that
hold at the initial time only.

A Modelica class may also contain annotations, i.e. formal comments, which specify graphical represen-
tations of the class (icon and diagram), documentation text for the class, and version information.

1.3 Some Definitions

The semantic specification should be read together with the Modelica grammar. Non-normative text,
i.e., examples and comments, are enclosed in [...] and set in italics. Additional terms are explained in
the glossary in appendix A. Some important terms are defined below.

Definition 1.1. Component. An element defined by the production component-clause in the Mod-
elica grammar (basically a variable or an instance of a class) O

Definition 1.2. Element. Class definitions, extends-clauses and component-clauses declared in a class
(basically a class reference or a component in a declaration). O

Definition 1.3. Flattening. The translation of a model described in Modelica to the corresponding
model described as a hybrid DAE, involving expansion of inherited base classes, parameterization of base
classes, local classes and components, and generation of connection equations from connect-equations
(basically, mapping the hierarchical structure of a model into a set of differential, algebraic and discrete

equations together with the corresponding variable declarations and function definitions from the model).
O

1.4 Notation and Grammar

The meta symbols (of the extended BNF-grammar) are defined in appendix B.1.

Boldface denotes keywords of the Modelica language. Keywords are reserved words and shall not be used
as identifiers, with the exception of initial which is a keyword in section headings, and der which is a
keyword for declaration functions, but it is also possible to call the functions initial and der.

See appendix B for a full lexical specification and grammar.



Chapter 2

Lexical Structure

This chapter describes several of the basic building blocks of Modelica such as characters and lexical
units including identifiers and literals. Without question, the smallest building blocks in Modelica are
single characters belonging to a character set. Characters are combined to form lexical units, also called
tokens. These tokens are detected by the lexical analysis part of the Modelica translator. Examples of
tokens are literal constants, identifiers, and operators. Comments are not really lexical units since they
are eventually discarded. On the other hand, comments are detected by the lexical analyzer before being
thrown away.

The information presented here is derived from the more formal specification in appendix B.

2.1 Character Set

The character set of the Modelica language is Unicode, but restricted to the Unicode characters corre-
sponding to 7-bit ASCII characters in several places; for details see appendix B.1.

2.2 Comments

There are two kinds of comments in Modelica which are not lexical units in the language and therefore
are treated as white-space by a Modelica translator. The white-space characters are space, tabulator,
and line separators (carriage return and line feed); and white-space cannot occur inside tokens, e.g., <=
must be written as two characters without space or comments between them. The following comment
variants are available:

// comment & Characters from // to the end of the line are ignored.
/% comment %/ & Characters between /% and %/ are ignored, including line
terminators.

[The comment syntaz is identical to that of C++.]

Modelica comments do not nest, i.e., /* */ cannot be embedded within /* */. The following is invalid:

/* Commented out — erroneous comment, invalid nesting of comments!
/* This is an interesting model %/
model interesting

end interesting;

*/

There is also a description-string, that is part of the Modelica language and therefore not ignored by
the Modelica translator. Such a description-string may occur at the end of a declaration, equation, or
statement or at the beginning of a class definition. For example:

model TempResistor "Temperature dependent resistor"



Modelica Language Specification 3.5-dev
2.3. Identifiers, Names, and Keywords

o
Modelica
#  Language

parameter Real R "Resistance for reference temp.";

end TempResistor;

2.3 Identifiers, Names, and Keywords

Identifiers are sequences of letters, digits, and other characters such as underscore, which are used for
naming various items in the language. Certain combinations of letters are keywords represented as
reserved words in the Modelica grammar and are therefore not available as identifiers.

2.3.1 Identifiers

Modelica identifiers, used for naming classes, variables, constants, and other items, are of two forms.
The first form always starts with a letter or underscore (_), followed by any number of letters, digits, or
underscores. Case is significant, i.e., the names Inductor and inductor are different. The second form
(Q-IDENT) starts with a single quote, followed by a sequence of any printable ASCII character, where
single-quote must be preceded by backslash, and terminated by a single quote, e.g. >12H’, 13\’ H’,
>+foo’. Control characters in quoted identifiers have to use string escapes. The single quotes are part
of the identifier, i.e., *x’ and x are distinct identifiers. The redundant escapes (’\7?’ and ’\"?) are the
same as the corresponding non-escaped variants (>?? and ’"?), but are only for use in Modelica source
code. A full BNF definition of the Modelica syntax and lexical units is available in appendix B.

IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT

Q-IDENT = "’" { Q-CHAR | S-ESCAPE } "’"

NONDIGIT = "_" | letters "a" ... "z" | letters "A" "z

DIGIT =0l 112131415161 713812?9

Q—CHAR = NONDIGIT | DIGIT I wyn | ngn | n$n | ||%|| I ngn I ||(|v | ll)ll | Ny n |
ngn | " s [ | n_n | non I n/u I n.n | " ; " | nen | nsn I [T] | non | nQ" | [ [n
| ||] " | n-n | n{n | u}n | n | n | n~n I non | nnn

S-ESCAPE = Il\)ll | ll\ll n | n\?n I ll\\ll I Il\all | ll\bll | ll\fll I ll\nll I Il\rll | ll\tll
I "\V"

2.3.2 Names

A name is an identifier with a certain interpretation or meaning. For example, a name may denote
an Integer variable, a Real variable, a function, a type, etc. A name may have different meanings in
different parts of the code, i.e., different scopes. The interpretation of identifiers as names is described
in more detail in chapter 5. The meaning of package names is described in more detail in chapter 13.

2.3.3 Modelica Keywords

The following Modelica keywords are reserved words and shall not be used as identifiers, except as listed
in appendix B.1:

algorithm discrete false loop pure
and each final model record
annotation else flow not redeclare
elseif for operator replaceable
block elsewhen function or return
break encapsulated if outer stream
class end import output then
connect enumeration impure package true
connector equation in parameter type
constant expandable initial partial when
constrainedby extends inner protected while
der external input public within

10
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2.4 Literal Constants

Literal constants are unnamed constants that have different forms depending on their type. Each of
the predefined types in Modelica has a way of expressing unnamed constants of the corresponding type,
which is presented in the ensuing subsections. Additionally, array literals and record literals can be
expressed.

2.4.1 Floating Point Numbers

A floating point number is expressed as a decimal number in the form of a sequence of decimal digits
followed by a decimal point, followed by decimal digits, followed by an exponent indicated by E or e
followed by a sign and one or more decimal digits. The various parts can be omitted, see UNSIGNED-REAL
in appendix B.1 for details and also the examples below. The minimal recommended range is that
of IEEE double precision floating point numbers, for which the largest representable positive number
is 1.7976931348623157 x 103%® and the smallest positive number is 2.2250738585072014 x 1073%%. For
example, the following are floating point number literal constants:

22.5, 3.141592653589793, 1.2E-35

The same floating point number can be represented by different literals. For example, all of the following
literals denote the same number:

13., 13E0, 1.3e1, 0.13E2, .13E2

The last variant shows that that the leading zero is optional (in that case decimal digits must be present).
Note that 13 is not in this list, since it is not a floating point number, but can be converted to a floating
point number.

2.4.2 Integer Literals

Literals of type Integer are sequences of decimal digits, e.g. as in the integer numbers 33, 0, 100,
30030044. The range of supported Integer literals shall be at least large enough to represent the largest
positive IntegerType value, see section 4.8.2.

[Negative numbers are formed by unary minus followed by an integer literal.]

2.4.3 Boolean Literals

The two Boolean literal values are true and false.

2.4.4 Strings

String literals appear between double quotes as in "between". Any character in the Modelica language
character set (see appendix B.1 for allowed characters) apart from double quote (") and backslash (\),
including new-line, can be directly included in a string without using an escape code. Certain characters
in string literals can be represented using escape codes, i.e., the character is preceded by a backslash (\)
within the string. Those characters are:

Character  Description

\’ Single quote, may also appear without backslash in string constants
\" Double quote

\7 Question-mark, may also appear without backslash in string constants
\\ Backslash itself

\a Alert (bell, code 7, ctrl-G)

\b Backspace (code 8, ctrl-H)

\f Form feed (code 12, ctrl-L)

\n Newline (code 10, ctrl-J), same as literal newline

\r Carriage return (code 13, ctrl-M)

\t Horizontal tab (code 9, ctrl-I)

\v Vertical tab (code 11, ctrl-K)

11
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For example, a string literal containing a tab, the words: This is, double quote, space, the word: between,
double quote, space, the word: us, and new-line, would appear as follows:

"\tThis is\" between\" us\n"

Concatenation of string literals in certain situations (see the Modelica grammar) is denoted by the +
operator in Modelica, e.g. "a" + "b" becomes "ab". This is useful for expressing long string literals that
need to be written on several lines.

The "\n" character is used to conceptually indicate the end of a line within a Modelica string. Any
Modelica program that needs to recognize line endings can check for a single "\n" character to do so on
any platform. It is the responsibility of a Modelica implementation to make any necessary transformations
to other representations when writing to or reading from a text file.

[For example, a "\n" is written and read as-is in a Uniz or Linuz implementation, but written as "\r\n"
pair, and converted back to "\n" when read in a Windows implementation.|

[For long string comments, e.g., the info annotation to store the documentation of a model, it would be
very inconvenient, if the string concatenation operator would have to be used for every line of documen-
tation. It is assumed that a Modelica tool supports the non-printable newline character when browsing
or editing a string literal. For example, the following statement defines one string that contains (non-
printable) newline characters:

assert (noEvent (length > s_small),
"The distance between the origin of frame_a and the origin of frame_b
of a LineForceWithMass component became smaller as parameter s_small
(= a small number, defined in the
\"Advanced\" menu). The distance is
set to s_small, although it is smaller, to avoid a division by zero
when computing the direction of the line force.",

level = Assertionlevel.warning);

2.5 Operator Symbols

The predefined operator symbols are formally defined on page 281 and summarized in the table of
operators in section 3.2.

12



Chapter 3

Operators and Expressions

The lexical units are combined to form even larger building blocks such as expressions according to the
rules given by the expression part of the Modelica grammar in appendix B.

This chapter describes the evaluation rules for expressions, the concept of expression variability, built-in
mathematical operators and functions, and the built-in special Modelica operators with function syntax.

Expressions can contain variables and constants, which have types, predefined or user defined. The
predefined built-in types of Modelica are Real, Integer, Boolean, String, and enumeration types
which are presented in more detail in section 4.8.

3.1 Expressions

Modelica equations, assignments and declaration equations contain expressions.

Expressions can contain basic operations, +, -, *, /, =, etc. with normal precedence as defined in the
Table in section 3.2 and the grammar in appendix B. The semantics of the operations is defined for both
scalar and array arguments in section 10.6.

It is also possible to define functions and call them in a normal fashion. The function call syntax for both
positional and named arguments is described in section 12.4.1 and for vectorized calls in section 12.4.4.
The built-in array functions are given in section 10.1.1 and other built-in operators in section 3.7.

3.2 Operator Precedence and Associativity

Operator precedence determines the order of evaluation of operators in an expression. An operator with
higher precedence is evaluated before an operator with lower precedence in the same expression.

The following table presents all the expression operators in order of precedence.
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Modelica Language Specification 3.5-dev
Modelica 3.3. Evaluation Order

#  Language

Table 3.1: Operators in order of precedence from highest to lowest, as derived from the Modelica
grammar in appendix B. All operators are binary except the postfix operators and those shown
as unary together with expr, the conditional operator, the array construction operator { } and
concatenation operator [ 1, and the array range constructor which is either binary or ternary.
Operators with the same precedence occur at the same table row.

Operator group Operator syntax Ezxamples
Postfix array index operator [] arr[index]
Postfix access operator . a.b
Postfix function call funcName (functionArguments) sin(4.36)
Array construction {expressions} {2, 3}
Horizontal concatenation [expressions] [5, 6]
Vertical concatenation [expressions; expressions...] [2, 3; 7, 8]
Exponentiation - 2~ 3
Multiplicative * / 2 %32/ 3
Elementwise multiplicative kL / [1, 2; 3, 4] .x [2, 3; 5, 6]
Additive + - 1+ 2
Additive unary +exrpr —erpr -0.5
Array elementwise additive 4o [1, 2; 3, 4] .+ [2, 3; 5, 6]
Relational < <= > >= == <> a<ba<=ba>hb,...
Unary negation not expr not b1l
Logical and and bl and b2
Logical or or bl or b2
Array range exrpr : expr 1:5

expr . exrpr . expr start : step : stop
Conditional if expr then expr else expr if b then 3 else x
Named argument ident = expr x = 2.26

The conditional operator may also include elseif-clauses. Equality = and assignment := are not expression
operators since they are allowed only in equations and in assignment statements respectively. All binary
expression operators are left associative, except exponentiation which is non-associ