Modelica®) - A Unified Object-Oriented Language for Systems
Modeling

Language Specification

Version 3.5-dev

Modelica Association

June 15, 2020

Abstract

o
Modelica
y 4 Language

This document defines the Modelica! language, version 3.5, which is developed by the Modelica As-
sociation, a non-profit organization with seat in Linkdping, Sweden. Modelica is a freely available,
object-oriented language for modeling of large, complex, and heterogeneous systems. It is suited for
multi-domain modeling, for example, mechatronic models in robotics, automotive and aerospace appli-
cations involving mechanical, electrical, hydraulic control and state machine subsystems, process oriented
applications and generation and distribution of electric power. Models in Modelica are mathematically
described by differential, algebraic and discrete equations. No particular variable needs to be solved
for manually. A Modelica tool will have enough information to decide that automatically. Model-
ica is designed such that available, specialized algorithms can be utilized to enable efficient handling
of large models having more than one hundred thousand equations. Modelica is suited and used for
hardware-in-the-loop simulations and for embedded control systems. More information is available at
http://www.Modelica.org/

Modelica is a registered trademark of the Modelica Association

http://www.modelica.org/

Copyright (© 1998-2017, Modelica Association (https://www.modelica.org)

All rights reserved. Reproduction or use of editorial or pictorial content is permitted, i.e., this document
can be freely distributed especially electronically, provided the copyright notice and these conditions
are retained. No patent liability is assumed with respect to the use of information contained herein.
While every precaution has been taken in the preparation of this document no responsibility for errors
or omissions is assumed.

The contributors to this and to previous versions of this document are listed in Appendix E. All
contributors worked voluntarily and without compensation.

Contents

Preface 4
1 Introduction 6
1.1 Overview of Modelica 6
1.2 Scope of the Specification L 6
1.3 Some Definitions e 7
1.4 Notation and Grammar e e 7
2 Lexical Structure 8
2.1 Character Set e e e 8
2.2 Comments e e e e e e 8
2.3 Identifiers, Names, and Keywords, 9
2.4 Literal Constants 10
2.5 Operator Symbols 11
3 Operators and Expressions 12
3.1 Expressions e 12
3.2 Operator Precedence and Associativity oL 12
3.3 Evaluation Order e e 13
3.4 Arithmetic Operators 14
3.5 Equality, Relational, and Logical Operators 14
3.6 Miscellaneous Operators and Variables 15
3.7 Built-in Intrinsic Operators with Function Syntax 17
3.8 Variability of Expressions L 29
4 Classes, Predefined Types, and Declarations 32
4.1 Access Control — Public and Protected Elements 32
4.2 Double Declaration not Allowed 33
4.3 Declaration Order and Usage before Declaration 33
4.4 Component Declarations 33
4.5 Class Declarations 39
4.6 Specialized Classes e 43
4.7 Balanced Models e 44
4.8 Predefined Types and Classes o oo it 51
5 Scoping, Name Lookup, and Flattening 57
5.1 Flattening Context e e e 57
5.2 Enclosing Classes o o i i e e 57
5.3 Static Name Lookup e e 57
5.4 Instance Hierarchy Name Lookup of Inner Declarations 59

Modelica Language Specification 3.5-dev

Modelica

20 Bngiage Contents
5.5 Simultaneous Inner/Outer Declarations 61
5.6 Flattening Process e 62

6 Interface or Type Relationships 67
6.1 The Concepts of Type, Interface and Subtype 68
6.2 Interface or Type o o e 69
6.3 Interface Compatibility or Subtyping L oo 71
6.4 Plug-Compatibility or Restricted Subtyping, 72
6.5 Function-Compatibility or Function-Subtyping for Functions 73
6.6 Type Compatible Expressions 74

7 Inheritance, Modification, and Redeclaration 76
7.1 Inheritance—Extends Clause L e 76
7.2 Modifications L. e e 79
7.3 Redeclaration e 83

8 Equations 91
8.1 Equation Categories e 91
8.2 Flattening and Lookup in Equations 91
8.3 Equations in Equation Sections e 91
8.4 Synchronous Data-flow Principle and Single Assignment Rule 99
8.5 Events and Synchronization L L e 99
8.6 Initialization, initial equation, and initial algorithm 101

9 Connectors and Connections 105
9.1 Connect-Equations and Connectors o 105
9.2 Generation of Connection Equations o 0oL 110
9.3 Restrictions of Connections and Connectors 113
9.4 Equation Operators for Overconstrained Connection-Based Equation Systems 116

10 Arrays 122
10.1 Array Declarations 122
10.2 Flexible Array Sizes 124
10.3 Built-in Array Functions Lo 125
10.4 Vector, Matrix and Array Constructors 128
10.5 Array Indexing 132
10.6 Scalar, Vector, Matrix, and Array Operator Functions 133
10.7 Empty ATrays oo e e e 138

11 Statements and Algorithm Sections 140
11.1 Algorithm Sections 140
11.2 Statements 141

12 Functions 149
12.1 Function Declaration e e 149
12.2 Function as a Specialized Class 151
12.3 Pure Modelica Functions L L 152
12.4 Function Call e 154
12.5 Built-in Functions e 161
12.6 Record Constructor Functions 162
12.7 Declaring Derivatives of Functions L0 oL 165
12.8 Declaring Inverses of Functions L 170
12.9 External Function Interface o 171

13 Packages 186
13.1 Package as Specialized Class 186
13.2 Motivation and Usage of Packages 186

14 Overloaded Operators 191
14.1 Matching Function oL 191

Modelica Language Specification 3.5-dev

Modelica

20 Bngiage Contents
14.2 Overloaded Constructors e 192
14.3 Overloaded String Conversions o e 193
14.4 Overloaded Binary Operations 193
14.5 Overloaded Unary Operations o vt 194
14.6 Example of Overloading for Complex Numbers 194

15 Stream Connectors 198
15.1 Definition of Stream Connectors. i e 198
15.2 Stream Operator inStream and Connection Equations 199
15.3 Stream Operator actualStream L L o 203

16 Synchronous Language Elements 205
16.1 Introduction e e e e e 205
16.2 Definitionso 207
16.3 Clock Constructors o . o ot 210
16.4 Discrete States e e e e e e 213
16.5 Partitioning Operators L e 213
16.6 Clocked When Clause e 217
16.7 Clock Partitioning 217
16.8 Continuous-Time Equations in Clocked Partitions 220
16.9 Initialization of Clocked Partitions 224
16.10 Other Operators e 224
16.11 Semantics L e 225

17 State Machines 228
17.1 Transitions L e e e 228
17.2 State Machine Graphics L L 230
17.3 State Machine Semanticso L 231

18 Annotations 240
18.1 Vendor-Specific Annotationso 240
18.2 Annotations for Documentation L 240
18.3 Annotations for Code Generation L Lo 243
18.4 Annotations for Simulation Experiments 245
18.5 Annotation for single use of class L 245
18.6 Annotations for Graphical Objects o 246
18.7 Annotations for the Graphical User Interface 256
18.8 Annotations for Version Handling L oL 261
18.9 Annotations for Access Control to Protect Intellectual Property 265
18.10 Annotations for Functions 269
18.11 Annotation Choices for Modifications and Redeclarations 269
18.12 Annotation for External Libraries and Include Files 269

19 Unit Expressions 270
19.1 The Syntax of Unit Expressions L o 270
19.2 Examples oL 271

20 The Modelica Standard Library 272

A Glossary 273

B Modelica Concrete Syntax 277

C Modelica DAE Representation 284

D Derivation of Stream Equations 287

E Modelica Revision History 292

F Literature 321

Preface

Modelica is a freely available, object-oriented language for modeling of large, complex, and heterogeneous
physical systems. From a user’s point of view, models are described by schematics, also called object
diagrams. Examples are shown in the next figure:

lossyRavigneaux
Star2

c4 lossyPlanetary "

I l R3 : =

_I_c:‘evw } m=m il o)
Grds ™ R=0.0001 -
. o AIMCT i 0=1.91a9
electrical circuits electrical machines
drive trains, e.g. planetary gears
¢ 5
- A > A b é . “ﬂowswrce Wolume Sink
T T O e @
= 1= | vk
pu;n P » * V=1 -
— < w . .
. thermo-fluad pipe flow, e.g.
hydraulic circuits power plants, air conditioning systems
LN
fiter Pl inttialStep transitiont step transition2
feedback ' I 1
77 /)" _ i
L L i x
fout=5 e "}Ie’_ ’
= . .
) state machines J’J L 3-dim. mechanical systems
block diagrams 1

A schematic consists of connected components, like a resistor, or a hydraulic cylinder. A component
has “connectors” (often also called “ports”) that describe the interaction possibilities, e.g., an electrical
pin, a mechanical flange, or an input signal. By drawing connection lines between connectors a physical
system or block diagram model is constructed. Internally a component is defined by another schematic
or on “bottom” level, by an equation based description of the model in Modelica syntax.

The Modelica language is a textual description to define all parts of a model and to structure model
components in libraries, called packages. An appropriate Modelica simulation environment is needed to
graphically edit and browse a Modelica model (by interpreting the information defining a Modelica model)
and to perform model simulations and other analysis. Information about such environments is available at
www.modelica.org/tools. Basically, all Modelica language elements are mapped to differential, algebraic
and discrete equations. There are no language elements to describe directly partial differential equations,
although some types of discretized partial differential equations can be reasonably defined, e.g., based on
the finite volume method and there are Modelica libraries to import results of finite-element programs.

This document defines the details of the Modelica language. It is not intended to learn the Model-
ica language with this text. There are better alternatives, such as the Modelica books referenced at
www.modelica.org/publications. This specification is used by computer scientist to implement a Mod-
elica translator and by modelers who want to understand the exact details of a particular language
element.

The Modelica language has been developed since 1996. This document describes version 3.4 of the

http://www.modelica.org/tools
http://www.modelica.org/publications

Y, Modelica Language Specification 3.5-dev
Modelica Contents

Modelica language. A complete summary is available in section E.1.

Chapter 1

Introduction

1.1 Overview of Modelica

Modelica is a language for modeling of physical systems, designed to support effective library development
and model exchange. It is a modern language built on acausal modeling with mathematical equations
and object-oriented constructs to facilitate reuse of modeling knowledge.

1.2 Scope of the Specification

The semantics of the Modelica language is specified by means of a set of rules for translating any class
described in the Modelica language to a flat Modelica structure.

A class (of specialized class model, class or block) intended to be simulated on its own is called a
simulation model.

The flat Modelica structure is also defined for other cases than simulation models; including functions
(can be used to provide algorithmic contents), packages (used as a structuring mechanism), and partial
models (used as base-models). This allows correctness to be verified for those classes, before using them
to build the simulation model.

There are specific semantic restrictions for a simulation model to ensure that the model is complete; they
allow its flat Modelica structure to be further transformed into a set of differential, algebraic and discrete
equations (= flat hybrid DAE). Note that satisfying the semantic restrictions does not guarantee that
the model can be initialized from the initial conditions and simulated.

Modelica was designed to facilitate symbolic transformations of models, especially by mapping basically
every Modelica language construct to continuous or instantaneous equations in the flat Modelica struc-
ture. Many Modelica models, especially in the associated Modelica Standard Library, are higher index
systems, and can only be reasonably simulated if symbolic index reduction is performed, i.e., equations
are differentiated and appropriate variables are selected as states, so that the resulting system of equa-
tions can be transformed to state space form (at least locally numerically), i.e., a hybrid DAE of index
zero. In order to allow this structural analysis, a tool may reject simulating a model if parameters cannot
be evaluated during translation - due to calls of external functions or initial equations/initial algorithms
for fixed=false parameters. Accepting such models is a quality of implementation issue. The Modelica
specification does not define how to simulate a model. However, it defines a set of equations that the
simulation result should satisfy as well as possible.

The key issues of the translation (or flattening) are:
e Expansion of inherited base classes
e Parameterization of base classes, local classes and components
e Generation of connection equations from connect-equations

The flat hybrid DAE form consists of:

Y, Modelica Language Specification 3.5-dev
Modelica 1.3. Some Definitions

e Declarations of variables with the appropriate basic types, prefixes and attributes, such as ”parameter
Real v=5".

e Equations from equation sections.

e Function invocations where an invocation is treated as a set of equations which involves all input
and all result variables (number of equations = number of basic result variables).

e Algorithm sections where every section is treated as a set of equations which involves the variables
occurring in the algorithm section (number of equations = number of different assigned variables).

e When-clauses where every when-clause is treated as a set of conditionally evaluated equations, also
called instantaneous equations, which are functions of the variables occurring in the clause (number
of equations = number of different assigned variables).

Therefore, a flat hybrid DAE is seen as a set of equations where some of the equations are only condition-
ally evaluated (e.g. instantaneous equations are only evaluated when the corresponding when-condition
becomes true). Initial setup of the model is specified using start-values and instantaneous equations that
hold at the initial time only.

A Modelica class may also contain annotations, i.e. formal comments, which specify graphical represen-
tations of the class (icon and diagram), documentation text for the class, and version information.

1.3 Some Definitions

The semantic specification should be read together with the Modelica grammar. Non-normative text, i.e.,
examples and comments, are enclosed in [|; comments are set in italics. Additional terms are explained
in the glossary in Appendix A. Some important terms are:

Term Definition

Component | An element defined by the production component-clause in the
Modelica grammar (basically a variable or an instance of a class)
Element Class definitions, extends-clauses and component-clauses declared
in a class (basically a class reference or a component in a declara-
tion).

Flattening | The translation of a model described in Modelica to the corre-
sponding model described as a hybrid DAE, involving expansion
of inherited base classes, parameterization of base classes, local
classes and components, and generation of connection equations
from connect-equations (basically, mapping the hierarchical struc-
ture of a model into a set of differential, algebraic and discrete
equations together with the corresponding variable declarations
and function definitions from the model).

1.4 Notation and Grammar

The meta symbols (of the extended BNF-grammar) are defined in section B.1.

Boldface denotes keywords of the Modelica language. Keywords are reserved words and may not be used
as identifiers, with the exception of initial which is a keyword in section headings, and der which is a
keyword for declaration functions, but it is also possible to call the functions initial() and der(...).

See Appendix B for a full lexical specification and grammar.

Chapter 2

Lexical Structure

This chapter describes several of the basic building blocks of Modelica such as characters and lexical
units including identifiers and literals. Without question, the smallest building blocks in Modelica are
single characters belonging to a character set. Characters are combined to form lexical units, also called
tokens. These tokens are detected by the lexical analysis part of the Modelica translator. Examples of
tokens are literal constants, identifiers, and operators. Comments are not really lexical units since they
are eventually discarded. On the other hand, comments are detected by the lexical analyzer before being
thrown away.

The information presented here is derived from the more formal specification in Appendix B.

2.1 Character Set

The character set of the Modelica language is Unicode, but restricted to the Unicode characters corre-
sponding to 7-bit ASCII characters in several places; for details see section B.1.

2.2 Comments

There are two kinds of comments in Modelica which are not lexical units in the language and therefore
are treated as whitespace by a Modelica translator. The whitespace characters are space, tabulator,
and line separators (carriage return and line feed); and whitespace cannot occur inside tokens, e.g., <=
must be written as two characters without space or comments between them. [The comment syntaz is
identical to that of C++]. The following comment variants are available:

// comment & Characters from // to the end of the line are ignored.
/% comment %/ & Characters between /% and %/ are ignored, including line
terminators.

Modelica comments do not nest, i.e., /* */ cannot be embedded within /* */. The following is invalid:

/* Commented out — erroneous comment, invalid nesting of comments!
/* This is an interesting model x/
model interesting

end interesting;

*/

There is also a description-string, that is part of the Modelica language and therefore not ignored by
the Modelica translator. Such a description-string may occur at the end of a declaration, equation, or
statement or at the beginning of a class definition. For example:

Modelica Language Specification 3.5-dev
2.3. Identifiers, Names, and Keywords

/s
Modelica
language

model TempResistor "Temperature dependent resistor"
parameter Real R "Resistance for reference temp.";

end TempResistor;

2.3 Identifiers, Names, and Keywords

Identifiers are sequences of letters, digits, and other characters such as underscore, which are used for
naming various items in the language. Certain combinations of letters are keywords represented as
reserved words in the Modelica grammar and are therefore not available as identifiers.

2.3.1 Identifiers

Modelica identifiers, used for naming classes, variables, constants, and other items, are of two forms.
The first form always starts with a letter or underscore (_), followed by any number of letters, digits, or
underscores. Case is significant, i.e., the names Inductor and inductor are different. The second form
(Q-IDENT) starts with a single quote, followed by a sequence of any printable ASCII character, where
single-quote must be preceded by backslash, and terminated by a single quote, e.g. ’12H’, *13\’H’,
’+foo’. Control characters in quoted identifiers have to use string escapes. The single quotes are part
of the identifier, i.e., x’ and x are distinct identifiers. The redundant escapes (’\7?’ and ’\"?) are the
same as the corresponding non-escaped variants (*?’ and ’"?), but are only for use in Modelica source
code. A full BNF definition of the Modelica syntax and lexical units is available in Appendix B.

IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT

Q_IDENT = non { Q_CHAR | S_ESCAPE | nnn } nomn

NONDIGIT = "_" | letters "a" ... "z" | letters "A" ... "Z"

DIGIT =0 | 11 2131141516171 3812?9

Q-CHAR = NONDIGIT | DIGIT I nyn | ngn | u$n | n%n I nen I n(n | u)u | Ny n |
nyn | " s n | n_mn | non I n/u | nw.en | n ; " | ngn | nyn I "n=mn | neon | n@n | n [u
I ||] n | n-~n | Il{ll | Il}ll | n I n | n~n I non

S-ESCAPE = n\)n | n\u " | n\?n | u\\n I "\a" | u\bn | u\fu | "\n" I u\rn | "\t"
| "\V"

2.3.2 Names

A name is an identifier with a certain interpretation or meaning. For example, a name may denote
an Integer variable, a Real variable, a function, a type, etc. A name may have different meanings in
different parts of the code, i.e., different scopes. The interpretation of identifiers as names is described
in more detail in chapter 5. The meaning of package names is described in more detail in chapter 13.

2.3.3 Modelica Keywords

The following Modelica keywords are reserved words and may not be used as identifiers, except as listed
in section B.1:

algorithm discrete false loop pure

and each final model record
annotation else flow not redeclare

elseif for operator replaceable

block elsewhen function or return
break encapsulated if outer stream
class end import output then
connect enumeration impure package true
connector equation in parameter type
constant expandable initial partial when

Y Modelica Language Specification 3.5-dev

Modelica 2.4. Literal Constants
constrainedby extends inner protected while
der external input public within

2.4 Literal Constants

Literal constants are unnamed constants that have different forms depending on their type. Each of
the predefined types in Modelica has a way of expressing unnamed constants of the corresponding type,
which is presented in the ensuing subsections. Additionally, array literals and record literals can be
expressed.

2.4.1 Floating Point Numbers

A floating point number is expressed as a decimal number in the form of a sequence of decimal digits
optionally followed by a decimal point, optionally followed by an exponent. At least one digit must
be present. The exponent is indicated by an E or e, followed by an optional sign (+ or -) and one
or more decimal digits. The minimal recommended range is that of IEEE double precision floating
point numbers, for which the largest representable positive number is 1.7976931348623157E+308 and
the smallest positive number is 2.2250738585072014E-308. For example, the following are floating point
number literal constants:

22.5, 3.141592653589793, 1.2E-35

The same floating point number can be represented by different literals. For example, all of the following
literals denote the same number:

13., 13E0, 1.3el1, 0.13E2

2.4.2 Integer Literals

Literals of type Integer are sequences of decimal digits, e.g. as in the integer numbers 33, 0, 100,
30030044. [Negative numbers are formed by unary minus followed by an integer literal]. The minimal
recommended number range is from -2147483648 to 42147483647 for a two’s-complement 32-bit integer
implementation.

2.4.3 Boolean Literals

The two Boolean literal values are true and false.

2.4.4 Strings

String literals appear between double quotes as in "between". Any character in the Modelica language
character set (see section B.1 for allowed characters) apart from double quote (") and backslash (\),
including new-line, can be directly included in a string without using an escape code. Certain characters
in string literals can be represented using escape codes, i.e., the character is preceded by a backslash (\)
within the string. Those characters are:

\’ single quote — may also appear without backslash in string constants.
\" double quote

\? question-mark — may also appear without backslash in string constants.
\\ backslash itself

\a alert (bell, code 7, ctrl-G)

\b backspace (code 8, ctrl-H)

\f form feed (code 12, ctrl-L)

\n newline (code 10, ctrl-J), same as literal newline

10

g Modelica Language Specification 3.5-dev
Modelica 2.5. Operator Symbols

\r carriage return (code 13, ctrl-M)
\t horizontal tab (code 9, ctrl-I)
\v vertical tab (code 11, ctrl-K)

For example, a string literal containing a tab, the words: This is, double quote, space, the word:
between, double quote, space, the word: us, and new-line, would appear as follows:

”\tThis is\"between\" us\n’

Concatenation of string literals in certain situations (see the Modelica grammar) is denoted by the +
operator in Modelica, e.g. "a" + "b" becomes "ab". This is useful for expressing long string literals
that need to be written on several lines.

The "\n" character is used to conceptually indicate the end of a line within a Modelica string. Any
Modelica program that needs to recognize line endings can check for a single "\n" character to do so on
any platform. It is the responsibility of a Modelica implementation to make any necessary transformations
to other representations when writing to or reading from a text file. [For example, a "\n" is written and
read as-is in a Unix or Linuz implementation, but written as "\r\n" pair, and converted back to "\n"
when read, in a Windows implementation.]

[For long string comments, e.g., the “info” annotation to store the documentation of a model, it would
be very inconvenient, if the string concatenation operator would have to be used for every line of doc-
umentation. It is assumed that a Modelica tool supports the non-printable “newline” character when
browsing or editing a string literal. For example, the following statement defines one string that contains
(non-printable) newline characters:

assert (noEvent (length > s_small), "

The distance between the origin of frame_a and the origin of frame_b
of a LineForceWithMass component became smaller as parameter s_small
(= a small number, defined in the

\"Advanced\" menu). The distance is

set to s_small, although it is smaller, to avoid a division by =zero
when computing the direction of the line force.",

level = Assertionlevel.warning);

2.5 Operator Symbols

The predefined operator symbols are formally defined on page 277 and summarized in the table of
operators in section 3.2.

11

Chapter 3

Operators and Expressions

The lexical units are combined to form even larger building blocks such as expressions according to the
rules given by the expression part of the Modelica grammar in Appendix B.

This chapter describes the evaluation rules for expressions, the concept of expression variability, built-in
mathematical operators and functions, and the built-in special Modelica operators with function syntax.

Expressions can contain variables and constants, which have types, predefined or user defined. The
predefined built-in types of Modelica are Real, Integer, Boolean, String, and enumeration types
which are presented in more detail in section 4.8. [The abbreviated predefined type information below is
given as background information for the rest of the presentation.]

3.1 Expressions

Modelica equations, assignments and declaration equations contain expressions.

Expressions can contain basic operations, +, -, *, /, “, etc. with normal precedence as defined in the
Table in section 3.2 and the grammar in Appendix B. The semantics of the operations is defined for
both scalar and array arguments in section 10.6.

It is also possible to define functions and call them in a normal fashion. The function call syntax for both
positional and named arguments is described in section 12.4.1 and for vectorized calls in section 12.4.4.
The built-in array functions are given in section 10.1.1 and other built-in operators in section 3.7.

3.2 Operator Precedence and Associativity

Operator precedence determines the order of evaluation of operators in an expression. An operator with
higher precedence is evaluated before an operator with lower precedence in the same expression.

The following table presents all the expression operators in order of precedence from highest to lowest,
as derived from the Modelica grammar in Appendix B. All operators are binary except the postfix
operators and those shown as unary together with ezpr, the conditional operator, the array construction
operator {} and concatenation operator [|, and the array range constructor which is either binary or
ternary. Operators with the same precedence occur at the same line of the table:

12

o
Modelica
language

Modelica Language Specification 3.5-dev
3.3. Evaluation Order

Table 3.1: Operators

Operator Group Operator Syntax Ezxzamples

postfix array index operator 0 arr [index]

postfix access operator . a.b

postfix function call funcName(function-arguments) sin(4.36)
{expressions}

array construct/concat [expressions] {2,3} [5,6] [2,3;
[expressions; expressions...] 7,8]

exponentiation - 2°3

multiplicative and array elemen- | * / .* ./ 2x3 2/3 [1,2;3,4].

twise multiplicative *[2,3;5,6]

additive and array elementwise

+ - +expr -expr .+ .-

[1,2;3,4].+[2,3;5,6]

additive

relational < <= > >= == <> a<b, a<=b, a>b,
unary negation not expr not bl

logical and and bl and b2

logical or or bl or b2

array range ETPr i exPT exXPr i erpr : expr 1:5 start:step:stop
conditional if expr then expr else expr if b then 3 else x

x =2.26

named argument ident = expr

The conditional operator may also include elseif-clauses. Equality = and assignment := are not expression
operators since they are allowed only in equations and in assignment statements respectively. All binary
expression operators are left associative, except exponentiation which is non-associative. The array range
operator is non-associative.

[The unary minus and plus in Modelica is slightly different than in Mathematica and in MATLAB?,
since the following expressions are illegal (whereas in Mathematica® and in MATLAB these are valid
expressions):

2x-2 // = —4 in Mathematica/MATLAB; is illegal in Modelica
--2 // = 2 in Mathematica/MATLAB; is illegal in Modelica
++2 // = 2 in Mathematica/MATLAB; is illegal in Modelica
2--2 // = 4 in Mathematica/MATLAB; is illegal in Modelica

Non-associative exponentiation and array range operator:

clear
no legal

use parenthesis to make it

“yz // Not legal,
c and scalar arguments gives

Xy
a:b:c:d:e:f:g // Not legal, interpretation.

3.3 Evaluation Order

A tool is free to solve equations, reorder expressions and to not evaluate expressions if their values
do not influence the result (e.g. short-circuit evaluation of Boolean expressions). If-statements and
if-expressions guarantee that their clauses are only evaluated if the appropriate condition is true, but
relational operators generating state or time events will during continuous integration have the value
from the most recent event.

If a numeric operation overflows the result is undefined. For literals it is recommended to automatically
convert the number to another type with greater precision.

IMATLAB is a registered trademark of MathWorks Inc.
2Mathematica is a registered trademark of Wolfram Research Inc.

13

g Modelica Language Specification 3.5-dev
Modelica 3.5. Equality, Relational, and Logical Operators

3.3.1 Example: Guarding Expressions Against Incorrect Evaluation

[Example. If one wants to guard an expression against incorrect evaluation, it should be guarded by an

if:

Boolean v[n];
Boolean b;
Integer I;
equation
b=(I>=1 and I<=n) and vI[I]; // Invalid
b=if (I>=1 and I<=n) then v[I] else false; // Correct

To guard square against square root of negative number use noEvent:

der (h)=if h>0 then -c*sqrt(h) else 0; // Incorrect
der (h)=if noEvent (h>0) then -c*sqrt(h) else 0; // Correct

3.4 Arithmetic Operators

Modelica supports five binary arithmetic operators that operate on any numerical type:

Exponentiation
Multiplication
Division
Addition
Subtraction

+ N *

Some of these operators can also be applied to a combination of a scalar type and an array type, see
section 10.6.

The syntax of these operators is defined by the following rules from the Modelica grammar:

arithmetic-expression
[add-operator] term { add-operator term }

add-operator

ngn | n_n

term
factor { mul-operator factor }

mul-operator
Il*l| | ll/ll

factor
primary [""" primary]

3.5 Equality, Relational, and Logical Operators

Modelica supports the standard set of relational and logical operators, all of which produce the standard
boolean values true or false.

> greater than
>= greater than or equal
< less than

14

Y, Modelica Language Specification 3.5-dev
Modelica 3.6. Miscellaneous Operators and Variables

<= less than or equal to
== equality within expressions
<> Inequality

A single equals sign = is never used in relational expressions, only in equations (chapter 8, section 10.6.1)
and in function calls using named parameter passing (section 12.4.1).

The following logical operators are defined:
not negation, unary operator

and logical and
or logical or

The grammar rules define the syntax of the relational and logical operators.

logical-expression
logical-term { or logical-term }

logical-term
logical-factor { and logical-factor 1}

logical-factor
[not] relation

relation
arithmetic-expression [relational-operator arithmetic-expression]

relational-operator
nen | ng=mn | nsn | ny=n | [T} | ngsn

The following holds for relational operators:

e Relational operators <, <=,> >= == <> are only defined for scalar operands of simple types. The
result is Boolean and is true or false if the relation is fulfilled or not, respectively.

e For operands of type String, strl op str2 is for each relational operator, op, defined in terms of
the C-function strcmp as strcmp(strl,str2)op O.

e For operands of type Boolean, false < true.

e For operands of enumeration types, the order is given by the order of declaration of the enumeration
literals.

e In relations of the form vl == v2 or vl <> v2, vl or v2 shall, unless used in a function, not be a
subtype of Real. [The reason for this rule is that relations with Real arguments are transformed to
state events (see Events, section 8.5) and this transformation becomes unnecessarily complicated for
the == and <> relational operators (e.g. two crossing functions instead of one crossing function
needed, epsilon strategy needed even at event instants). Furthermore, testing on equality of Real
variables is questionable on machines where the number length in registers is different to number
length in main memory].

e Relational operators can generate events, see section 3.8.3.

3.6 Miscellaneous Operators and Variables

Modelica also contains a few built-in operators which are not standard arithmetic, relational, or logical
operators. These are described below, including time, which is a built-in variable, not an operator.

15

g Modelica Language Specification 3.5-dev
Modelica 3.6. Miscellaneous Operators and Variables

3.6.1 String Concatenation

Concatenation of strings (see the Modelica grammar) is denoted by the 4+ operator in Modelica [e.g.
"a" + "b" becomes "ab"].

3.6.2 Array Constructor Operator

The array constructor operator { ... } is described in section 10.4.

3.6.3 Array Concatenation Operator

The array concatenation operator [... | is described in section 10.4.2.

3.6.4 Array Range Operator

The array range constructor operator : is described in section 10.4.3.

3.6.5 If-Expressions

An expression

if expressionl then expression2 else expression3

is one example of if-expression. First expressionl, which must be boolean expression, is evaluated. If
expressionl is true expression?2 is evaluated and is the value of the if-expression, else expression3
is evaluated and is the value of the if-expression. The two expressions, expression2 and expression3,
must be type compatible expressions (section 6.6) giving the type of the if-expression. If-expressions
with elseif are defined by replacing elseif by else if. [Note: elseif has been added for symmetry
with if-clauses.] For short-circuit evaluation see section 3.3.

[Example:

Integer 1i;
Integer sign_of_il=if i<0 then -1 elseif i==0 then 0 else 1;
Integer sign_of_i2=if i<0 then -1 else if i==0 then 0 else 1;

3.6.6 Member Access Operator
It is possible to access members of a class instance using dot notation, i.e., the . operator.

[Example: R1.R for accessing the resistance component R of resistor R1 . Another use of dot notation:
local classes which are members of a class can of course also be accessed using dot notation on the name
of the class, not on instances of the class.]

3.6.7 Built-in Variable time

All declared variables are functions of the independent variable time. The variable time is a built-in
variable available in all models and blocks, which is treated as an input variable. It is implicitly defined
as:

input Real time (final quantity = "Time",
final unit = "s");

The value of the start attribute of time is set to the time instant at which the simulation is started.

[Example:

encapsulated model SineSource

import Modelica.Math.sin;

connector OutPort=output Real;

OutPort y=sin(time); // Uses the built—in variable time.
end SineSource;

16

Y, Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

3.7 Built-in Intrinsic Operators with Function Syntax

Certain built-in operators of Modelica have the same syntax as a function call. However, they do not
behave as a mathematical function, because the result depends not only on the input arguments but also
on the status of the simulation.

There are also built-in functions that depend only on the input argument, but also may trigger events
in addition to returning a value. Intrinsic means that they are defined at the Modelica language level,
not in the Modelica library. The following built-in intrinsic operators/functions are available:

e Mathematical functions and conversion functions, see section 3.7.1 below.

e Derivative and special purpose operators with function syntax, see section 3.7.2 below.
e Event-related operators with function syntax, see section 3.7.3 below.

e Array operators/functions, see section 10.1.1.

Note that when the specification references a function having the name of a built-in function it references
the built-in function, not a user-defined function having the same name, see also section 12.5. With
exception of built-in operator String(. .), all operators in this section can only be called with positional
arguments.

3.7.1 Numeric Functions and Conversion Functions

The following mathematical operators and functions, also including some conversion functions, are pre-
defined in Modelica, and are vectorizable according to section 12.4.6, except for the String function.
The functions which do not trigger events are described in the table below, whereas the event-triggering
mathematical functions are described in section 3.7.1.1.

abs (v) Is expanded into noEvent (if v >= 0 then v else -v). Argu-
ment v needs to be an Integer or Real expression.

sign(v) Is expanded into “noEvent (if v>0 then 1 else if v<0 then
-1 else 0)”. Argument v needs to be an Integer or Real expres-
sion.

sqrt (v) Returns the square root of v if v>=0, otherwise an error occurs.
Argument v needs to be an Integer or Real expression.

Integer(e) Returns the ordinal number of the expression e of enumeration

type that evaluates to the enumeration value E. enumvalue, where
Integer(E.el)=1, Integer(E.en)=n, for an enumeration type E
=enumeration(el, ..., en). See also section 4.8.5.2.
EnumTypeName (i) For any enumeration type EnumTypeName, returns the enumeration
value EnumTypeName.e such that Integer (EnumTypeName.e)= i.
Refer to the definition of Integer above.

It is an error to attempt to convert values of i that do not corre-
spond to values of the enumeration type. See also section 4.8.5.3.

17

Y, Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

String(b, <options>)
String(i, <options>)

String(r,

significantDigits=d, Convert a scalar non-String expression to a String representation.
<options>) The first argument may be a Boolean b, an Integer i, a Real
String(r, format=s) r or an Enumeration e (section 4.8.5.2). The other arguments
String(e, <options>) must use named arguments. The optional <options> are:

Integer minimumLength=0: minimum length of the resulting
string. If necessary, the blank character is used to fill up unused
space.
Boolean leftJustified = true: if true, the converted result is
left justified in the string; if false it is right justified in the string.
For Real expressions the output shall be according to the Modelica
grammar. Integer significantDigits=6: defines the number
of significant digits in the result string. [Fzamples: 712.34567,
70.0123456 7, 7123456007, 71.23456E-10"].
The format string corresponding to options is:

e for Reals: (if leftJustified then "-"else

"")+ String(minimumLength)+"."+ String(
signficantDigits)+"g",
e for Integers: (if leftJustified then "-"else "")+
String(minimumLength)+"d".

Format string: According to ANSI-C the format string specifies
one conversion specifier (excluding the leading %), may not con-
tain length modifiers, and may not use ”*” for width and/or pre-
cision. For all numeric values the format specifiers £, e, E, g,G
are allowed. For integral values it is also allowed to use the d,
i, 0, x, X, u, and c-format specifiers (for non-integral values a
tool may round, truncate or use a different format if the integer
conversion characters are used).
The x,X-formats (hexa-decimal) and ¢ (character) for Integers
does not lead to input that agrees with the Modelica-grammar.

3.7.1.1 Event Triggering Mathematical Functions

The built-in operators in this section trigger events if used outside of a when-clause and outside of a
clocked discrete-time partition (see section 16.8.1). These expression for div, ceil, floor, and integer are
event generating expression. The event generating expression for mod(x,y) is floor(x/y), and for rem(x,y)
it is div(x,y) - i.e. events are not generated when mod or rem changes continuously in an interval, but
when they change discontinuously from one interval to the next. [If this is not desired, the noEvent
function can be applied to them. E.g. noEvent (integer(v)) |

div(x,y) Returns the algebraic quotient x/y with any fractional part discarded (also
known as truncation toward zero). [Note: this is defined for / in C99; in
C89 the result for negative numbers is implementation-defined, so the standard
function div() must be used.]. Result and arguments shall have type Real or
Integer. If either of the arguments is Real the result is Real otherwise Integer.
mod (x,y) Returns the integer modulus of x/y, i.e. mod(x,y)=x-floor(x/y)*y. Result
and arguments shall have type Real or Integer. If either of the arguments is
Real the result is Real otherwise Integer. [Note, outside of a when-clause state
events are triggered when the return value changes discontinuously. Examples
mod(3,1.4)=0.2, mod(-3,1.4)=1.2, mod(3,-1.4)=-1.2]

rem(x,y) Returns the integer remainder of x/y, such that div(x,y)*y + rem(x, y)= x.
Result and arguments shall have type Real or Integer. If either of the arguments
is Real the result is Real otherwise Integer. [Note, outside of a when-clause state
events are triggered when the return value changes discontinuously. Examples
rem(3,1.4)=0.2, rem(-3,1.4)=-0.2]

18

Modelica Language Specification 3.5-dev

Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

ceil(x) Returns the smallest integer not less than x. Result and argument shall have
type Real. [Note, outside of a when-clause state events are triggered when the
return value changes discontinuously.]

Returns the largest integer not greater than x. Result and argument shall have
type Real. [Note, outside of a when-clause state events are triggered when the
return value changes discontinuously.].

Returns the largest integer not greater than x. The argument shall have type
Real. The result has type Integer.[Note, outside of a when-clause state events

are triggered when the return value changes discontinuously.].

floor (x)

integer(x)

3.7.1.2 Built-in Mathematical Functions and External Built-in Functions

The following built-in mathematical functions are available in Modelica and can be called directly without
any package prefix added to the function name. They are also available as external built-in functions in
the Modelica.Math library.

sin(x) sine

cos (x) cosine

tan(x) tangent (x shall not be: ..., -7/2, 7/2, 37/2, ...)
asin(x) inverse sine (-1 <z < 1)

acos (x) inverse cosine (-1 <z < 1)

atan(x) inverse tangent

atan2(y, x)

the atan2(y, x) function calculates the principal
value of the arc tangent of y/z, using the signs of
the two arguments to determine the quadrant of the
result

sinh(x) hyperbolic sine

cosh(x) hyperbolic cosine

tanh (x) hyperbolic tangent

exp(x) exponential, base e

log(x) natural (base e) logarithm (z > 0)
log10(x) base 10 logarithm (x > 0)

3.7.2 Derivative and Special Purpose Operators with Function Syntax

The following derivative operator and special purpose operators with function syntax are predefined.
The special purpose operators with function syntax where the call below uses named arguments can be
called with named arguments (with the specified names), or with positional arguments (the inputs of
the functions are in the order given in the calls below).

der(expr) The time derivative of expr. If the expression expr
is a scalar it needs to be a subtype of Real. The ex-
pression and all its time-varying subexpressions must
be continuous and semi-differentiable. If expr is an
array, the operator is applied to all elements of the
array. For non-scalar arguments the function is vec-
torized according to section 10.6.12. [For Real pa-
rameters and constants the result is a zero scalar or

array of the same size as the variable.]

19

Modelica Language Specification 3.5-dev

Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

delay(expr,delayTime,
delayMax)
delay(expr,delayTime)

Returns: expr(time-delayTime) for time>
time.start + delayTime and expr(time.start)
for time <= time.start + delayTime. The argu-
ments, i.e., expr, delayTime and delayMax, need
to be subtypes of Real. delayMax needs to be
additionally a parameter expression. The following
relation shall hold: 0 <= delayTime <= delayMax,
otherwise an error occurs. If delayMax is not
supplied in the argument list, delayTime needs to
be a parameter expression. See also section 3.7.2.1.
For non-scalar arguments the function is vectorized
according to section 10.6.12.

cardinality(c)

[This is a deprecated operator. It should no longer
be used, since it will be removed in one of the next
Modelica releases.]

Returns the number of (inside and outside) occur-
rences of connector instance ¢ in a connect-equation
as an Integer number. See also section 3.7.2.3.

homotopy(actual=actual,
simplified=simplified)

The scalar expressions “actual” and “simplified” are
subtypes of Real. A Modelica translator should map
this operator into either of the two forms:

1. Returns actual [a trivial implementation].

2. In order to solve algebraic systems of equa-
tions, the operator might during the solution
process return a combination of the two argu-
ments, ending at actual, [e.g., actual*lambda

+ simplifiedx(1-lambda) , where lambda is

a homotopy parameter going from 0 to 1]. The

solution must fulfill the equations for homotopy
returning actual.

See also section 3.7.2.4. For non-scalar arguments

the function is vectorized according to section 12.4.6.

semilinear(x,
positiveSlope,
negativeSlope)

Returns: smooth(0, if x>=0 then
positiveSlope*x else negativeSlope*x). The
result is of type Real. See section 3.7.2.5 [espe-
cially in the case when x = 0]. For non-scalar
arguments the function is vectorized according to
section 10.6.12.

inStream(v)

The operator inStream(v) is only allowed on stream
variables v defined in stream connectors, and is the
value of the stream variable v close to the connection
point assuming that the flow is from the connection
point into the component. This value is computed
from the stream connection equations of the flow
variables and of the stream variables. The operator
is vectorizable. For more details see section 15.2.

actualStream(v)

The actualStream(v) operator returns the actual
value of the stream variable v for any flow direction.
The operator is vectorizable. For more details, see
section 15.3.

20

Y, Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

spatialDistribution(
in0=in0, inl=inl, x=x,

positiveVelocity=..., The spatialDistribution(...) operator allows
initialPoints=..., approximation of variable-speed transport of prop-
initialValues=...) erties, see section 3.7.2.2.

getInstanceName () Returns a string with the name of the model/block

that is simulated, appended with the fully qualified
name of the instance in which this function is called,
see section 3.7.2.6.

A few of these operators are described in more detail in the following.

3.7.2.1 delay

[The delay () operator allows a numerical sound implementation by interpolating in the (internal) inte-
grator polynomials, as well as a more simple realization by interpolating linearly in a buffer containing
past values of expression expr. Without further information, the complete time history of the delayed sig-
nals needs to be stored, because the delay time may change during simulation. To avoid excessive storage
requirements and to enhance efficiency, the mazimum allowed delay time has to be given via delayMax.

This gives an upper bound on the values of the delayed signals which have to be stored. For real-time
simulation where fized step size integrators are used, this information is sufficient to allocate the necessary
storage for the internal buffer before the simulation starts. For variable step size integrators, the buffer
size is dynamic during integration. In principle, a delay operator could break algebraic loops. For
simplicity, this is not supported because the minimum delay time has to be give as additional argument
to be fixed at compile time. Furthermore, the mazimum step size of the integrator is limited by this
minimum delay time in order to avoid extrapolation in the delay buffer.]

3.7.2.2 spatialDistribution

[Many applications involve the modelling of variable-speed transport of properties. One option to model
this infinite-dimensional system is to approximate it by an ODE, but this requires a large number of
state variables and might introduce either numerical diffusion or numerical oscillations. Another option
is to use a built-in operator that keeps track of the spatial distribution of z(x, t), by suitable sampling,
interpolation, and shifting of the stored distribution. In this case, the internal state of the operator is
hidden from the ODE solver.]

The spatialDistribution() operator allows to approximate efficiently the solution of the infinite-
dimensional problem

9z(y, t)
ot

2(0.0,t) =ing(t) if v >0

2(1.0,t) =iny (¢) if v < 0

where z(y, t) is the transported quantity, y is the normalized spatial coordinate (0.0 <y < 1.0), ¢ is the
time, v(t) = der(x) is the normalized transport velocity and the boundary conditions are set at either
y = 0.0 or y = 1.0, depending on the sign of the velocity. The calling syntax is:

(out0, outl) = spatialDistribution(inO, inl, x, positiveVelocity,
initialPoints = {0.0, 1.0},
initialValues = {0.0, 0.0});

where in0, in1, out0, outl, x, v are all subtypes of Real, positiveVelocity is a Boolean, initialPoints
and initialValues are arrays of subtypes of Real of equal size, containing the y coordinates and the z
values of a finite set of points describing the initial distribution of z(y, ¢0). The out0 and out1 are given
by the solutions at 2(0.0, t) and z(1.0, t); and in0 and inl are the boundary conditions at z(0.0, t) and

21

Y, Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

Language

2(1.0, t) (at each point in time only one of in0 and inl is used). Elements in the initialPoints array must
be sorted in non-descending order. The operator can not be vectorized according to the vectorization
rules described in section 12.4.6. The operator can be vectorized only with respect to the arguments in0
and inl (which must have the same size), returning vectorized outputs out0 and outl of the same size;
the arguments initialPoints and initialValues are vectorized accordingly.

The solution, z(..), can be described in terms of characteristics:
z(y + ftt+6 v(a)da,t + 8) = z(y,t), for all 5 as long as staying inside the domain.

This allows to directly compute the solution based on interpolating the boundary conditions.

The spatialDistribution operator can be described in terms of the pseudo-code given as a block:

block spatialDistribution
input Real inO;
input Real inil;
input Real x;
input Boolean positiveVelocity;
parameter Real initialPoints(each min=0, each max=1)[:] = {0.0, 1.0};
parameter Real initialValues[:] = {0.0, 0.0};
output Real outO;
output Real outl;
protected
Real points[:];
Real values[:];
Real xO0;
Integer m;
algorithm
if positiveVelocity then
outl:=interpolate (points, values, 1-(x-x0));
out0:=values[1]; // similar to in0 but avoiding algebraic loop
else
outO:=interpolate (points, values, 0-(x-x0));
outl:=values[end]l; // similar to inl but avoiding algebraic loop
end if;
when <acceptedStep> then
if x>x0 then
m:=size (points,1);
while (if m>0 then points[m]+(x-x0)>=1 else false) then
m:=m-1;
end while;
values:=cat (1, {in0}, values[1l:m], {interpolate(points, values,1-(x-x0))}
);
points:=cat (1, {0}, points[l:m] .+ (x-x0), {1});
elseif x<x0 then
m:=1;
while (if m<size(points,1) then points[m]+(x-x0)<=0 else false) then
m:=m+1;
end while;
values:=cat (1, {interpolate(points, values, 0-(x-x0))},values[m:end],{inl
B
points:=cat (1, {0}, points[m:end] .+ (x-x0), {13});
end if;
x0:=x;
end when;
initial algorithm
x0:=x;
points:=initialPoints;
values:=initialValues;
end spatialDistribution;

[Note that the implementation has an internal state and thus cannot be described as a function in Model-
ica; initialPoints and initialValues are declared as parameters to indicate that they are only used during
initialization.

22

Y, Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

The infinite-dimensional problem stated above can then be formulated in the following way:

der(x) = v;
(out0, outl) = spatialDistribution(inO, inl, x,v >=0, initialPoints,
initialValues) ;

Events are generated at the eract instants when the velocity changes sign — if this is not needed, no-
Event() can be used to suppress event generation.

If the velocity is known to be always positive, then out0 can be omitted, e.q.:

der(x) = v;
(,outl) = spatialDistribution(inO, O, x, true, initialPoints, initialValues);

Technically relevant use cases for the use of the spatialDistribution() operator are modeling of electrical
transmission lines, pipelines and pipeline networks for gas, water and district heating, sprinkler systems,
impulse propagation in elongated bodies, conveyor belts, and hydraulic systems. Vectorization is needed
for pipelines where more than one quantity is transported with velocity v in the example above.)

3.7.2.3 cardinality (deprecated)

[The cardinality operator is deprecated for the following reasons and will be removed in a future release:
e Reflective operator may make early type checking more difficult.
o Almost always abused in strange ways
e Not used for Bond graphs even though it was originally introduced for that purpose.

]

[The cardinality() operator allows the definition of connection dependent equations in a model, for ex-
ample:

connector Pin
Real v;
flow Real ij;
end Pin;
model Resistor
Pin p, n;
equation
assert (cardinality(p) > 0 and cardinality(n) > 0, "Connectors p and n of
Resistor must be connected");
// Equations of resistor

end Resistor;

]

The cardinality is counted after removing conditional components. and may not be applied to expandable
connectors, elements in expandable connectors, or to arrays of connectors (but can be applied to the
scalar elements of array of connectors). The cardinality operator should only be used in the condition
of assert and if-statements — that do not contain connect (and similar operators — see section 16.8.1).

3.7.2.4 homotopy

[During the initialization phase of a dynamic simulation problem, it often happens that large nonlinear
systems of equations must be solved by means of an iterative solver. The convergence of such solvers
critically depends on the choice of initial guesses for the unknown variables. The process can be made
more robust by providing an alternative, simplified version of the model, such that convergence is possible

23

Y, Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

even without accurate initial quess values, and then by continuously transforming the simplified model
into the actual model. This transformation can be formulated using expressions of this kind:

A -actual + (1 —) - simplified

in the formulation of the system equations, and is usually called a homotopy transformation. If the
simplified expression is chosen carefully, the solution of the problem changes continuously with X\, so by
taking small enough steps it is possible to eventually obtain the solution of the actual problem.

The operator can be called with ordered arguments or preferably with named arguments for improved
readability.

It is recommended to perform (conceptually) one homotopy iteration over the whole model, and not
several homotopy iterations over the respective non-linear algebraic equation systems. The reason is that
the following structure can be present:

w= f1(x) // has homotopy operator
0 = fa(der(x), x, z, w)

Here, a non-linear equation system fo is present. The homotopy operator is, however used on a variable
that is an “input” to the non-linear algebraic equation system, and modifies the characteristics of the
non-linear algebraic equation system. The only useful way is to perform the homotopy iteration over fy
and fo together.

The suggested approach is “conceptual”, because more efficient implementations are possible, e.g. by
determining the smallest iteration loop, that contains the equations of the first BLT block in which a
homotopy operator is present and all equations up to the last BLT block that describes a non-linear
algebraic equation system.

A trivial implementation of the homotopy operator is obtained by defining the following function in the
global scope:

function homotopy
input Real actual;
input Real simplified;
output Real y;
algorithm
y := actual;
annotation(Inline = true);
end homotopy;

Ezxample 1:

In electrical systems it is often difficult to solve non-linear algebraic equations if switches are part of the
algebraic loop. An idealized diode model might be implemented in the following way, by starting with a
“flat” diode characteristic and then move with the homotopy operator to the desired “steep” characteristic:

model IdealDiode

parameter Real Goff = 1le-5;
protected
Real Goff_flat = max(0.01, Goff);
Real Goff2;
equation
off = s < 0;
Goff2 = homotopy(actual=Goff, simplified=Goff_flat);
u = s*(if off then 1 else Ron2) + Vknee;
i = s*x(if off then Goff2 else 1) + Goff2*Vknee;

24

g Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

end IdealDiode;

Ezxample 2:

In electrical systems it is often useful that all voltage sources start with zero wvoltage and all current
sources with zero current, since steady state initialization with zero sources can be easily obtained. A
typical voltage source would then be defined as:

model ConstantVoltageSource
extends Modelica.Electrical.Analog.Interfaces.0OnePort;
parameter Modelica.SIunits.Voltage V;

equation
v = homotopy(actual=V, simplified=0.0);

end ConstantVoltageSource;

Ezxample 3:

In fluid system modelling, the pressure/flowrate relationships are highly nonlinear due to the quadratic
terms and due to the dependency on fluid properties. A simplified linear model, tuned on the nominal
operating point, can be used to make the overall model less nonlinear and thus easier to solve without
accurate start values. Named arguments are used here in order to further improve the readability.

model Pressureloss
import SI = Modelica.SIunits;

parameter SI.MassFlowRate m_flow_nominal "Nominal mass flow rate";
parameter SI.Pressure dp_nominal "Nominal pressure drop";
SI.Density rho "Upstream density";
SI.DynamicViscosity lambda "Upstream viscosity";

equation

m_flow = homotopy(actual = turbulentFlow_dp(dp, rho, lambda),
simplified = dp/dp_nominal*m_flow_nominal);

end Pressureloss;

Ezample 4:

Note that the homotopy operator shall mot be used to combine unrelated expressions, since this can
generate singular systems from combining two well-defined systems.

model DoNotUse

Real x;

parameter Real x0 = O0;
equation

der(x) = 1-x;
initial equation

0 = homotopy(der(x), x - x0);
end DoNotUse;

The wnitial equation is expanded into
0=MAxsder(z)+ (1 —A)(z—x0)
and you can solve the two equations to give

7)\4’()*1)1‘0
o 2A—1

25

g Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

which has the correct value of xo at A = 0 and of 1 at A\ = 1, but unfortunately has a singularity at
A=05.]

3.7.2.5 semiLinear

(See definition of semilinear in section 3.7.2). In some situations, equations with the semiLinear ()
function become underdetermined if the first argument (x) becomes zero, i.e., there are an infinite number
of solutions. It is recommended that the following rules are used to transform the equations during the
translation phase in order to select one meaningful solution in such cases:

Rule 1: The equations

y = semilinear(x, sa, s1);
y = semilinear(x, sl, s2);
y = semilinear(x, s2, s3);
y = semilinear(x, sN, sb);

may be replaced by

sl = if x >= 0 then sa else sb
s2 = s1;

s3 = s2;

SN = SN-15

y = semilinear(x, sa, sb);

Rule 2: The equations

x = 0;
y 0;
y semilinear (x, sa, sb);

may be replaced by

x =0
y = 0;
sa = sb;

[For symbolic transformations, the following property is useful (this follows from the definition):

semilinear (m_flow, port_h, h);

s identical to :

-semilinear (-m_flow, h, port_h);

The semiLinear function is designed to handle reversing flow in fluid systems, such as

H_flow =semilinear(m_flow, port.h, h);

i.e., the enthalpy flow rate H_flow is computed from the mass flow rate m_flow and the upstream specific
enthalpy depending on the flow direction.

]

26

Y, Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

3.7.2.6 getInstanceName

Returns a string with the name of the model/block that is simulated, appended with the fully qualified
name of the instance in which this function is called.

[Example:

package MyLib
model Vehicle
Engine engine;

end Vehicle;
model Engine
Controller controller;

end Engine;
model Controller
equation
Modelica.Utilities.Streams.print ("Info from: " + getInstanceName());
end Controller;
end MyLib;

If MyLib. Vehicle is simulated, the call of getInstanceName() returns:” Vehicle.engine.controller”

]

If this function is not called inside a model or block (e.g. the function is called in a function or in a
constant of a package), the return value is not specified.

[The simulation result should not depend on the return value of this function. |

3.7.3 Event-Related Operators with Function Syntax

The following event-related operators with function syntax are supported. The operators noEvent, pre,
edge, and change, are vectorizable according to section 12.4.6

initial() Returns true during the initialization phase and
false otherwise [thereby triggering a time event at
the beginning of a simulation)].

terminal () Returns true at the end of a successful analysis
[thereby ensuring an event at the end of successful
stmulation)].

noEvent (expr) Real elementary relations within expr are taken lit-

erally, i.e., no state or time event is triggered. See
also section 3.7.3.2 and section 8.5.

smooth(p, expr) If p >= 0 smooth(p,expr) returns expr and states
that expr is p times continuously differentiable, i.e.:
expr is continuous in all real variables appearing in
the expression and all partial derivatives with respect
to all appearing real variables exist and are contin-
uous up to order p. The argument p should be a
scalar integer parameter expression. The only al-
lowed types for expr in smooth are: real expressions,
arrays of allowed expressions, and records contain-
ing only components of allowed expressions. See also
section 3.7.3.2.

27

Y, Modelica Language Specification 3.5-dev
Modelica 3.7. Built-in Intrinsic Operators with Function Syntax

sample(start, interval) Returns true and triggers time events at time in-
stants start + i*interval (i=0,1,...), and is
only true during the first event iteration at those
times. At event iterations after the first one at each
event and during continuous integration the opera-
tor always returns false. The starting time start
and the sample interval interval must be param-
eter expressions and need to be a subtype of Real
or Integer. The sample interval interval must be a
positive number.

pre(y) Returns the “left limit” y(tP™) of variable y(t) at a
time instant ¢. At an event instant, y(tP*°) is the
value of y after the last event iteration at time in-
stant ¢ (see comment below). The pre() operator
can be applied if the following three conditions are
fulfilled simultaneously: (a) variable y is either a sub-
type of a simple type or is a record component, (b)
y is a discrete-time expression (c) the operator is not
applied in a function class. [Note: This can be ap-
plied to continuous-time variables in when-clauses,
see section 3.8.8 for the definition of discrete-time
expression.] The first value of pre(y) is determined
in the initialization phase. See also section 3.7.3.1.
edge (b) Is expanded into (b and not pre(b)) for Boolean
variable b. The same restrictions as for the pre () op-
erator apply (e.g. not to be used in function classes).

change (v) Is expanded into (v<>pre(v)). The same restric-
tions as for the pre() operator apply.
reinit(x, expr) In the body of a when clause, reinitializes x with

expr at an event instant. x is a scalar or ar-
ray Real variable that is implicitly defined to have
StateSelect.always [so must be selected as a state,
and it is an error, if this is not possible]. expr needs
to be type-compatible with x. The reinit operator
can only be applied once for the same variable - ei-
ther as an individual variable or as part of an array
of variables. It can only be applied in the body of
a when clause in an equation section. See also sec-
tion 8.3.6 .

A few of these operators are described in more detail in the following.

3.7.3.1 pre

A new event is triggered if at least for one variable v “pre(v)<> v” after the active model equations are
evaluated at an event instant. In this case the model is at once reevaluated. This evaluation sequence
is called “event iteration”. The integration is restarted, if for all v used in pre-operators the following
condition holds: “pre(v) == v”.

[If v and pre(v) are only used in when-clauses, the translator might mask event iteration for variable
v since v cannot change during event iteration. It is a “quality of implementation” to find the minimal
loops for event iteration, i.e., not all parts of the model need to be reevaluated.

The language allows mized algebraic systems of equations where the unknown variables are of type Real,
Integer, Boolean, or an enumeration. These systems of equations can be solved by a global fix point
iteration scheme, similarly to the event iteration, by fixing the Boolean, Integer, and/or enumeration
unknowns during one iteration. Again, it is a quality of implementation to solve these systems more
efficiently, e.g., by applying the fix point iteration scheme to a subset of the model equations.]

28

Y, Modelica Language Specification 3.5-dev
Modelica 3.8. Variability of Expressions

3.7.3.2 noEvent and smooth

The noEvent operator implies that real elementary relations/functions are taken literally instead of
generating crossing functions, section 8.5. The smooth operator should be used instead of noEvent, in
order to avoid events for efficiency reasons. A tool is free to not generate events for expressions inside
smooth. However, smooth does not guarantee that no events will be generated, and thus it can be
necessary to use noEvent inside smooth. [Note that smooth does not guarantee a smooth output if any
of the occurring variables change discontinuously.]

[Example:

Real x,y,z;
parameter Real p;
equation
x = if time<1l then 2 else time-2;
z smooth (0, if time<0 then 0 else time);
y smooth (1, noEvent (if x<0 then 0 else sqrt(x)*x));
// noEvent is necessary.

3.8 Variability of Expressions

The concept of variability of an expression indicates to what extent the expression can vary over time. See
also section 4.4.4 regarding the concept of variability. There are four levels of variability of expressions,
starting from the least variable:

e constant variability

e parameter variability

e discrete-time variability

e continuous-time variability

For an assignment v:=expr or binding equation v=expr, v must be declared to be at least as variable as
expr.

e The right-hand side expression in a binding equation [that is, expr]| of a parameter component and
of the base type attributes [such as start] needs to be a parameter or constant expression.

e If v is a discrete-time component then expr needs to be a discrete-time expression.

3.8.1 Constant Expressions

Constant expressions are:
e Real, Integer, Boolean, String, and enumeration literals.
e Variables declared as constant.

e FExcept for the special built-in operators initial, terminal, der, edge, change, sample, and pre,
a function or operator with constant subexpressions as argument (and no parameters defined in
the function) is a constant expression.

Components declared as constant shall have an associated declaration equation with a constant expres-
sion, if the constant is directly in the simulation model, or used in the simulation model. The value of a
constant can be modified after it has been given a value, unless the constant is declared final or modified
with a final modifier. A constant without an associated declaration equation can be given one by using
a modifier.

3.8.2 Parameter Expressions
Parameter expressions are:

e Constant expressions.

29

Y, Modelica Language Specification 3.5-dev
Modelica 3.8. Variability of Expressions

Variables declared as parameter.

Input variables in functions behave as though they were parameter expressons.

Except for the special built-in operators initial, terminal, der, edge, change, sample, and pre,
a function or operator with parameter subexpressions is a parameter expression.

Some function calls are parameter expressions even if the arguments are not:

ndims (A)
— cardinality(c), see restrictions for use in section 3.7.2.3.
— end in A[...end...] if A is variable declared in a non-function class.

— size(A) (including size(A, j) where j is parameter expression) if A is variable declared in
a non-function class

— Connections.isRoot(A.R)

— Connections.rooted(A.R)

3.8.3 Discrete-Time Expressions
Discrete-time expressions are:
e Parameter expressions.

e Discrete-time variables, i.e., Integer, Boolean, String variables and enumeration variables, as
well as Real variables assigned in when-clauses

e Function calls where all input arguments of the function are discrete-time expressions.
e Expressions where all the subexpressions are discrete-time expressions.
e Expressions in the body of a when-clause, initial equation, or initial algorithm.

e Unless inside noEvent: Ordered relations (>,<,>=,<=)and the event generating functions ceil,
floor, div, and integer, if at least one argument is non-discrete time expression and subtype of
Real. [These will generate events, see section 8.5. Note that rem and mod generate events but are
not discrete-time expressions. In other words, relations inside noEvent () , such as noEvent (x>1),
are not discrete-time expressions.]

e The functions pre, edge, and change result in discrete-time expressions.
e Expressions in functions behave as though they were discrete-time expressions.

For an equation exprl = expr2 where neither expression is of base type Real, both expressions must be
discrete-time expressions. For record equations the equation is split into basic types before applying this
test. [This restriction guarantees that the noEvent () operator cannot be applied to Boolean, Integer,
String, or enumeration equations outside of a when-clause, because then one of the two expressions is
not discrete-time)

Inside an if-expression, if-clause, while-statement or for-clause, that is controlled by a non-discrete-
time (that is continuous-time, but not discrete-time) switching expression and not in the body of a
when-clause, it is not legal to have assignments to discrete variables, equations between discrete-time
expressions, or real elementary relations/functions that should generate events. [This restriction is nec-
essary in order to guarantee that there all equations for discrete variable are discrete-time expressions,
and to ensure that crossing functions do not become active between events.]

[Example:

model Constants
parameter Real pl = 1;
constant Real c1 = pl + 2; // error, no constant expression
parameter Real p2 = pl + 2; // fine

end Constants;

model Test

30

Y, Modelica Language Specification 3.5-dev
Modelica 3.8. Variability of Expressions

Constants c1(pl1=3); // fine
Constants c2(p2=7); // fine, declaration equation can be modified
Boolean b;

Real x;

equation
b = noEvent(x > 1) // error, since b is a discrete—time expr. and
// noEvent(x > 1) is not a discrete—time expr

end Test;

3.8.4 Continuous-Time Expressions

All expressions are continuous-time expressions including constant, parameter and discrete expressions.
The term “non-discrete-time expression” refers to expressions that are not constant, parameter or discrete
expressions.

31

Chapter 4

Classes, Predefined Types, and
Declarations

The fundamental structuring unit of modeling in Modelica is the class. Classes provide the structure
for objects, also known as instances. Classes can contain equations which provide the basis for the
executable code that is used for computation in Modelica. Conventional algorithmic code can also be
part of classes. All data objects in Modelica are instantiated from classes, including the basic data
types—Real, Integer, String, Boolean—and enumeration types, which are built-in classes or class
schemata.

Declarations are the syntactic constructs needed to introduce classes and objects (i.e., components).

4.1 Access Control — Public and Protected Elements

Members of a Modelica class can have two levels of visibility: public or protected. The default is
public if nothing else is specified

A protected element, P, in classes and components may not be accessed via dot notation (e.g., A.P, a.P,
a[1].P, a.b.P, .A.P; but there is no restriction on using P or P.x for a protected element P). They may not
be modified or redeclared except for modifiers applied to protected elements in a base-class modification
(not inside any component or class) and the modifier on the declaration of the protected element.

[Example

package A
model B
protected
parameter Real x;
end B;
protected
model C end C;
public
model D
C c; // Legal use of protected class C from enclosing scope
extends A.B(x=2); // Legal modifier for x in derived class
// also x.start=2 and x(start=2) are legal
Real y=x; // Legal use of x in derived class
end D;
model E
A.B a(x=2); // lllegal modifier, also x.start=2 and x(start=2) are illegal
A.C c; // lllegal use of protected class C
model F=A.C; // Illegal use of protected class C
end E;
end A;

32

g Modelica Language Specification 3.5-dev
Modelica 4.2. Double Declaration not Allowed

]

All elements defined under the heading protected are regarded as protected. All other elements [i.e.,
defined under the heading public, without headings or in a separate file] are public [i.e. not protected).
Regarding inheritance of protected and public elements, see section 7.1.2.

4.2 Double Declaration not Allowed

The name of a declared element shall not have the same name as any other element in its partially
flattened enclosing class. A component shall not have the same name as its type specifier. However,
the internal flattening of a class can in some cases be interpreted as having two elements with the same
name; these cases are described in section 5.5, and section 7.3.

[Example:

record R
Real x;
end R;
model M // wrong Modelica model
R R; // not correct, since component name and type specifier are identical
equation
R.x = 0;
end M;

4.3 Declaration Order and Usage before Declaration

Variables and classes can be used before they are declared.

[In fact, declaration order is only significant for:
e Functions with more than one input variable called with positional arguments, section 12.4.1.
e Functions with more than one output variable, section 12.4.5.
e Records that are used as arguments to external functions, section 12.9.1.3

o Enumeration literal order within enumeration types, section 4.8.5.

4.4 Component Declarations

Component declarations are described in this section.

4.4.1 Syntax and Examples of Component Declarations

The formal syntax of a component declaration clause is given by the following syntactic rules:

component-clause:
type-prefix type-specifier [array-subscripts] component-list

type-prefix
[flow | stream]
[discrete | parameter | constant] [input | output]

type-specifier
name
component-list
component-declaration { "," component-declaration }

33

g Modelica Language Specification 3.5-dev
Modelica 4.4. Component Declarations

component-declaration
declaration [condition-attribute] comment

condition-attribute:
if expression

declaration
IDENT [array-subscripts] [modification]

[The declaration of a component states the type, access, variability, data flow, and other properties of
the component. A component-clause i.e., the whole declaration, contains type prefixes followed by a
type-specifier with optional array-subscripts followed by a component-list.

There is no semantic difference between variables declared in a single declaration or in multiple declara-
tions. For example, regard the following single declaration (component-clause) of two matriz variables:

Real[2,2] A, B;

That declaration has the same meaning as the following two declarations together:

Real[2,2] A;
Real [2,2] B;

The array dimension descriptors may instead be placed after the variable name, giving the two declarations
below, with the same meaning as in the previous example:

Real A[2,2];
Real B[2,2];

The following declaration is different, meaning that the variable a is a scalar but B is a matriz as above:

Real a, BI[2,2];

4.4.2 Component Declaration Static Semantics

If the type-specifier of the component declaration denotes a built-in type (RealType, IntegerType,
etc.), the flattened or instantiated component has the same type.

If the type-specifier of the component does not denote a built-in type, the name of the type is looked
up (section 5.3). The found type is flattened with a new environment and the partially flattened enclosing
class of the component. It is an error if the type is partial in a simulation model, or if a simulation model
itself is partial. The new environment is the result of merging

e the modification of enclosing class element-modification with the same name as the component
e the modification of the component declaration
in that order.

Array dimensions shall be scalar non-negative parameter expressions of type Integer, a reference to a
type (which must an enumeration type or Boolean, see section 4.8.5), or the colon operator denoting
that the array dimension is left unspecified (see section 10.1). All variants can also be part of short class
definitions.

[Example of variables with array dimensions.

34

Y, Modelica Language Specification 3.5-dev
Modelica 4.4. Component Declarations

model ArrayVariants
type T=Reall:]; // Unspecified size for type
parameter T x=omnes(4);
parameter T y[3]=ones(3, 4);

parameter Real a[2]=ones(2); // Specified using Integer
parameter Real b[2, Ol=omnes(2, 0); // Size 0 is allowed
parameter Real c[:]=ones(0); // Unspecified size for variable

parameter Integer n=0;
Real x[n*2]=cat(l,ones(n),zeros(n)};// Parameter expressions are allowed
Boolean notV[Boolean]={true,false}; // Indexing with type

end ArrayVariants;

]

The rules for components in functions are described in section 12.2.

Conditional declarations of components are described in section 4.4.5.

4.4.2.1 Declaration Equations

An environment that defines the value of a component of built-in type is said to define a declaration
equation associated with the declared component. For declarations of vectors and matrices, declaration
equations are associated with each element.

Only components of the restricted classes type, record, operator record, and connector, or components
of classes inheriting from ExternalObject may have declaration equations. See also the corresponding
rule for algorithms, section 11.2.1.2.

4.4.2.2 Prefix Rules
Variables declared with the flow or the stream type prefix shall be a subtype of Real.

Type prefixes (that is , flow, stream, discrete, parameter, constant, input, output) shall only be
applied for type, record and connector components — see also record specialized class, section 4.6.

An exception is input for components whose type is of the special class function type (these can only be
used for function formal parameters and has special semantics, see section 12.4.2), and the input prefix
is not applied to the elements of the component and is allowed even if the elements have input or output
prefix.

In addition, instances of classes extending from ExternalObject may have type prefixes parameter and
constant, and in functions also type prefixes input and output - see section 12.9.7.

The type prefixes flow, stream, input and output of a structured component (except as described
above) are also applied to the elements of the component (this is done after verifying that the type
prefixes occurring on elements of the component are correct; e.g. the flow prefix can be used on a record
component and all the record elements will generate zero-sum equations, even if elements of a record may
not be declared with the flow prefix). When any of the type prefixes flow, stream, input and output are
applied for a structured component, no element of the component may have any of these type prefixes.
[For example, input can only be used, if none of the elements has a £low, stream, input or output type
prefiz]. The corresponding rules for the type prefixes discrete, parameter and constant are described
in section 4.4.4.1 for structured components.

The prefixes input and output have a slightly different semantic meaning depending on the context
where they are used:

e In functions, these prefixes define the computational causality of the function body, i.e., given the
variables declared as input, the variables declared as output are computed in the function body,
see section 12.4.

e In simulation models and blocks (i.e., on the top level of a model or block that shall be simulated),
these prefixes define the interaction with the environment where the simulation model or block is
used. Especially, the input prefix defines that values for such a variable have to be provided from
the simulation environment and the output prefix defines that the values of the corresponding

35

Y, Modelica Language Specification 3.5-dev
Modelica 4.4. Component Declarations

variable can be directly utilized in the simulation environment, see the notion of Globally balanced
in section 4.7.

e In component models and blocks, the input prefix defines that a binding equation has to be provided
for the corresponding variable when the component is utilized in order to guarantee a locally
balanced model (i.e., the number of local equations is identical to the local number of unknowns),
see section 4.7. Example:

block FirstOrder
input Real u;

end FirstOrder;
model UseFirstOrder

FirstOrder firstOrder(u=time); // binding equation for u

end UseFirstOrder;

The output prefix does not have a particular effect in a model or block component and is ignored.

e In connectors, prefixes input and output define that the corresponding connectors can only be
connected according to block diagram semantics, see section 9.1 (e.g., a connector with an output
variable can only be connected to a connector where the corresponding variable is declared as
input). There is the restriction that connectors which have at least one variable declared as input
must be externally connected, see section 4.7 (in order to get a locally balanced model, where the
number of local unknowns is identical to the number of unknown equations). Together with the
block diagram semantics rule this means, that such connectors must be connected ezactly once
externally.

e In records, prefixes input and output are not allowed, since otherwise a record could not be, e.g.,
passed as input argument to a function.

4.4.3 Acyclic Bindings of Constants and Parameters

The unexpanded binding equations for parameters and constants in the translated model must be acyclic
after flattening; except that cycles are allowed if the cycles disappear when evaluating parameters having
annotation Evaluate=true that are not part of the cycle. Thus it is not possible to introduce equations
for parameters by cyclic dependencies.

[Example:

constant Real p=2%*q;
constant Real q=sin(p); // lllegal since p=2xq, g=sin(p) are cyclical

model ABCD
parameter Real Al[n,n];
parameter Integer n=size(A,1);
end ABCD;

final ABCD a;
// Illegal since cyclic dependencies between size(a.A,1) and a.n

ABCD b(redeclare Real A[2,2]=[1,2;3,4]);
// Legal since size of A is no longer dependent on n.

ABCD c(n=2); // Legal since n is no longer dependent on the size of A.
parameter Real r = 2*sin(r); // lllegal , since r = 2xsin(r) is cyclic
partial model PartialLumpedVolume

parameter Boolean use_T_start = true "= true, use T_start, otherwise h_start"

annotation(Dialog(tab = "Initialization"), Evaluate=true);
parameter Medium.Temperature T_start=if use_T_start then system.T_start else

36

Y, Modelica Language Specification 3.5-dev
Modelica 4.4. Component Declarations

Medium.temperature_phX(p_start ,h_start,X_start)
annotation(Dialog(tab = "Initialization", enable = use_T_start));
parameter Medium.SpecificEnthalpy h_start=if use_T_start then
Medium.specificEnthalpy_pTX(p_start, T_start, X_start) else
Medium.h_default
annotation(Dialog(tab = "Initialization", enable = not use_T_start));
end PartiallLumpedVolume;
// Cycle for T_start and h_start, but ok since disappears
// when evaluating use_T _start

// lllegal since the unexpanded bindings have cycles for both x and y
// (even if they would disappear if bindings were expanded).
model HasCycles
parameter Integer n=10;
final constant Real A[3,3]=[0,0,0;1,0,0;2,3,0];
parameter Real y[3]=A*y+ones(3);
parameter Real x[n]l=cat(1l, {3.4}, x[1:(n-1)1);
end HasCycles;

4.4.4 Component Variability Prefixes discrete, parameter, constant

The prefixes discrete, parameter, constant of a component declaration are called variability prefixes
and define in which situation the variable values of a component are initialized (see section 8.5 and

section 8.6) and when they are changed in transient analysis (= solution of initial value problem of the
hybrid DAE):

e A variable vc declared with the parameter or constant prefixes remains constant during transient
analysis.

e A discrete-time variable vd has a vanishing time derivative between events. Note that this is not
the same as saying that der (vd)=0 almost everywhere, as the derivative is not even defined at the
events, and it is not legal to apply the der() operator to discrete-time variables as they are not
continuous. During transient analysis the variable can only change its value at event instants (see
section 8.5).

e A continuous-time variable vn may have a non-vanishing time derivative (der (vn)<>0 possible) and
may also change its value discontinuously at any time during transient analysis (see section 8.5).
If there are any discontinuities the variable is not differentiable.

If a Real variable is declared with the prefix discrete it must in a simulation model be assigned in a
when-clause, either by an assignment or an equation. The variable assigned in a when-clause may not be
defined in a sub-component of model or block specialized class. [This is to keep the property of balanced
models]

A Real variable assigned in a when-clause is a discrete-time variable, even though it was not declared
with the prefix discrete. A Real variable not assigned in any when-clause and without any type prefix
is a continuous-time variable.

The default variability for Integer, String, Boolean, or enumeration variables is discrete-time, and
it is not possible to declare continuous-time Integer, String, Boolean, or enumeration variables. [A
Modelica translator is able to guarantee this property due to restrictions imposed on discrete expressions,
see section 3.8

The variability of expressions and restrictions on variability for definition equations is given in section 3.8.

[A discrete-time variable is a piecewise constant signal which changes its values only at event instants
during simulation. Such types of wvariables are needed in order that special algorithms, such as the
algorithm of Pantelides for index reduction, can be applied (it must be known that the time derivative of
these variables is identical to zero). Furthermore, memory requirements can be reduced in the simulation
environment, if it is known that a component can only change at event instants.

37

Y, Modelica Language Specification 3.5-dev
Modelica 4.4. Component Declarations

A parameter variable is constant during simulation. This prefix gives the library designer the possibility to
express that the physical equations in a library are only valid if some of the used components are constant
during simulation. The same also holds for discrete-time and constant variables. Additionally, the
parameter prefix allows a convenient graphical user interface in an experiment environment, to support
quick changes of the most important constants of a compiled model. In combination with an if-clause,
a parameter prefiz allows to remove parts of a model before the symbolic processing of a model takes
place in order to avoid variable causalities in the model (similar to #ifdef in C). Class parameters can
be sometimes used as an alternative. Example:

model Inertia
parameter Boolean state = true;
equation
J*xa = t1 - t2;
if state then // code which is removed during symbolic

der(v) = a; // processing, if state=false
der(r) = v;
end if;

end Inertia;

A constant variable is similar to a parameter with the difference that constants cannot be changed after
translation and usually not changed after they have been given a value. It can be used to represent
mathematical constants, e.g.

final constant Real PI=4xatan(1);

There are no continuous-time Boolean, Integer or String wvariables. In the rare cases they are needed
they can be faked by using Real variables, e.g.:

Boolean offl, offla;
Real off2;
equation
offl = s1 < 0;
offla = noEvent(sl < 0); // error, since offla is discrete
off2 = if noEvent(s2 < 0) then 1 else 0; // possible
ul = if offl then sl else 0; // state events
u2 = if noEvent(off2 > 0.5) then s2 else 0; // no state events

Since off1 is a discrete-time variable, state events are generated such that off1 is only changed at event
instants. Variable of£2 may change its value during continuous integration. Therefore, ul is guaranteed
to be continuous during continuous integration whereas no such guarantee exists for u2.

]

4.4.4.1 Variability of Structured Entities

For elements of structured entities with variability prefixes the most restrictive of the variability prefix
and the variability of the component wins (using the default variability for the component if there is no
variability prefix on the component).

[Example:

record A
constant Real pi=3.14;
Real y;
Integer 1ij;

end A;

parameter A a;

// a.pi is a constant
// a.y and a.i are parameters
A b,

38

Y, Modelica Language Specification 3.5-dev
Modelica 4.5. Class Declarations

Language

// b.pi is a constant
// b.y is a continuous—time variable
// b.i is a discrete—time variable

4.4.5 Conditional Component Declaration
A component declaration can have a condition-attribute: "if” expression.

[Example:

parameter Integer level(min=1)=1;
Motor motor;

Levell componentl(J=J) if level==1 "Conditional component";

Level2 component2 if level==2 "Conditional component";

Level3 component3 (J=componentl.J) if level<2 "Conditional component";
// lllegal modifier on component3 since componentl.) is conditional

// Even if we can see that componentl always exist if component3 exist
equation

connect (componentl..., ...) "Connection to conditional component 1";

connect (component2.n, motor.n) "Connection to conditional component 2";

connect (component3.n, motor.n) "Connection to conditional component 3";
componentl.u=0; // Illegal

]

The expression must be a Boolean scalar expression, and must be a parameter-expression [that can be
evaluated at compile time].

A redeclaration of a component may not include a condition attribute; and the condition attribute is
kept from the original declaration (see section 6.3).

If the Boolean expression is false the component (including its modifier) is removed from the flattened
DAE , and connections to/from the component are removed and connections to/from the component are
removed. [Adding the component and then removing it ensures that the component is valid.JA component
declared with a condition-attribute can only be modified and/or used in connections [If a connect state-
ment defines the connection of a non-conditional component c1 with a conditional component c2 and c2
is de-activated, then c1 must still be a declared element.]

If the condition is true for a public connector containing flow variables the connector must be connected
from the outside. [The reason for this restriction is that the default flow equation is probably incorrect
(since it could otherwise be an unconditional connector) and the model cannot check that connector is
connected.]

4.5 Class Declarations

Essentially everything in Modelica is a class, from the predefined classes Integer and Real, to large
packages such as the Modelica standard library.

[Example: A rather typical structure of a Modelica class is shown below. A class with a name, containing
a number of declarations followed by a number of equations in an equation section.

class ClassName
Declarationl
Declaration?2

equation
equationl

equation?2

end ClassName;

39

g Modelica Language Specification 3.5-dev
Modelica 4.5. Class Declarations

]

The following is the formal syntax of class definitions, including the special variants described in later
sections.

class-definition
[encapsulated] class-prefixes
class-specifier

class-prefixes
[partial]

(class | model | [operator] record | block | [expandable] connector |
type |
package | [(pure | impure)] [operator] function | operator)

class-specifier
long-class-specifier | short-class-specifier | der-class-specifier

long-class-specifier
IDENT description-string composition end IDENT
| extends IDENT [class-modification] description-string composition
end IDENT

short-class-specifier

IDENT "=" base-prefix name [array-subscripts]
[class-modification] comment
| IDENT "=" enumeration "(" ([enum-1list] | ":") ")" comment

der-class-specifier
IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment

base-prefix
[input | output 1]

enum-1list : enumeration-literal { "," enumeration-literal}
enumeration-literal : IDENT comment

composition
element-list
{ public element-list |
protected element-list |
equation-section |
algorithm-section

}

[external [language-specification]

[external-function-call] [annotatiom] ";"]
[annotation ";"]

4.5.1 Short Class Definitions

A class definition of the form

class IDENT1 = IDENT2 class-modification;

is identical, except that IDENT2 may be replaceable and for the lexical scope of modifiers, where the
short class definition does not introduce an additional lexical scope for modifiers, to the longer form

class IDENT1
extends IDENT2 class-modification;

40

Y, Modelica Language Specification 3.5-dev
Modelica 4.5. Class Declarations

‘end IDENT1;

[Example: demonstrating the difference in scopes:

model Resistor
parameter Real R;

end Resistor;
model A
parameter Real R;
replaceable model Load=Resistor (R=R) constrainedby TwoPin;
// Correct, sets the R in Resistor to R from model A.
replaceable model LoadError
extends Resistor (R=R);
// Gives the singular equation R=R, since the right—hand side R
// is searched for in LoadError and found in its base—class Resistor.
end LoadError constrainedby TwoPin;
Load a,b,c;
ConstantSource ...;

end A;

]

A short class definition of the form

type TN = T[N] (optional modifier);

where N represents arbitrary array dimensions, conceptually yields an array class

>array’ TN
T[n] _ (optional modifiers);
’end’ TN;

Such an array class has exactly one anonymous component (_); see also section 4.5.2. When a component
of such an array class type is flattened, the resulting flattened component type is an array type with the
same dimensions as _ and with the optional modifier applied.

[Example:

type Force = Real[3](unit={"Nm","Nm","Nm"});
Force f1;
Real f2[3](unit={"Nm","Nm","Nm"});

the types of £1 and £2 are identical.]

If a short class definition inherits from a partial class the new class definition will be partial, regardless
of whether it is declared with the keyword partial or not.

[Example:

replaceable model Load=TwoPin;
Load R; // Error unless Load is redeclared since TwoPin is a partial class

]

If a short class definition does not specify any specialized class the new class definition will inherit the
specialized class (this rule applies iteratively and also for redeclare).

A base-prefix applied in the short-class definition does not influence its type, but is applied to components
declared of this type or types derived from it; see also section 4.5.2.

[Example:

41

Y, Modelica Language Specification 3.5-dev
Modelica 4.5. Class Declarations

type InArgument = input Real;
type OutArgument = output Real [3];

function foo
InArgument u; // Same as: input Real u
OutArgument y; // Same as: output Real[3] vy
algorithm
y:=£ill(u,3);
end foo;

Real x[:]=foo(time);

4.5.2 Restriction on combining base-classes and other elements

It is not legal to combine other components or base-classes with an extends from an array class, a class
with non-empty base-prefix, a simple type (Real, Boolean, Integer, String and enumeration types), or
any class transitively extending from an array class, a class with non-empty base-prefix, or a simple type
(Real, Boolean, Integer, String and enumeration types).

[Example:

model Integrator
input Real u;
output Real y=x;
Real x;

equation
der (x)=u;

end Integrator;

model Integrators = Integrator[3]; // Legal

model IllegalModel

extends Integrators;

Real x; // lllegal combination of component and array class
end IllegalModel;

connector IllegalConnector

extends Real;

Real y; // Illegal combination of component and simple type
end IllegalConnector;

4.5.3 Local Class Definitions — Nested Classes

The local class should be statically flattenable with the partially flattened enclosing class of the local
class apart from local class components that are partial or outer. The environment is the modification of
any enclosing class element modification with the same name as the local class, or an empty environment.

The unflattened local class together with its environment becomes an element of the flattened enclosing
class.

[The following example demonstrates parameterization of a local class:

model C1
type Voltage = Real(nominal=1);
Voltage vl, v2;

end C1;

model C2
extends C1l(Voltage(nominal=1000));

42

Y, Modelica Language Specification 3.5-dev
Modelica 4.6. Specialized Classes

end C2;

Flattening of class C2 yields a local class Voltage with nominal-modifier 1000. The variables v1 and v2
are instances of this local class and thus have a nominal value of 1000.

]

4.6 Specialized Classes

Specialized kinds of classes [FEarlier known as restricted classes] record, type, model, block, package
, function, and connector have the properties of a general class, apart from restrictions. Moreover,
they have additional properties called enhancements. The following table summarizes the definition of
the specialized classes (additional restrictions on inheritance are in section 7.1.3):

record Only public sections are allowed in the definition or in any
of its components (i.e., equation, algorithm, initial equa-
tion, initial algorithm and protected sections are not al-
lowed). The elements of a record may not have prefixes
input, output, inner, outer, stream, or flow. Enhanced
with implicitly available record constructor function, see
section 12.6. Additionally, record components can be used
as component references in expressions and in the left hand
side of assignments, subject to normal type compatibility
rules. The components directly declared in a record may
only be of specialized class record and type.

type May only be predefined types, enumerations, array of type,
or classes extending from type.

model Identical to class, the basic class concept, i.e., no restric-
tions and no enhancements.

block Same as model with the restriction that each connector

component of a block must have prefixes input and/or
output for all connector variables. [The purpose is to
model input/output blocks of block diagrams. Due to the
restrictions on input and output prefires, connections be-
tween blocks are only possible according to block diagram
semantic]

function See section 12.2 for restrictions and enhancements of func-
tions. Enhanced to allow the function to contain an exter-
nal function interface. [Non-function specialized classes do
not have this property.]

connector Only public sections are allowed in the definition or in any
of its components (i.e., equation, algorithm, initial equa-
tion, initial algorithm and protected sections are not al-
lowed).

Enhanced to allow connect(..) to components of connector
classes. The elements of a connector may not have prefixes
inner, or outer. May only contain components of special-
ized class connector, record and type.

package May only contain declarations of classes and constants. En-
hanced to allow import of elements of packages. (See also
chapter 13 on packages.)

43

/s
Modelica
language

Modelica Language Specification 3.5-dev
4.7. Balanced Models

operator record

Similar to record; but operator overloading is possible, and
due to this the typing rules are different — see chapter 6.
It is not legal to extend from an operator record (or con-
nector inheriting from operator record), except if the new
class is an operator record or connector that is declared
as a short class definition, whose modifier is either empty
or only modify the default attributes for the component
elements directly inside the operator record. An operator
record can only extend from an operator record [as short
class definition, and not from another specialized class]. It
is not legal to extend from any of its enclosing scopes. (See
chapter 14).

operator

Similar to package; but may only contain declarations of
functions. May only be placed directly in an operator
record. (See also chapter 14).

operator function

Shorthand for an operator with exactly one function; same
restriction as function class and in addition may only be
placed directly in an operator record.[“

operator function foo ... end foo;

7 is conceptually treated as

operator foo function fool

end fool; end foo;

[Example for ”operator”:

operator record Complex
Real re;
Real im;

encapsulated operator function ’x*’

import Complex;
input Complex cl;
input Complex c2;

output Complex result

algorithm
result := Complex(re=cl.re*c2.re - cl.im*c2.im,
im=cl.re*xc2.im + cl.im*c2.re);

end %’

end Complex;
record MyComplex

extends Complex; // not allowed, since extending from enclosing scope

Real k;
end MyComplex;

operator record ComplexVoltage = Complex(re(unit="V"),im(unit="V")); // allowed

4.7 Balanced Models

[In this section restrictions for model and block classes are present, in order that missing or too many
equations can be detected and localized by a Modelica translator before using the respective model or block
class. A non-trivial case is demonstrated in the following example:

44

Y, Modelica Language Specification 3.5-dev
Modelica 4.7. Balanced Models

partial model BaseCorrelation
input Real x;
Real y;

end BaseCorrelation;

model SpecialCorrelation // correct in Modelica 2.2 and 3.0
extends BaseCorrelation(x=2);

equation
y=2/x;

end SpecialCorrelation;

model UseCorrelation // correct according to Modelica 2.2
// not valid according to Modelica 3.0
replaceable model Correlation=BaseCorrelation;
Correlation correlation;

equation
correlation.y=time;

end UseCorrelation;

model Broken // after redeclaration, there is 1 equation too much in Modelica 2
.2
UseCorrelation example(redeclare Correlation=SpecialCorrelation);
end Broken;

In this case one can argue that both UseCorrelation (adding an acausal equation) and SpecialCorrelation
(adding a default to an input) are correct, but still when combined they lead to a model with too many
equations — and it is not possible to determine which model is incorrect without strict rules, as the ones
defined here.

In Modelica 2.2, model Broken will work with some models. However, by just redeclaring it to model
SpecialCorrelation, an error will occur and it will be very difficult in a larger model to figure out the
source of this error.

In Modelica 3.0, model UseCorrelation is no longer allowed and the translator will give an error. In
fact, it is guaranteed that a redeclaration cannot lead to an unbalanced model any more.

]
The restrictions below apply after flattening —i.e. inherited components are included — possibly modified.
The corresponding restrictions on connectors and connections are in section 9.3.

Definition 1: Local Number of Unknowns
The local number of unknowns of a model or block class is the sum based on the components:

e For each declared component of specialized class type (Real, Integer, String, Boolean, enumeration
and arrays of those, etc.) or record, or operator record not declared as outer, it is the “number
of unknown variables” inside it (i.e., excluding parameters and constants and counting the elements
after expanding all records, operator record, and arrays to a set of scalars of primitive types).

e Each declared component of specialized class type or record declared as outer is ignored [i.e., all
variables inside the component are treated as known).

e For each declared component of specialized class connector component, it is the “number of
unknown variables” inside it (i.e., excluding parameters and constants and counting the elements
after expanding all records and arrays to a set of scalars of primitive types).

e For each declared component of specialized class block or model, it is the “sum of the number
of inputs and flow variables” in the (top level) public connector components of these components
(and counting the elements after expanding all records and arrays to a set of scalars of primitive

types).
Definition 2: Local Equation Size

The local equation size of a model or block class is the sum of the following numbers:

45

Y, Modelica Language Specification 3.5-dev
Modelica 4.7. Balanced Models

e The number of equations defined locally (i.e. not in any model or block component), including
binding equations, and equations generated from connect-equations. This includes the proper count
for when-clauses (see section 8.3.5), and algorithms (see section 11.1), and is also used for the flat
Hybrid DAE formulation (see Appendiz C).

e The number of input and flow-variables present in each (top-level) public connector component.
[This represents the number of connection equations that will be provided when the class is used.]

e The number of (top level) public input variables that neither are connectors nor have binding
equations [i.e., top-level inputs are treated as known wvariables. This represents the number of
binding equations that will be provided when the class is used.].

[To clarify top-level inputs without binding equation (for non-inherited inputs binding equation is identical
to declaration equation, but binding equations also include the case where another model extends M and
has a modifier on ‘u’ giving the value):

model M
input Real u;
input Real u2=2;
end M;

Here ‘u’ and ‘u2’ are top-level inputs and not connectors. The variable u2 has a binding equation, but u
does not have a binding equation. In the equation count, it is assumed that an equation for u is supplied
when using the model.

]

Definition 3: Locally Balanced

A model or block class is “locally balanced” if the “local number of unknowns” is identical to the “local
equation size” for all legal values of constants and parameters [respecting final bindings and min/maz-
restrictions. A tool shall verify the “locally balanced” property for the actual values of parameters and
constants in the simulation model. It is a quality of implementation for a tool to verify this property in
general, due to arrays of (locally) undefined sizes, conditional declarations, for loops etc.].

Definition 4: Globally Balanced

Similarly as locally balanced, but including all unknowns and equations from all components. The global
number of unknowns is computed by expanding all unknowns (i.e. excluding parameters and constants)
into a set of scalars of primitive types. This should match the global equation size defined as:

e The number of equations defined (included in any model or block component), including equations
generated from connect-equations.

e The number of input and flow-variables present in each (top-level) public connector component.

e The number of (top level) public input variables that neither are connectors nor have binding
equations [i.e., top-level inputs are treated as known variables).

The following restrictions hold:

e In a non-partial model or block, all non-connector inputs of model or block components must have
binding equations. [E.g. if the model contains a component, firstOrder (of specialized class model
) and firstOrder has ‘input Real u’then there must be a binding equation for firstOrder.u.]

e A component declared with the inner or outer prefix shall not be of a class having top-level public
connectors containing inputs.

e In a declaration of a component of a record, connector, or simple type, modifiers can be applied to
any element — and these are also considered for the equation count.
[Example:
Flange support(phi=phi, tau=torquel+torque2)if use_support;
If use_support=true, there are two additional equations for support.phi and support.tau via the
modifier]

46

Y, Modelica Language Specification 3.5-dev
Modelica 4.7. Balanced Models

e In other cases (declaration of a component of a model or block type, modifiers on extends, and
modifier on short-class-definitions): modifiers for components shall only contain redeclarations of
replaceable elements and binding equations. The binding equations in modifiers for components
may in these cases only be for parameters, constants, inputs and variables having a default binding
equation.

e All non-partial model and block classes must be locally balanced [this means that the
local number of unknowns equals the local equation size].

Based on these restrictions, the following strong guarantee can be given for simulation models and blocks:
Proposition 1:

All simulation models and blocks are globally balanced.
[Therefore the number of unknowns equal to the number of equations of a simulation model or block,
provided that every used non-partial model or block class is locally balanced.]

[Example 1:

connector Pin
Real v;
flow Real ij;
end Pin;

model Capacitor
parameter Real C;
Pin p, n;

Real u;
equation

0 =p.i + n.1i;

u = p.v - n.v;

Cxder(u) = p.i;
end Capacitor;

Model Capacitor is a locally balanced model according to the following analysis:
Locally unknown variables: p.i, p.v, n.i, n.v, u

Local equations:

.1+ n.1;
u = p.u—nu;
C-der(u) = pi;

and 2 equations corresponding to the 2 flow-variables p.i and n.1i.

These are 5 equations in 5 unknowns (locally balanced model). A more detailed analysis would re-
veal that this is structurally non-singular, i.e. that the hybrid DAE will not contain a singularity
independent of actual values.

If the equation “u = p.v - n.v” would be missing in the Capacitor model, there would be 4 equations
i 5 unknowns and the model would be locally unbalanced and thus simulation models in which this
model is used would be usually structurally singular and thus not solvable.

If the equation “u = p.v - n.v” would be replaced by the equation “u = 0” and the equation Cxder(
w)= p.i would be replaced by the equation “Cxder(u)= 07, there would be 5 equations in 5 unknowns
(locally balanced), but the equations would be singular, regardless of how the equations corresponding

to the flow-variables are constructed because the information that “u” is comstant is given twice in a
slightly different form.

Ezample 2:

connector Pin
Real v;

47

Y, Modelica Language Specification 3.5-dev
Modelica 4.7. Balanced Models

flow Real i;
end Pin;

partial model TwoPin
Pin p,n;
end TwoPin;

model Capacitor
parameter Real C;
extends TwoPin;

Real u;
equation

0 =p.i + n.i;

u = p.v - n.v;

Cxder(u) = p.i;
end Capacitor;

model Circuit
extends TwoPin;
replaceable TwoPin t;
Capacitor c(C=12);

equation
connect(p, t.p);
connect(t.n, c.p);
connect(c.n, n);

end Circuit;

Since t is partial we cannot check whether this is a globally balanced model, but we can check that
Circuit s locally balanced.

Counting on model Circuit results in the following balance sheet:
Locally unknown variables (8): p.i, p.v, n.i, n.v, and 2 flow variables for t (t.p.i, t.n.i)
and 2 flow variable for ¢ (c.p.i, c.n.i).

Local equations:

pv = t.pwv;
0 = pi—t.pi;
c.p.v = tnv;
0 = cpi+4tni;
nv = C.I.v;
0 = ni-—cnij

and 2 equation corresponding to the flow variables p.i, n.i

In total we have 8 scalar unknowns and 8 scalar equations, i.e., a locally balanced model (and this
feature holds for any models used for the replaceable component “t”).

Some more analysis reveals that this local set of equations and unknowns is structurally non-singular.
However, this does not provide any guarantees for the global set of equations, and specific combinations
of models that are “locally non-singular” may lead to a globally non-singular model.]

Example 3:

import SI = Modelica.SIunits;

partial model BaseProperties
"Interface of medium model for all type of media"
parameter Boolean preferredMediumStates=false;
constant Integer nXi "Number of independent mass fractions";
InputAbsolutePressure P

48

Y Modelica Language Specification 3.5-dev
Modelica 4.7. Balanced Models

InputSpecificEnthalpy h;

InputMassFraction Xil[nXil;

SI.Temperature T;

SI.Density d;

SI.SpecificInternalEnergy u;

connector InputAbsolutePressure = input SI.AbsolutePressure;
connector InputSpecificEnthalpy = input SI.SpecificEnthalpy;
connector InputMassFraction = input SI.MassFraction;

end BaseProperties;

The use of connector here is a special design pattern. The variables p, h, Xi are marked as input to
get correct equation count. Since they are connectors they should neither be given binding equations in
derived classes nor when using the model. The design pattern is to give textual equations for them (as
below); using connect-equations for these connectors would be possible (and would work) but is not part
of the design.

This partial model defines that T,d,u can be computed from the medium model, provided p,h,Xi are
given. Fvery medium with one or multiple substances and one or multiple phases, including incom-
pressible media, has the property that T,d,u can be computed from p,h,Xi. A particular medium may
have different “independent variables” from which all other intrinsic thermodynamic variables can be
recursively computed. For example, a simple air model could be defined as:

model SimpleAir "Medium model of simple air. Independent variables: p,T"
extends BaseProperties(nXi = 0,
p(stateSelect = if preferredMediumStates then StateSelect.prefer
else StateSelect.default),
T(stateSelect = if preferredMediumStates then StateSelect.prefer
else StateSelect.default));
constant SI.SpecificHeatCapacity R = 287;
constant SI.SpecificHeatCapacity cp = 1005.45;
constant SI.Temperature TO = 298.15
equation
d = p/(RxT);
h = cp*(T-TO);
u="h - p/d;
end Simplelir;

The local number of unknowns in model SimpleAir (after flattening) is:
e 3 (T, d, u: variables defined in BaseProperties and inherited in SimpleAir), plus

e 2+4nXi (p, h, Xi: variables inside connectors defined in BaseProperties and inherited in SimpleAir

resulting in 5+nXi unknowns. The local equation size is:

e 3 (equations defined in SimpleAir), plus

e 2+4nXi (input variables in the connectors inherited from BaseProperties)
Therefore, the model is locally balanced.

The generic medium model BaseProperties is used as a replaceable model in different components,
like a dynamic volume or a fized boundary condition:

import SI = Modelica.SIunits;

connector FluidPort
replaceable model Medium = BaseProperties;
SI.AbsolutePressure p;
flow SI.MassFlowRate m_flow;

49

g Modelica Language Specification 3.5-dev
Modelica 4.7. Balanced Models

SI.SpecificEnthalpy h;
flow SI.EnthalpyFlowRate H_flow;
SI.MassFraction Xi [Medium.nXi] "Independent mixture mass fractions";

flow SI.MassFlowRate mXi_flow[Medium.nXi] "Independent subst. mass flow rates

end FluidPort;

model DynamicVolume
parameter SI.Volume V;
replaceable model Medium = BaseProperties;
FluidPort port(redeclare model Medium = Medium) ;
Medium medium(preferredMediumStates=true); // No modifier for p,h,Xi
SI.InternalEnergy U;
SI.Mass M;
SI.Mass MXi[medium.nXil];
equation
U = medium.u*M;
M = medium.d*V;
MXi = medium.Xi*M;
der (U) = port.H_flow; // Energy balance
der (M) = port.m_flow; // Mass balance
der (MXi) = port.mXi_flow; // Substance mass balance
// Equations binding to medium (inputs)
medium.p = port.p;
medium.h = port.h;
medium.Xi = port.Xij;
end DynamicVolume;

The local number of unknowns of DynamicVolume is:

e 4+2*nXi (inside the port connector), plus

e 2+nXi (variables U, M and MXi), plus

e 2+4nXi (the input variables in the connectors of the medium model)
resulting in 8+4*nXi unknowns; the local equation size is

e 6+3*nXi from the equation section, plus

o 2+nXi flow variables in the port connector.
Therefore, DynamicVolume is a locally balanced model.

Note, when the DynamicVolume is used and the Medium model is redeclared to “SimpleAir”, then a
tool will try to select p,T as states, since these variables have StateSelect.prefer in the SimpleAir
model (this means that the default states U,M are derived quantities). If this state selection is performed,
all intrinsic medium variables are computed from medium.p and medium.T, although p and h are the
input arguments to the medium model. This demonstrates that in Modelica input/output does not define
the computational causality. Instead, it defines that equations have to be provided here for p,h,Xi, in
order that the equation count is correct. The actual computational causality can be different as it is
demonstrated with the SimpleAir model.

model FixedBoundary_pTX
parameter SI.AbsolutePressure p "Predefined boundary pressure';
parameter SI.Temperature T "Predefined boundary temperature";
parameter SI.MassFraction Xi[medium.nXi]
"Predefined boundary mass fraction";
replaceable model Medium = BaseProperties;
FluidPort port(redeclare model Medium = Medium) ;
Medium medium;
equation
port.p = p;
port.H_flow = semilinear (port.m_flow, port.h , medium.h);

50

Modelica Language Specification 3.5-dev
4.8. Predefined Types and Classes

/s
Modelica
language

port.MXi_flow = semilinear (port.m_flow,
// Equations binding to medium (note: T is

port.Xi, medium.Xi);
not an input).

medium.p = p;
medium.T = T;
medium.Xi = Xi;

end FixedBoundary_pTX;

The number of local variables in FixedBoundary_pTX is:

e 44+2*nXi (inside the port connector), plus

e 2+nXi (the input variables in the connectors of the medium model)
resulting in 6-+3*nXi unknowns, while the local equation size is

e 4+2%*nXi from the equation section, plus

e 2-+nXi flow variables in the port connector.

Therefore, FixedBoundary_pTX is a locally balanced model. The predefined boundary variables p and
Xi are provided via equations to the input arguments medium.p and medium.Xi, in addition there is an
equation for T in the same way — even though T is not an input. Depending on the flow direction, either
the specific enthalpy in the port (port.h) or h is used to compute the enthalpy flow rate H_flow. “h” is
provided as binding equation to the medium. With the equation “medium.T = T”, the specific enthalpy
“h” of the reservoir is indirectly computed via the medium equations. Again, this demonstrates, that an
“input” just defines the number of equations have to be provided, but that it not necessarily defines the
computational causality.

]

4.8 Predefined Types and Classes

The attributes of the predefined variable types (Real, Integer, Boolean, String) and enumeration types are
described below with Modelica syntax although they are predefined. Attributes cannot be accessed using
dot notation, and are not constrained by equations and algorithm sections. E.g. in Real x(unit="kg”)
= y; only the values of x and y are declared to be equal, but not their unit attributes, nor any other
attribute of x and y. It is not possible to combine extends from the predefined types, enumeration
types, or this Clock type with other components. The names Real, Integer, Boolean and String are
reserved such that it is illegal to declare an element with these names. [Thus it is possible to define a
normal class called Clock in a package and extend from it.] The definitions use RealType, IntegerType,
BooleanType, StringType, EnumType as mnemonics corresponding to machine representations. [Hence
the only way to declare a subtype of e.g. Real is to use the extends mechanism.]

4.8.1 Real Type
The following is the predefined Real type:

type Real // Note:
RealType value;

Defined with Modelica syntax although predefined
// Accessed without dot—notation

parameter

parameter

parameter
equation

end Real;

assert (value

false;
RealType nominal;

BooleanType unbounded=false;
StateSelect stateSelect =

>= min and value <= max,

// default for other

parameter StringType quantity = "'y,
parameter StringType unit = "" "Unit used in equations";
parameter StringType displayUnit = "" "Default display unit";

parameter RealType min=-Inf, max=+Inf; // Inf denotes a large value
parameter RealType start = 0; // Initial value
parameter BooleanType fixed = true, // default for parameter/constant;

variables
// Nominal value
// For error control

StateSelect.default;

"Variable value out of limit");

51

Y Modelica Language Specification 3.5-dev
Modelica 4.8. Predefined Types and Classes

The nominal attribute is meant to be used for scaling purposes and to define tolerances in relative terms,
see section 4.8.6.

4.8.2 Integer Type
The following is the predefined Integer type:

type Integer // Note: Defined with Modelica syntax although predefined

IntegerType value; // Accessed without dot—notation

parameter StringType quantity = "";

parameter IntegerType min=-Inf, max=+Inf;

parameter IntegerType start = 0; // Initial value

parameter BooleanType fixed = true, // default for parameter/constant;

= false; // default for other variables

equation

assert(value >= min and value <= max, "Variable value out of limit");
end Integer;

4.8.3 Boolean Type
The following is the predefined Boolean type:

type Boolean // Note: Defined with Modelica syntax although predefined
BooleanType value; // Accessed without dot—notation
parameter StringType quantity = "";
parameter BooleanType start = false; // Initial value
parameter BooleanType fixed = true, // default for parameter/constant;
false, // default for other variables

end Boolean;

4.8.4 String Type
The following is the predefined String type:

type String // Note: Defined with Modelica syntax although predefined
StringType value; // Accessed without dot—notation
parameter StringType quantity = "";
parameter StringType start = ""; // Initial value
parameter BooleanType fixed = true, // default for parameter/constant;
false, // default for other variables

end String;

4.8.5 Enumeration Types

A declaration of the form

type E = enumeration([enum-1list]);

defines an enumeration type E and the associated enumeration literals of the enum-list. The enumeration
literals shall be distinct within the enumeration type. The names of the enumeration literals are defined
inside the scope of E. Each enumeration literal in the enum-1ist has type E.

[Example:
type Size = enumeration(small, medium, large, xlarge);
Size t_shirt_size = Size.medium;

]
An optional comment string can be specified with each enumeration literal:

[Example:

52

Y, Modelica Language Specification 3.5-dev
Modelica 4.8. Predefined Types and Classes

type Size2 = enumeration(small "1st", medium "2nd", large "3rd", xlarge "4th");

]

An enumeration type is a simple type and the attributes are defined in section 4.8.5.1. The Boolean
type name or an enumeration type name can be used to specify the dimension range for a dimension in
an array declaration and to specify the range in a for loop range expression; see section 11.2.2.2. An
element of an enumeration type can be accessed in an expression [e.g. an array index value].

[Example:
type DigitalCurrentChoices = enumeration(zero, omne);
// Similar to Real, Integer

Setting attributes:

type DigitalCurrent = DigitalCurrentChoices(quantity="Current",

start = DigitalCurrentChoices.one, fixed = true)
>
DigitalCurrent c(start = DigitalCurrent.one, fixed = true);
DigitalCurrentChoices c(start = DigitalCurrentChoices.one, fixed = true);

Using enumeration types as expressions:

Real x[DigitalCurrentChoices];
// Example using the type name to represent the range
for e in DigitalCurrentChoices loop
x[e] := 0.;
end for;
for e loop // Equivalent example using short form
x[e] := 0.;

end for;

// Equivalent example using the colon range constructor

for e in DigitalCurrentChoices.zero : DigitalCurrentChoices.one loop
x[e]l] := 0.;
end for;

model Mixingl "Mixing of multi-substance flows, alternative 1"
replaceable type E=enumeration(:)"Substances in Fluid";
input Real c1l[E], c2[E], mdotl, mdot2;
output Real c3[E], mdot3;

equation
0 = mdotl + mdot2 + mdot3;
for e in E loop

0 = mdotl*cl[e] + mdot2*c2[e]l+ mdot3*c3[e];
end for;
/% Array operations on enumerations are NOT (yet) possible:
zeros(n) = mdotlxcl + mdot2xc2 + mdot3xc3 // error
*
/

end Mixingl;

model Mixing2 "Mixing of multi-substance flows, alternative 2"
replaceable type E=enumeration(:)"Substances in Fluid";
input Real c1[E], c2[E], mdotl, mdot2;
output Real c3[E], mdot3;

protected
// No efficiency loss, since ccl, cc2, cc3
// may be removed during translation
Real ccl[:]1=cl1, cc2[:1=c2, cc3[:]1=c3;

53

Y Modelica Language Specification 3.5-dev
Modelica 4.8. Predefined Types and Classes
final parameter Integer n = size(ccl,1);
equation
0O = mdotl + mdot2 + mdot3;
zeros(n) = mdotl*ccl + mdot2*cc2 + mdot3*cc3

end Mixing2;

4.8.5.1 Attributes of Enumeration Types

For each enumeration:

‘type E=enumeration(el, e2, ..., en);

a new simple type is conceptually defined as

type E // Note: Defined with Modelica syntax although predefined

EnumType value; // Accessed without dot—notation

parameter StringType quantity = "";

parameter EnumType min=el, max=en;

parameter EnumType start = el; // Initial value

parameter BooleanType fixed = true, // default for parameter/constant;
false; // default for other variables

constant EnumType el=...;

constant EnumType en=...;
equation

assert (value >= min and value <= max, "Variable value out of limit");
end E;

[Since the attributes and enumeration literals are on the same level, it is not possible to use the enumer-
ation attribute names (quantity, min, maz, start, fixed) as enumeration literals)

4.8.5.2 Type Conversion of Enumeration Values to String or Integer

The type conversion function Integer (<expression of enumeration type>) returns the ordinal num-
ber of the enumeration value E.enumvalue, to which the expression is evaluated, where Integer(E.el)
=1, Integer(E.en)= n, for an enumeration type E=enumeration(el, ..., en).

String(E.enumvalue) gives the string representation of the enumeration value.
[Example: String(E.Small) gives "Small”.]

See also section 3.7.1.

4.8.5.3 Type Conversion of Integer to Enumeration Values

Whenever an enumeration type is defined, a type conversion function with the same name and in the
same scope as the enumeration type is implicitly defined. This function can be used in an expression to
convert an integer value to the corresponding (as described in section 4.8.5.2) enumeration value.

For an enumeration type named EnumTypeName, the expression EnumTypeName (<Integer expression>)
returns the enumeration value EnumTypeName.e such that Integer (EnumTypeName.e) is equal to the
original integer expression.

Attempting to convert an integer argument that does not correspond to a value of the enumeration type
is an error.

[Example:

type Colors = enumeration (RED, GREEN, BLUE, CYAN, MAGENTA, YELLOW);

Converting from Integer to Colors:

54

Y Modelica Language Specification 3.5-dev
Modelica 4.8. Predefined Types and Classes
= Colors(i);

Colors (10); // An error

4.8.5.4 Unspecified enumeration

An enumeration type defined using enumeration(:) is unspecified and can be used as a replaceable
enumeration type that can be freely redeclared to any enumeration type. There can be no enumeration
variables declared using enumeration(:) in a simulation model.

4.8.6 Attributes start, fixed, nominal, and unbounded

The attributes start and fixed define the initial conditions for a variable. “fixed=false” means an
initial guess, i.e., value may be changed by static analyzer. “fixed=true” means a required value. The
resulting consistent set of values for ALL model variables is used as initial values for the analysis to be
performed.

The attribute nominal gives the nominal value for the variable. The user need not set it even though the
standard does not define a default value. The lack of default allows the tool to propagate the nominal
attribute based on equations, and if there is no value to propagate the tool should use a non-zero value,
it may use additional information (e.g. min-attribute) to find a suitable value, and as last resort use
1. If “unbounded=true” it indicates that the state may grow without bound, and the error in absolute
terms shall be controlled. [The nominal value can be used by an analysis tool to determine appropriate
tolerances or epsilons, or may be used for scaling. For example, the tolerance for an integrator could be
computed as “tolx(abs(nominal)+(if x.unbounded then 0 else abs(x)))”. A default value is not
provided in order that in cases such as “a=b”, where “b” has a nominal value but not “a”, the nominal
value can be propagated to the other variable).| [For external functions in C89, RealType by default
maps to double and IntegerType by default maps to int. In the mapping proposed in Annex F' of the
C99 standard, RealType/double matches the IEC 60559:1989 (ANSI/IEEE 754-1985) double format.
Typically IntegerType represents a 32-bit 2-complement signed integer.]

4.8.7 Other Predefined Types
4.8.7.1 StateSelect

The predefined StateSelect enumeration type is the type of the stateSelect attribute of the Real
type. It is used to explicitly control state selection.

type StateSelect = enumeration(
never "Do not use as state at all.",
avoid "Use as state, if it cannot be avoided (but only if variable appears
differentiated and no other potential state with attribute
default, prefer, or always can be selected).",
default "Use as state if appropriate, but only if variable appears
differentiated.",
prefer "Prefer it as state over those having the default value
(also variables can be selected, which do not appear
differentiated). ",
always "Do use it as a state."

)

4.8.7.2 ExternalObject

See section 12.9.7 for information about the predefined type ExternalObject.

55

Y Modelica Language Specification 3.5-dev
Modelica 4.8. Predefined Types and Classes

4.8.7.3 AssertionLevel

The predefined AssertionLevel enumeration type is used together with assert, section 8.3.7.

type Assertionlevel=enumeration(warning, error);

4.8.7.4 Connections

The package Connections is used for over-constrained connection graphs, section 8.3.9.

4.8.7.5 Graphical Annotation Types

A number of “predefined” record types and enumeration types for graphical annotations are described in
chapter 18. These types are not predefined in the usual sense since they cannot be referenced in ordinary
Modelica code, only within annotations.

4.8.7.6 Clock Types

See section 16.2.1 and section 16.3.

56

Chapter 5

Scoping, Name Lookup, and
Flattening

This chapter describes the scope rules, and most of the name lookup and flattening of Modelica.

5.1 Flattening Context

Flattening is made in a context which consists of a modification environment (section 7.2.2) and an
ordered set of enclosing classes.

5.2 Enclosing Classes

The classes lexically enclosing an element form an ordered set of enclosing classes. A class defined inside
another class definition (the enclosing class) precedes its enclosing class definition in this set.

Enclosing all class definitions is an unnamed enclosing class that contains all top-level class definitions,
and not-yet read classes defined externally as described in section 13.2.2. The order of top-level class
definitions in the unnamed enclosing class is undefined.

During flattening, the enclosing class of an element being flattened is a partially flattened class. [For
example, this means that a declaration can refer to a name inherited through an extends-clause.]

[Example:

class C1 ... end Ci1;
class C2 ... end C2;
class C3

Real x=3;

Cl y;

class C4

Real z;

end C4;

end C3;

The unnamed enclosing class of class definition C8 contains C1, C2, and C3 in arbitrary order. When
flattening class definition C3, the set of enclosing classes of the declaration of x is the partially flattened
class C3 followed by the unnamed enclosing class with C1, C2, and C3. The set of enclosing classes of
z is C4, C3 and the unnamed enclosing class in that order.]

5.3 Static Name Lookup

Names are looked up at class flattening to find names of base classes, component types, etc. Implicitly
defined names of record constructor functions and enumeration type conversion functions are ignored

o7

g Modelica Language Specification 3.5-dev
Modelica 5.3. Static Name Lookup

during type name lookup [since a record and the implicitly created record constructor function, see sec-
tion 12.6, , and an enumeration type and the implicitly created conversion function (section 4.8.5.3),
have the same name]. Names of record classes and enumeration types are ignored during function name
lookup.

5.3.1 Simple Name Lookup

When an element, equation, or section is flattened, any simple name [not composed using dot notation)]
is looked up sequentially in each member of the ordered set of instance scopes (see section 5.6.1.1)
corresponding to lexically enclosing classes until a match is found or an enclosing class is encap-
sulated. In the latter case the lookup stops except for the predefined types, functions and operators
defined in this specification.

Reference to variables successfully looked up in an enclosing class is only allowed for variables declared as
constant. The values of modifiers are thus resolved in the instance scope of which the modifier appears;
if the use is in a modifier on a short class definition,

This lookup in each instance scope is performed as follows

e Among declared named elements (class-definition and component-declaration) of the class
(including elements inherited from base-classes).

e Among the import names of qualified import statements in the instance scope. The import name
of import A.B.C;is C and the import name of import D=A.B.C; is D.

e Among the public members of packages imported via unqualified import-statements in the instance
scope. It is an error if this step produces matches from several unqualified imports.

Import statements defined in inherited classes are ignored for the lookup, i.e. import
statements are not inherited.

5.3.2 Composite Name Lookup
For a composite name of the form A.B or A.B.C, etc. lookup is performed as follows:
e The first identifier (A) is looked up as defined above.

e If the first identifier denotes a component, the rest of the name (e.g., B or B.C) is looked up among
the declared named component elements of the component.

e If not found, and if the first identifier denotes a scalar component, or component[j] where component
is an array of components and the indices j can be evaluated at translation time and component|j]
is a scalar; and if the composite name is used as a function call, the lookup is also performed among
the declared named class elements of the scalar component, and must find a non-operator function.
All identifiers of the rest of the name (e.g., B and B.C) must be classes.

e If the identifier denotes a class, that class is temporarily flattened (as if instantiating a component
without modifiers of this class, see section 7.2.2) and using the enclosing classes of the denoted
class. The rest of the name (e.g., B or B.C) is looked up among the declared named elements of
the temporary flattened class. If the class does not satisfy the requirements for a package, the
lookup is restricted to encapsulated elements only. The class we look inside may not be partial in
a simulation model.

[The temporary class flattening performed for composite names follow the same rules as class flattening
of the base class in an extends-clause, local classes and the type in a component clause, except that the
environment is empty. See also MoistAir2 example in section 7.3 for further explanations regarding
looking inside partial packages.]

5.3.3 Global Name Lookup

For a name starting with dot, e.g.: .A [or .A.B, .A.B.C etc.] lookup is performed as follows:

e The first identifier [A] is looked up in the global scope. This is possible even if the class is encapsu-
lated and import statements are not used for this. If there does not exist a class A in global scope
this is an error.

58

Y, Modelica Language Specification 3.5-dev
Modelica 5.4. Instance Hierarchy Name Lookup of Inner Declarations

e If the name is simple then the class A is the result of lookup.

e If the name is a composite name then the class A is temporarily flattened with an empty environ-
ment (i.e. no modifiers, see section 7.2.2) and using the enclosing classes of the denoted class. The
rest of the name [e.g., B or B.C] is looked up among the declared named elements of the temporary
flattened class. If the class does not satisfy the requirements for a package, the lookup is restricted
to encapsulated elements only. The class we look inside may not be partial.

[The package-restriction ensures that global name lookup of component references can only find global
constants.]

5.3.4 Lookup of Imported Names
See section 13.2.1.1.

5.4 Instance Hierarchy Name Lookup of Inner Declarations

An element declared with the prefix outer references an element instance with the same name but using
the prefix inner which is nearest in the enclosing instance hierarchy of the outer element declaration.

Outer component declarations may not have modifications [including binding equations]. Outer class
declarations should be defined using short-class definitions without modifications. However, see also
section 5.5.

An outer element reference in a simulation model requires that one corresponding inner element dec-
laration exist or can be created in a unique way:

e If there are two (or more) outer declarations with the same name, both lacking matching inner
declarations, and the outer declarations are not of the same class it is in error.

e If there is one (or more) outer declarations of a partial class it is an error.

e In other cases, i.e. if a unique non-partial class is used for all outer declarations of the same name
lacking a matching inner declaration, then an inner declaration of that class is automatically added
at the top of the model and diagnostics is given.

e The annotations defined in section 18.7 does not affect this process, other than that:
— missingInnerMessage can be used for the diagnostic (and possibly error messages)

An outer element component may be of a partial class [but the referenced inner component must be of
a non-partial class]. [inner/outer components may be used to model simple fields, where some physical
quantities, such as gravity vector, environment temperature or environment pressure, are accessible from
all components in a specific model hierarchy. Inner components are accessible throughout the model, if
they are not “shadowed” by a corresponding inner declaration in a more deeply nested level of the model
hierarchy.]

[Simple Example:

class A
outer Real TO;

end A;

class B
inner Real TO=1;
A a1, a2; // B.TO, B.al.TO and B.a2.TO will have the same value
A a3(T0=4); // Illegal as TO is an outer variable.

end B;

More complicated example:

class A
outer Real TI;
class B

59

Y, Modelica Language Specification 3.5-dev
Modelica 5.4. Instance Hierarchy Name Lookup of Inner Declarations

Real TI;
class C
Real TI;
class D
outer Real TI; //
end D;
D d;
end C;
C c;
end B;
B b;
end A;

class E
inner Real TI;
class F
inner Real TI;
class G
Real TI;
class H
A a;
end H;
H h;
end G;
G g;
end F;
F f;
end E;

class I
inner Real TI;
E e;
// e.f.g.h.a.Tl, e.f.g.h.a.b.c.d. Tl , and e.f. Tl is the same variable
// But e.f.Tl, e.Tl and TI are different variables
A a; // a.Tl, a.b.c.d. Tl , and TI is the same variable
end I;

]

The inner component shall be a subtype of the corresponding outer component. [If the two types are
not identical, the type of the inner component defines the instance and the outer component references
just part of the inner component].

[Example:

class A
inner Real TI;
class B
outer Integer TI; // error, since A.Tl is no subtype of A.B.TI
end B;
end A;

5.4.1 Example of Field Functions using Inner/Outer

[Inner declarations can be used to define field functions, such as position dependent gravity fields, e.g.:

partial function A
input Real u;
output Real y;

end A;

60

Y, Modelica Language Specification 3.5-dev
Modelica 5.5. Simultaneous Inner/Outer Declarations

function B // B is a subtype of A
extends A;

algorithm

end B;

class D
outer function fc

1]
=

equation
y = fc(u);
end D;

class C
inner function fc = B; // define function to be actually used
D d; // The equation is now treated as y = B(u)

end C;

5.5 Simultaneous Inner/Outer Declarations

An element declared with both the prefixes inner and outer conceptually introduces two declarations
with the same name: one that follows the above rules for inner and another that follows the rules for
outer. [Local references for elements with both the prefiz inner and outer references the outer element.
That in turn references the corresponding element in an enclosing scope with the prefix inner.|

Modifications of elements declared with both the prefixes inner and outer may have modfications, those
modifications are only applied to the inner declaration.

[Example:

class A
outer parameter Real p=2; // error, since modification
end A;

Intent of the following example: Propagate enabled through the hierarchy, and also be able to disable
subsystems locally.

model ConditionalIntegrator "Simple differential equation if isEnabled"
outer Boolean isEnabled;
Real x(start=1);

equation
der(x)=if isEnabled then -x else O0;

end ConditionallIntegrator;

model SubSystem "subsystem that ’enable’ its conditional integrators"

Boolean enableMe = time<=1;
// Set inner isEnabled to outer isEnabled and enableMe
inner outer Boolean isEnabled = isEnabled and enablelMe;

ConditionalIntegrator conditionallntegrator;
ConditionalIntegrator conditionallntegrator2;
end SubSystem;

model System
SubSystem subSystem;
inner Boolean isEnabled = time>=0.5;
// subSystem.conditionallntegrator.isEnabled will be
// 'isEnabled and subSystem.enableMe’
end System;

61

Y, Modelica Language Specification 3.5-dev
Modelica 5.6. Flattening Process

5.6 Flattening Process

In order to guarantee that elements can be used before they are declared and that elements do not
depend on the order of their declaration (section 4.3) in the enclosing class, the flattening proceeds in
the following two major steps:

1. Instantiation process
2. Generation of the flat equation system

The result is an equation system of all equations/algorithms, initial equations/algorithms and instances
of referenced functions. Modifications of constants, parameters and variables are included in the form of
equations.

The constants, parameters and variables are defined by globally unique identifiers and all references are
resolved to the identifier of the referenced variable. No other transformations are performed.

5.6.1 Instantiation

The instantiation is performed in two steps. First a class tree is created and then from that an instance
tree for a particular model is built up. This forms the basis for derivation of the flat equation system.

An implementation may delay and/or omit building parts of these trees, which means that the different
steps can be interleaved. If an error occurs in a part of the tree that is not used for the model to be
instantiated the corresponding diagnostics can be omitted (or be given). However, errors that should
only be reported in a simulation model must be omitted there, since they are not part of the simulation
model.

5.6.1.1 The Class Tree

All necessary libraries including the model which is to be instantiated are loaded from e.g. file system
and form a so called class tree. This tree represents the syntactic information from the class definitions.
It contains also all modifications at their original locations in syntactic form. [The class tree is built up
directly during parsing of the Modelica texts. For each class a local tree is created which is then merged
into the one big tree, according to the location of the class in the class hierarchy. This tree can be seen
as the abstract syntax tree (AST) of the loaded libraries.]. The builtin classes are put into the unnamed
root of the class tree.

5.6.1.2 The Instance Tree

The output of the instantiation process is an instance tree. The instance tree consists of nodes repre-
senting the elements of a class definition from the class tree. For a component the subtree of a particular
node is created using the information from the class of the component clause and a new modification
environment as result of merging the current modification environment with the modifications from the
current element declaration (see section 7.2.3).

The instance tree has the following properties:

e It contains the instantiated elements of the class definitions, with redeclarations taken into account
and merged modifications applied.

e Each instance knows its source class definition from the class tree and its modification environment.
e Each modification knows its instance scope.

The instance tree is used for lookup during instantiation. To be prepared for that, it has to be based on
the structure of the class tree with respect to the class definitions. The builtin classes are instantiated
and put in the unnamed root prior to the instantiation of the user classes, to be able to find them.

[The existence of the two separate trees (instance tree and class tree) is conceptual. Whether they really
exist or are merged into only one tree or the needed information is held completely differently is an
implementation detail. It is also a matter of implementation to have only these classes instantiated
which are needed to instantiate the class of interest.]

62

Y, Modelica Language Specification 3.5-dev
Modelica 5.6. Flattening Process

A node in the instance tree is the instance scope for the modifiers and elements syntactically defined in
the class it is instantiated from. The instance scope is the starting point for name lookup. [If the name
is mot found the lookup is continued in the instance scope corresponding to the lexically enclosing class.
Ezxtends clauses are treated as unnamed nodes in the instance tree — when searching for an element in
an instance scope the search also recursively examines the elements of the extends clauses. Except that
inherited import-statements are ignored.]

5.6.1.3 The Instantiation Procedure.
The instantiation is a recursive procedure with the following inputs:
e the class to be instantiated (current class)

e the modification environment with all applicable redeclarations and merged modifications (initially
empty)

e areference to the node of the instance tree, which the new instance should go into (parent instance)

The instantiation starts with the class to be instantiated, an empty modification environment, and an
unnamed root node as parent node.

During instantiation all lookup is performed using the instance tree, starting from the instance scope of
the current element. References in modifications and equations are resolved later (during generation of
flat equation system) using the same lookup.

5.6.1.4 Steps of Instantiation

The element itself A partially instantiated class or component is an element that is ready to be
instantiated; a partially instantiated element (i.e. class or component) is comprised of a reference to the
original element (from the class tree) and the modifiers for that element (including a possible redeclara-
tion).

The possible redeclaration of the element itself takes effect.

The class of a partially instantiated component is found in the instance tree (using the redeclaration if
any), modifiers merged to that class forming a new partially instantiated class that is instantiated as
below.

The local contents of the element For local classes and components in the current class, instance
nodes are created and inserted into the current instance. Modifiers (including class redeclarations)
are merged and associated with the instance and the element is partially instantiated. [The partially
instantiated elements are used later for lookup during the generation of the flat equation system and are
instantiated fully, if necessary, using the stored modification environment.]

Equations, algorithms, and annotations of the class and the component declaration are copied to the
instance without merging. [The annotations can be relevant for simulations, e.g. annotations for code
generation (section 18.3.), simulation experiments (section 18.4) or functions(section 12.7,section 12.8
and section 12.9).]

Extends clauses are not looked up, but empty extends clause nodes are created and inserted into the
current instance — to be able to preserve the declaration order of components.

The inherited contents of the element Classes of extends clauses of the current class are looked
up in the instance tree, modifiers (including redeclarations) are merged, the contents of these classes are
partially instantiated using the new modification environment, and are insert