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Abstract

 

This document defines the Modelica1 language, version 3.5, which is developed by the Modelica As-
sociation, a non-profit organization with seat in Linköping, Sweden. Modelica is a freely available,
object-oriented language for modeling of large, complex, and heterogeneous systems. It is suited for
multi-domain modeling, for example, mechatronic models in robotics, automotive and aerospace appli-
cations involving mechanical, electrical, hydraulic control and state machine subsystems, process oriented
applications and generation and distribution of electric power. Models in Modelica are mathematically
described by differential, algebraic and discrete equations. No particular variable needs to be solved
for manually. A Modelica tool will have enough information to decide that automatically. Model-
ica is designed such that available, specialized algorithms can be utilized to enable efficient handling
of large models having more than one hundred thousand equations. Modelica is suited and used for
hardware-in-the-loop simulations and for embedded control systems. More information is available at
http://www.Modelica.org/

1Modelica is a registered trademark of the Modelica Association

http://www.modelica.org/
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Preface

Modelica is a freely available, object-oriented language for modeling of large, complex, and heterogeneous
physical systems. From a user’s point of view, models are described by schematics, also called object
diagrams. Examples are shown in the next figure:

A schematic consists of connected components, like a resistor, or a hydraulic cylinder. A component
has “connectors” (often also called “ports”) that describe the interaction possibilities, e.g., an electrical
pin, a mechanical flange, or an input signal. By drawing connection lines between connectors a physical
system or block diagram model is constructed. Internally a component is defined by another schematic
or on “bottom” level, by an equation based description of the model in Modelica syntax.

The Modelica language is a textual description to define all parts of a model and to structure model
components in libraries, called packages. An appropriate Modelica simulation environment is needed to
graphically edit and browse a Modelica model (by interpreting the information defining a Modelica model)
and to perform model simulations and other analysis. Information about such environments is available at
www.modelica.org/tools. Basically, all Modelica language elements are mapped to differential, algebraic
and discrete equations. There are no language elements to describe directly partial differential equations,
although some types of discretized partial differential equations can be reasonably defined, e.g., based on
the finite volume method and there are Modelica libraries to import results of finite-element programs.

This document defines the details of the Modelica language. It is not intended to learn the Model-
ica language with this text. There are better alternatives, such as the Modelica books referenced at
www.modelica.org/publications. This specification is used by computer scientist to implement a Mod-
elica translator and by modelers who want to understand the exact details of a particular language
element.

The Modelica language has been developed since 1996. This document describes version 3.4 of the

4

http://www.modelica.org/tools
http://www.modelica.org/publications


Modelica language. A complete summary is available in section E.1.
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Chapter 1

Introduction

1.1 Overview of Modelica

Modelica is a language for modeling of physical systems, designed to support effective library development
and model exchange. It is a modern language built on acausal modeling with mathematical equations
and object-oriented constructs to facilitate reuse of modeling knowledge.

1.2 Scope of the Specification

The semantics of the Modelica language is specified by means of a set of rules for translating any class
described in the Modelica language to a flat Modelica structure.

A class (of specialized class model, class or block) intended to be simulated on its own is called a
simulation model.

The flat Modelica structure is also defined for other cases than simulation models; including functions
(can be used to provide algorithmic contents), packages (used as a structuring mechanism), and partial
models (used as base-models). This allows correctness to be verified for those classes, before using them
to build the simulation model.

There are specific semantic restrictions for a simulation model to ensure that the model is complete; they
allow its flat Modelica structure to be further transformed into a set of differential, algebraic and discrete
equations (= flat hybrid DAE). Note that satisfying the semantic restrictions does not guarantee that
the model can be initialized from the initial conditions and simulated.

Modelica was designed to facilitate symbolic transformations of models, especially by mapping basically
every Modelica language construct to continuous or instantaneous equations in the flat Modelica struc-
ture. Many Modelica models, especially in the associated Modelica Standard Library, are higher index
systems, and can only be reasonably simulated if symbolic index reduction is performed, i.e., equations
are differentiated and appropriate variables are selected as states, so that the resulting system of equa-
tions can be transformed to state space form (at least locally numerically), i.e., a hybrid DAE of index
zero. In order to allow this structural analysis, a tool may reject simulating a model if parameters cannot
be evaluated during translation - due to calls of external functions or initial equations/initial algorithms
for fixed=false parameters. Accepting such models is a quality of implementation issue. The Modelica
specification does not define how to simulate a model. However, it defines a set of equations that the
simulation result should satisfy as well as possible.

The key issues of the translation (or flattening) are:

• Expansion of inherited base classes

• Parameterization of base classes, local classes and components

• Generation of connection equations from connect-equations

The flat hybrid DAE form consists of:
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• Declarations of variables with the appropriate basic types, prefixes and attributes, such as ”parameter
Real v=5”.

• Equations from equation sections.

• Function invocations where an invocation is treated as a set of equations which involves all input
and all result variables (number of equations = number of basic result variables).

• Algorithm sections where every section is treated as a set of equations which involves the variables
occurring in the algorithm section (number of equations = number of different assigned variables).

• When-clauses where every when-clause is treated as a set of conditionally evaluated equations, also
called instantaneous equations, which are functions of the variables occurring in the clause (number
of equations = number of different assigned variables).

Therefore, a flat hybrid DAE is seen as a set of equations where some of the equations are only condition-
ally evaluated (e.g. instantaneous equations are only evaluated when the corresponding when-condition
becomes true). Initial setup of the model is specified using start-values and instantaneous equations that
hold at the initial time only.

A Modelica class may also contain annotations, i.e. formal comments, which specify graphical represen-
tations of the class (icon and diagram), documentation text for the class, and version information.

1.3 Some Definitions

The semantic specification should be read together with the Modelica grammar. Non-normative text, i.e.,
examples and comments, are enclosed in [ ]; comments are set in italics. Additional terms are explained
in the glossary in Appendix A. Some important terms are:

Term Definition
Component An element defined by the production component-clause in the

Modelica grammar (basically a variable or an instance of a class)
Element Class definitions, extends-clauses and component-clauses declared

in a class (basically a class reference or a component in a declara-
tion).

Flattening The translation of a model described in Modelica to the corre-
sponding model described as a hybrid DAE, involving expansion
of inherited base classes, parameterization of base classes, local
classes and components, and generation of connection equations
from connect-equations (basically, mapping the hierarchical struc-
ture of a model into a set of differential, algebraic and discrete
equations together with the corresponding variable declarations
and function definitions from the model).

1.4 Notation and Grammar

The meta symbols (of the extended BNF-grammar) are defined in section B.1.

Boldface denotes keywords of the Modelica language. Keywords are reserved words and may not be used
as identifiers, with the exception of initial which is a keyword in section headings, and der which is a
keyword for declaration functions, but it is also possible to call the functions initial() and der(...).

See Appendix B for a full lexical specification and grammar.

7



Chapter 2

Lexical Structure

This chapter describes several of the basic building blocks of Modelica such as characters and lexical
units including identifiers and literals. Without question, the smallest building blocks in Modelica are
single characters belonging to a character set. Characters are combined to form lexical units, also called
tokens. These tokens are detected by the lexical analysis part of the Modelica translator. Examples of
tokens are literal constants, identifiers, and operators. Comments are not really lexical units since they
are eventually discarded. On the other hand, comments are detected by the lexical analyzer before being
thrown away.

The information presented here is derived from the more formal specification in Appendix B.

2.1 Character Set

The character set of the Modelica language is Unicode, but restricted to the Unicode characters corre-
sponding to 7-bit ASCII characters in several places; for details see section B.1.

2.2 Comments

There are two kinds of comments in Modelica which are not lexical units in the language and therefore
are treated as whitespace by a Modelica translator. The whitespace characters are space, tabulator,
and line separators (carriage return and line feed); and whitespace cannot occur inside tokens, e.g., <=
must be written as two characters without space or comments between them. [The comment syntax is
identical to that of C++]. The following comment variants are available:

// comment & C h a r a c t e r s from // t o t h e end o f t h e l i n e a r e i g n o r e d .
/∗ comment ∗/ & Characters between /∗ and ∗/ are ignored , including line

terminators.

Modelica comments do not nest, i.e., /* */ cannot be embedded within /* */. The following is invalid :

/∗ Commented out − e r r o n e o u s comment , i n v a l i d n e s t i n g o f comments !
/∗ T h i s i s an i n t e r e s t i n g model ∗/
model interesting

...

end interesting;

*/

There is also a kind of “documentation comment,” really a documentation string that is part of the
Modelica language and therefore not ignored by the Modelica translator. Such “comments” may occur
at the ends of declarations, equations, or statements or at the beginning of class definitions. For example:
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model TempResistor "Temperature dependent resistor"

...

parameter Real R "Resistance for reference temp.";

...

end TempResistor;

2.3 Identifiers, Names, and Keywords

Identifiers are sequences of letters, digits, and other characters such as underscore, which are used for
naming various items in the language. Certain combinations of letters are keywords represented as
reserved words in the Modelica grammar and are therefore not available as identifiers.

2.3.1 Identifiers

Modelica identifiers, used for naming classes, variables, constants, and other items, are of two forms.
The first form always starts with a letter or underscore ( ), followed by any number of letters, digits, or
underscores. Case is significant, i.e., the names Inductor and inductor are different. The second form
(Q-IDENT) starts with a single quote, followed by a sequence of any printable ASCII character, where
single-quote must be preceded by backslash, and terminated by a single quote, e.g. ’12H’, ’13\’H’,
’+foo’. Control characters in quoted identifiers have to use string escapes. The single quotes are part of
the identifier, i.e., ’x’ and x are distinct identifiers, but the redundant escapes (’\?’ and ’\"’) are the
same as the corresponding non-escaped variants (’?’ and ’"’). A full BNF definition of the Modelica
syntax and lexical units is available in Appendix B.

IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT

Q-IDENT = "’" { Q-CHAR | S-ESCAPE | """ } "’"

NONDIGIT = "_" | letters "a" ... "z" | letters "A" ... "Z"

DIGIT = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Q-CHAR = NONDIGIT | DIGIT | "!" | "#" | "$" | "%" | "&" | "(" | ")" | "*" |

"+" | "," | "-" | "." | "/" | ":" | ";" | "<" | ">" | "=" | "?" | "@" | "["

| "]" | "^" | "{" | "}" | "|" | "~" | " "_

S-ESCAPE = "\’" | "\"" | "\?" | "\\" | "\a" | "\b" | "\f" | "\n" | "\r" | "\t"

| "\v"

2.3.2 Names

A name is an identifier with a certain interpretation or meaning. For example, a name may denote
an Integer variable, a Real variable, a function, a type, etc. A name may have different meanings in
different parts of the code, i.e., different scopes. The interpretation of identifiers as names is described
in more detail in chapter 5. The meaning of package names is described in more detail in chapter 13.

2.3.3 Modelica Keywords

The following Modelica keywords are reserved words and may not be used as identifiers, except as listed
in section B.1:

algorithm discrete false loop pure

and each final model record

annotation else flow not redeclare

elseif for operator replaceable

block elsewhen function or return

break encapsulated if outer stream

class end import output then

connect enumeration impure package true

connector equation in parameter type

constant expandable initial partial when
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constrainedby extends inner protected while

der external input public within

2.4 Literal Constants

Literal constants are unnamed constants that have different forms depending on their type. Each of
the predefined types in Modelica has a way of expressing unnamed constants of the corresponding type,
which is presented in the ensuing subsections. Additionally, array literals and record literals can be
expressed.

2.4.1 Floating Point Numbers

A floating point number is expressed as a decimal number in the form of a sequence of decimal digits
optionally followed by a decimal point, optionally followed by an exponent. At least one digit must
be present. The exponent is indicated by an E or e, followed by an optional sign (+ or -) and one
or more decimal digits. The minimal recommended range is that of IEEE double precision floating
point numbers, for which the largest representable positive number is 1.7976931348623157E+308 and
the smallest positive number is 2.2250738585072014E-308. For example, the following are floating point
number literal constants:

22.5 , 3.141592653589793 , 1.2E -35

The same floating point number can be represented by different literals. For example, all of the following
literals denote the same number:

13., 13E0 , 1.3e1 , 0.13E2

2.4.2 Integer Literals

Literals of type Integer are sequences of decimal digits, e.g. as in the integer numbers 33, 0, 100,

30030044. [Negative numbers are formed by unary minus followed by an integer literal ]. The minimal
recommended number range is from -2147483648 to +2147483647 for a two’s-complement 32-bit integer
implementation.

2.4.3 Boolean Literals

The two Boolean literal values are true and false.

2.4.4 Strings

String literals appear between double quotes as in "between". Any character in the Modelica language
character set (see section B.1 for allowed characters) apart from double quote (") and backslash (\),
including new-line, can be directly included in a string without using an escape code. Certain characters
in string literals can be represented using escape codes, i.e., the character is preceded by a backslash (\)
within the string. Those characters are:

\’ single quote – may also appear without backslash in string constants.
\" double quote
\? question-mark – may also appear without backslash in string constants.
\\ backslash itself
\a alert (bell, code 7, ctrl-G)
\b backspace (code 8, ctrl-H)
\f form feed (code 12, ctrl-L)
\n newline (code 10, ctrl-J), same as literal newline
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\r carriage return (code 13, ctrl-M)
\t horizontal tab (code 9, ctrl-I)
\v vertical tab (code 11, ctrl-K)

For example, a string literal containing a tab, the words: This is, double quote, space, the word:
between, double quote, space, the word: us, and new-line, would appear as follows:

”\tThis is\"between\" us\n”

Concatenation of string literals in certain situations (see the Modelica grammar) is denoted by the +
operator in Modelica, e.g. "a" + "b" becomes "ab". This is useful for expressing long string literals
that need to be written on several lines.

The "\n" character is used to conceptually indicate the end of a line within a Modelica string. Any
Modelica program that needs to recognize line endings can check for a single "\n" character to do so on
any platform. It is the responsibility of a Modelica implementation to make any necessary transformations
to other representations when writing to or reading from a text file. [For example, a "\n" is written and
read as-is in a Unix or Linux implementation, but written as "\r\n" pair, and converted back to "\n"

when read, in a Windows implementation.]

[For long string comments, e.g., the “info” annotation to store the documentation of a model, it would
be very inconvenient, if the string concatenation operator would have to be used for every line of doc-
umentation. It is assumed that a Modelica tool supports the non-printable “newline” character when
browsing or editing a string literal. For example, the following statement defines one string that contains
(non-printable) newline characters:

assert(noEvent(length > s_small), "

The distance between the origin of frame_a and the origin of frame_b

of a LineForceWithMass component became smaller as parameter s_small

(= a small number , defined in the

\" Advanced \" menu). The distance is

set to s_small , although it is smaller , to avoid a division by zero

when computing the direction of the line force.",

level = AssertionLevel.warning);

]

2.5 Operator Symbols

The predefined operator symbols are formally defined on page 273 and summarized in the table of
operators in section 3.2.
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Chapter 3

Operators and Expressions

The lexical units are combined to form even larger building blocks such as expressions according to the
rules given by the expression part of the Modelica grammar in Appendix B.

This chapter describes the evaluation rules for expressions, the concept of expression variability, built-in
mathematical operators and functions, and the built-in special Modelica operators with function syntax.

Expressions can contain variables and constants, which have types, predefined or user defined. The
predefined built-in types of Modelica are Real, Integer, Boolean, String, and enumeration types
which are presented in more detail in section 4.8. [The abbreviated predefined type information below is
given as background information for the rest of the presentation.]

3.1 Expressions

Modelica equations, assignments and declaration equations contain expressions.

Expressions can contain basic operations, +, -, *, /, ˆ, etc. with normal precedence as defined in the
Table in section 3.2 and the grammar in Appendix B. The semantics of the operations is defined for
both scalar and array arguments in section 10.6.

It is also possible to define functions and call them in a normal fashion. The function call syntax for both
positional and named arguments is described in section 12.4.1 and for vectorized calls in section 12.4.4.
The built-in array functions are given in section 10.1.1 and other built-in operators in section 3.7.

3.2 Operator Precedence and Associativity

Operator precedence determines the order of evaluation of operators in an expression. An operator with
higher precedence is evaluated before an operator with lower precedence in the same expression.

The following table presents all the expression operators in order of precedence from highest to lowest,
as derived from the Modelica grammar in Appendix B. All operators are binary except the postfix
operators and those shown as unary together with expr, the conditional operator, the array construction
operator {} and concatenation operator [ ], and the array range constructor which is either binary or
ternary. Operators with the same precedence occur at the same line of the table:
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Table 3.1: Operators
Operator Group Operator Syntax Examples
postfix array index operator [] arr[index]

postfix access operator . a.b

postfix function call funcName(function-arguments) sin(4.36)

array construct/concat
{expressions}
[expressions]
[expressions; expressions...]

{2,3} [5,6] [2,3;

7,8]

exponentiation ^ 2^3

multiplicative and array elemen-
twise multiplicative

* / .* ./ 2*3 2/3 [1,2;3,4].

*[2,3;5,6]

additive and array elementwise
additive

+ - +expr -expr .+ .- [1,2;3,4].+[2,3;5,6]

relational < <= > >= == <> a<b, a<=b, a>b, ...

unary negation not expr not b1

logical and and b1 and b2

logical or or b1 or b2

array range expr : expr expr : expr : expr 1:5 start:step:stop

conditional if expr then expr else expr if b then 3 else x

named argument ident = expr x = 2.26

The conditional operator may also include elseif-clauses. Equality = and assignment := are not expression
operators since they are allowed only in equations and in assignment statements respectively. All binary
expression operators are left associative, except exponentiation which is non-associative. The array range
operator is non-associative.

[The unary minus and plus in Modelica is slightly different than in Mathematica and in MATLAB1,
since the following expressions are illegal (whereas in Mathematica2 and in MATLAB these are valid
expressions):

2*-2 // = −4 i n Mathemat ica /MATLAB; i s i l l e g a l i n M o d e l i c a
--2 // = 2 i n Mathemat ica /MATLAB; i s i l l e g a l i n M o d e l i c a
++2 // = 2 i n Mathemat ica /MATLAB; i s i l l e g a l i n M o d e l i c a
2--2 // = 4 i n Mathemat ica /MATLAB; i s i l l e g a l i n M o d e l i c a

Non-associative exponentiation and array range operator:

x^y^z // Not l e g a l , u s e p a r e n t h e s i s t o make i t c l e a r
a:b:c:d:e:f:g // Not l e g a l , and s c a l a r a rguments g i v e s no l e g a l i n t e r p r e t a t i o n .

]

3.3 Evaluation Order

A tool is free to solve equations, reorder expressions and to not evaluate expressions if their values
do not influence the result (e.g. short-circuit evaluation of Boolean expressions). If-statements and
if-expressions guarantee that their clauses are only evaluated if the appropriate condition is true, but
relational operators generating state or time events will during continuous integration have the value
from the most recent event.

If a numeric operation overflows the result is undefined. For literals it is recommended to automatically
convert the number to another type with greater precision.

1MATLAB is a registered trademark of MathWorks Inc.
2Mathematica is a registered trademark of Wolfram Research Inc.
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3.3.1 Example: Guarding Expressions Against Incorrect Evaluation

[Example. If one wants to guard an expression against incorrect evaluation, it should be guarded by an
if:

Boolean v[n];

Boolean b;

Integer I;

equation

x=v[I] and (I>=1 and I<=n); // I n v a l i d
x=if (I>=1 and I<=n) then v[I] else false; // C o r r e c t

To guard square against square root of negative number use noEvent:

der(h)=if h>0 then -c*sqrt(h) else 0; // I n c o r r e c t
der(h)=if noEvent(h>0) then -c*sqrt(h) else 0; // C o r r e c t

]

3.4 Arithmetic Operators

Modelica supports five binary arithmetic operators that operate on any numerical type:

^ Exponentiation
* Multiplication
/ Division
+ Addition
- Subtraction

Some of these operators can also be applied to a combination of a scalar type and an array type, see
section 10.6.

The syntax of these operators is defined by the following rules from the Modelica grammar:

arithmetic-expression :

[ add-operator ] term { add-operator term }

add-operator :

"+" | "-"

term :

factor { mul-operator factor }

mul-operator :

"*" | "/"

factor :

primary [ "^" primary ]

3.5 Equality, Relational, and Logical Operators

Modelica supports the standard set of relational and logical operators, all of which produce the standard
boolean values true or false.

> greater than
>= greater than or equal
< less than
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<= less than or equal to
== equality within expressions
<> Inequality

A single equals sign = is never used in relational expressions, only in equations (chapter 8, section 10.6.1)
and in function calls using named parameter passing (section 12.4.1).

The following logical operators are defined:

not negation, unary operator
and logical and
or logical or

The grammar rules define the syntax of the relational and logical operators.

logical-expression :

logical-term { or logical-term }

logical-term :

logical-factor { and logical-factor }

logical-factor :

[ not ] relation

relation :

arithmetic-expression [ relational-operator arithmetic-expression ]

relational-operator :

"<" | "<=" | ">" | ">=" | "==" | "<>"

The following holds for relational operators:

• Relational operators <, <=,>, >=, ==, <>, are only defined for scalar operands of simple types. The
result is Boolean and is true or false if the relation is fulfilled or not, respectively.

• For operands of type String, str1 op str2 is for each relational operator, op, defined in terms of
the C-function strcmp as strcmp(str1,str2)op 0.

• For operands of type Boolean, false < true.

• For operands of enumeration types, the order is given by the order of declaration of the enumeration
literals.

• In relations of the form v1 == v2 or v1 <> v2, v1 or v2 shall, unless used in a function, not be a
subtype of Real. [The reason for this rule is that relations with Real arguments are transformed to
state events (see Events, section 8.5 ) and this transformation becomes unnecessarily complicated for
the == and <> relational operators (e.g. two crossing functions instead of one crossing function
needed, epsilon strategy needed even at event instants). Furthermore, testing on equality of Real
variables is questionable on machines where the number length in registers is different to number
length in main memory ].

• Relational operators can generate events, see section 3.8.3.

3.6 Miscellaneous Operators and Variables

Modelica also contains a few built-in operators which are not standard arithmetic, relational, or logical
operators. These are described below, including time, which is a built-in variable, not an operator.
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3.6.1 String Concatenation

Concatenation of strings (see the Modelica grammar) is denoted by the + operator in Modelica [e.g.
"a" + "b" becomes "ab"].

3.6.2 Array Constructor Operator

The array constructor operator { ... } is described in section 10.4.

3.6.3 Array Concatenation Operator

The array concatenation operator [ ... ] is described in section 10.4.2.

3.6.4 Array Range Operator

The array range constructor operator : is described in section 10.4.3.

3.6.5 If-Expressions

An expression

if expression1 then expression2 else expression3

is one example of if-expression. First expression1, which must be boolean expression, is evaluated. If
expression1 is true expression2 is evaluated and is the value of the if-expression, else expression3

is evaluated and is the value of the if-expression. The two expressions, expression2 and expression3,
must be type compatible expressions (section 6.6) giving the type of the if-expression. If-expressions
with elseif are defined by replacing elseif by else if. [Note: elseif has been added for symmetry
with if-clauses.] For short-circuit evaluation see section 3.3.

[Example:

Integer i;

Integer sign_of_i1=if i<0 then -1 elseif i==0 then 0 else 1;

Integer sign_of_i2=if i<0 then -1 else if i==0 then 0 else 1;

]

3.6.6 Member Access Operator

It is possible to access members of a class instance using dot notation, i.e., the . operator.

[Example: R1.R for accessing the resistance component R of resistor R1 . Another use of dot notation:
local classes which are members of a class can of course also be accessed using dot notation on the name
of the class, not on instances of the class.]

3.6.7 Built-in Variable time

All declared variables are functions of the independent variable time. The variable time is a built-in
variable available in all models and blocks, which is treated as an input variable. It is implicitly defined
as:

input Real time (final quantity = "Time",

final unit = "s");

The value of the start attribute of time is set to the time instant at which the simulation is started.

[Example:

encapsulated model SineSource

import Modelica.Math.sin;

connector OutPort=output Real;

OutPort y=sin(time); // Uses t h e b u i l t − i n v a r i a b l e t i m e .
end SineSource;
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]

3.7 Built-in Intrinsic Operators with Function Syntax

Certain built-in operators of Modelica have the same syntax as a function call. However, they do not
behave as a mathematical function, because the result depends not only on the input arguments but also
on the status of the simulation.

There are also built-in functions that depend only on the input argument, but also may trigger events
in addition to returning a value. Intrinsic means that they are defined at the Modelica language level,
not in the Modelica library. The following built-in intrinsic operators/functions are available:

• Mathematical functions and conversion functions, see section 3.7.1 below.

• Derivative and special purpose operators with function syntax, see section 3.7.2 below.

• Event-related operators with function syntax, see section 3.7.3 below.

• Array operators/functions, see section 10.1.1.

Note that when the specification references a function having the name of a built-in function it references
the built-in function, not a user-defined function having the same name, see also section 12.5. With
exception of built-in operator String(..), all operators in this section can only be called with positional
arguments.

3.7.1 Numeric Functions and Conversion Functions

The following mathematical operators and functions, also including some conversion functions, are pre-
defined in Modelica, and are vectorizable according to section 12.4.6, except for the String function.
The functions which do not trigger events are described in the table below, whereas the event-triggering
mathematical functions are described in section 3.7.1.1.

abs(v) Is expanded into noEvent(if v >= 0 then v else -v). Argu-
ment v needs to be an Integer or Real expression.

sign(v) Is expanded into “noEvent(if v>0 then 1 else if v<0 then

-1 else 0)”. Argument v needs to be an Integer or Real expres-
sion.

sqrt(v) Returns the square root of v if v>=0, otherwise an error occurs.
Argument v needs to be an Integer or Real expression.

Integer(e) Returns the ordinal number of the expression e of enumeration
type that evaluates to the enumeration value E.enumvalue, where
Integer(E.e1)=1, Integer(E.en)=n, for an enumeration type E

=enumeration(e1, ..., en). See also section 4.8.5.2.
EnumTypeName(i) For any enumeration type EnumTypeName, returns the enumeration

value EnumTypeName.e such that Integer(EnumTypeName.e)= i.
Refer to the definition of Integer above.
It is an error to attempt to convert values of i that do not corre-
spond to values of the enumeration type. See also section 4.8.5.3.
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String(b, <options>)

String(i, <options>)

String(r,

significantDigits=d,

<options>)

String(r, format=s)

String(e, <options>)

Convert a scalar non-String expression to a String representation.
The first argument may be a Boolean b, an Integer i, a Real

r or an Enumeration e (section 4.8.5.2). The other arguments
must use named arguments. The optional <options> are:
Integer minimumLength=0: minimum length of the resulting
string. If necessary, the blank character is used to fill up unused
space.
Boolean leftJustified = true: if true, the converted result is
left justified in the string; if false it is right justified in the string.
For Real expressions the output shall be according to the Modelica
grammar. Integer significantDigits=6: defines the number
of significant digits in the result string. [Examples: ”12.3456”,
”0.0123456”, ”12345600”, ”1.23456E-10”].
The format string corresponding to options is:
• for Reals: (if leftJustified then "-"else

"")+ String(minimumLength)+"."+ String(

signficantDigits)+"g",
• for Integers: (if leftJustified then "-"else "")+

String(minimumLength)+"d".
Format string: According to ANSI-C the format string specifies
one conversion specifier (excluding the leading %), may not con-
tain length modifiers, and may not use ”*” for width and/or pre-
cision. For all numeric values the format specifiers f, e, E, g,G
are allowed. For integral values it is also allowed to use the d,
i, o, x, X, u, and c-format specifiers (for non-integral values a
tool may round, truncate or use a different format if the integer
conversion characters are used).
The x,X-formats (hexa-decimal) and c (character) for Integers
does not lead to input that agrees with the Modelica-grammar.

3.7.1.1 Event Triggering Mathematical Functions

The built-in operators in this section trigger events if used outside of a when-clause and outside of a
clocked discrete-time partition (see section 16.8.1). These expression for div, ceil, floor, and integer are
event generating expression. The event generating expression for mod(x,y) is floor(x/y), and for rem(x,y)
it is div(x,y) - i.e. events are not generated when mod or rem changes continuously in an interval, but
when they change discontinuously from one interval to the next. [ If this is not desired, the noEvent

function can be applied to them. E.g. noEvent(integer(v)) ]

div(x,y) Returns the algebraic quotient x/y with any fractional part discarded (also
known as truncation toward zero). [Note: this is defined for / in C99; in
C89 the result for negative numbers is implementation-defined, so the standard
function div() must be used.]. Result and arguments shall have type Real or
Integer. If either of the arguments is Real the result is Real otherwise Integer.

mod(x,y) Returns the integer modulus of x/y, i.e. mod(x,y)=x-floor(x/y)*y. Result
and arguments shall have type Real or Integer. If either of the arguments is
Real the result is Real otherwise Integer. [Note, outside of a when-clause state
events are triggered when the return value changes discontinuously. Examples
mod(3,1.4)=0.2, mod(-3,1.4)=1.2, mod(3,-1.4)=-1.2]

rem(x,y) Returns the integer remainder of x/y, such that div(x,y)*y + rem(x, y)= x.
Result and arguments shall have type Real or Integer. If either of the arguments
is Real the result is Real otherwise Integer. [Note, outside of a when-clause state
events are triggered when the return value changes discontinuously. Examples
rem(3,1.4)=0.2, rem(-3,1.4)=-0.2]
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ceil(x) Returns the smallest integer not less than x. Result and argument shall have
type Real. [Note, outside of a when-clause state events are triggered when the
return value changes discontinuously.]

floor(x) Returns the largest integer not greater than x. Result and argument shall have
type Real. [Note, outside of a when-clause state events are triggered when the
return value changes discontinuously.].

integer(x) Returns the largest integer not greater than x. The argument shall have type
Real. The result has type Integer.[Note, outside of a when-clause state events
are triggered when the return value changes discontinuously.].

3.7.1.2 Built-in Mathematical Functions and External Built-in Functions

The following built-in mathematical functions are available in Modelica and can be called directly without
any package prefix added to the function name. They are also available as external built-in functions in
the Modelica.Math library.

sin(x) sine
cos(x) cosine
tan(x) tangent (x shall not be: ..., -π/2, π/2, 3π/2, ...)
asin(x) inverse sine (-1 ≤ x ≤ 1)
acos(x) inverse cosine (-1 ≤ x ≤ 1)
atan(x) inverse tangent
atan2(y, x) the atan2(y, x) function calculates the principal

value of the arc tangent of y/x, using the signs of
the two arguments to determine the quadrant of the
result

sinh(x) hyperbolic sine
cosh(x) hyperbolic cosine
tanh(x) hyperbolic tangent
exp(x) exponential, base e
log(x) natural (base e) logarithm (x > 0)
log10(x) base 10 logarithm (x > 0)

3.7.2 Derivative and Special Purpose Operators with Function Syntax

The following derivative operator and special purpose operators with function syntax are predefined.
The special purpose operators with function syntax where the call below uses named arguments can be
called with named arguments (with the specified names), or with positional arguments (the inputs of
the functions are in the order given in the calls below).

der(expr) The time derivative of expr. If the expression expr is
a scalar it needs to be a subtype of Real. The expres-
sion and all its subexpressions must be differentiable.
If expr is an array, the operator is applied to all el-
ements of the array. For non-scalar arguments the
function is vectorized according to section 10.6.12.
[For Real parameters and constants the result is a
zero scalar or array of the same size as the variable.]
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delay(expr,delayTime,

delayMax)

delay(expr,delayTime)

Returns: expr(time-delayTime) for time>

time.start + delayTime and expr(time.start)

for time <= time.start + delayTime. The argu-
ments, i.e., expr, delayTime and delayMax, need
to be subtypes of Real. delayMax needs to be
additionally a parameter expression. The following
relation shall hold: 0 <= delayTime <= delayMax,
otherwise an error occurs. If delayMax is not
supplied in the argument list, delayTime needs to
be a parameter expression. See also section 3.7.2.1.
For non-scalar arguments the function is vectorized
according to section 10.6.12.

cardinality(c) [This is a deprecated operator. It should no longer
be used, since it will be removed in one of the next
Modelica releases.]
Returns the number of (inside and outside) occur-
rences of connector instance c in a connect-equation
as an Integer number. See also section 3.7.2.3.

homotopy(actual=actual,

simplified=simplified) The scalar expressions “actual” and “simplified” are
subtypes of Real. A Modelica translator should map
this operator into either of the two forms:

1. Returns actual [a trivial implementation].
2. In order to solve algebraic systems of equa-

tions, the operator might during the solution
process return a combination of the two argu-
ments, ending at actual, [e.g., actual*lambda
+ simplified*(1-lambda) , where lambda is

a homotopy parameter going from 0 to 1]. The
solution must fulfill the equations for homotopy
returning actual.

See also section 3.7.2.4. For non-scalar arguments
the function is vectorized according to section 12.4.6.

semiLinear(x,

positiveSlope,

negativeSlope)

Returns: smooth(0, if x>=0 then

positiveSlope*x else negativeSlope*x). The
result is of type Real. See section 3.7.2.5 [espe-
cially in the case when x = 0]. For non-scalar
arguments the function is vectorized according to
section 10.6.12.

inStream(v) The operator inStream(v) is only allowed on stream
variables v defined in stream connectors, and is the
value of the stream variable v close to the connection
point assuming that the flow is from the connection
point into the component. This value is computed
from the stream connection equations of the flow
variables and of the stream variables. The operator
is vectorizable. For more details see section 15.2.

actualStream(v) The actualStream(v) operator returns the actual
value of the stream variable v for any flow direction.
The operator is vectorizable. For more details, see
section 15.3.
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spatialDistribution(

in0=in0, in1=in1, x=x,

positiveVelocity=...,

initialPoints=...,

initialValues=...)

The spatialDistribution(...) operator allows
approximation of variable-speed transport of prop-
erties, see section 3.7.2.2.

getInstanceName() Returns a string with the name of the model/block
that is simulated, appended with the fully qualified
name of the instance in which this function is called,
see section 3.7.2.6.

A few of these operators are described in more detail in the following.

3.7.2.1 delay

[The delay() operator allows a numerical sound implementation by interpolating in the (internal) inte-
grator polynomials, as well as a more simple realization by interpolating linearly in a buffer containing
past values of expression expr. Without further information, the complete time history of the delayed sig-
nals needs to be stored, because the delay time may change during simulation. To avoid excessive storage
requirements and to enhance efficiency, the maximum allowed delay time has to be given via delayMax.

This gives an upper bound on the values of the delayed signals which have to be stored. For real-time
simulation where fixed step size integrators are used, this information is sufficient to allocate the necessary
storage for the internal buffer before the simulation starts. For variable step size integrators, the buffer
size is dynamic during integration. In principle, a delay operator could break algebraic loops. For
simplicity, this is not supported because the minimum delay time has to be give as additional argument
to be fixed at compile time. Furthermore, the maximum step size of the integrator is limited by this
minimum delay time in order to avoid extrapolation in the delay buffer.]

3.7.2.2 spatialDistribution

[Many applications involve the modelling of variable-speed transport of properties. One option to model
this infinite-dimensional system is to approximate it by an ODE, but this requires a large number of
state variables and might introduce either numerical diffusion or numerical oscillations. Another option
is to use a built-in operator that keeps track of the spatial distribution of z(x, t), by suitable sampling,
interpolation, and shifting of the stored distribution. In this case, the internal state of the operator is
hidden from the ODE solver.]

The spatialDistribution() operator allows to approximate efficiently the solution of the infinite-
dimensional problem

∂z(y, t)

∂t
+ v(t)

∂z(y, t)

∂y
= 0.0

z(0.0, t) = in0(t) if v ≥ 0

z(1.0, t) = in1(t) if v < 0

where z(y, t) is the transported quantity, y is the normalized spatial coordinate (0.0 ≤ y ≤ 1.0), t is the
time, v(t) = der(x) is the normalized transport velocity and the boundary conditions are set at either
y = 0.0 or y = 1.0, depending on the sign of the velocity. The calling syntax is:

(out0 , out1) = spatialDistribution(in0 , in1 , x, positiveVelocity ,

initialPoints = {0.0 , 1.0},

initialValues = {0.0 , 0.0});

where in0, in1, out0, out1, x, v are all subtypes of Real, positiveVelocity is a Boolean, initialPoints
and initialValues are arrays of subtypes of Real of equal size, containing the y coordinates and the z

values of a finite set of points describing the initial distribution of z (y, t0 ). The out0 and out1 are given
by the solutions at z(0.0, t) and z(1.0, t); and in0 and in1 are the boundary conditions at z(0.0, t) and
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z(1.0, t) (at each point in time only one of in0 and in1 is used). Elements in the initialPoints array must
be sorted in non-descending order. The operator can not be vectorized according to the vectorization
rules described in section 12.4.6. The operator can be vectorized only with respect to the arguments in0
and in1 (which must have the same size), returning vectorized outputs out0 and out1 of the same size;
the arguments initialPoints and initialValues are vectorized accordingly.

The solution, z(..), can be described in terms of characteristics:

z(y +
∫ t+β
t

v(α)dα, t+ β) = z(y, t), for all β as long as staying inside the domain.

This allows to directly compute the solution based on interpolating the boundary conditions.

The spatialDistribution operator can be described in terms of the pseudo-code given as a block:

block spatialDistribution

input Real in0;

input Real in1;

input Real x;

input Boolean positiveVelocity;

parameter Real initialPoints(each min=0, each max=1)[:] = {0.0 , 1.0};

parameter Real initialValues [:] = {0.0 , 0.0};

output Real out0;

output Real out1;

protected

Real points [:];

Real values [:];

Real x0;

Integer m;

algorithm

if positiveVelocity then

out1:= interpolate(points , values , 1-(x-x0));

out0:= values [1]; // s i m i l a r t o i n 0 but a v o i d i n g a l g e b r a i c l o o p
else

out0:= interpolate(points , values , 0-(x-x0));

out1:= values[end]; // s i m i l a r t o i n 1 but a v o i d i n g a l g e b r a i c l o o p
end if;

when <acceptedStep > then

if x>x0 then

m:=size(points ,1);

while (if m>0 then points[m]+(x-x0) >=1 else false) then

m:=m-1;

end while;

values :=cat(1, {in0}, values [1:m], {interpolate(points , values ,1-(x-x0))}

);

points :=cat(1, {0}, points [1:m] .+ (x-x0), {1} );

elseif x<x0 then

m:=1;

while (if m<size(points ,1) then points[m]+(x-x0) <=0 else false) then

m:=m+1;

end while;

values :=cat(1, {interpolate(points , values , 0-(x-x0))},values[m:end],{in1

});

points :=cat(1, {0}, points[m:end] .+ (x-x0), {1});

end if;

x0:=x;

end when;

initial algorithm

x0:=x;

points := initialPoints;

values := initialValues;

end spatialDistribution;

[Note that the implementation has an internal state and thus cannot be described as a function in Model-
ica; initialPoints and initialValues are declared as parameters to indicate that they are only used during
initialization.
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The infinite-dimensional problem stated above can then be formulated in the following way:

der(x) = v;

(out0 , out1) = spatialDistribution(in0 , in1 , x,v >=0, initialPoints ,

initialValues);

Events are generated at the exact instants when the velocity changes sign – if this is not needed, no-
Event() can be used to suppress event generation.

If the velocity is known to be always positive, then out0 can be omitted, e.g.:

der(x) = v;

(,out1) = spatialDistribution(in0 , 0, x, true , initialPoints , initialValues);

Technically relevant use cases for the use of the spatialDistribution() operator are modeling of electrical
transmission lines, pipelines and pipeline networks for gas, water and district heating, sprinkler systems,
impulse propagation in elongated bodies, conveyor belts, and hydraulic systems. Vectorization is needed
for pipelines where more than one quantity is transported with velocity v in the example above.]

3.7.2.3 cardinality (deprecated)

[The cardinality operator is deprecated for the following reasons and will be removed in a future release:

• Reflective operator may make early type checking more difficult.

• Almost always abused in strange ways

• Not used for Bond graphs even though it was originally introduced for that purpose.

]

[The cardinality() operator allows the definition of connection dependent equations in a model, for ex-
ample:

connector Pin

Real v;

flow Real i;

end Pin;

model Resistor

Pin p, n;

equation

assert(cardinality(p) > 0 and cardinality(n) > 0, "Connectors p and n of

Resistor must be connected");

// E q u a t i o n s o f r e s i s t o r
...

end Resistor;

]

The cardinality is counted after removing conditional components. and may not be applied to expandable
connectors, elements in expandable connectors, or to arrays of connectors (but can be applied to the
scalar elements of array of connectors). The cardinality operator should only be used in the condition
of assert and if-statements – that do not contain connect (and similar operators – see section 16.8.1).

3.7.2.4 homotopy

[During the initialization phase of a dynamic simulation problem, it often happens that large nonlinear
systems of equations must be solved by means of an iterative solver. The convergence of such solvers
critically depends on the choice of initial guesses for the unknown variables. The process can be made
more robust by providing an alternative, simplified version of the model, such that convergence is possible
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even without accurate initial guess values, and then by continuously transforming the simplified model
into the actual model. This transformation can be formulated using expressions of this kind:

λ · actual + (1− λ) · simplified

in the formulation of the system equations, and is usually called a homotopy transformation. If the
simplified expression is chosen carefully, the solution of the problem changes continuously with λ, so by
taking small enough steps it is possible to eventually obtain the solution of the actual problem.

The operator can be called with ordered arguments or preferably with named arguments for improved
readability.

It is recommended to perform (conceptually) one homotopy iteration over the whole model, and not
several homotopy iterations over the respective non-linear algebraic equation systems. The reason is that
the following structure can be present:

w= f1(x) // has homotopy o p e r a t o r
0 = f2(der(x), x, z, w)

Here, a non-linear equation system f2 is present. The homotopy operator is, however used on a variable
that is an “input” to the non-linear algebraic equation system, and modifies the characteristics of the
non-linear algebraic equation system. The only useful way is to perform the homotopy iteration over f1
and f2 together.

The suggested approach is “conceptual”, because more efficient implementations are possible, e.g. by
determining the smallest iteration loop, that contains the equations of the first BLT block in which a
homotopy operator is present and all equations up to the last BLT block that describes a non-linear
algebraic equation system.

A trivial implementation of the homotopy operator is obtained by defining the following function in the
global scope:

function homotopy

input Real actual;

input Real simplified;

output Real y;

algorithm

y := actual;

annotation(Inline = true);

end homotopy;

Example 1:

In electrical systems it is often difficult to solve non-linear algebraic equations if switches are part of the
algebraic loop. An idealized diode model might be implemented in the following way, by starting with a
“flat” diode characteristic and then move with the homotopy operator to the desired “steep” characteristic:

model IdealDiode

...

parameter Real Goff = 1e-5;

protected

Real Goff_flat = max(0.01 , Goff);

Real Goff2;

equation

off = s < 0;

Goff2 = homotopy(actual=Goff , simplified=Goff_flat);

u = s*(if off then 1 else Ron2) + Vknee;

i = s*(if off then Goff2 else 1 ) + Goff2*Vknee;
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...

end IdealDiode;

Example 2:

In electrical systems it is often useful that all voltage sources start with zero voltage and all current
sources with zero current, since steady state initialization with zero sources can be easily obtained. A
typical voltage source would then be defined as:

model ConstantVoltageSource

extends Modelica.Electrical.Analog.Interfaces.OnePort;

parameter Modelica.SIunits.Voltage V;

equation

v = homotopy(actual=V, simplified =0.0);

end ConstantVoltageSource;

Example 3:

In fluid system modelling, the pressure/flowrate relationships are highly nonlinear due to the quadratic
terms and due to the dependency on fluid properties. A simplified linear model, tuned on the nominal
operating point, can be used to make the overall model less nonlinear and thus easier to solve without
accurate start values. Named arguments are used here in order to further improve the readability.

model PressureLoss

import SI = Modelica.SIunits;

...

parameter SI.MassFlowRate m_flow_nominal "Nominal mass flow rate";

parameter SI.Pressure dp_nominal "Nominal pressure drop";

SI.Density rho "Upstream density";

SI.DynamicViscosity lambda "Upstream viscosity";

equation

...

m_flow = homotopy(actual = turbulentFlow_dp(dp, rho , lambda),

simplified = dp/dp_nominal*m_flow_nominal);

...

end PressureLoss;

Example 4:

Note that the homotopy operator shall not be used to combine unrelated expressions, since this can
generate singular systems from combining two well-defined systems.

model DoNotUse

Real x;

parameter Real x0 = 0;

equation

der(x) = 1-x;

initial equation

0 = homotopy(der(x), x - x0);

end DoNotUse;

The initial equation is expanded into

0 = λ ∗ der(x) + (1− λ)(x− x0)

and you can solve the two equations to give

x =
λ+ (λ− 1)x0

2λ− 1
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which has the correct value of x0 at λ = 0 and of 1 at λ = 1, but unfortunately has a singularity at
λ = 0.5 . ]

3.7.2.5 semiLinear

(See definition of semiLinear in section 3.7.2). In some situations, equations with the semiLinear()

function become underdetermined if the first argument (x) becomes zero, i.e., there are an infinite number
of solutions. It is recommended that the following rules are used to transform the equations during the
translation phase in order to select one meaningful solution in such cases:

Rule 1: The equations

y = semiLinear(x, sa , s1);

y = semiLinear(x, s1 , s2);

y = semiLinear(x, s2 , s3);

...

y = semiLinear(x, sN , sb);

...

may be replaced by

s1 = if x >= 0 then sa else sb

s2 = s1;

s3 = s2;

...

sN = sN−1;

y = semiLinear(x, sa , sb);

Rule 2: The equations

x = 0;

y = 0;

y = semiLinear(x, sa , sb);

may be replaced by

x = 0

y = 0;

sa = sb;

[For symbolic transformations, the following property is useful (this follows from the definition):

semiLinear(m_flow , port_h , h);

is identical to :

-semiLinear(-m_flow , h, port_h);

The semiLinear function is designed to handle reversing flow in fluid systems, such as

H_flow =semiLinear(m_flow , port.h , h);

i.e., the enthalpy flow rate H flow is computed from the mass flow rate m flow and the upstream specific
enthalpy depending on the flow direction.

]
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3.7.2.6 getInstanceName

Returns a string with the name of the model/block that is simulated, appended with the fully qualified
name of the instance in which this function is called.

[Example:

package MyLib

model Vehicle

Engine engine;

...

end Vehicle;

model Engine

Controller controller;

...

end Engine;

model Controller

equation

Modelica.Utilities.Streams.print("Info from: " + getInstanceName ());

end Controller;

end MyLib;

If MyLib.Vehicle is simulated, the call of getInstanceName() returns:”Vehicle.engine.controller”

]

If this function is not called inside a model or block (e.g. the function is called in a function or in a
constant of a package), the return value is not specified.

[The simulation result should not depend on the return value of this function. ]

3.7.3 Event-Related Operators with Function Syntax

The following event-related operators with function syntax are supported. The operators noEvent, pre,
edge, and change, are vectorizable according to section 12.4.6

initial() Returns true during the initialization phase and
false otherwise [thereby triggering a time event at
the beginning of a simulation].

terminal() Returns true at the end of a successful analysis
[thereby ensuring an event at the end of successful
simulation].

noEvent(expr) Real elementary relations within expr are taken lit-
erally, i.e., no state or time event is triggered. See
also section 3.7.3.2 and section 8.5.

smooth(p, expr) If p >= 0 smooth(p,expr) returns expr and states
that expr is p times continuously differentiable, i.e.:
expr is continuous in all real variables appearing in
the expression and all partial derivatives with respect
to all appearing real variables exist and are contin-
uous up to order p. The argument p should be a
scalar integer parameter expression. The only al-
lowed types for expr in smooth are: real expressions,
arrays of allowed expressions, and records contain-
ing only components of allowed expressions. See also
section 3.7.3.2.
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sample(start, interval) Returns true and triggers time events at time in-
stants start + i*interval (i=0,1,...), and is
only true during the first event iteration at those
times. At event iterations after the first one at each
event and during continuous integration the opera-
tor always returns false. The starting time start

and the sample interval interval must be param-
eter expressions and need to be a subtype of Real
or Integer. The sample interval interval must be a
positive number.

pre(y) Returns the “left limit” y(tpre) of variable y(t) at a
time instant t. At an event instant, y(tpre) is the
value of y after the last event iteration at time in-
stant t (see comment below). The pre() operator
can be applied if the following three conditions are
fulfilled simultaneously: (a) variable y is either a sub-
type of a simple type or is a record component, (b)
y is a discrete-time expression (c) the operator is not
applied in a function class. [Note: This can be ap-
plied to continuous-time variables in when-clauses,
see section 3.8.3 for the definition of discrete-time
expression.] The first value of pre(y) is determined
in the initialization phase. See also section 3.7.3.1.

edge(b) Is expanded into (b and not pre(b)) for Boolean
variable b. The same restrictions as for the pre() op-
erator apply (e.g. not to be used in function classes).

change(v) Is expanded into (v<>pre(v)). The same restric-
tions as for the pre() operator apply.

reinit(x, expr) In the body of a when clause, reinitializes x with
expr at an event instant. x is a scalar or ar-
ray Real variable that is implicitly defined to have
StateSelect.always [so must be selected as a state,
and it is an error, if this is not possible]. expr needs
to be type-compatible with x. The reinit operator
can only be applied once for the same variable - ei-
ther as an individual variable or as part of an array
of variables. It can only be applied in the body of
a when clause in an equation section. See also sec-
tion 8.3.6 .

A few of these operators are described in more detail in the following.

3.7.3.1 pre

A new event is triggered if at least for one variable v “pre(v)<> v” after the active model equations are
evaluated at an event instant. In this case the model is at once reevaluated. This evaluation sequence
is called “event iteration”. The integration is restarted, if for all v used in pre-operators the following
condition holds: “pre(v)== v”.

[If v and pre(v) are only used in when-clauses, the translator might mask event iteration for variable
v since v cannot change during event iteration. It is a “quality of implementation” to find the minimal
loops for event iteration, i.e., not all parts of the model need to be reevaluated.

The language allows mixed algebraic systems of equations where the unknown variables are of type Real,
Integer, Boolean, or an enumeration. These systems of equations can be solved by a global fix point
iteration scheme, similarly to the event iteration, by fixing the Boolean, Integer, and/or enumeration
unknowns during one iteration. Again, it is a quality of implementation to solve these systems more
efficiently, e.g., by applying the fix point iteration scheme to a subset of the model equations.]
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3.7.3.2 noEvent and smooth

The noEvent operator implies that real elementary relations/functions are taken literally instead of
generating crossing functions, section 8.5. The smooth operator should be used instead of noEvent, in
order to avoid events for efficiency reasons. A tool is free to not generate events for expressions inside
smooth. However, smooth does not guarantee that no events will be generated, and thus it can be
necessary to use noEvent inside smooth. [Note that smooth does not guarantee a smooth output if any
of the occurring variables change discontinuously.]

[Example:

Real x,y,z;

parameter Real p;

equation

x = if time <1 then 2 else time -2;

z = smooth(0, if time <0 then 0 else time);

y = smooth(1, noEvent(if x<0 then 0 else sqrt(x)*x));

// noEvent i s n e c e s s a r y .

]

3.8 Variability of Expressions

The concept of variability of an expression indicates to what extent the expression can vary over time. See
also section 4.4.4 regarding the concept of variability. There are four levels of variability of expressions,
starting from the least variable:

• constant variability

• parameter variability

• discrete-time variability

• continuous-time variability

For an assignment v:=expr or binding equation v=expr, v must be declared to be at least as variable as
expr.

• The right-hand side expression in a binding equation [that is, expr] of a parameter component and
of the base type attributes [such as start] needs to be a parameter or constant expression.

• If v is a discrete-time component then expr needs to be a discrete-time expression.

3.8.1 Constant Expressions

Constant expressions are:

• Real, Integer, Boolean, String, and enumeration literals.

• Variables declared as constant.

• Except for the special built-in operators initial, terminal, der, edge, change, sample, and pre,
a function or operator with constant subexpressions as argument (and no parameters defined in
the function) is a constant expression.

Components declared as constant shall have an associated declaration equation with a constant expres-
sion, if the constant is directly in the simulation model, or used in the simulation model. The value of a
constant can be modified after it has been given a value, unless the constant is declared final or modified
with a final modifier. A constant without an associated declaration equation can be given one by using
a modifier.

3.8.2 Parameter Expressions

Parameter expressions are:

• Constant expressions.
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• Variables declared as parameter.

• Input variables in functions behave as though they were parameter expressons.

• Except for the special built-in operators initial, terminal, der, edge, change, sample, and pre,
a function or operator with parameter subexpressions is a parameter expression.

• Some function calls are parameter expressions even if the arguments are not:

– ndims(A)

– cardinality(c), see restrictions for use in section 3.7.2.3.

– end in A[...end... ] if A is variable declared in a non-function class.

– size(A) (including size(A, j) where j is parameter expression) if A is variable declared in
a non-function class

– Connections.isRoot(A.R)

– Connections.rooted(A.R)

3.8.3 Discrete-Time Expressions

Discrete-time expressions are:

• Parameter expressions.

• Discrete-time variables, i.e., Integer, Boolean, String variables and enumeration variables, as
well as Real variables assigned in when-clauses

• Function calls where all input arguments of the function are discrete-time expressions.

• Expressions where all the subexpressions are discrete-time expressions.

• Expressions in the body of a when-clause, initial equation, or initial algorithm.

• Unless inside noEvent: Ordered relations (>,<,>=,<=)and the event generating functions ceil,
floor, div, and integer, if at least one argument is non-discrete time expression and subtype of
Real. [These will generate events, see section 8.5. Note that rem and mod generate events but are
not discrete-time expressions. In other words, relations inside noEvent() , such as noEvent(x>1),
are not discrete-time expressions.]

• The functions pre, edge, and change result in discrete-time expressions.

• Expressions in functions behave as though they were discrete-time expressions.

For an equation expr1 = expr2 where neither expression is of base type Real, both expressions must be
discrete-time expressions. For record equations the equation is split into basic types before applying this
test. [This restriction guarantees that the noEvent() operator cannot be applied to Boolean, Integer,
String, or enumeration equations outside of a when-clause, because then one of the two expressions is
not discrete-time]

Inside an if-expression, if-clause, while-statement or for-clause, that is controlled by a non-discrete-
time (that is continuous-time, but not discrete-time) switching expression and not in the body of a
when-clause, it is not legal to have assignments to discrete variables, equations between discrete-time
expressions, or real elementary relations/functions that should generate events. [This restriction is nec-
essary in order to guarantee that there all equations for discrete variable are discrete-time expressions,
and to ensure that crossing functions do not become active between events.]

[Example:

model Constants

parameter Real p1 = 1;

constant Real c1 = p1 + 2; // e r r o r , no c o n s t a n t e x p r e s s i o n
parameter Real p2 = p1 + 2; // f i n e

end Constants;

model Test
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Constants c1(p1=3); // f i n e
Constants c2(p2=7); // f i n e , d e c l a r a t i o n e q u a t i o n can be m o d i f i e d
Boolean b;

Real x;

equation

b = noEvent(x > 1) // e r r o r , s i n c e b i s a d i s c r e t e −t i m e e x p r . and
// noEvent ( x > 1) i s not a d i s c r e t e −t i m e e x p r .

end Test;

]

3.8.4 Continuous-Time Expressions

All expressions are continuous-time expressions including constant, parameter and discrete expressions.
The term “non-discrete-time expression” refers to expressions that are not constant, parameter or discrete
expressions.
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Chapter 4

Classes, Predefined Types, and
Declarations

The fundamental structuring unit of modeling in Modelica is the class. Classes provide the structure
for objects, also known as instances. Classes can contain equations which provide the basis for the
executable code that is used for computation in Modelica. Conventional algorithmic code can also be
part of classes. All data objects in Modelica are instantiated from classes, including the basic data
types—Real, Integer, String, Boolean—and enumeration types, which are built-in classes or class
schemata.

Declarations are the syntactic constructs needed to introduce classes and objects (i.e., components).

4.1 Access Control – Public and Protected Elements

Members of a Modelica class can have two levels of visibility: public or protected. The default is
public if nothing else is specified

A protected element, P, in classes and components may not be accessed via dot notation (e.g., A.P, a.P,
a[1].P, a.b.P, .A.P; but there is no restriction on using P or P.x for a protected element P). They may not
be modified or redeclared except for modifiers applied to protected elements in a base-class modification
(not inside any component or class) and the modifier on the declaration of the protected element.

[Example

package A

model B

protected

parameter Real x;

end B;

protected

model C end C;

public

model D

C c; // L e g a l u s e o f p r o t e c t e d c l a s s C from e n c l o s i n g s c o p e
extends A.B(x=2); // L e g a l m o d i f i e r f o r x i n d e r i v e d c l a s s

// a l s o x . s t a r t =2 and x ( s t a r t =2) a r e l e g a l .
Real y=x; // L e g a l u s e o f x i n d e r i v e d c l a s s

end D;

model E

A.B a(x=2); // I l l e g a l m o d i f i e r , a l s o x . s t a r t =2 and x ( s t a r t =2) a r e i l l e g a l
A.C c; // I l l e g a l u s e o f p r o t e c t e d c l a s s C
model F=A.C; // I l l e g a l u s e o f p r o t e c t e d c l a s s C

end E;

end A;
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]

All elements defined under the heading protected are regarded as protected. All other elements [i.e.,
defined under the heading public, without headings or in a separate file] are public [i.e. not protected ].
Regarding inheritance of protected and public elements, see section 7.1.2.

4.2 Double Declaration not Allowed

The name of a declared element shall not have the same name as any other element in its partially
flattened enclosing class. A component shall not have the same name as its type specifier. However,
the internal flattening of a class can in some cases be interpreted as having two elements with the same
name; these cases are described in section 5.5, and section 7.3.

[Example:

record R

Real x;

end R;

model M // wrong M o d e l i c a model
R R; // not c o r r e c t , s i n c e component name and t y p e s p e c i f i e r a r e i d e n t i c a l

equation

R.x = 0;

end M;

]

4.3 Declaration Order and Usage before Declaration

Variables and classes can be used before they are declared.

[In fact, declaration order is only significant for:

• Functions with more than one input variable called with positional arguments, section 12.4.1.

• Functions with more than one output variable, section 12.4.3.

• Records that are used as arguments to external functions, section 12.9.1.3

• Enumeration literal order within enumeration types, section 4.8.5.

]

4.4 Component Declarations

Component declarations are described in this section.

4.4.1 Syntax and Examples of Component Declarations

The formal syntax of a component declaration clause is given by the following syntactic rules:

component-clause:

type-prefix type-specifier [ array-subscripts ] component-list

type-prefix :

[ flow | stream ]

[ discrete | parameter | constant ] [ input | output ]

type-specifier :

name

component-list :

component-declaration { "," component-declaration }
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component-declaration :

declaration [ condition-attribute ] comment

condition-attribute:

if expression

declaration :

IDENT [ array-subscripts ] [ modification ]

[The declaration of a component states the type, access, variability, data flow, and other properties of
the component. A component-clause i.e., the whole declaration, contains type prefixes followed by a
type-specifier with optional array-subscripts followed by a component-list.

There is no semantic difference between variables declared in a single declaration or in multiple declara-
tions. For example, regard the following single declaration (component-clause) of two matrix variables:

Real [2,2] A, B;

That declaration has the same meaning as the following two declarations together:

Real [2,2] A;

Real [2,2] B;

The array dimension descriptors may instead be placed after the variable name, giving the two declarations
below, with the same meaning as in the previous example:

Real A[2 ,2];

Real B[2 ,2];

The following declaration is different, meaning that the variable a is a scalar but B is a matrix as above:

Real a, B[2 ,2];

]

4.4.2 Component Declaration Static Semantics

If the type-specifier of the component declaration denotes a built-in type (RealType, IntegerType,
etc.), the flattened or instantiated component has the same type.

If the type-specifier of the component does not denote a built-in type, the name of the type is looked
up (section 5.3). The found type is flattened with a new environment and the partially flattened enclosing
class of the component. It is an error if the type is partial in a simulation model, or if a simulation model
itself is partial. The new environment is the result of merging

• the modification of enclosing class element-modification with the same name as the component

• the modification of the component declaration

in that order.

Array dimensions shall be non-negative parameter expressions, or the colon operator denoting that the
array dimension is left unspecified. Both variants can also be part of short class definitions.

[Example of variables with array dimensions.
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model ArrayVariants

type T=Real [:];

parameter T x=ones (4);

parameter T y[3]= ones(3, 4);

parameter Real a[2]= ones (2);

parameter Real b[2, 0]= ones(2, 0);

parameter Real c[:]= ones (0);

end ArrayVariants;

]

The rules for components in functions are described in section 12.2.

Conditional declarations of components are described in section 4.4.5.

4.4.2.1 Declaration Equations

An environment that defines the value of a component of built-in type is said to define a declaration
equation associated with the declared component. For declarations of vectors and matrices, declaration
equations are associated with each element.

4.4.2.2 Prefix Rules

Variables declared with the flow or the stream type prefix shall be a subtype of Real.

Type prefixes (that is , flow, stream, discrete, parameter, constant, input, output) shall only be
applied for type, record and connector components – see also record specialized class, section 4.6.

An exception is input for components whose type is of the special class function type (these can only be
used for function formal parameters and has special semantics, see section 12.4.2), and the input prefix
is not applied to the elements of the component and is allowed even if the elements have input or output
prefix.

In addition, instances of classes extending from ExternalObject may have type prefixes parameter and
constant, and in functions also type prefixes input and output - see section 12.9.7.

The type prefixes flow, stream, input and output of a structured component (except as described
above) are also applied to the elements of the component (this is done after verifying that the type
prefixes occurring on elements of the component are correct; e.g. the flow prefix can be used on a record
component and all the record elements will generate zero-sum equations, even if elements of a record may
not be declared with the flow prefix). When any of the type prefixes flow, stream, input and output are
applied for a structured component, no element of the component may have any of these type prefixes.
[For example, input can only be used, if none of the elements has a flow, stream, input or output type
prefix ]. The corresponding rules for the type prefixes discrete, parameter and constant are described
in section 4.4.4.1 for structured components.

The prefixes input and output have a slightly different semantic meaning depending on the context
where they are used:

• In functions, these prefixes define the computational causality of the function body, i.e., given the
variables declared as input, the variables declared as output are computed in the function body,
see section 12.4.

• In simulation models and blocks (i.e., on the top level of a model or block that shall be simulated),
these prefixes define the interaction with the environment where the simulation model or block is
used. Especially, the input prefix defines that values for such a variable have to be provided from
the simulation environment and the output prefix defines that the values of the corresponding
variable can be directly utilized in the simulation environment, see the notion of Globally balanced
in section 4.7.

• In component models and blocks, the input prefix defines that a binding equation has to be provided
for the corresponding variable when the component is utilized in order to guarantee a locally
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balanced model (i.e., the number of local equations is identical to the local number of unknowns),
see section 4.7. Example:

block FirstOrder

input Real u;

...

end FirstOrder;

model UseFirstOrder

FirstOrder firstOrder(u=time); // b i n d i n g e q u a t i o n f o r u
...

end UseFirstOrder;

The output prefix does not have a particular effect in a model or block component and is ignored.

• In connectors, prefixes input and output define that the corresponding connectors can only be
connected according to block diagram semantics, see section 9.1 (e.g., a connector with an output

variable can only be connected to a connector where the corresponding variable is declared as
input). There is the restriction that connectors which have at least one variable declared as input
must be externally connected, see section 4.7 (in order to get a locally balanced model, where the
number of local unknowns is identical to the number of unknown equations). Together with the
block diagram semantics rule this means, that such connectors must be connected exactly once
externally.

• In records, prefixes input and output are not allowed, since otherwise a record could not be, e.g.,
passed as input argument to a function.

4.4.3 Acyclic Bindings of Constants and Parameters

The unexpanded binding equations for parameters and constants in the translated model must be acyclic
after flattening; except that cycles are allowed if the cycles disappear when evaluating parameters having
annotation Evaluate=true that are not part of the cycle. Thus it is not possible to introduce equations
for parameters by cyclic dependencies.

[Example:

constant Real p=2*q;

constant Real q=sin(p); // I l l e g a l s i n c e p=2∗q , q=s i n ( p ) a r e c y c l i c a l

model ABCD

parameter Real A[n,n];

parameter Integer n=size(A,1);

end ABCD;

final ABCD a;

// I l l e g a l s i n c e c y c l i c d e p e n d e n c i e s between s i z e ( a.A , 1 ) and a . n

ABCD b(redeclare Real A[2 ,2]=[1 ,2;3 ,4]);

// L e g a l s i n c e s i z e o f A i s no l o n g e r d e p e n d e n t on n .

ABCD c(n=2); // L e g a l s i n c e n i s no l o n g e r d e p e n d e n t on t h e s i z e o f A.

parameter Real r = 2*sin(r); // I l l e g a l , s i n c e r = 2∗ s i n ( r ) i s c y c l i c

partial model PartialLumpedVolume

parameter Boolean use_T_start = true "= true , use T_start , otherwise h_start"

annotation(Dialog(tab = "Initialization"), Evaluate=true);

parameter Medium.Temperature T_start=if use_T_start then system.T_start else

Medium.temperature_phX(p_start ,h_start ,X_start)

annotation(Dialog(tab = "Initialization", enable = use_T_start));

parameter Medium.SpecificEnthalpy h_start=if use_T_start then

Medium.specificEnthalpy_pTX(p_start , T_start , X_start) else

Medium.h_default
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annotation(Dialog(tab = "Initialization", enable = not use_T_start));

end PartialLumpedVolume;

// C y c l e f o r T s t a r t and h s t a r t , but ok s i n c e d i s a p p e a r s
// when e v a l u a t i n g u s e T s t a r t

// I l l e g a l s i n c e t h e unexpanded b i n d i n g s have c y c l e s f o r both x and y
// ( even i f t h e y would d i s a p p e a r i f b i n d i n g s were expanded ) .
model HasCycles

parameter Integer n=10;

final constant Real A[3 ,3]=[0 ,0 ,0;1 ,0 ,0;2 ,3 ,0];

parameter Real y[3]=A*y+ones (3);

parameter Real x[n]=cat(1, {3.4}, x[1:(n-1)]);

end HasCycles;

]

4.4.4 Component Variability Prefixes discrete, parameter, constant

The prefixes discrete, parameter, constant of a component declaration are called variability prefixes
and define in which situation the variable values of a component are initialized (see section 8.5 and
section 8.6) and when they are changed in transient analysis (= solution of initial value problem of the
hybrid DAE):

• A variable vc declared with the parameter or constant prefixes remains constant during transient
analysis.

• A discrete-time variable vd has a vanishing time derivative (informally der(vd)=0, but it is not
legal to apply the der() operator to discrete-time variables) and can change its values only at
event instants during transient analysis (see section 8.5).

• A continuous-time variable vn may have a non-vanishing time derivative (der(vn)<>0 possible) and
may also change its value discontinuously at any time during transient analysis (see section 8.5).
If there are any discontinuities the variable is not differentiable.

If a Real variable is declared with the prefix discrete it must in a simulation model be assigned in a
when-clause, either by an assignment or an equation. The variable assigned in a when-clause may not be
defined in a sub-component of model or block specialized class. [This is to keep the property of balanced
models]

A Real variable assigned in a when-clause is a discrete-time variable, even though it was not declared
with the prefix discrete. A Real variable not assigned in any when-clause and without any type prefix
is a continuous-time variable.

The default variability for Integer, String, Boolean, or enumeration variables is discrete-time, and
it is not possible to declare continuous-time Integer, String, Boolean, or enumeration variables. [A
Modelica translator is able to guarantee this property due to restrictions imposed on discrete expressions,
see section 3.8]

The variability of expressions and restrictions on variability for definition equations is given in section 3.8.

[A discrete-time variable is a piecewise constant signal which changes its values only at event instants
during simulation. Such types of variables are needed in order that special algorithms, such as the
algorithm of Pantelides for index reduction, can be applied (it must be known that the time derivative of
these variables is identical to zero). Furthermore, memory requirements can be reduced in the simulation
environment, if it is known that a component can only change at event instants.

A parameter variable is constant during simulation. This prefix gives the library designer the possibility to
express that the physical equations in a library are only valid if some of the used components are constant
during simulation. The same also holds for discrete-time and constant variables. Additionally, the
parameter prefix allows a convenient graphical user interface in an experiment environment, to support
quick changes of the most important constants of a compiled model. In combination with an if-clause,
a parameter prefix allows to remove parts of a model before the symbolic processing of a model takes
place in order to avoid variable causalities in the model (similar to #ifdef in C). Class parameters can
be sometimes used as an alternative. Example:
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model Inertia

parameter Boolean state = true;

...

equation

J*a = t1 - t2;

if state then // code which i s removed d u r i n g s y m b o l i c
der(v) = a; // p r o c e s s i n g , i f s t a t e= f a l s e
der(r) = v;

end if;

end Inertia;

A constant variable is similar to a parameter with the difference that constants cannot be changed after
translation and usually not changed after they have been given a value. It can be used to represent
mathematical constants, e.g.

final constant Real PI=4* atan (1);

There are no continuous-time Boolean, Integer or String variables. In the rare cases they are needed
they can be faked by using Real variables, e.g.:

Boolean off1 , off1a;

Real off2;

equation

off1 = s1 < 0;

off1a = noEvent(s1 < 0); // e r r o r , s i n c e o f f 1 a i s d i s c r e t e
off2 = if noEvent(s2 < 0) then 1 else 0; // p o s s i b l e
u1 = if off1 then s1 else 0; // s t a t e e v e n t s
u2 = if noEvent(off2 > 0.5) then s2 else 0; // no s t a t e e v e n t s

Since off1 is a discrete-time variable, state events are generated such that off1 is only changed at event
instants. Variable off2 may change its value during continuous integration. Therefore, u1 is guaranteed
to be continuous during continuous integration whereas no such guarantee exists for u2.

]

4.4.4.1 Variability of Structured Entities

For elements of structured entities with variability prefixes the most restrictive of the variability prefix
and the variability of the component wins (using the default variability for the component if there is no
variability prefix on the component).

[Example:

record A

constant Real pi=3.14;

Real y;

Integer i;

end A;

parameter A a;

// a . p i i s a c o n s t a n t
// a . y and a . i a r e p a r a m e t e r s

A b;

// b . p i i s a c o n s t a n t
// b . y i s a c o n t i n u o u s−t i m e v a r i a b l e
// b . i i s a d i s c r e t e −t i m e v a r i a b l e

]
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4.4.5 Conditional Component Declaration

A component declaration can have a condition-attribute: ”if” expression.

[Example:

parameter Integer level(min=1)=1;

Motor motor;

Level1 component1(J=J) if level ==1 "Conditional component";

Level2 component2 if level ==2 "Conditional component";

Level3 component3(J=component1.J) if level <2 "Conditional component";

// I l l e g a l m o d i f i e r on component3 s i n c e component1 .J i s c o n d i t i o n a l
// Even i f we can s e e t h a t component1 a l w a y s e x i s t i f component3 e x i s t

equation

connect(component1... , ...) "Connection to conditional component 1";

connect(component2.n , motor.n) "Connection to conditional component 2";

connect(component3.n , motor.n) "Connection to conditional component 3";

component1.u =0; // I l l e g a l

]

The expression must be a Boolean scalar expression, and must be a parameter-expression [that can be
evaluated at compile time].

A redeclaration of a component may not include a condition attribute; and the condition attribute is
kept from the original declaration (see section 6.3).

If the Boolean expression is false the component (including its modifier) is removed from the flattened
DAE , and connections to/from the component are removed and connections to/from the component are
removed. [Adding the component and then removing it ensures that the component is valid.]A component
declared with a condition-attribute can only be modified and/or used in connections [If a connect state-
ment defines the connection of a non-conditional component c1 with a conditional component c2 and c2
is de-activated, then c1 must still be a declared element.]

If the condition is true for a public connector containing flow variables the connector must be connected
from the outside. [The reason for this restriction is that the default flow equation is probably incorrect
(since it could otherwise be an unconditional connector) and the model cannot check that connector is
connected.]

4.5 Class Declarations

Essentially everything in Modelica is a class, from the predefined classes Integer and Real, to large
packages such as the Modelica standard library.

[Example: A rather typical structure of a Modelica class is shown below. A class with a name, containing
a number of declarations followed by a number of equations in an equation section.

class ClassName

Declaration1

Declaration2

...

equation

equation1

equation2

...

end ClassName;

]

The following is the formal syntax of class definitions, including the special variants described in later
sections.
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class-definition :

[ encapsulated ] class-prefixes

class-specifier

class-prefixes :

[ partial ]

( class | model | [ operator ] record | block | [ expandable ] connector |

type |

package | [ ( pure | impure ) ] [ operator ] function | operator )

class-specifier :

long-class-specifier | short-class-specifier | der-class-specifier

long-class-specifier :

IDENT string-comment composition end IDENT

| extends IDENT [ class-modification ] string-comment composition

end IDENT

short-class-specifier :

IDENT "=" base-prefix name [ array-subscripts ]

[ class-modification ] comment

| IDENT "=" enumeration "(" ( [enum-list] | ":" ) ")" comment

der-class-specifier :

IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment

base-prefix :

[ input | output ]

enum-list : enumeration-literal { "," enumeration-literal}

enumeration-literal : IDENT comment

composition :

element-list

{ public element-list |

protected element-list |

equation-section |

algorithm-section

}

[ external [ language-specification ]

[ external-function-call ] [ annotation ] ";" ]

[ annotation ";" ]

4.5.1 Short Class Definitions

A class definition of the form

class IDENT1 = IDENT2 class -modification;

is identical, except that IDENT2 may be replaceable and for the lexical scope of modifiers, where the
short class definition does not introduce an additional lexical scope for modifiers, to the longer form

class IDENT1

extends IDENT2 class -modification;

end IDENT1;

[Example: demonstrating the difference in scopes:

model Resistor
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parameter Real R;

...

end Resistor;

model A

parameter Real R;

replaceable model Load=Resistor(R=R) constrainedby TwoPin;

// C o r r e c t , s e t s t h e R i n R e s i s t o r t o R from model A.
replaceable model LoadError

extends Resistor(R=R);

// G i v e s t h e s i n g u l a r e q u a t i o n R=R , s i n c e t h e r i g h t −hand s i d e R
// i s s e a r c h e d f o r i n L o a d E r r o r and found i n i t s base−c l a s s R e s i s t o r .

end LoadError constrainedby TwoPin;

Load a,b,c;

ConstantSource ...;

...

end A;

]

A short class definition of the form

type TN = T[N] (optional modifier);

where N represents arbitrary array dimensions, conceptually yields an array class

’array’ TN

T[n] _ (optional modifiers);

’end’ TN;

Such an array class has exactly one anonymous component ( ); see also section 4.5.2. When a component
of such an array class type is flattened, the resulting flattened component type is an array type with the
same dimensions as and with the optional modifier applied.

[Example:

type Force = Real [3]( unit={"Nm","Nm","Nm"});

Force f1;

Real f2[3]( unit={"Nm","Nm","Nm"});

the types of f1 and f2 are identical.]

If a short class definition inherits from a partial class the new class definition will be partial, regardless
of whether it is declared with the keyword partial or not.

[Example:

replaceable model Load=TwoPin;

Load R; // E r r o r u n l e s s Load i s r e d e c l a r e d s i n c e TwoPin i s a p a r t i a l c l a s s .

]

If a short class definition does not specify any specialized class the new class definition will inherit the
specialized class (this rule applies iteratively and also for redeclare).

A base-prefix applied in the short-class definition does not influence its type, but is applied to components
declared of this type or types derived from it; see also section 4.5.2.

[Example:

type InArgument = input Real;

type OutArgument = output Real [3];

function foo

41



InArgument u; // Same a s : i n p u t R e a l u
OutArgument y; // Same a s : o u t p u t R e a l [ 3 ] y

algorithm

y:=fill(u,3);

end foo;

Real x[:]= foo(time);

]

4.5.2 Restriction on combining base-classes and other elements

It is not legal to combine other components or base-classes with an extends from an array class, a class
with non-empty base-prefix, a simple type (Real, Boolean, Integer, String and enumeration types), or
any class transitively extending from an array class, a class with non-empty base-prefix, or a simple type
(Real, Boolean, Integer, String and enumeration types).

[Example:

model Integrator

input Real u;

output Real y=x;

Real x;

equation

der(x)=u;

end Integrator;

model Integrators = Integrator [3]; // L e g a l

model IllegalModel

extends Integrators;

Real x; // I l l e g a l c o m b i n a t i o n o f component and a r r a y c l a s s
end IllegalModel;

connector IllegalConnector

extends Real;

Real y; // I l l e g a l c o m b i n a t i o n o f component and s i m p l e t y p e
end IllegalConnector;

]

4.5.3 Local Class Definitions – Nested Classes

The local class should be statically flattenable with the partially flattened enclosing class of the local
class apart from local class components that are partial or outer. The environment is the modification of
any enclosing class element modification with the same name as the local class, or an empty environment.

The unflattened local class together with its environment becomes an element of the flattened enclosing
class.

[The following example demonstrates parameterization of a local class:

model C1

type Voltage = Real(nominal =1);

Voltage v1 , v2;

end C1;

model C2

extends C1(Voltage(nominal =1000));

end C2;

Flattening of class C2 yields a local class Voltage with nominal-modifier 1000. The variables v1 and v2

are instances of this local class and thus have a nominal value of 1000.
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]

4.6 Specialized Classes

Specialized kinds of classes [Earlier known as restricted classes] record, type, model, block, package

, function, and connector have the properties of a general class, apart from restrictions. Moreover,
they have additional properties called enhancements. The following table summarizes the definition of
the specialized classes (additional restrictions on inheritance are in section 7.1.3):

record Only public sections are allowed in the definition or in any
of its components (i.e., equation, algorithm, initial equa-
tion, initial algorithm and protected sections are not al-
lowed). The elements of a record may not have prefixes
input, output, inner, outer, stream, or flow. Enhanced
with implicitly available record constructor function, see
section 12.6. Additionally, record components can be used
as component references in expressions and in the left hand
side of assignments, subject to normal type compatibility
rules. The components directly declared in a record may
only be of specialized class record and type.

type May only be predefined types, enumerations, array of type,
or classes extending from type.

model Identical to class, the basic class concept, i.e., no restric-
tions and no enhancements.

block Same as model with the restriction that each connector
component of a block must have prefixes input and/or
output for all connector variables. [The purpose is to
model input/output blocks of block diagrams. Due to the
restrictions on input and output prefixes, connections be-
tween blocks are only possible according to block diagram
semantic]

function See section 12.2 for restrictions and enhancements of func-
tions. Enhanced to allow the function to contain an exter-
nal function interface. [Non-function specialized classes do
not have this property.]

connector Only public sections are allowed in the definition or in any
of its components (i.e., equation, algorithm, initial equa-
tion, initial algorithm and protected sections are not al-
lowed).
Enhanced to allow connect(..) to components of connector
classes. The elements of a connector may not have prefixes
inner, or outer. May only contain components of special-
ized class connector, record and type.

package May only contain declarations of classes and constants. En-
hanced to allow import of elements of packages. (See also
chapter 13 on packages.)
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operator record Similar to record; but operator overloading is possible, and
due to this the typing rules are different – see chapter 6.
It is not legal to extend from an operator record (or con-
nector inheriting from operator record), except if the new
class is an operator record or connector that is declared
as a short class definition, whose modifier is either empty
or only modify the default attributes for the component
elements directly inside the operator record. An operator
record can only extend from an operator record [as short
class definition, and not from another specialized class]. It
is not legal to extend from any of its enclosing scopes. (See
chapter 14).

operator Similar to package; but may only contain declarations of
functions. May only be placed directly in an operator
record. (See also chapter 14).

operator function Shorthand for an operator with exactly one function; same
restriction as function class and in addition may only be
placed directly in an operator record.[“

operator function foo ... end foo;

” is conceptually treated as

operator foo function foo1

...

end foo1; end foo;

]

[Example for ”operator”:

operator record Complex

Real re;

Real im;

...

encapsulated operator function ’*’

import Complex;

input Complex c1;

input Complex c2;

output Complex result

algorithm

result = Complex(re=c1.re*c2.re - c1.im*c2.im ,

im=c1.re*c2.im + c1.im*c2.re);

end ’*’;

end Complex;

record MyComplex

extends Complex; // not a l l o w e d , s i n c e e x t e n d i n g from e n c l o s i n g s c o p e
Real k;

end MyComplex;

operator record ComplexVoltage = Complex(re(unit="V"),im(unit="V")); // a l l o w e d

]

4.7 Balanced Models

[In this section restrictions for model and block classes are present, in order that missing or too many
equations can be detected and localized by a Modelica translator before using the respective model or block
class. A non-trivial case is demonstrated in the following example:
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partial model BaseCorrelation

input Real x;

Real y;

end BaseCorrelation;

model SpecialCorrelation // c o r r e c t i n M o d e l i c a 2 . 2 and 3 . 0
extends BaseCorrelation(x=2);

equation

y=2/x;

end SpecialCorrelation;

model UseCorrelation // c o r r e c t a c c o r d i n g t o M o d e l i c a 2 . 2
// not v a l i d a c c o r d i n g t o M o d e l i c a 3 . 0
replaceable model Correlation=BaseCorrelation;

Correlation correlation;

equation

correlation.y=time;

end UseCorrelation;

model Broken // a f t e r r e d e c l a r a t i o n , t h e r e i s 1 e q u a t i o n to o much i n M o d e l i c a 2
. 2

UseCorrelation example(redeclare Correlation=SpecialCorrelation);

end Broken;

In this case one can argue that both UseCorrelation (adding an acausal equation) and SpecialCorrelation

(adding a default to an input) are correct, but still when combined they lead to a model with too many
equations – and it is not possible to determine which model is incorrect without strict rules, as the ones
defined here.

In Modelica 2.2, model Broken will work with some models. However, by just redeclaring it to model
SpecialCorrelation, an error will occur and it will be very difficult in a larger model to figure out the
source of this error.

In Modelica 3.0, model UseCorrelation is no longer allowed and the translator will give an error. In
fact, it is guaranteed that a redeclaration cannot lead to an unbalanced model any more.

].

The restrictions below apply after flattening – i.e. inherited components are included – possibly modified.
The corresponding restrictions on connectors and connections are in section 9.3.

Definition 1: Local Number of Unknowns

The local number of unknowns of a model or block class is the sum based on the components:

• For each declared component of specialized class type (Real, Integer, String, Boolean, enumeration
and arrays of those, etc.) or record, or operator record not declared as outer, it is the “number
of unknown variables” inside it (i.e., excluding parameters and constants and counting the elements
after expanding all records, operator record, and arrays to a set of scalars of primitive types).

• Each declared component of specialized class type or record declared as outer is ignored [i.e., all
variables inside the component are treated as known].

• For each declared component of specialized class connector component, it is the “number of
unknown variables” inside it (i.e., excluding parameters and constants and counting the elements
after expanding all records and arrays to a set of scalars of primitive types).

• For each declared component of specialized class block or model, it is the “sum of the number
of inputs and flow variables” in the (top level) public connector components of these components
(and counting the elements after expanding all records and arrays to a set of scalars of primitive
types).

Definition 2: Local Equation Size

The local equation size of a model or block class is the sum of the following numbers:
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• The number of equations defined locally (i.e. not in any model or block component), including
binding equations, and equations generated from connect-equations. This includes the proper count
for when-clauses (see section 8.3.5), and algorithms (see section 11.1), and is also used for the flat
Hybrid DAE formulation (see Appendix C).

• The number of input and flow-variables present in each (top-level) public connector component.
[This represents the number of connection equations that will be provided when the class is used.]

• The number of (top level) public input variables that neither are connectors nor have binding
equations [i.e., top-level inputs are treated as known variables. This represents the number of
binding equations that will be provided when the class is used.].

[To clarify top-level inputs without binding equation (for non-inherited inputs binding equation is identical
to declaration equation, but binding equations also include the case where another model extends M and
has a modifier on ‘u’ giving the value):

model M

input Real u;

input Real u2=2;

end M;

Here ‘u’ and ‘u2’ are top-level inputs and not connectors. The variable u2 has a binding equation, but u
does not have a binding equation. In the equation count, it is assumed that an equation for u is supplied
when using the model.

]

Definition 3: Locally Balanced

A model or block class is “locally balanced” if the “local number of unknowns” is identical to the “local
equation size” for all legal values of constants and parameters [respecting final bindings and min/max-
restrictions. A tool shall verify the “locally balanced” property for the actual values of parameters and
constants in the simulation model. It is a quality of implementation for a tool to verify this property in
general, due to arrays of (locally) undefined sizes, conditional declarations, for loops etc.].

Definition 4: Globally Balanced

Similarly as locally balanced, but including all unknowns and equations from all components. The global
number of unknowns is computed by expanding all unknowns (i.e. excluding parameters and constants)
into a set of scalars of primitive types. This should match the global equation size defined as:

• The number of equations defined (included in any model or block component), including equations
generated from connect-equations.

• The number of input and flow-variables present in each (top-level) public connector component.

• The number of (top level) public input variables that neither are connectors nor have binding
equations [i.e., top-level inputs are treated as known variables].

The following restrictions hold:

• In a non-partial model or block, all non-connector inputs of model or block components must have
binding equations. [E.g. if the model contains a component, firstOrder (of specialized class model

) and firstOrder has ‘input Real u’ then there must be a binding equation for firstOrder.u.]

• A component declared with the inner or outer prefix shall not be of a class having top-level public
connectors containing inputs.

• In a declaration of a component of a record, connector, or simple type, modifiers can be applied to
any element – and these are also considered for the equation count.
[Example:
Flange support(phi=phi, tau=torque1+torque2)if use_support;

If use support=true, there are two additional equations for support.phi and support.tau via the
modifier ]
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• In other cases (declaration of a component of a model or block type, modifiers on extends, and
modifier on short-class-definitions): modifiers for components shall only contain redeclarations of
replaceable elements and binding equations. The binding equations in modifiers for components
may in these cases only be for parameters, constants, inputs and variables having a default binding
equation.

• All non-partial model and block classes must be locally balanced [this means that the
local number of unknowns equals the local equation size].

Based on these restrictions, the following strong guarantee can be given for simulation models and blocks:

Proposition 1:

All simulation models and blocks are globally balanced.
[Therefore the number of unknowns equal to the number of equations of a simulation model or block,
provided that every used non-partial model or block class is locally balanced.]

[Example 1:

connector Pin

Real v;

flow Real i;

end Pin;

model Capacitor

parameter Real C;

Pin p, n;

Real u;

equation

0 = p.i + n.i;

u = p.v - n.v;

C*der(u) = p.i;

end Capacitor;

Model Capacitor is a locally balanced model according to the following analysis:

Locally unknown variables: p.i, p.v, n.i, n.v, u

Local equations:

0 = p.i+ n.i;

u = p.v − n.v;

C · der(u) = p.i;

and 2 equations corresponding to the 2 flow-variables p.i and n.i.

These are 5 equations in 5 unknowns (locally balanced model). A more detailed analysis would re-
veal that this is structurally non-singular, i.e. that the hybrid DAE will not contain a singularity
independent of actual values.

If the equation “u = p.v - n.v” would be missing in the Capacitor model, there would be 4 equations
in 5 unknowns and the model would be locally unbalanced and thus simulation models in which this
model is used would be usually structurally singular and thus not solvable.

If the equation “u = p.v - n.v” would be replaced by the equation “ u = 0” and the equation C*der(

u)= p.i would be replaced by the equation “ C*der(u)= 0”, there would be 5 equations in 5 unknowns
(locally balanced), but the equations would be singular, regardless of how the equations corresponding
to the flow-variables are constructed because the information that “u” is constant is given twice in a
slightly different form.

Example 2:

connector Pin

Real v;
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flow Real i;

end Pin;

partial model TwoPin

Pin p,n;

end TwoPin;

model Capacitor

parameter Real C;

extends TwoPin;

Real u;

equation

0 = p.i + n.i;

u = p.v - n.v;

C*der(u) = p.i;

end Capacitor;

model Circuit

extends TwoPin;

replaceable TwoPin t;

Capacitor c(C=12);

equation

connect(p, t.p);

connect(t.n , c.p);

connect(c.n , n);

end Circuit;

Since t is partial we cannot check whether this is a globally balanced model, but we can check that
Circuit is locally balanced.

Counting on model Circuit results in the following balance sheet:

Locally unknown variables (8): p.i, p.v, n.i, n.v, and 2 flow variables for t (t.p.i, t.n.i)

and 2 flow variable for c (c.p.i, c.n.i).

Local equations:

p.v = t.p.v;

0 = p.i− t.p.i;

c.p.v = t.n.v;

0 = c.p.i + t.n.i;

n.v = c.n.v;

0 = n.i− c.n.i;

and 2 equation corresponding to the flow variables p.i, n.i

In total we have 8 scalar unknowns and 8 scalar equations, i.e., a locally balanced model (and this
feature holds for any models used for the replaceable component “t”).

Some more analysis reveals that this local set of equations and unknowns is structurally non-singular.
However, this does not provide any guarantees for the global set of equations, and specific combinations
of models that are “locally non-singular” may lead to a globally non-singular model.]

Example 3:

import SI = Modelica.SIunits;

partial model BaseProperties

"Interface of medium model for all type of media"

parameter Boolean preferredMediumStates=false;

constant Integer nXi "Number of independent mass fractions";

InputAbsolutePressure p;
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InputSpecificEnthalpy h;

InputMassFraction Xi[nXi];

SI.Temperature T;

SI.Density d;

SI.SpecificInternalEnergy u;

connector InputAbsolutePressure = input SI.AbsolutePressure;

connector InputSpecificEnthalpy = input SI.SpecificEnthalpy;

connector InputMassFraction = input SI.MassFraction;

end BaseProperties;

The use of connector here is a special design pattern. The variables p, h, Xi are marked as input to
get correct equation count. Since they are connectors they should neither be given binding equations in
derived classes nor when using the model. The design pattern is to give textual equations for them (as
below); using connect-equations for these connectors would be possible (and would work) but is not part
of the design.

This partial model defines that T,d,u can be computed from the medium model, provided p,h,Xi are
given. Every medium with one or multiple substances and one or multiple phases, including incom-
pressible media, has the property that T,d,u can be computed from p,h,Xi. A particular medium may
have different “independent variables” from which all other intrinsic thermodynamic variables can be
recursively computed. For example, a simple air model could be defined as:

model SimpleAir "Medium model of simple air. Independent variables: p,T"

extends BaseProperties(nXi = 0,

p(stateSelect = if preferredMediumStates then StateSelect.prefer

else StateSelect.default),

T(stateSelect = if preferredMediumStates then StateSelect.prefer

else StateSelect.default));

constant SI.SpecificHeatCapacity R = 287;

constant SI.SpecificHeatCapacity cp = 1005 .45;

constant SI.Temperature T0 = 298.15

equation

d = p/(R*T);

h = cp*(T-T0);

u = h - p/d;

end SimpleAir;

The local number of unknowns in model SimpleAir (after flattening) is:

• 3 ( T, d, u: variables defined in BaseProperties and inherited in SimpleAir), plus

• 2+nXi ( p, h, Xi: variables inside connectors defined in BaseProperties and inherited in SimpleAir

)

resulting in 5+nXi unknowns. The local equation size is:

• 3 (equations defined in SimpleAir), plus

• 2+nXi (input variables in the connectors inherited from BaseProperties)

Therefore, the model is locally balanced.

The generic medium model BaseProperties is used as a replaceable model in different components,
like a dynamic volume or a fixed boundary condition:

import SI = Modelica.SIunits;

connector FluidPort

replaceable model Medium = BaseProperties;

SI.AbsolutePressure p;

flow SI.MassFlowRate m_flow;
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SI.SpecificEnthalpy h;

flow SI.EnthalpyFlowRate H_flow;

SI.MassFraction Xi [Medium.nXi] "Independent mixture mass fractions";

flow SI.MassFlowRate mXi_flow[Medium.nXi] "Independent subst. mass flow rates

";

end FluidPort;

model DynamicVolume

parameter SI.Volume V;

replaceable model Medium = BaseProperties;

FluidPort port(redeclare model Medium = Medium);

Medium medium(preferredMediumStates=true); // No m o d i f i e r f o r p , h , Xi
SI.InternalEnergy U;

SI.Mass M;

SI.Mass MXi[medium.nXi ];

equation

U = medium.u*M;

M = medium.d*V;

MXi = medium.Xi*M;

der(U) = port.H_flow; // Energy b a l a n c e
der(M) = port.m_flow; // Mass b a l a n c e
der(MXi) = port.mXi_flow; // S u b s t a n c e mass b a l a n c e

// E q u a t i o n s b i n d i n g t o medium ( i n p u t s )
medium.p = port.p;

medium.h = port.h;

medium.Xi = port.Xi;

end DynamicVolume;

The local number of unknowns of DynamicVolume is:

• 4+2*nXi (inside the port connector), plus

• 2+nXi (variables U, M and MXi), plus

• 2+nXi (the input variables in the connectors of the medium model)

resulting in 8+4*nXi unknowns; the local equation size is

• 6+3*nXi from the equation section, plus

• 2+nXi flow variables in the port connector.

Therefore, DynamicVolume is a locally balanced model.

Note, when the DynamicVolume is used and the Medium model is redeclared to “ SimpleAir”, then a
tool will try to select p,T as states, since these variables have StateSelect.prefer in the SimpleAir

model (this means that the default states U,M are derived quantities). If this state selection is performed,
all intrinsic medium variables are computed from medium.p and medium.T, although p and h are the
input arguments to the medium model. This demonstrates that in Modelica input/output does not define
the computational causality. Instead, it defines that equations have to be provided here for p,h,Xi, in
order that the equation count is correct. The actual computational causality can be different as it is
demonstrated with the SimpleAir model.

model FixedBoundary_pTX

parameter SI.AbsolutePressure p "Predefined boundary pressure";

parameter SI.Temperature T "Predefined boundary temperature";

parameter SI.MassFraction Xi[medium.nXi]

"Predefined boundary mass fraction";

replaceable model Medium = BaseProperties;

FluidPort port(redeclare model Medium = Medium);

Medium medium;

equation

port.p = p;

port.H_flow = semiLinear(port.m_flow , port.h , medium.h);
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port.MXi_flow = semiLinear(port.m_flow , port.Xi , medium.Xi);

// E q u a t i o n s b i n d i n g t o medium ( n o t e : T i s not an i n p u t ) .
medium.p = p;

medium.T = T;

medium.Xi = Xi;

end FixedBoundary_pTX;

The number of local variables in FixedBoundary_pTX is:

• 4+2*nXi (inside the port connector), plus

• 2+nXi (the input variables in the connectors of the medium model)

resulting in 6+3*nXi unknowns, while the local equation size is

• 4+2*nXi from the equation section, plus

• 2+nXi flow variables in the port connector.

Therefore, FixedBoundary_pTX is a locally balanced model. The predefined boundary variables p and
Xi are provided via equations to the input arguments medium.p and medium.Xi, in addition there is an
equation for T in the same way – even though T is not an input. Depending on the flow direction, either
the specific enthalpy in the port ( port.h) or h is used to compute the enthalpy flow rate H_flow. “h” is
provided as binding equation to the medium. With the equation “ medium.T = T”, the specific enthalpy
“h” of the reservoir is indirectly computed via the medium equations. Again, this demonstrates, that an
“input” just defines the number of equations have to be provided, but that it not necessarily defines the
computational causality.
]

4.8 Predefined Types and Classes

The attributes of the predefined variable types (Real, Integer, Boolean, String) and enumeration types are
described below with Modelica syntax although they are predefined. Attributes cannot be accessed using
dot notation, and are not constrained by equations and algorithm sections. E.g. in Real x(unit=”kg”)
= y; only the values of x and y are declared to be equal, but not their unit attributes, nor any other
attribute of x and y. It is not possible to combine extends from the predefined types, enumeration
types, or this Clock type with other components. The names Real, Integer, Boolean and String are
reserved such that it is illegal to declare an element with these names. [Thus it is possible to define a
normal class called Clock in a package and extend from it.] The definitions use RealType, IntegerType,
BooleanType, StringType, EnumType as mnemonics corresponding to machine representations. [Hence
the only way to declare a subtype of e.g. Real is to use the extends mechanism.]

4.8.1 Real Type

The following is the predefined Real type:

type Real // Note : D e f i n e d w i t h M o d e l i c a s y n t a x a l t h o u g h p r e d e f i n e d
RealType value; // A c c e s s e d w i t h o u t dot−n o t a t i o n
parameter StringType quantity = "";

parameter StringType unit = "" "Unit used in equations";

parameter StringType displayUnit = "" "Default display unit";

parameter RealType min=-Inf , max=+Inf; // I n f d e n o t e s a l a r g e v a l u e
parameter RealType start = 0; // I n i t i a l v a l u e
parameter BooleanType fixed = true , // d e f a u l t f o r p a r a m e t e r / c o n s t a n t ;

= false; // d e f a u l t f o r o t h e r v a r i a b l e s
parameter RealType nominal; // Nominal v a l u e
parameter BooleanType unbounded=false; // For e r r o r c o n t r o l
parameter StateSelect stateSelect = StateSelect.default;

equation

assert(value >= min and value <= max , "Variable value out of limit");

end Real;
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The nominal attribute is meant to be used for scaling purposes and to define tolerances in relative terms,
see section 4.8.6.

4.8.2 Integer Type

The following is the predefined Integer type:

type Integer // Note : D e f i n e d w i t h M o d e l i c a s y n t a x a l t h o u g h p r e d e f i n e d
IntegerType value; // A c c e s s e d w i t h o u t dot−n o t a t i o n
parameter StringType quantity = "";

parameter IntegerType min=-Inf , max=+Inf;

parameter IntegerType start = 0; // I n i t i a l v a l u e
parameter BooleanType fixed = true , // d e f a u l t f o r p a r a m e t e r / c o n s t a n t ;

= false; // d e f a u l t f o r o t h e r v a r i a b l e s
equation

assert(value >= min and value <= max , "Variable value out of limit");

end Integer;

4.8.3 Boolean Type

The following is the predefined Boolean type:

type Boolean // Note : D e f i n e d w i t h M o d e l i c a s y n t a x a l t h o u g h p r e d e f i n e d
BooleanType value; // A c c e s s e d w i t h o u t dot−n o t a t i o n
parameter StringType quantity = "";

parameter BooleanType start = false; // I n i t i a l v a l u e
parameter BooleanType fixed = true , // d e f a u l t f o r p a r a m e t e r / c o n s t a n t ;

= false , // d e f a u l t f o r o t h e r v a r i a b l e s
end Boolean;

4.8.4 String Type

The following is the predefined String type:

type String // Note : D e f i n e d w i t h M o d e l i c a s y n t a x a l t h o u g h p r e d e f i n e d
StringType value; // A c c e s s e d w i t h o u t dot−n o t a t i o n
parameter StringType quantity = "";

parameter StringType start = ""; // I n i t i a l v a l u e
parameter BooleanType fixed = true , // d e f a u l t f o r p a r a m e t e r / c o n s t a n t ;

= false , // d e f a u l t f o r o t h e r v a r i a b l e s
end String;

4.8.5 Enumeration Types

A declaration of the form

type E = enumeration ([enum -list]);

defines an enumeration type E and the associated enumeration literals of the enum-list. The enumeration
literals shall be distinct within the enumeration type. The names of the enumeration literals are defined
inside the scope of E. Each enumeration literal in the enum-list has type E.

[Example:

type Size = enumeration(small , medium , large , xlarge);

Size t_shirt_size = Size.medium;

].

An optional comment string can be specified with each enumeration literal:

[Example:
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type Size2 = enumeration(small "1st", medium "2nd", large "3rd", xlarge "4th");

]

An enumeration type is a simple type and the attributes are defined in section 4.8.5.1. The Boolean
type name or an enumeration type name can be used to specify the dimension range for a dimension in
an array declaration and to specify the range in a for loop range expression; see section 11.2.2.2. An
element of an enumeration type can be accessed in an expression [e.g. an array index value].

[Example:

type DigitalCurrentChoices = enumeration(zero , one);

// S i m i l a r t o Real , I n t e g e r

Setting attributes:

type DigitalCurrent = DigitalCurrentChoices(quantity="Current",

start = DigitalCurrentChoices.one , fixed = true)

;

DigitalCurrent c(start = DigitalCurrent.one , fixed = true);

DigitalCurrentChoices c(start = DigitalCurrentChoices.one , fixed = true);

Using enumeration types as expressions:

Real x[DigitalCurrentChoices ];

// Example u s i n g t h e t y p e name t o r e p r e s e n t t h e r a n g e

for e in DigitalCurrentChoices loop

x[e] := 0.;

end for;

for e loop // E q u i v a l e n t example u s i n g s h o r t form
x[e] := 0.;

end for;

// E q u i v a l e n t example u s i n g t h e c o l o n r a n g e c o n s t r u c t o r
for e in DigitalCurrentChoices.zero : DigitalCurrentChoices.one loop

x[e] := 0.;

end for;

model Mixing1 "Mixing of multi -substance flows , alternative 1"

replaceable type E=enumeration (:)"Substances in Fluid";

input Real c1[E], c2[E], mdot1 , mdot2;

output Real c3[E], mdot3;

equation

0 = mdot1 + mdot2 + mdot3;

for e in E loop

0 = mdot1*c1[e] + mdot2*c2[e]+ mdot3*c3[e];

end for;

/∗ A r r a y o p e r a t i o n s on e n u m e r a t i o n s a r e NOT ( y e t ) p o s s i b l e :
z e r o s ( n ) = mdot1∗ c1 + mdot2∗ c2 + mdot3∗ c3 // e r r o r

∗/
end Mixing1;

model Mixing2 "Mixing of multi -substance flows , alternative 2"

replaceable type E=enumeration (:)"Substances in Fluid";

input Real c1[E], c2[E], mdot1 , mdot2;

output Real c3[E], mdot3;

protected

// No e f f i c i e n c y l o s s , s i n c e cc1 , cc2 , cc3
// may be removed d u r i n g t r a n s l a t i o n
Real cc1 [:]=c1, cc2 [:]=c2, cc3 [:]=c3;
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final parameter Integer n = size(cc1 ,1);

equation

0 = mdot1 + mdot2 + mdot3;

zeros(n) = mdot1*cc1 + mdot2*cc2 + mdot3*cc3

end Mixing2;

]

4.8.5.1 Attributes of Enumeration Types

For each enumeration:

type E=enumeration(e1, e2, ... , en);

a new simple type is conceptually defined as

type E // Note : D e f i n e d w i t h M o d e l i c a s y n t a x a l t h o u g h p r e d e f i n e d
EnumType value; // A c c e s s e d w i t h o u t dot−n o t a t i o n
parameter StringType quantity = "";

parameter EnumType min=e1 , max=en;

parameter EnumType start = e1; // I n i t i a l v a l u e
parameter BooleanType fixed = true , // d e f a u l t f o r p a r a m e t e r / c o n s t a n t ;

= false; // d e f a u l t f o r o t h e r v a r i a b l e s
constant EnumType e1=...;

...

constant EnumType en=...;

equation

assert(value >= min and value <= max , "Variable value out of limit");

end E;

[Since the attributes and enumeration literals are on the same level, it is not possible to use the enumer-
ation attribute names (quantity, min, max, start, fixed) as enumeration literals]

4.8.5.2 Type Conversion of Enumeration Values to String or Integer

The type conversion function Integer(<expression of enumeration type>) returns the ordinal num-
ber of the enumeration value E.enumvalue, to which the expression is evaluated, where Integer(E.e1)

=1, Integer(E.en)= n, for an enumeration type E=enumeration(e1, ..., en).

String(E.enumvalue) gives the string representation of the enumeration value.

[Example: String(E.Small) gives ”Small”.]

See also section 3.7.1.

4.8.5.3 Type Conversion of Integer to Enumeration Values

Whenever an enumeration type is defined, a type conversion function with the same name and in the
same scope as the enumeration type is implicitly defined. This function can be used in an expression to
convert an integer value to the corresponding (as described in section 4.8.5.2) enumeration value.

For an enumeration type named EnumTypeName, the expression EnumTypeName(<Integer expression>)

returns the enumeration value EnumTypeName.e such that Integer(EnumTypeName.e) is equal to the
original integer expression.

Attempting to convert an integer argument that does not correspond to a value of the enumeration type
is an error.

[Example:

type Colors = enumeration ( RED , GREEN , BLUE , CYAN , MAGENTA , YELLOW );

Converting from Integer to Colors:
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c = Colors(i);

c = Colors (10); // An e r r o r

]

4.8.5.4 Unspecified enumeration

An enumeration type defined using enumeration(:) is unspecified and can be used as a replaceable
enumeration type that can be freely redeclared to any enumeration type. There can be no enumeration
variables declared using enumeration(:) in a simulation model.

4.8.6 Attributes start, fixed, nominal, and unbounded

The attributes start and fixed define the initial conditions for a variable. “fixed=false” means an
initial guess, i.e., value may be changed by static analyzer. “fixed=true” means a required value. The
resulting consistent set of values for ALL model variables is used as initial values for the analysis to be
performed.

The attribute nominal gives the nominal value for the variable. The user need not set it even though the
standard does not define a default value. The lack of default allows the tool to propagate the nominal
attribute based on equations, and if there is no value to propagate the tool should use a non-zero value,
it may use additional information (e.g. min-attribute) to find a suitable value, and as last resort use
1. If “unbounded=true” it indicates that the state may grow without bound, and the error in absolute
terms shall be controlled. [The nominal value can be used by an analysis tool to determine appropriate
tolerances or epsilons, or may be used for scaling. For example, the tolerance for an integrator could be
computed as “ tol*(abs(nominal)+(if x.unbounded then 0 else abs(x)))”. A default value is not
provided in order that in cases such as “ a=b”, where “ b” has a nominal value but not “ a”, the nominal
value can be propagated to the other variable).] [For external functions in C89, RealType by default
maps to double and IntegerType by default maps to int. In the mapping proposed in Annex F of the
C99 standard, RealType/double matches the IEC 60559:1989 (ANSI/IEEE 754-1985) double format.
Typically IntegerType represents a 32-bit 2-complement signed integer.]

4.8.7 Other Predefined Types

4.8.7.1 StateSelect

The predefined StateSelect enumeration type is the type of the stateSelect attribute of the Real

type. It is used to explicitly control state selection.

type StateSelect = enumeration(

never "Do not use as state at all.",

avoid "Use as state , if it cannot be avoided (but only if variable appears

differentiated and no other potential state with attribute

default , prefer , or always can be selected).",

default "Use as state if appropriate , but only if variable appears

differentiated.",

prefer "Prefer it as state over those having the default value

(also variables can be selected , which do not appear

differentiated). ",

always "Do use it as a state."

);

4.8.7.2 ExternalObject

See section 12.9.7 for information about the predefined type ExternalObject.
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4.8.7.3 AssertionLevel

The predefined AssertionLevel enumeration type is used together with assert, section 8.3.7.

type AssertionLevel=enumeration(warning , error);

4.8.7.4 Connections

The package Connections is used for over-constrained connection graphs, section 8.3.9.

4.8.7.5 Graphical Annotation Types

A number of “predefined” record types and enumeration types for graphical annotations are described in
chapter 18. These types are not predefined in the usual sense since they cannot be referenced in ordinary
Modelica code, only within annotations.

4.8.7.6 Clock Types

See section 16.2.1 and section 16.3.
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Chapter 5

Scoping, Name Lookup, and
Flattening

This chapter describes the scope rules, and most of the name lookup and flattening of Modelica.

5.1 Flattening Context

Flattening is made in a context which consists of a modification environment (section 7.2.2) and an
ordered set of enclosing classes.

5.2 Enclosing Classes

The classes lexically enclosing an element form an ordered set of enclosing classes. A class defined inside
another class definition (the enclosing class) precedes its enclosing class definition in this set.

Enclosing all class definitions is an unnamed enclosing class that contains all top-level class definitions,
and not-yet read classes defined externally as described in section 13.2.2. The order of top-level class
definitions in the unnamed enclosing class is undefined.

During flattening, the enclosing class of an element being flattened is a partially flattened class. [For
example, this means that a declaration can refer to a name inherited through an extends-clause.]

[Example:

class C1 ... end C1;

class C2 ... end C2;

class C3

Real x=3;

C1 y;

class C4

Real z;

end C4;

end C3;

The unnamed enclosing class of class definition C3 contains C1, C2, and C3 in arbitrary order. When
flattening class definition C3, the set of enclosing classes of the declaration of x is the partially flattened
class C3 followed by the unnamed enclosing class with C1, C2, and C3. The set of enclosing classes of
z is C4, C3 and the unnamed enclosing class in that order.]

5.3 Static Name Lookup

Names are looked up at class flattening to find names of base classes, component types, etc. Implicitly
defined names of record constructor functions and enumeration type conversion functions are ignored

57



during type name lookup [since a record and the implicitly created record constructor function, see sec-
tion 12.6, , and an enumeration type and the implicitly created conversion function (section 4.8.5.3),
have the same name]. Names of record classes and enumeration types are ignored during function name
lookup.

5.3.1 Simple Name Lookup

When an element, equation, or section is flattened, any simple name [not composed using dot notation]
is looked up sequentially in each member of the ordered set of instance scopes (see section 5.6.1.1)
corresponding to lexically enclosing classes until a match is found or an enclosing class is encap-
sulated. In the latter case the lookup stops except for the predefined types, functions and operators
defined in this specification.

Reference to variables successfully looked up in an enclosing class is only allowed for variables declared as
constant. The values of modifiers are thus resolved in the instance scope of which the modifier appears;
if the use is in a modifier on a short class definition,

This lookup in each instance scope is performed as follows

• Among declared named elements (class-definition and component-declaration) of the class
(including elements inherited from base-classes).

• Among the import names of qualified import statements in the instance scope. The import name
of import A.B.C; is C and the import name of import D=A.B.C; is D.

• Among the public members of packages imported via unqualified import-statements in the instance
scope. It is an error if this step produces matches from several unqualified imports.

Import statements defined in inherited classes are ignored for the lookup, i.e. import
statements are not inherited.

5.3.2 Composite Name Lookup

For a composite name of the form A.B or A.B.C, etc. lookup is performed as follows:

• The first identifier (A) is looked up as defined above.

• If the first identifier denotes a component, the rest of the name (e.g., B or B.C) is looked up among
the declared named component elements of the component.

• If not found, and if the first identifier denotes a scalar component, or component[j] where component
is an array of components and the indices j can be evaluated at translation time and component[j]
is a scalar; and if the composite name is used as a function call, the lookup is also performed among
the declared named class elements of the scalar component, and must find a non-operator function.
All identifiers of the rest of the name (e.g., B and B.C) must be classes.

• If the identifier denotes a class, that class is temporarily flattened (as if instantiating a component
without modifiers of this class, see section 7.2.2) and using the enclosing classes of the denoted
class. The rest of the name (e.g., B or B.C) is looked up among the declared named elements of
the temporary flattened class. If the class does not satisfy the requirements for a package, the
lookup is restricted to encapsulated elements only. The class we look inside may not be partial in
a simulation model.

[The temporary class flattening performed for composite names follow the same rules as class flattening
of the base class in an extends-clause, local classes and the type in a component clause, except that the
environment is empty. See also MoistAir2 example in section 7.3 for further explanations regarding
looking inside partial packages.]

5.3.3 Global Name Lookup

For a name starting with dot, e.g.: .A [or .A.B, .A.B.C etc.] lookup is performed as follows:

• The first identifier [A] is looked up in the global scope. This is possible even if the class is encapsu-
lated and import statements are not used for this. If there does not exist a class A in global scope
this is an error.
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• If the name is simple then the class A is the result of lookup.

• If the name is a composite name then the class A is temporarily flattened with an empty environ-
ment (i.e. no modifiers, see section 7.2.2) and using the enclosing classes of the denoted class. The
rest of the name [e.g., B or B.C] is looked up among the declared named elements of the temporary
flattened class. If the class does not satisfy the requirements for a package, the lookup is restricted
to encapsulated elements only. The class we look inside may not be partial.

[The package-restriction ensures that global name lookup of component references can only find global
constants.]

5.3.4 Lookup of Imported Names

See section 13.2.1.1.

5.4 Instance Hierarchy Name Lookup of Inner Declarations

An element declared with the prefix outer references an element instance with the same name but using
the prefix inner which is nearest in the enclosing instance hierarchy of the outer element declaration.

Outer component declarations may not have modifications [including binding equations]. Outer class
declarations should be defined using short-class definitions without modifications. However, see also
section 5.5.

An outer element reference in a simulation model requires that one corresponding inner element dec-
laration exist or can be created in a unique way:

• If there are two (or more) outer declarations with the same name, both lacking matching inner

declarations, and the outer declarations are not of the same class it is in error.

• If there is one (or more) outer declarations of a partial class it is an error.

• In other cases, i.e. if a unique non-partial class is used for all outer declarations of the same name
lacking a matching inner declaration, then an inner declaration of that class is automatically added
at the top of the model and diagnostics is given.

• The annotations defined in section 18.7 does not affect this process, other than that:

– missingInnerMessage can be used for the diagnostic (and possibly error messages)

An outer element component may be of a partial class [but the referenced inner component must be of
a non-partial class]. [inner/ outer components may be used to model simple fields, where some physical
quantities, such as gravity vector, environment temperature or environment pressure, are accessible from
all components in a specific model hierarchy. Inner components are accessible throughout the model, if
they are not “shadowed” by a corresponding inner declaration in a more deeply nested level of the model
hierarchy.]

[Simple Example:

class A

outer Real T0;

...

end A;

class B

inner Real T0=1;

A a1, a2; // B.T0 , B.a1 .T0 and B.a2.T0 w i l l have t h e same v a l u e
A a3(T0=4); // I l l e g a l a s T0 i s an o u t e r v a r i a b l e .
...

end B;

More complicated example:

class A

outer Real TI;

class B
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Real TI;

class C

Real TI;

class D

outer Real TI; //
end D;

D d;

end C;

C c;

end B;

B b;

end A;

class E

inner Real TI;

class F

inner Real TI;

class G

Real TI;

class H

A a;

end H;

H h;

end G;

G g;

end F;

F f;

end E;

class I

inner Real TI;

E e;

// e . f . g . h . a . T I , e . f . g . h . a . b . c . d . T I , and e . f . T I i s t h e same v a r i a b l e
// But e . f . T I , e . T I and TI a r e d i f f e r e n t v a r i a b l e s
A a; // a . T I , a . b . c . d . T I , and TI i s t h e same v a r i a b l e

end I;

]

The inner component shall be a subtype of the corresponding outer component. [If the two types are
not identical, the type of the inner component defines the instance and the outer component references
just part of the inner component ].

[Example:

class A

inner Real TI;

class B

outer Integer TI; // e r r o r , s i n c e A.TI i s no s u b t y p e o f A.B.TI
end B;

end A;

]

5.4.1 Example of Field Functions using Inner/Outer

[Inner declarations can be used to define field functions, such as position dependent gravity fields, e.g.:

partial function A

input Real u;

output Real y;

end A;
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function B // B i s a s u b t y p e o f A
extends A;

algorithm

...

end B;

class D

outer function fc = A;

...

equation

y = fc(u);

end D;

class C

inner function fc = B; // d e f i n e f u n c t i o n t o be a c t u a l l y used
D d; // The e q u a t i o n i s now t r e a t e d a s y = B( u )

end C;

]

5.5 Simultaneous Inner/Outer Declarations

An element declared with both the prefixes inner and outer conceptually introduces two declarations
with the same name: one that follows the above rules for inner and another that follows the rules for
outer. [Local references for elements with both the prefix inner and outer references the outer element.
That in turn references the corresponding element in an enclosing scope with the prefix inner.]

Modifications of elements declared with both the prefixes inner and outer may have modfications, those
modifications are only applied to the inner declaration.

[Example:

class A

outer parameter Real p=2; // e r r o r , s i n c e m o d i f i c a t i o n
end A;

Intent of the following example: Propagate enabled through the hierarchy, and also be able to disable
subsystems locally.

model ConditionalIntegrator "Simple differential equation if isEnabled"

outer Boolean isEnabled;

Real x(start =1);

equation

der(x)=if isEnabled then -x else 0;

end ConditionalIntegrator;

model SubSystem "subsystem that ’enable ’ its conditional integrators"

Boolean enableMe = time <=1;

// Se t i n n e r i s E n a b l e d t o o u t e r i s E n a b l e d and enableMe
inner outer Boolean isEnabled = isEnabled and enableMe;

ConditionalIntegrator conditionalIntegrator;

ConditionalIntegrator conditionalIntegrator2;

end SubSystem;

model System

SubSystem subSystem;

inner Boolean isEnabled = time >=0.5;

// s u b S y s t e m . c o n d i t i o n a l I n t e g r a t o r . i s E n a b l e d w i l l be
// ’ i s E n a b l e d and s u b S y s t e m . e n a b l e M e ’

end System;

]
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5.6 Flattening Process

In order to guarantee that elements can be used before they are declared and that elements do not
depend on the order of their declaration (section 4.3) in the enclosing class, the flattening proceeds in
the following two major steps:

1. Instantiation process

2. Generation of the flat equation system

The result is an equation system of all equations/algorithms, initial equations/algorithms and instances
of referenced functions. Modifications of constants, parameters and variables are included in the form of
equations.

The constants, parameters and variables are defined by globally unique identifiers and all references are
resolved to the identifier of the referenced variable. No other transformations are performed.

5.6.1 Instantiation

The instantiation is performed in two steps. First a class tree is created and then from that an instance
tree for a particular model is built up. This forms the basis for derivation of the flat equation system.

An implementation may delay and/or omit building parts of these trees, which means that the different
steps can be interleaved. If an error occurs in a part of the tree that is not used for the model to be
instantiated the corresponding diagnostics can be omitted (or be given). However, errors that should
only be reported in a simulation model must be omitted there, since they are not part of the simulation
model.

5.6.1.1 The Class Tree

All necessary libraries including the model which is to be instantiated are loaded from e.g. file system
and form a so called class tree. This tree represents the syntactic information from the class definitions.
It contains also all modifications at their original locations in syntactic form. [The class tree is built up
directly during parsing of the Modelica texts. For each class a local tree is created which is then merged
into the one big tree, according to the location of the class in the class hierarchy. This tree can be seen
as the abstract syntax tree (AST) of the loaded libraries.]. The builtin classes are put into the unnamed
root of the class tree.

5.6.1.2 The Instance Tree

The output of the instantiation process is an instance tree. The instance tree consists of nodes repre-
senting the elements of a class definition from the class tree. For a component the subtree of a particular
node is created using the information from the class of the component clause and a new modification
environment as result of merging the current modification environment with the modifications from the
current element declaration (see section 7.2.3).

The instance tree has the following properties:

• It contains the instantiated elements of the class definitions, with redeclarations taken into account
and merged modifications applied.

• Each instance knows its source class definition from the class tree and its modification environment.

• Each modification knows its instance scope.

The instance tree is used for lookup during instantiation. To be prepared for that, it has to be based on
the structure of the class tree with respect to the class definitions. The builtin classes are instantiated
and put in the unnamed root prior to the instantiation of the user classes, to be able to find them.

[The existence of the two separate trees (instance tree and class tree) is conceptual. Whether they really
exist or are merged into only one tree or the needed information is held completely differently is an
implementation detail. It is also a matter of implementation to have only these classes instantiated
which are needed to instantiate the class of interest.]
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A node in the instance tree is the instance scope for the modifiers and elements syntactically defined in
the class it is instantiated from. The instance scope is the starting point for name lookup. [If the name
is not found the lookup is continued in the instance scope corresponding to the lexically enclosing class.
Extends clauses are treated as unnamed nodes in the instance tree – when searching for an element in
an instance scope the search also recursively examines the elements of the extends clauses. Except that
inherited import-statements are ignored.]

5.6.1.3 The Instantiation Procedure.

The instantiation is a recursive procedure with the following inputs:

• the class to be instantiated (current class)

• the modification environment with all applicable redeclarations and merged modifications (initially
empty)

• a reference to the node of the instance tree, which the new instance should go into (parent instance)

The instantiation starts with the class to be instantiated, an empty modification environment, and an
unnamed root node as parent node.

During instantiation all lookup is performed using the instance tree, starting from the instance scope of
the current element. References in modifications and equations are resolved later (during generation of
flat equation system) using the same lookup.

5.6.1.4 Steps of Instantiation

The element itself A partially instantiated class or component is an element that is ready to be
instantiated; a partially instantiated element (i.e. class or component) is comprised of a reference to the
original element (from the class tree) and the modifiers for that element (including a possible redeclara-
tion).

The possible redeclaration of the element itself takes effect.

The class of a partially instantiated component is found in the instance tree (using the redeclaration if
any), modifiers merged to that class forming a new partially instantiated class that is instantiated as
below.

The local contents of the element For local classes and components in the current class, instance
nodes are created and inserted into the current instance. Modifiers (including class redeclarations)
are merged and associated with the instance and the element is partially instantiated. [The partially
instantiated elements are used later for lookup during the generation of the flat equation system and are
instantiated fully, if necessary, using the stored modification environment.]

Equations, algorithms, and annotations of the class and the component declaration are copied to the
instance without merging. [The annotations can be relevant for simulations, e.g. annotations for code
generation (section 18.3.), simulation experiments (section 18.4) or functions(section 12.7,section 12.8
and section 12.9).]

Extends clauses are not looked up, but empty extends clause nodes are created and inserted into the
current instance – to be able to preserve the declaration order of components.

The inherited contents of the element Classes of extends clauses of the current class are looked
up in the instance tree, modifiers (including redeclarations) are merged, the contents of these classes are
partially instantiated using the new modification environment, and are inserted into an extends clause
node, which is an unnamed node in the current instance that only contains the inherited contents from
that base-class.

The classes of extends-clauses are looked up before and after handling extends-clauses; and it is an error
if those lookups generate different results.

At the end, the current instance is checked whether their children (including children of extends-clauses)
with the same name are identical and only the first one of them is kept. [This is important for function
arguments where the order matters.] It is an error if they are not identical.
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Recursive instantiation of components Components (local and inherited) are recursively instan-
tiated.

[

As an example consider:

model M

model B

A a;

replaceable model A = C;

type E = Boolean;

end B;

B b(redeclare model A = D (p=1));

partial model C

E e;

end C;

model D

extends C;

parameter E p;

type E = Integer;

end D;

type E = Real;

end M;

To recursively instantiate M allowing the generation of flat equation system we have the following steps
(not including checks):

1. Instantiate M: which partially instantiates B, b, C, D, E.

2. Instantiate M.b:

2.1. First find the class B in M (the partially instantiated elements have correct name allowing
lookup)

2.2. instantiate the partially instantiated M.B with the modifier ”redeclare model A=D(p=1)”

2.3. partially instantiate M.b.a (no modifier), and M.b.A (with modifier ”=D(p=1)”)

3. Instantiate M.b.a

3.1. First find the class A in M.b (the partially instantiated elements have correct name allowing
lookup)

3.2. Instantiate the partially instantiated M.b.A with the modifier ”=D(p=1)”.

3.2.1. Find the base-class ”=D” from the modifier. This performs lookup for D in M, and finds
the partially instantiated class D

3.2.2. Instantiate the base-class M.D with modifier p=1, and insert as unnamed node in M.b.A.

3.2.2.1. Partially instantiate the component p with modifier ”=1”

3.2.2.2. Find the base-class ”C” in M.D. Since there is no local element called ”C” the search
is then continued in M and finds the partially instantiated class M.C

3.2.2.3. Instantiate the base-class M.C as below

4. Instantiate the base-class M.C inserting the result into unnamed node in M.b.a

4.1. Partially instantiate ”e”

4.2. Instantiate ”e” which requires finding ”E”. First looking for ”E” in the un-named node for
extends ”M.C”, and, since there is no local element ”E” the search is then continued in ”M”
(which lexically encloses M.C) and finds ”E” class inheriting from Real. The ”e” is then
instantiated using class ”E” inheriting from ”Real”.
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5. Instantiate M.b.a.p

5.1. First the class ”E” in M.b.a finding ”E” class inheriting from Integer.

5.2. Instantiate the ”M.b.a.p” using the class ”E” inheriting from Integer with modifier ”=1”

5.3. Instantiate the base-class Integer with modifier ”=1”, and insert as unnamed node in ”M.b.a.p”.

An implementation can use different heuristics to be more efficient by re-using instantiated elements as
long as the resulting flat equation system is identical.

Note that if ”D” was consistently replaced by ”A” in the example above the result would be identical (but
harder to read due to two different classes called ”A”).

]

5.6.2 Generation of the flat equation system

During this process, all references by name in conditional declarations, modifications, dimension defini-
tions, annotations, equations and algorithms are resolved to the real instance to which they are referring
to, and the names are replaced by the global unique identifier of the instance. [This identifier is normally
constructed from the names of the instances along a path in the instance tree (and omitting the unnamed
nodes of extends clauses), separated by dots. Either the referenced instance belongs to the model to be
simulated the path starts at the model itself, or if not, it starts at the unnamed root of the instance tree,
e.g. in case of a constant in a package.]

[To resolve the names, a name lookup using the instance tree is performed, starting at the instance scope
(unless the name is fully qualified) of the modification, algorithm or equation. If it is not found locally the
search is continued at the instance of the lexically enclosing class of the scope [this is normally not equal
to the parent of the current instance], and then continued with their parents as described in section 5.3.
If the found component is an outer declaration, the search is continued using the direct parents in the
instance tree (see section 5.4). If the lookup has to look into a class which is not instantiated yet [or only
partially instantiated], it is instantiated in place.]

The flat equation system consists of a list of variables with dimensions, flattened equations and algo-
rithms, and a list of called functions which are flattened separately. A flattened function consists of
algorithm or external clause and top-level variables (variables directly declared in the function or one of
its base-classes) – which recursively can contain other variables; the list of non-top level variables is not
needed.

The instance tree is recursively walked through as follows for elements of the class (if necessary a partially
instantiated component is first instantiated):

• At each visited component instance, the name is inserted into the variables list. Then the condi-
tional declaration expression is evaluated if applicable.

– The variable list is updated with the actual instance

– The variability information and all other properties from the declaration are attached to this
variable.

– Dimension information from the declaration and all enclosing instances are resolved and at-
tached to the variable to define their complete dimension.

– If it is of record or simple type (Boolean, Integer, enumeration, Real, String, Clock, Exter-
nalObject):

∗ In the modifications of value attribute references are resolved using the instance scope of
the modification. An equation is formed from a reference to the name of the instance and
the resolved modification value of the instance, and included into the equation system.
Except if the value for an element of a record is overridden by the value for an entire
record; section 7.2.3.

– If it is of simple type (Boolean, Integer, enumeration, Real, String, Clock, ExternalObject):

∗ In the modifications of non-value attributes, e.g. start, fixed etc. references are resolved
using the instance scope of the modification. An equation is formed from a reference to

65



the name of the instance appended by a dot and the attribute name and the resolved
modification value of the instance, and included into the equation system.

– If it is of a non-simple type the instance is recursively handled.

• If there are equation or algorithm sections in the class definition of the instance, references are
resolved using the instance scope of the instance and are included in the equation system. Some
references – in particular to non simple, non record objects like connectors in connect statements
and states in transition statements are not resolved yet and handled afterwards.

• Instances of local classes are ignored.

• The unnamed nodes corresponding to extends-clauses are recursively handled.

• If there are function calls encountered during this process, the call is filled up with default arguments
as defined in section 12.4.1. These are built from the modifications of input arguments which are
resolved using their instance scope. The called function itself is looked up in the instance tree. All
used functions are flattened and put into the list of functions.

• Conditional components with false condition are removed afterwards and they are not part of the
simulation model. [Thus e.g. parameters don’t need values in them. However, type-error can be
detected.]

• Each reference is checked, whether it is a valid reference, e.g. the referenced object belongs to
or is an instance, where all existing conditional declaration expressions evaluate to true or it is
a constant in a package. [Conditional components can be used in connect-statements, and if the
component is conditionally disabled the connect-statement is removed.]

This leads to a flattened equation system, except for connect and transition statements. These have
to be transformed as described in chapter 9 and chapter 17. This may lead to further changes in the
instance tree [e.g. from expandable connectors section 9.1.3)] and additional equations in the flattened
equation system [e.g. connect equations (section 9.2), generated equations for state machine semantics
(section 17.3.4)].

[After flattening, the resulting equation system is self contained and covers all information needed to
transform it to a simulatable model, but the class and instance trees are still needed: in the transformation
process, there might be the need to instantiate further functions, e.g. from derivative annotation or
from inverse annotation etc., on demand.]
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Chapter 6

Interface or Type Relationships

A class or component, e.g. denoted A, can in some cases be used at a location designed for another class
or component, e.g. denoted B. In Modelica this is the case for replaceable classes (see section 7.3) and
for inner/outer elements (see section 5.4). Replaceable classes are the primary mechanism to create
very flexible models. In this chapter, the precise rules are defined when A can be used at a location
designed for B. The restrictions are defined in terms of compatibility rules (section 6.3 and section 6.4)
between ”interfaces” (section 6.1); this can also be viewed as sub-typing (section 6.1).

In this chapter, two kinds of terminology is used for identical concepts to get better understanding [e.g.
by both engineers and computer scientists]. A short summary of the terms is given in the following table.
The details are defined in the rest of this chapter.

term description
type or interface The “essential” part of the public declaration sec-

tions of a class that is needed to decide whether A can
be used instead of B [E.g. a declaration “ Real x” is
part of the type, also called interface, but “ import
A” is not ].

class type or
inheritance interface

The “essential” part of the public and protected dec-
laration sections of a class that is needed to decide
whether A can be used instead of B. The class type
, also called inheritance interface, is needed when in-
heritance takes place, since then the protected dec-
larations have to be taken into account.

subtype or
compatible interface

A is a subtype of B, or equivalently, the interface of A
is compatible to the interface of B, if the “essential”
part of the public declaration sections of B is also
available in A [E.g., if B has a declaration “ Real
x”, this declaration must also be present in A. If A
has a declaration “Real y”, this declaration must not
be present in B ].

restricted subtype or plug
compatible interface

A is a restricted subtype of B, or equivalently, the
interface of A is plug compatible to the interface of
B, if A is a subtype of B and if connector components
in A that are not in B, are default connectable. [E.g.
it is not allowed that these connectors have variables
with the “input” prefix, because then they must be
connected.] A model or block A cannot be used in-
stead of B, if the particular situation does not allow
to make a connection to these additional connectors.
In such a case the stricter “plug compatible” is re-
quired for a redeclaration.
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function subtype or
function compatible inter-
face

A is a function subtype of B, or equivalently, the in-
terface of A is function compatible to the interface
of B, if A is a subtype of B and if the additional ar-
guments of function A that are not in function B are
defined in such a way, that A can be called at places
where B is called. [E.g. an additional argument must
have a default value.]

6.1 The Concepts of Type, Interface and Subtype

A type can conceptually be viewed as a set of values. When we say that the variable x has the type Real,
we mean that the value of x belongs to the set of values represented by the type Real i.e., roughly the
set of floating point numbers representable by Real, for the moment ignoring the fact that Real is also
viewed as a class with certain attributes. Analogously, the variable b having Boolean type means that
the value of b belongs to the set of values {false, true}. The built-in types Real, Integer, String,
Boolean are considered to be distinct types.

The subtype relation between types is analogous to the subset relation between sets. A type A1 being a
subtype of type A means that the set of values corresponding to type A1 is a subset of the set of values
corresponding to type A.

The type Integer is not a subtype of Real in Modelica even though the set of primitive integer values is
a subset of the primitive real values since there are some attributes of Real that are not part of Integer
(section 4.8).

The concept of interface as defined in section 6.2 and used in this document is equivalent to the notion
of type based on sets in the following sense:

An element is characterized by its interface defined by some attributes (section 6.2). The type of the
element is the set of values having the same interface, i.e. the same attributes.

A subtype A1 in relation to another type A, means that the elements of the set corresponding to A1 is
a subset of the set corresponding to A, characterized by the elements of that subset having additional
properties.

[Example:

A record R: record R Boolean b; Real x; end R;

Another record called R2: R2 Boolean b; Real x; Real y; end R2;

An instance r: R r;

An instance r2: R2 r2;

The type R of r can be viewed as the set of all record values having the attributes defined by the interface
of R, e.g. the infinite set {R(b=false,x=1.2), R(b=false, x=3.4), R(b=true, x=1.2), R(b=true, x

=1.2, y=2), R(b=true, x=1.2, a=2),...). The statement that r has the type (or interface) R means
that the value of r belongs to this infinite set.

The type R2 is a subtype of R since its instances fulfill the additional property of having the component
Real y; in all its values.]
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Figure 6.1: The type R can be defined as the set of record values containing x and b. The subtype R2
is the subset of values that all contain x, b, and y.

     

Type R: Records with at least  
components named x and b  

R2: Records with at least 
components x, b, y 

instance r 

instance r2 

 

]

6.2 Interface or Type

Based on a flattened class or component we can construct an interface for that flattened class or compo-
nent. The interface or type [the terms interface and type are equivalent and can be used interchangeably ]
is defined as the following information about the flattened element itself:

• Whether it is replaceable or not.

• Whether the class itself or the class of the component is transitively non-replaceable (section 6.2.1),
and if not, the reference to the replaceable class it refers to.

• Whether it is a component or a class.

• Additional information about the element:

– The flow- or stream-prefix.

– Declared variability (constant, parameter, discrete).

– The prefixes input and output.

– The prefixes inner and/or outer.

– Whether the declaration is final, and in that case its semantics contents.

– Array sizes (if any).

– Condition of conditional components (if any).

– Which kind of specialized class.

– For an enumeration type or component of enumeration type the names of the enumeration
literals in order.

– Whether it is a built-in type and the built-in type (RealType, IntegerType, StringType or
BooleanType).

• Only for an operator record class and classes derived from ExternalObject: the full name of
the operator record base-class (i.e. the one containing the operations), or the derived class. See
chapter 14 and section 12.9.7.
The following item does not apply for an operator record class or class derived from ExternalOb-
ject, since the type is already uniquely defined by the full name.

• For each named public element of the class or component (including both local and inherited named
elements) a tuple comprised of:

– Name of the element.
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– Interface or type of the element. This might have been modified by modifiers and is thus not
necessarily identical to the interface of the original declaration.

The corresponding constraining interface is constructed based on the constraining type (section 7.3.2)
of the declaration (if replaceable – otherwise same as actual type) and with the constraining interface
for the named elements.

In a class all references to elements of that class should be limited to their constraining interface (i.e.
only public elements and if the declaration is replaceable limited to the constraining interface).

[The public interface does not contain all of the information about the class or component. When using a
class as a base-class we also need protected elements, and for internal type-checking we need e.g. import-
elements. However, the information is sufficient for checking compatibility and for using the class to
flatten components.]

6.2.1 Transitively non-Replaceable

[In several cases it is important that no new elements can be added to the interface of a class, especially
considering short class definitions. Such classes are defined as transitively non-replaceable.]

A class reference is transitively non-replaceable iff (i.e. “if and only if”) all parts of the name satisfy the
following:

• If the class definition is long it is transitively non-replaceable if not declared replaceable.

• If the class definition is short (i.e. ‘class A=P.B’) it is transitively non-replaceable if it is non-
replaceable and equal to class reference (“P.B”) that is transitively non-replaceable.

[According to section 7.1.4, for a hierarchical name all parts of the name must be transitively non-
replaceable, i.e. in “ extends A.B.C” this implies that A.B.C must be transitively non-replaceable, as
well as A and A.B, with the exception of the “class extends redeclaration mechanism” see section 7.3.1]

6.2.2 Inheritance Interface or Class Type

For inheritance the interface also must include protected elements; this is the only change compared to
above.

Based on a flattened class we can construct an inheritance interface or class type for that flattened class.
The inheritance interface or class type is defined as the following information about the flattened element
itself:

• Whether it is replaceable or not.

• Whether the class itself or the class of the component is transitively non-replaceable (section 6.2.1),
and if not the reference to replaceable class it refers to.

• For each named element of the class (including both local and inherited named elements) a tuple
comprised of:

– Name of the element.

– Whether the element is component or a class.

– For elements that are classes: Inheritance interface or class type of the element. This might
have been modified by modifiers and is thus not necessarily identical to the interface of the
original declaration.

– For elements that are components: interface or type of the element. This might have been
modified by modifiers and is thus not necessarily identical to the interface of the original
declaration.

• Additional information about the element:

– The flow- or stream-prefix.

– Declared variability (constant, parameter, discrete).

– The prefixes input and output.
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– The prefixes inner and/or outer.

– Whether the declaration is final, and in that case its semantics contents.

– Array sizes (if any).

– Condition of conditional components (if any).

– Which kind of specialized class.

– For an enumeration type or component of enumeration type the names of the enumeration
literals in order.

– Whether it is a built-in type and the built-in type (RealType, IntegerType, StringType or
BooleanType).

– Visibility (public or protected).

6.3 Interface Compatibility or Subtyping

An interface of a class or component A is compatible with an interface of a class or component B (or
the constraining interface of B), or equivalently that the type of A is a subtype of the type of B, iff
[intuitively all important elements of B must be present in A ]:

• A is a class if and only if B is a class (and thus: A is a component if and only if B is a component).

• If A has an operator record base-class then B must also have one and it must be the same. If A
does not have an operator record base-class then B may not have one. See chapter 14.

• If A is derived from ExternalObject, then B must also be derived from ExternalObject and have
the same full name. If A is not derived from ExternalObject then B may not derived from Exter-
nalObject. See section 12.9.7.

• If B is not replaceable then A may not be replaceable.

• If B is transitively non-replaceable then A must be transitively non-replaceable (section 6.2.1). For
all elements of the inheritance interface of B there must exist a compatible element with the same
name and visibility in the inheritance interface of A. The interface of A may not contain any other
elements. [We might even extend this to say that A and B should have the same contents, as in
the additional restrictions below.]

• If B is replaceable then for all elements of the component interface of B there must exist a plug-
compatible element with the same name in the component interface of A.

• If B is neither transitively non-replaceable nor replaceable then A must be linked to the same
class, and for all elements of the component interface of B there must thus exist a plug-compatible
element with the same name in the component interface of A.

• Additional restrictions on the additional information. These elements should either match or have
a natural total order:

– If B is a non-replaceable long class definition A must also be a long class definition.

– The flow-or stream-prefix should be matched for compatibility.

– Variability is ordered constant< parameter< discrete< (no prefix: continuous-time for Real),
and A is only compatible with B if the declared variability in A is less than or equal the
variability in B. For a redeclaration of an element the variability prefix is as default inherited
by the redeclaration (i.e. no need to repeat ‘parameter’ when redeclaring a parameter).

– The input and output prefixes must be matched. This ensures that the rules regarding input-
s/outputs for matching connectors and (non-connector inputs) are preserved, as well as the
restriction on blocks. For a redeclaration of an element the input or output prefix is inherited
from the original declaration.

– The inner and/or outer prefixes should be matched. For a redeclaration of an element the
inner and/or outer prefixes are inherited from the original declaration (since it is not possible
to have inner and/or outer as part of a redeclare).
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– If B is final A must also be final and have the same semantic contents.

– The number of array dimensions in A and B must be matched.

– Conditional components are only compatible with conditional components. The conditions
must have equivalent contents (similar as array sizes – except there is no “:” for conditional
components). For a redeclaration of an element the conditional part is inherited from the
original.

– A function class is only compatible with a function class, a package class only compatible with
a package class, a connector class only with a connector class, a model or block class only
compatible with a model or block class, and a type or record class only compatible with a
type or record class.

– If B is an enumeration type A must also be an enumeration type and vice versa. If B is an
enumeration type not defined as (:) then A must have the same enumeration literals in the
same order; if B is an enumeration type defined as (:) then there is no restriction on the
enumeration type A.

– If B is a built-in type then A must also be of the same built-in type and vice versa.

Plug-compatibility is a further restriction of compatibility (subtyping) defined in section 6.4, and further
restricted for functions, see section 6.5. For a replaceable declaration or modifier the default class must
be compatible with the constraining class.

For a modifier the following must apply:

• The modified element should exist in the element being modified.

• The modifier should be compatible with the element being modified, and in most cases also plug-
compatible, section 6.4.

[If the original constraining flat class is legal (no references to unknown elements and no illegal use of
class/component), and modifiers legal as above – then the resulting flat class will be legal (no references
to unknown elements and no illegal use of class/component and compatible with original constraining
class) and references refer to similar entities.]

6.4 Plug-Compatibility or Restricted Subtyping

[If a sub-component is redeclared, see section 7.3, it is impossible to connect to any new connector. A
connector with input prefix must be connected to, and since one cannot connect across hierarchies, one
should not be allowed to introduce such a connector at a level where a connection is not possible. Therefore
all public components present in the interface A that are not present in B must be connected by default.]

Definition 5: Plug-compatibility (= restricted subtyping)

An interface A is plug-compatible with (a restricted subtype of) an interface B (or the constraining
interface of B) iff:

• A is compatible with (subtype of) B.

• All public components present in A but not in B must be default-connectable (as defined below).

Definition 6: Default connectable

A component of an interface is default-connectable iff:

• All of its components are default connectable.

• A connector component must not be an input. [Otherwise a connection to the input will be missing.]

• A connector component must not be of an expandable connector class. [The expandable connector
does potentially have inputs.]

• A parameter, constant, or non-connector input must either have a binding equation or all of its
sub-components must have binding equations.

Based on the above definitions, there are the following restrictions:
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• A redeclaration of an inherited top-level component must be compatible with (subtype of) the
constraining interface of the element being redeclared.

• In all other cases redeclarations must be plug-compatible with the constraining interface of the
element being redeclared.

[The reason for the difference is that for an inherited top-level component it is possible to connect to the
additional connectors, either in this class or in a derived class.

Example:

partial model TwoFlanges

Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a;

Modelica.Mechanics.Rotational.Interfaces.Flange_b flange_b;

end TwoFlanges;

partial model FrictionElement

extends TwoFlanges;

...

end FrictionElement;

model Clutch "compatible - but not plug -compatible with FrictionElement"

Modelica.Blocks.Interfaces.RealInput pressure;

extends FrictionElement;

...

end Clutch;

model DriveLineBase

extends TwoFlanges;

Inertia J1;

replaceable FrictionElement friction;

equation

connect(flange_a , J1.flange_a);

connect(J1.flange_b , friction.flange_a);

connect(friction.flange_b , flange_b);

end DriveLineBase;

model DriveLine

extends DriveLineBase(redeclare Clutch friction);

Constant const;

equation

connect(const.y , frition.pressure);

// L e g a l c o n n e c t i o n t o new i n p u t c o n n e c t o r .
end DriveLine;

model UseDriveLine "illegal model"

DriveLineBase base(redeclare Clutch friction);

// Cannot c o n n e c t t o f r i c t i o n . p r e s s u r e
end UseDriveLine;

If a subcomponent is redeclared, it is impossible to connect to any new connector. Thus any new con-
nectors must work without being connected, i.e., the default connection of flow-variables. That fails for
inputs (and expandable connectors may contain inputs). For parameters and non-connector inputs it
would be possible to provide bindings in a derived class, but that would require hierarchical modifiers and
it would be bad modeling practice that a hierarchical modifier must be used in order to make a model
valid. A replaceable class might be used as the class for a sub-component, therefore plug-compatibility is
required not only for replaceable sub-components, but also for replaceable classes.]

6.5 Function-Compatibility or Function-Subtyping for Functions

[Functions may be called with either named or positional arguments, and thus both the name and order
is significant. If a function is redeclared, see section 7.3, any new arguments must have defaults (and be
at the end) in order to preserve the meaning of existing calls.]
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Definition 7: Function-Compatibility or Function-Subtyping for Functions

A function class A is function-compatible with or a function subtype of function class B iff, [The terms
function-compatible and function subtype of are synonyms and used interchangeably ]:

• A is compatible to (subtype of) B.

• All public input components of B have correspondingly named public input components of A in
the same order and preceding any additional public input components of A.

• All public output components of B have correspondingly named public output components of A in
the same order and preceding any additional public output components of A.

• A public input component of A must have a binding assignment if the corresponding named element
has a binding assignment in B.

• A public input component of A not present in B must have a binding assignment.

Based on the above definition the following restriction holds:

• The interface of a redeclared function must be function-compatible with or a function subtype of
the constraining interface of the function being redeclared.

[Example: Demonstrating a redeclaration using a function-compatible function

function GravityInterface

input Modelica.SIunits.Position position [3];

output Modelica.SIunits.Acceleration acceleration [3];

end GravityInterface;

function PointMassGravity

extends GravityInterface;

input Modelica.SIunits.Mass m;

algorithm

acceleration := -Modelica.Constants.G*m*position /( position*position)^1.5;

end PointMassGravity;

model Body

model UseDriveLine "illegal model"

DriveLineBase base(redeclare Clutch friction);

// Cannot c o n n e c t t o f r i c t i o n . p r e s s u r e
end UseDriveLine;

Modelica.Mechanics.MultiBody.Interface.Frame_a frame_a;

replaceable function gravity = GravityInterface;

equation

frame_a.f = gravity(frame_a.r0);

// o r g r a v i t y ( p o s i t i o n=f r a m e a . r 0 ) ;
frame_a.t = zeros (3);

end Body;

model PlanetSimulation

function sunGravity = PointMassGravity (m=2e30);

Body planet1(redeclare function gravity = sunGravity);

Body planet2(redeclare function gravity = PointMassGravity (m=2e30));

...

end PlanetSimulation;

Note: PointMassGravity is not function-compatible with GravityInterface (no default for m), but sun-
Gravity inside PlanetSimulation is function-compatible with GravityInterface.]

6.6 Type Compatible Expressions

Certain expressions consist of an operator applied to two or more type compatible sub-expressions (A
and B), including binary operators, e.g. A + B, if-expressions, e.g. if x then A else B, and array ex-
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pressions, e.g. {A,B}. The resulting type of the expression in case of two type compatible subexpressions
A and B is defined as follows:

• If A is a record-expression B must also be a record-expression with the same named elements. The
type compatible expression is a record comprised of named elements that are compatible with the
corresponding named elements of both A and B.

• If A is an array expression then B must also be an array expression, and ndims(A)=ndims(B). The
type compatible expression is an array expression with elements compatible with the elements of
both A and B. If both size(A) and size(B) are known and size(A)=size(B) then this defines
the size of the type compatible expression, otherwise the size of the expression is not known until
the expression is about to be evaluated. In case of an if-expression the size of the type compatible
expression is defined based on the branch selected, and for other cases size(A)=size(B) must hold
at this point.

• If A is a scalar expression of a simple type B must also be a scalar expression of a simple type.

• If A is a Real expression then B must be a Real or Integer expression and the type compatible
expression is Real.

• If A is an Integer expression then B must be a Real or Integer expression. For exponentiation and
division the type compatible expression is Real (even if both A and B are Integer) see 10.610.6, in
other cases the type compatible expression is Real or Integer (same as B).

• If A is a Boolean expression then B must be a Boolean expression and the type compatible expres-
sion is Boolean.

• If A is a String expression then B must be a String expression and the type compatible expression
is String.

• If A is an enumeration expression then B must be an enumeration expression and the type com-
patible expression is enumeration expression, and all enumeration expressions must be defined in
terms of an enumeration type with the same enumeration literals in the same order.

• If A has an operator record base-class then B must also have an operator record base-class,
and it must be the same, and otherwise neither A nor B may have an operator record base-class.
This is also the operator record base-class for the expression e.g. for ‘if (cond) then A else B’.

• If A is derived from ExternalObject then B must also be derived from ExternalObject and they
must have the same full name; and otherwise neither A nor B may be derived from ExternalObject.
The common full name also defines the type of the expression, e.g. for ‘if (cond) then A else B’.
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Chapter 7

Inheritance, Modification, and
Redeclaration

One of the major benefits of object-orientation is the ability to extend the behavior and properties of
an existing class. The original class, known as the base class, is extended to create a more specialized
version of that class, known as the derived class or subclass. In this process, the data and behavior of the
original class in the form of variable declarations, equations, and certain other contents are reused, or
inherited, by the subclass. In fact, the inherited contents is copied from the superclass into the subclass,
but before copying certain operations, such as type expansion, checking, and modification, are performed
on the inherited contents when appropriate. This chapter describes the inheritance concept in Modelica,
together with the related concepts modification and redeclaration.

7.1 Inheritance—Extends Clause

The extends-clause is used to specify inheritance from a base class into an (enclosing) class containing
the extends-clause. The syntax of the extends-clause is as follows:

extends-clause :

extends name [ class-modification ] [annotation]

The name of the base class is looked up in the partially flattened enclosing class (section 5.2) of the
extends-clause. The found base class is flattened with a new environment and the partially flattened
enclosing class of the extends-clause. The new environment is the result of merging

• arguments of all enclosing class environments that match names in the flattened base class

• the optional class-modification of the extends-clause

in that order.

[Example:

class A

parameter Real a, b;

end A;

class B

extends A(b=2);

end B;

class C

extends B(a=1);

end C;
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]

The elements of the flattened base class become elements of the flattened enclosing class, and are added
at the place of the extends-clause: specifically components and classes, the equation sections, algorithm
sections, optional external clause, and the contents of the annotation at the end of the class, but excluding
import-clauses.

[From the example above we get the following flattened class:

class Cinstance

parameter Real a=1;

parameter Real b=2;

end Cinstance;

The ordering of the merging rules ensures that, given classes A and B defined above,

class C2

B bcomp(b=3);

end C2;

yields an instance with bcomp.b=3, which overrides b=2.]

The declaration elements of the flattened base class shall either

• Not already exist in the partially flattened enclosing class [i.e., have different names] .

• The new element is a long form of redeclare or uses the ‘class extends A’ syntax, see section 7.3.

• Be exactly identical to any element of the flattened enclosing class with the same name and the
same level of protection (public or protected) and same contents. In this case, the first element in
order (can be either inherited or local) is kept. It is recommended to give a warning for this case;
unless it can be guaranteed that the identical contents will behave in the same way.

Otherwise the model is incorrect.

[Clarifiying order:

function A

input Real a;

input Real b;

end A;

function B

extends A;

input Real a;

end B;

// The i n p u t s o f B a r e ”a , b” i n t h a t o r d e r ; and t h e ” i n p u t R e a l a ; ” i s
i g n o r e d .

]

Equations of the flattened base class that are syntactically equivalent to equations in the flattened en-
closing class are discarded. This feature is deprecated, and it is recommend to give a warning when
discarding them and for the future give a warning about all forms of equivalent equations due to in-
heritance. [Note: equations that are mathematically equivalent but not syntactically equivalent are not
discarded, hence yield an overdetermined system of equations.]

7.1.1 Multiple Inheritance

Multiple inheritance is possible since multiple extends-clauses can be present in a class.

7.1.2 Inheritance of Protected and Public Elements

If an extends-clause is used under the protected heading, all elements of the base class become protected
elements of the current class. If an extends-clause is a public element, all elements of the base class are
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inherited with their own protection. The eventual headings protected and public from the base class
do not affect the consequent elements of the current class (i.e., headings protected and public are not
inherited).

7.1.3 Restrictions on the Kind of Base Class

Since specialized classes of different kinds have different properties, see section 4.6, only specialized
classes that are “in some sense compatible” to each other can be derived from each other via inheritance.
The following table shows which kind of specialized class can be used in an extends clause of another
kind of specialized class (the “grey” cells mark the few exceptional cases, where a specialized class can
be derived from a specialized class of another kind):

Base Class
Derived

package operator function
operator

type record
operator expandable

connector block model class
Class function record connector

package yes yes
operator yes yes
function yes yes
operator

yes
function

yes yes

type yes yes
record yes yes

operator
yes

record
yes

expandable
yes

connector
yes

connector yes yes yes yes yes yes
block yes yes yes
model yes yes yes yes
class yes

If a derived class is inherited from another type of specialized class, then the result is a specialized class
of the derived class type. [For example, if a block inherits from a record , then the result is a block.]

All specialized classes can be derived from class [provided the resulting class fulfills the restriction of
the specialized class. It is recommended to use the most specific specialized class.] A class may only
contain class-definitions, annotations, and extends-clauses (having any other contents is deprecated).

The specialized classes package, operator, function, type, record, operator record, and expand-
able connector can only be derived from their own kind [(e.g. a package can only be base class for
packages. All other kinds of classes can use the import statement to use the contents of a package)] and
from class.

[Examples:

record RecordA

...

end RecordA;

package PackageA

...

end PackageA;

package PackageB

extends PackageA; // f i n e
end PackageB;

model ModelA

extends RecordA; // f i n e
end ModelA;

model ModelB

extends PackageA; // e r r o r , i n h e r i t a n c e not a l l o w e d
end ModelB;
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]

7.1.4 Restrictions on Base Classes and Constraining Types to be Transitively
Non-Replaceable

The class name used after extends for base-classes and for constraining classes must use a class reference
considered transitively non-replaceable, see definition in section 6.2.1. [This formulation excludes the long
form of redeclare, i.e. ‘redeclare model extends M...’ where M must be an inherited replaceable class.]
For a replaceable component declaration without constraining clause the class must use a class reference
considered transitively non-replaceable. [This implies that constraining classes are always transitively
non-replaceable – both if explicitly given or implicitly by the declaration.]

7.2 Modifications

There are three kinds of constructs in the Modelica language in which modifications can occur:

• Variable declarations.

• Short class declarations.

• Extends-clauses.

A modifier modifies one or more declarations from a class by changing some aspect(s) of the declarations.
The most common kind of modifier just changes the default value or the start value in a binding equation;
the value and/or start-value should be compatible with the variable according to section 6.6.

[Example: Modifying the default start value of the altitude variable:

Real altitude(start= 59404);

]

A modification (i.e. C1 c1(x = 5) is considered a modification equation, if the modified variable is a
non-parameter (here: c1.x) variable. [This equation is created, if the modified component (here: c1) is
also created (see section 4.5). In most cases a modification equation for a non-parameter variable requires
that the variable was declared with a declaration equation, see section 4.7; in those cases the declaration
equation is replaced by the modification equation.]

A more dramatic change is to modify the type and/or the prefixes and possibly the dimension sizes of a
declared element. This kind of modification is called a redeclaration (section 7.3) and requires the special
keyword redeclare to be used in the modifier in order to reduce the risk for accidental modeling errors.
In most cases a declaration that can be redeclared must include the prefix replaceable (section 7.3).
The modifier value (and class for redeclarations) is found in the context in which the modifier occurs,
see also section 5.3.1.

[Example: Scope for modifiers

model B

parameter Real x;

package Medium=Modelica.Media.PartialMedium;

end B;

model C

parameter Real x=2;

package Medium=Modelica.Media.PartialMedium;

B b(x=x, redeclare package Medium=Medium);

// The ’ x ’ and ’ Medium ’ b e i n g m o d i f i e d a r e d e c l a r e d i n t h e model B.
// The m o d i f i e r s ’=x ’ and ’=Medium ’ a r e found i n t h e model C.

end C;

model D

parameter Real x=3;

package Medium=Modelica.Media.PartialMedium;

C c(b(x=x, redeclare package Medium=Medium));
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// The ’ x ’ and ’ Medium ’ b e i n g m o d i f i e d a r e d e c l a r e d i n t h e model B.
// The m o d i f i e r s ’=x ’ and ’=Medium ’ a r e found i n t h e model D.

end D;

] When present, the description string of a modifier overrides the existing description.

7.2.1 Syntax of Modifications and Redeclarations

The syntax is defined in the grammar, section B.2.5.

7.2.2 Modification Environment

The modification environment contains arguments which modify elements of the class (e.g., parameter
changes). The modification environment is built by merging class modifications, where outer modifica-
tions override inner modifications. [Note: this should not be confused with inner outer prefixes described
in section 5.4]

7.2.3 Merging of Modifications

Merging of modifiers means that outer modifiers override inner modifiers. The merging is hierarchical,
and a value for an entire non-simple component overrides value modifiers for all components, and it is an
error if this overrides a final prefix for a component, or if value for a simple component would override
part of the value of a non-simple component. When merging modifiers each modification keeps its own
each-prefix.

[The following larger example demonstrates several aspects:

class C1

class C11

parameter Real x;

end C11;

end C1;

class C2

class C21

...

end C21;

end C2;

class C3

extends C1;

C11 t(x=3);

// ok , C11 has been i n h e r i t e d from C1
C21 u;

// ok , even though C21 i s i n h e r i t e d be low
extends C2;

end C3;

The following example demonstrates overriding part of non-simple component:

record A

parameter Real x;

parameter Real y;

end A;

model B

parameter A a=A(2, 3);

end B;

model C

B b1(a(x=4));

// E r r o r s i n c e a t t e m p t i n g t o o v e r r i d e v a l u e f o r a . x when a has a v a l u e .
end C;
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The modification environment of the declaration of t is ( x=3). The modification environment is built by
merging class modifications, as shown by:

class C1

parameter Real a;

end C1;

class C2

parameter Real b;

parameter Real c;

end C2;

class C3

parameter Real x1;

// No d e f a u l t v a l u e
parameter Real x2=2;

// D e f a u l t v a l u e 2
parameter C1 x3;

// No d e f a u l t v a l u e f o r x 3 . a
parameter C2 x4(b=4);

// x 4 . b has d e f a u l t v a l u e 4
parameter C1 x5(a=5);

// x 5 . a has d e f a u l t v a l u e 5
extends C1;

// No d e f a u l t v a l u e f o r i n h e r i t e d e l e m e n t a
extends C2(b=6, c=77);

// I n h e r i t e d b has d e f a u l t v a l u e 6
end C3;

class C4

extends C3(x2=22, x3(a=33), x4(c=44), x5=x3 , a=55, b=66);

end C4;

Outer modifications override inner modifications, e.g., b=66 overrides the nested class modification of
extends C2(b=6). This is known as merging of modifications: merge((b=66), (b=6)) becomes (b=66).

A flattening of class C4 will give an object with the following variables:

Variable Default value
x1 none

x2 22

x3.a 33

x4.b 4

x4.c 44

x5.a x3.a

a 55

b 66

c 77

]

7.2.4 Single Modification

Two arguments of a modification shall not modify the same element, attribute, or string-comment. When
using qualified names the different qualified names starting with the same identifier are merged into one
modifier. If a modifier with a qualified name has the each or final-prefix that prefix is only seen as applied
to the final part of the name.

[Example:

class C1

Real x[3];
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end C1;

class C2 = C1(x=ones (3), x=ones (3)); // E r r o r : x d e s i g n a t e d t w i c e
class C3

class C4

Real x;

end C4;

C4 a(final x.unit = "V", x.displayUnit="mV", x=5.0);

// Ok , d i f f e r e n t a t t r i b u t e s d e s i g n a t e d ( u n i t , d i s p l a y U n i t and v a l u e )
// i d e n t i c a l t o :
C4 b(x(final unit = "V", displayUnit="mV") = 5.0));

end C3;

The following examples are incorrect:

m1(r=1.5 , r=1.6) // M u l t i p l e m o d i f i e r f o r r ( i t s v a l u e )
m1(r=1.5 , r=1.5) // M u l t i p l e m o d i f i e r f o r r ( i t s v a l u e ) − even i f i d e n t i c a l
m1(r.start=2, r(start =3)) // M u l t i p l e m o d i f i e r f o r r . s t a r t
m1(x.r=1.5 "x", x.r(start =2.0) "y")) // M u l t i p l e s t r i n g −comment f o r x . r
m1(r=R(), r(y=2)) // M u l t i p l e m o d i f i e r f o r r . y − both d i r e c t v a l u e and p a r t o f

r e c o r d

The following examples are correct:

m1(r=1.5 , r(start=2.0))

m1(r=1.6 , r "x")

m1(r=R(), r(y(min =2)))

]

7.2.5 Modifiers for Array Elements

The following rules apply to modifiers:

• The each keyword on a modifier requires that it is applied in an array declaration/modification,
and the modifier is applied individually to each element of the array (in case of nested modifiers
this implies it is applied individually to each element of each element of the enclosing array; see
example). If the modified element is a vector and the modifier does not contain the each-prefix, the
modification is split such that the first element in the vector is applied to the first element of the
vector of elements, the second to the second element, until the last element of the vector-expression
is applied to the last element of the array; it is an error if these sizes do not match. Matrices and
general arrays of elements are treated by viewing those as vectors of vectors etc.

• If a nested modifier is split, the split is propagated to all elements of the nested modifier, and
if they are modified by the each-keyword the split is inhibited for those elements. If the nested
modifier that is split in this way contains re-declarations that are split it is illegal.

[Example:

model C

parameter Real a [3];

parameter Real d;

end C;

model B

C c[5]( each a ={1,2,3}, d={1,2,3,4,5});

parameter Real b=0;

end B;

This implies that c[i].a[j]=j, and c[i].d=i.

model D

B b(each c.a={3,4,5}, c.d={2,3,4,5,6});

// E q u i v a l e n t t o :
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B b2(c(each a={3,4,5}, d={2,3,4,5,6}));

end D;

This implies that b.c[i].a[j]=2+j and b.c[i].d=1+i

model E

B b[2]( each c(each a={1,2,3}, d={1,2,3,4,5}), p={1 ,2});

// Without t h e f i r s t each one would have t o u s e :
B b2[2](c(each a={1,2,3}, d=fill ({1,2,3,4,5},2)), p={1 ,2});

end E;

This implies that b[k].c[i].a[j]=j and

b[k].c[i].d=i and b[k].p=k

For ’c.a’ the additional (outer) each has no effect, but it is necessary for ’c.d’.

]

7.2.6 Final Element Modification Prevention

An element defined as final by the final prefix in an element modification or declaration cannot be
modified by a modification or by a redeclaration. All elements of a final element are also final. [Setting
the value of a parameter in an experiment environment is conceptually treated as a modification. This
implies that a final modification equation of a parameter cannot be changed in a simulation environment ].

[Examples:

type Angle = Real (final quantity="Angle",final unit="rad",displayUnit="deg");

model TransferFunction

parameter Real b[:]={1} "numerator coefficient vector";

parameter Real a[:]={1 ,1} "denominator coefficient vector";

...

end TransferFunction;

model PI "PI controller"

parameter Real k=1 "gain";

parameter Real T=1 "time constant";

TransferFunction tf(final b=k*{T,1}, final a={T,0});

end PI;

model Test

PI c1(k=2, T=3);

// f i n e , w i l l i n d i r e c t l y change t f . b t o 2∗{3 ,1}
PI c2(tf(b={1}));

// e r r o r , b i s d e c l a r e d a s f i n a l
end Test;

]

7.3 Redeclaration

A redeclare construct in a modifier replaces the declaration of a local class or component with another
declaration. A redeclare construct as an element replaces the declaration of a local class or component
with another declaration. Both redeclare constructs work in the same way. The redeclare construct as
an element requires that the element is inherited, and cannot be combined with a modifier of the same
element in the extends-clause. For modifiers the redeclare of classes uses a special short-class-definition
construct; that is a subset of normal class definitions and semantically behave as the corresponding
class-definition.

A modifier with the keyword replaceable is automatically seen as being a redeclare.
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In redeclarations some parts of the original declaration is automatically inherited by the new declaration.
This is intended to make it easier to write declarations by not having to repeat common parts of the
declarations, and does in particular apply to prefixes that must be identical. The inheritance only applies
to the declaration itself and not to elements of the declaration.

The general rule is that if no prefix within one of the following groups is present in the new declaration
the old prefixes of that kind are preserved.

The groups that are valid for both classes and components:

• public, protected

• inner, outer

• constraining type according to rules in section 7.3.2.

The groups that are only valid for components:

• flow, stream

• discrete, parameter, constant

• input, output

• array dimensions

Note that if the old declaration was a short class definition with array dimensions the array dimensions
are not automatically preserved, and thus have to be repeated in the few cases they are used.

Replaceable component array declarations with array sizes on the left of the component are seen as
syntactic sugar for having all arrays sizes on the right of the component; and thus can be redeclared in
a consistent way.

[Note: The inheritance is from the original declaration. In most cases replaced or original does not
matter. It does matter if a user redeclares a variable to be a parameter and then redeclares it without
parameter.]

[

model HeatExchanger

replaceable parameter GeometryRecord geometry;

replaceable input Real u[2];

end HeatExchanger;

HeatExchanger(

/∗ r e d e c l a r e ∗/ replaceable /∗ p a r a m e t e r ∗/ GeoHorizontal geometry ,

redeclare /∗ i n p u t ∗/ Modelica.SIunits.Angle u /∗ [ 2 ] ∗/);
// The s e m a n t i c s e n s u r e t h a t p a r t s i n /∗ . ∗/ a r e a u t o m a t i c a l l y added

// from t h e d e c l a r a t i o n s i n H e a t E x c h a n g e r .

Example of arrays on the left of the component name:

model M

replaceable Real [4] x[2];

// Seen a s s y n t a c t i c s u g a r f o r ” r e p l a c e a b l e R e a l x [ 2 , 4 ] ; ”
// Note t h e o r d e r .

end M;

M m(redeclare Modelica.SIunits.Length x[2,4]); // V a l i d r e d e c l a r e o f t h e t y p e

]

7.3.1 The class extends Redeclaration Mechanism

A class declaration of the type ‘redeclare class extends B(...)’ , where class as usual can be
replaced by any other specialized class, replaces the inherited class B with another declaration that
extends the inherited class where the optional class-modification is applied to the inherited class. [Since
this implies that all declarations are inherited with modifications applied there is no need to apply modifiers
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to the new declaration.] Inherited B here means that the class containing redeclare class extends

B(. . . ) should also inherit another declaration of B from one of its extends-clauses. The new declaration
should explicitly include redeclare.

For ‘redeclare class extends B(...)’ the inherited class is subject to the same restrictions as a
redeclare of the inherited element, and the original class B should be replaceable, and the new element
is only replaceable if the new definition is replaceable. In contrast to normal extends it is not subject to
the restriction that B should be transitively non-replaceable (since B should be replaceable).

The syntax rule for class extends construct is in the definition of the class-specifier nonterminal
(see also class declarations in section 4.5):

class-definition :

[ encapsulated ] class-prefixes

class-specifier

class-specifier : long-class-specifier | ...

long-class-specifier : ...

| extends IDENT [ class-modification ]string-comment composition end IDENT

The nonterminal class-definition is referenced in several places in the grammar, including the fol-
lowing case which is used in some examples below, including package extends and model extends:

element :

import-clause |

extends-clause |

[ redeclare ]

[ final ]

[ inner ] [ outer ]

( ( class-definition | component-clause) |

replaceable ( class-definition | component-clause)

[constraining-clause comment ])

[Example to extend from existing packages:

package PowerTrain // l i b r a r y from someone e l s e
replaceable package GearBoxes

...

end GearBoxes;

end PowerTrain;

package MyPowerTrain

extends PowerTrain; // u s e a l l c l a s s e s from PowerTra in
redeclare package extends GearBoxes // add c l a s s e s t o s u b l i b r a r y

...

end GearBoxes;

end MyPowerTrain;

Example for an advanced type of package structuring with constraining types:

partial package PartialMedium "Generic medium interface"

constant Integer nX "number of substances";

replaceable partial model BaseProperties

Real X[nX];

...

end BaseProperties;

replaceable partial function dynamicViscosity

input Real p;

output Real eta;...

end dynamicViscosity;
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end PartialMedium;

package MoistAir "Special type of medium"

extends PartialMedium(nX=2);

redeclare model extends BaseProperties(T(stateSelect=StateSelect.prefer))

// r e p l a c e s B a s e P r o p e r t i e s by a new i m p l e m e n t a t i o n and // e x t e n d s from
B a s e p r o p e r t i e s w i t h m o d i f i c a t i o n

// note , nX = 2 ( ! )
equation

X = {0,1};

...

end BaseProperties;

redeclare function extends dynamicViscosity

// r e p l a c e s d y n a m i c V i s c o s i t y by a new i m p l e m e n t a t i o n and
// e x t e n d s from d y n a m i c V i s c o s i t y

algorithm

eta := 2*p;

end dynamicViscosity;

end MoistAir;

Note, since MostAir extends from PartialMedium, constant nX=2 in package MoistAir and the model
BaseProperties and the function dynamicViscosity is present in MoistAir. By the following defini-
tions, the available BaseProperties model is replaced by another implementation which extends from the
BaseProperties model that has been temporarily constructed during the extends of package MoistAir

from PartialMedium. The redeclared BaseProperties model references constant nX which is 2, since
by construction the redeclared BaseProperties model is in a package with nX = 2.

This definition is compact but is difficult to understand. At a first glance an alternative exists that is
more straightforward and easier to understand:

package MoistAir2 "Alternative definition that does not work"

extends PartialMedium(nX=2,

redeclare model BaseProperties = MoistAir_BaseProperties ,

redeclare function dynamicViscosity = MoistAir_dynamicViscosity);

model MoistAir_BaseProperties

// wrong model s i n c e nX has no v a l u e
extends PartialMedium.BaseProperties;

equation

X = {1,0};

end MoistAir_BaseProperties;

model MoistAir_dynamicViscosity

extends PartialMedium.dynamicViscosity;

algorithm

eta := p;

end MoistAir_dynamicViscosity;

end MoistAir2;

Here, the usual approach is used to extend (here from PartialMedium) and in the modifier perform all
redeclarations. In order to perform these redeclarations, corresponding implementations of all elements of
PartialMedium have to be given under a different name, such as MoistAir2.MoistAir_BaseProperties

, since the name BaseProperties already exists due to extends PartialMedium. Then it is possible in
the modifier to redeclare PartialMedium.BaseProperties to MoistAir2.MoistAir_BaseProperties.
Besides the drawback that the namespace is polluted by elements that have different names but the same
implementation (e.g. MoistAir2.BaseProperties is identical to MoistAir2.MoistAir_BaseProperties

) the whole construction does not work if arrays are present that depend on constants in PartialMedium ,
such as X[nX]: The problem is that MoistAir_BaseProperties extends from PartialMedium.BaseProperties

where the constant nX does not yet have a value. This means that the dimension of array X is unde-
fined and model MoistAir_BaseProperties is wrong. With this construction, all constant definitions
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have to be repeated whenever these constants shall be used, especially in MoistAir_BaseProperties and
MoistAir_dynamicViscosity. For larger models this is not practical and therefore the only practically
useful definition is the complicated construction in the previous example with redeclare model extends

BaseProperties.

To detect this issue the rule on lookup of composite names (section 5.3.2) ensures that
PartialMedium.dynamicViscosity is incorrect in a simulation model. ]

7.3.2 Constraining Type

In a replaceable declaration the optional constraining-clause defines a constraining type. Any mod-
ifications following the constraining type name are applied both for the purpose of defining the actual
constraining type and they are automatically applied in the declaration and in any subsequent redecla-
ration. The precedence order is that declaration modifiers override constraining type modifiers.

If the constraining-clause is not present in the original declaration (i.e., the non-redeclared declara-
tion):

• The type of the declaration is also used as a constraining type.

• The modifiers for subsequent redeclarations and constraining type are the modifiers on the com-
ponent or short-class-definition if that is used in the original declaration, otherwise empty.

The syntax of a constraining-clause is as follows:

constraining-clause :

constrainedby name [ class-modification ]

[Example of merging of modifiers:

class A

parameter Real x;

end A;

class B

parameter Real x=3.14 , y; // B i s a s u b t y p e o f A
end B;

class C

replaceable A a(x=1);

end C;

class D

extends C(redeclare B a(y=2));

end D;

which is equivalent to defining D as

class D

B a(x=1, y=2);

end D;

Example:

A modification of the constraining type is automatically applied in subsequent redeclarations:

model ElectricalSource

replaceable SineSource source constrainedby MO(final n=5);

...

end ElectricalSource;

model TrapezoidalSource

extends ElectricalSource(

redeclare Trapezoidal source); // s o u r c e . n =5
end TrapezoidalSource;
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A modification of the base type without a constraining type is automatically applied in subsequent redec-
larations:

model Circuit

replaceable model NonlinearResistor = Resistor(R=100);

...

end Circuit;

model Circuit2

extends Circuit(

redeclare replaceable model NonlinearResistor

= ThermoResistor(T0 =300));

// As a r e s u l t o f t h e m o d i f i c a t i o n on t h e b a s e type ,
// t h e d e f a u l t v a l u e o f R i s 100

end Circuit2;

model Circuit3

extends Circuit2(

redeclare replaceable model NonlinearResistor

= Resistor(R=200));

// The T0 m o d i f i c a t i o n i s not a p p l i e d b e c a u s e i t d i d not
// a p p e a r i n t h e o r i g i n a l d e c l a r a t i o n

end Circuit3;

Circuit2 is intended to illustrate that a user can still select any resistor model, including the original one
- as is done in Circuit3, since the constraining type is kept from the original declaration if not specified
in the redeclare. Thus it is easy to select an advanced resistor model, without limiting the possible future
changes.

A redeclaration can redefine the constraining type:

model Circuit4

extends Circuit2(

redeclare replaceable model NonlinearResistor

= ThermoResistor constrainedby ThermoResistor);

end Circuit4;

model Circuit5

extends Circuit4(

redeclare replaceable model NonlinearResistor = Resistor); // i l l e g a l
end Circuit5;

]

The class or type of component shall be a subtype of the constraining type. In a redeclaration of
a replaceable element, the class or type of a component must be a subtype of the constraining type.
The constraining type of a replaceable redeclaration must be a subtype of the constraining type of the
declaration it redeclares. In an element modification of a replaceable element, the modifications are
applied both to the actual type and to the constraining type.

In an element-redeclaration of a replaceable element the modifiers of the replaced constraining type are
merged to both the new declaration and to the new constraining type, using the normal rules where
outer modifiers override inner modifiers.

When a class is flattened as a constraining type, the flattening of its replaceable elements will use the
constraining type and not the actual default types.

The number of dimension in the constraining type should correspond to the number of dimensions in
the type-part. Similarly the type used in a redeclaration must have the same number of dimensions as
the type of redeclared element.

[Examples:

replaceable T1 x[n] constrainedby T2;

replaceable type T=T1[n] constrainedby T2;
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replaceable T1[n] x constrainedby T2;

In these examples the number of dimensions must be the same in T1 and T2, as well as in a redeclaration.
Normally T1 and T2 are scalar types, but both could also be defined as array types – with the same number
of dimensions. Thus if T2 is a scalar type (e.g. type T2= Real) then T1 must also be a scalar type; and
if T2 is defined as vector type (e.g. type T2=Real[3]) then T1 must also be vector type.]

7.3.2.1 Constraining-clause annotations

Description and annotations on the constraining-clause are applied to the entire declaration, and it is an
error if they also appear on the definition. [The intent is that the description and/or annotation are at
the end of the declaration, but it is not straightforward to specify this in the grammar.]

[Examples:

replaceable model Load1=Resistor constrainedby TwoPin "The Load"; // Recommended
replaceable model Load2=Resistor "The Load" constrainedby TwoPin; // I d e n t i c a l

t o Load1
replaceable model Load3=Resistor "The Load" constrainedby TwoPin "The Load"; //

E r r o r

replaceable Resistor load1 constrainedby TwoPin "The Load"; // Recommended
replaceable Resistor load2 "The Load" constrainedby TwoPin; // I d e n t i c a l t o

l o a d 1
replaceable Resistor load3 "The Load" constrainedby TwoPin "The Load!"; // E r r o r

]

See also the examples in section 7.3.4.

7.3.3 Restrictions on Redeclarations

The following additional constraints apply to redeclarations (after prefixes are inherited, section 7.3):

Only classes and components declared as replaceable can be redeclared with a new type [redeclaration
with the same type can be used to restrict variability and/or change array dimensions], which must have
an interface compatible with the constraining interface of the original declaration, and to allow further
redeclarations one must use “redeclare replaceable”

• an element declared as constant cannot be redeclared

• an element declared as final may not be modified, and thus not redeclared

• Modelica does not allow a protected element to be redeclared as public, or a public element to be
redeclared as protected.

• Array dimensions may be redeclared; provided the sub-typing rules in section 6.3 are satisfied.
[This is one example of redeclare of non-replaceable elements.]

7.3.4 Annotation Choices for Suggested Redeclarations and Modifications

A declaration can have an annotation “choices” containing modifiers on choice, where each of them
indicates a suitable redeclaration or modifications of the element.

This is a hint for users of the model, and can also be used by the user interface to suggest reasonable
redeclaration, where the string comments on the choice declaration can be used as textual explanations
of the choices. The annotation is not restricted to replaceable elements but can also be applied to
non-replaceable elements, enumeration types, and simple variables. For a Boolean variable, a choices
annotation may contain the definition checkBox = true, meaning to display a checkbox to input the
values false or true in the graphical user interface.

Choices menus of replaceable elements can be automatically constructed showing the names of all classes
that are either directly or indirectly derived by inheritance from the constraining class of the declaration.
This can be recommended by having annotation choicesAllMatching = true; and disabled by having

89



annotation choicesAllMatching = false. [The behavior when choicesAllMatching is not specified;
ideally it should present (at least) the same choices as for choicesAllMatching = true; but if it takes
(too long) time to present the list it is better to have choicesAllMatching = false.]

[Example:

replaceable model MyResistor=Resistor

annotation(choices(

choice(redeclare model MyResistor=lib2.Resistor(a={2}) "..."),

choice(redeclare model MyResistor=lib2.Resistor2 "...")));

replaceable Resistor Load(R=2) constrainedby TwoPin

annotation(choices(

choice(redeclare lib2.Resistor Load(a={2}) "..."),

choice(redeclare Capacitor Load(L=3) "...")));

replaceable FrictionFunction a(func=exp) constrainedby Friction

annotation(choices(

choice(redeclare ConstantFriction a(c=1) "..."),

choice(redeclare TableFriction a(table="...") "..."),

choice(redeclare FunctionFriction a(func=exp) "...")));

replaceable package Medium = Modelica.Media.Water.ConstantPropertyLiquidWater

constrainedby Modelica.Media.Interfaces.PartialMedium

annotation (choicesAllMatching=true);

It can also be applied to nonreplaceable declarations, e.g. to describe enumerations.

type KindOfController=Integer(min=1,max =3)

annotation(choices(

choice =1 "P",

choice =2 "PI",

choice =3 "PID"));

model A

parameter KindOfController x;

end A;

A a(x=3 "PID");

It can also be applied to Boolean variables to define a check box.

parameter Boolean useHeatPort=false annotation(choices(checkBox=true));

]
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Chapter 8

Equations

8.1 Equation Categories

Equations in Modelica can be classified into different categories depending on the syntactic context in
which they occur:

• Normal equality equations occurring in equation sections, including connect-equations and other
equation types of special syntactic form (section 8.3)

• Declaration equations, which are part of variable, parameter, or constant declarations (section 4.4.2.1).

• Modification equations, which are commonly used to modify attributes of classes (section 7.2)

• Binding equations, include both declaration equations and modification equations (for the value
itself).

• Initial equations, which are used to express equations for solving initialization problems (section 8.6)

8.2 Flattening and Lookup in Equations

A flattened equation is identical to the corresponding nonflattened equation.

Names in an equation shall be found by looking up in the partially flattened enclosing class of the
equation.

8.3 Equations in Equation Sections

The following kinds of equations may occur in equation sections. The syntax is defined as follows:

equation :

( simple-expression "=" expression

| if-equation

| for-equation

| connect-clause

| when-equation

| component-reference function-call-args )

comment

No statements are allowed in equation sections, including the assignment statement using the := operator.

8.3.1 Simple Equality Equations

Simple equality equations are the traditional kinds of equations known from mathematics that express an
equality relation between two expressions. There are two syntactic forms of such equations in Modelica.
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The first form below is equality equations between two expressions, whereas the second form is used
when calling a function with several results. The syntax for simple equality equations is as follows:

simple-expression "=" expression

The types of the left-hand-side and the right-hand-side of an equation need to be compatible in the same
way as two arguments of binary operators (section 6.6).

Three examples:

• simple_expr1 = expr2;

• (if pred then alt1 else alt2)= expr2;

• (out1, out2, out3)= function_name(inexpr1, inexpr2);

[Note: According to the grammar the if-then-else expression in the second example needs to be enclosed
in parentheses to avoid parsing ambiguities. Also compare with section 11.2.1.1 about calling functions
with several results in assignment statements.]

8.3.2 For-Equations – Repetitive Equation Structures

The syntax of a for-equation is as follows:

for for-indices loop

{ equation ";" }

end for ";"

For-equations may optionally use several iterators (for-indices), see section 11.2.2.3 for more information:

for-indices:

for-index {"," for-index}

for-index:

IDENT [ in expression ]

The following is one example of a prefix of a for-equation:

for IDENT in expression loop

The expression of a for-equation shall be a vector expression. It is evaluated once for each for-equation,
and is evaluated in the scope immediately enclosing the for-equation. The expression of a for-equation
shall be a parameter expression. The iteration range of a for-equation can also be specified as Boolean
or as an enumeration type, see section 11.2.2.2 for more information. The loop-variable (IDENT) is in
scope inside the loop-construct and shall not be assigned to. The loop-variable has the same type as the
type of the elements of the vector expression.

[Example:

for i in 1:10 loop // i t a k e s t h e v a l u e s 1 , 2 , 3 , . . . , 1 0
for r in 1.0 : 1.5 : 5.5 loop // r t a k e s t h e v a l u e s 1 .0 , 2 .5 , 4 .0 , 5 . 5
for i in {1,3,6,7} loop // i t a k e s t h e v a l u e s 1 , 3 , 6 , 7
for i in TwoEnums loop // i t a k e s t h e v a l u e s TwoEnums.one , TwoEnums.two

// f o r TwoEnums = e n u m e r a t i o n ( one , two )

The loop-variable may hide other variables as in the following example. Using another name for the
loop-variable is, however, strongly recommended.

constant Integer j=4;

Real x[j]

equation

for j in 1:j loop // The loop−v a r i a b l e j t a k e s t h e v a l u e s 1 , 2 , 3 , 4
x[j]=j; // Uses t h e loop−v a r i a b l e j

end for;
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]

8.3.2.1 Implicit Iteration Ranges of For-Equations

The iteration range of a loop variable may sometimes be inferred from its use as an array index. See
section 11.2.2.1 for more information.

[Example:

Real x[n],y[n];

for i loop // Same a s : f o r i i n 1 : s i z e ( x , 1 ) l o o p
x[i] = 2*y[i];

end for;

]

8.3.3 Connect-Equations

A connect-equation has the following syntax:

connect "(" component-reference "," component-reference ")" ";"

These can be placed inside for-equations and if-equations; provided the indices of the for-loop and
conditions of the if-clause are parameter expressions that do not depend on cardinality, rooted, Connec-
tions.rooted, or Connections.isRoot. The for-equations/if-equations are expanded. Connect-equations
are described in detail in section 9.1.

The same restrictions apply to Connections.branch, Connections.root, and Connections.potentialRoot;
which after expansion are handled according to section 8.3.9.

8.3.4 If-Equations

If-equations have the following syntax:

if expression then

{ equation ";" }

{ elseif expression then

{ equation ";" } }

[ else

{ equation ";" }

]

end if ";"

The expression of an if- or elseif-clause must be a scalar Boolean expression. One if-clause, and zero or
more elseif-clauses, and an optional else-clause together form a list of branches. One or zero of the bodies
of these if-, elseif- and else-clauses is selected, by evaluating the conditions of the if- and elseif-clauses
sequentially until a condition that evaluates to true is found. If none of the conditions evaluate to true
the body of the else-clause is selected (if an else-clause exists, otherwise no body is selected). In an
equation section, the equations in the body are seen as equations that must be satisfied. The bodies that
are not selected have no effect on that model evaluation.

If-equations in equation sections which do not have exclusively parameter expressions as switching condi-
tions shall have the same number of equations in each branch (a missing else is counted as zero equations
and the number of equations is defined after expanding the equations to scalar equations). [If this condi-
tion is violated, the single assignment rule would not hold, because the number of equations may change
during simulation although the number of unknowns remains the same].

8.3.5 When-Equations

When-equations have the following syntax:
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when expression then

{ equation ";" }

{ elsewhen expression then

{ equation ";" } }

end when ";"

The expression of a when-equation shall be a discrete-time Boolean scalar or vector expression. The
statements within a when-equation are activated when the scalar expression or any of the elements of
the vector expression becomes true.

[Example:

The order between the equations in a when-equation does not matter, e.g.

equation

when x > 2 then

y3 = 2*x +y1+y2; // Order o f y1 and y3 e q u a t i o n s d o e s not m a t t e r
y1 = sin(x);

end when;

y2 = sin(y1);

]

8.3.5.1 Defining When-Equations by If-Expressions in Equality Equations

A when-equation:

equation

when x>2 then

v1 = expr1;

v2 = expr2;

end when;

is conceptually equivalent to the following equations containing special if-expressions

// Not c o r r e c t M o d e l i c a
Boolean b(start=x.start >2);

equation

b = x>2;

v1 = if edge(b) then expr1 else pre(v1);

v2 = if edge(b) then expr2 else pre(v2);

[The equivalence is conceptual since pre() of a non discrete-time Real variable or expression can only
be used within a when-clause. Example:

/∗ d i s c r e t e ∗/ Real x;

input Real u;

output Real y;

equation

when sample () then

x = a*pre(x)+b*pre(u);

end when;

y = x;

In this example x is a discrete-time variable (whether it is declared with the discrete prefix or not), but u
and y cannot be discrete-time variables (since they are not assigned in when-clauses). However, pre(u)
is legal within the when-clause, since the body of the when-clause is only evaluated at events, and thus
all expressions are discrete-time expressions.]
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The start-values of the introduced Boolean variables are defined by the taking the start-value of the
when-condition, as above where b is a parameter variable. The start-values of the special functions
initial, terminal, and sample is false.

8.3.5.2 Restrictions on Equations within When-Equations

• When-statements may not occur inside initial equations.

• When-equations cannot be nested.

[Example:

The following when-equation is invalid:

when x > 2 then

when y1 > 3 then

y2 = sin(x);

end when;

end when;

]

The equations within the when-equation must have one of the following forms:

• v = expr;

• (out1, out2, out3, ...)= function_call_name(in1, in2, ...);

• operators assert(), terminate(), reinit()

• For- and if-equations if the equations within the for- and if-equations satisfy these requirements.

• The different branches of when/elsewhen must have the same set of component references on the
left-hand side.

• The branches of an if-then-else clause inside when-equations must have the same set of component
references on the left-hand side, unless the if-then-else have exclusively parameter expressions as
switching conditions.

Any left hand side reference, (v, out1, ...), in a when-clause must be a component reference, and any
indices must be parameter expressions.

[The needed restrictions on equations within a when-equation becomes apparent with the following exam-
ple:

Real x, y;

equation

x + y = 5;

when condition then

2*x + y = 7; // e r r o r : not v a l i d M o d e l i c a
end when;

When the equations of the when-equation are not activated it is not clear which variable to hold constant,
either x or y. A corrected version of this example is:

Real x,y;

equation

x + y = 5;

when condition then

y = 7 - 2*x; // f i n e
end when;
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2 Here, variable y is held constant when the when-equation is deactivated and x is computed from the
first equation using the value of y from the previous event instant.

]

8.3.5.3 Application of the Single-assignment Rule to When-Equations

The Modelica single-assignment rule (section 8.4) has implications for when-equations:

• Two when-equations may not define the same variable.

[Without this rule this may actually happen for the erroneous model DoubleWhenConflict below,
since there are two equations (close = true; close = false;) defining the same variable close.
A conflict between the equations will occur if both conditions would become true at the same time
instant.

model DoubleWhenConflict

Boolean close; // E r r o n e o u s model : c l o s e d e f i n e d by two e q u a t i o n s !
equation

...

when condition1 then

...

close = true;

end when;

when condition2 then

close = false;

end when;

...

end DoubleWhenConflict;

One way to resolve the conflict would be to give one of the two when-equations higher priority. This
is possible by rewriting the when-equation using elsewhen, as in the WhenPriority model below or
using the statement version of the when-construct, see section 11.2.7.]

• When-equations involving elsewhen-parts can be used to resolve assignment conflicts since the first
of the when/elsewhen parts are given higher priority than later ones:

[Below it is well defined what happens if both conditions become true at the same time instant since
condition1 with associated conditional equations has a higher priority than condition2.

model WhenPriority

Boolean close; // C o r r e c t model : c l o s e d e f i n e d by two e q u a t i o n s !
algorithm

...

when condition1 then

close = true;

elsewhen condition2 then

close = false;

end when;

...

end WhenPriority;

]

8.3.6 reinit

The reinit operator can only be used in the body of a when-equation. It has the following syntax:

reinit(x, expr);
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The operator reinitializes x with expr at an event instant. x is a Real variable (or an array of
Real variables) that must be selected as a state (resp., states) , i.e. reinit on x implies stateSe-
lect=StateSelect.always on x. expr needs to be type-compatible with x. The reinit operator can for
the same variable (resp. array of variables) only be applied (either as an individual variable or as part
of an array of variables) in one equation (having reinit of the same variable in when and else-when of
the same variable is allowed). In case of reinit active during initialization (due to when initial), see
section 8.6.

The reinit operator does not break the single assignment rule, because reinit(x,expr) in equations eval-
uates expr to a value (value), then at the end of the current event iteration step it assigns this value to
x (this copying from values to reinitialized state(s) is done after all other evaluations of the model and
before copying x to pre(x)).

[If a higher index system is present, i.e., constraints between state variables, some state variables need
to be redefined to non-state variables. During simulation, non-state variables should be chosen in such a
way that variables with an applied reinit operator are selected as states at least when the corresponding
when-clauses become active. If this is not possible, an error occurs, since otherwise the reinit operator
would be applied on a non-state variable.

Example for the usage of the reinit operator:

Bouncing ball :

der(h) = v;

der(v) = if flying then -g else 0;

flying = not(h<=0 and v<=0);

when h < 0 then

reinit(v, -e*pre(v));

end when

]

8.3.7 assert

An equation or statement of one of the following forms:

assert(condition , message); // Uses l e v e l =A s s e r t i o n L e v e l . e r r o r
assert(condition , message , assertionLevel);

assert(condition , message , level = assertionLevel);

is an assertion, where condition is a Boolean expression, message is a string expression, and level is
a built-in enumeration with a default value. It can be used in equation sections or algorithm sections.
[This means that assert can be called as if it were a function with three formal parameters, the third
formal parameter has the name ’level’ and the default value AssertionLevel.error.]

If the condition of an assertion is true, message is not evaluated and the procedure call is ignored. If
the condition evaluates to false different actions are taken depending on the level input:

• level = AssertionLevel.error: The current evaluation is aborted. The simulation may con-
tinue with another evaluation [e.g., with a shorter step-size, or by changing the values of iteration
variables]. If the simulation is aborted, message indicates the cause of the error.
Failed assertions takes precedence over successful termination, such that if the model first triggers
the end of successful analysis by reaching the stop-time or explicitly with terminate(), but the
evaluation with terminal()=true triggers an assert, the analysis failed.

• level = AssertionLevel.warning: The current evaluation is not aborted. message indicates the
cause of the warning [It is recommended to report the warning only once when the condition becomes
false, and it is reported that the condition is no longer violated when the condition returns to true.
The assert(..) statement shall have no influence on the behavior of the model. For example, by
evaluating the condition and reporting the message only after accepted integrator steps. condition

needs to be implicitly treated with noEvent(..) since otherwise events might be triggered that can
lead to slightly changed simulation results].
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[The AssertionLevel.error case can be used to avoid evaluating a model outside its limits of validity; for
instance, a function to compute the saturated liquid temperature cannot be called with a pressure lower
than the triple point value.

The AssertionLevel.warning case can be used when the boundary of validity is not hard: for instance,
a fluid property model based on a polynomial interpolation curve might give accurate results between
temperatures of 250 K and 400 K, but still give reasonable results in the range 200 K and 500 K. When
the temperature gets out of the smaller interval, but still stays in the largest one, the user should be
warned, but the simulation should continue without any further action. The corresponding code would be

assert(T > 250 and T < 400, "Medium model outside full accuracy range",

AssertionLevel.warning);

assert(T > 200 and T < 500, "Medium model outside feasible region");

]

8.3.8 terminate

The terminate(...) equation or statement [using function syntax ] successfully terminates the analysis
which was carried out, see also section 8.3.7. The termination is not immediate at the place where it is
defined since not all variable results might be available that are necessary for a successful stop. Instead,
the termination actually takes place when the current integrator step is successfully finalized or at an
event instant after the event handling has been completed before restarting the integration.

The terminate clause has a string argument indicating the reason for the success. [The intention is to
give more complex stopping criteria than a fixed point in time. Example:

model ThrowingBall

Real x(start =0);

Real y(start =1);

equation

der(x)=...

der(y)=...

algorithm

when y<0 then

terminate("The ball touches the ground");

end when;

end ThrowingBall;

]

8.3.9 Equation Operators for Overconstrained Connection-Based Equation
Systems

See section 8.3.9 for a description of this topic.

8.4 Synchronous Data-flow Principle and Single Assignment
Rule

Modelica is based on the synchronous data flow principle and the single assignment rule, which are
defined in the following way:

1. All variables keep their actual values until these values are explicitly changed. Variable values can
be accessed at any time instant during continuous integration and at event instants.

2. At every time instant, during continuous integration and at event instants, the active equations
express relations between variables which have to be fulfilled concurrently (equations are not active
if the corresponding if-branch, when-clause or block in which the equation is present is not active).
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3. Computation and communication at an event instant does not take time. [If computation or
communication time has to be simulated, this property has to be explicitly modeled ].

4. The total number of equations is identical to the total “number of unknown variables” (= single
assignment rule).

8.5 Events and Synchronization

The integration is halted and an event occurs whenever an event generation expression, e.g. x > 2 o or
floor(x), changes its value. An event generating expression has an internal buffer, and the value of the
expression can only be changed at event instants. If the evaluated expression is inconsistent with the
buffer, that will trigger an event and the buffer will be updated with a new value at the event instant
[in other words, a root finding mechanism is needed which determines a small time interval in which
the expression changes its value; the event occurs at the right side of this interval ]. During continuous
integration event generation expression has the constant value of the expression from the last event
instant.

[Example:

y = if u > uMax then uMax else if u < uMin then uMin else u;

During continuous integration always the same if-branch is evaluated. The integration is halted wheneveru
-uMax or u-uMin crosses zero. At the event instant, the correct if-branch is selected and the integration
is restarted.

Numerical integration methods of order n (n>=1) require continuous model equations which are differ-
entiable up to order n. This requirement can be fulfilled if Real elementary relations are not treated
literally but as defined above, because discontinuous changes can only occur at event instants and no
longer during continuous integration.

]

[It is a quality of implementation issue that the following special relations

time >= discrete expression

time < discrete expression

trigger a time event at “time = discrete expression”, i.e., the event instant is known in advance and no
iteration is needed to find the exact event instant.

]

Relations are taken literally also during continuous integration, if the relation or the expression in which
the relation is present, are the argument of the noEvent(..) function. The smooth(p,x) operator
also allows relations used as argument to be taken literally. The noEvent feature is propagated to all
subrelations in the scope of the noEvent function. For smooth the liberty to not allow literal evaluation
is propagated to all subrelations, but the smooth-property itself is not propagated.

[Example:

x = if noEvent(u > uMax) then uMax elseif noEvent(u < uMin) then uMin else u;

y = noEvent( if u > uMax then uMax elseif u < uMin then uMin else u);

z = smooth(0, if u > uMax then uMax elseif u < uMin then uMin else u);

In this case x=y=z, but a tool might generate events for z. The if-expression is taken literally without
inducing state events.

The smooth function is useful, if e.g. the modeler can guarantee that the used if-clauses fulfill at least the
continuity requirement of integrators. In this case the simulation speed is improved, since no state event
iterations occur during integration. The noEvent function is used to guard against “outside domain”
errors, e.g. y = if noEvent(x>= 0)then sqrt(x)else 0.]

All equations and assignment statements within when-clauses and all assignment statements within
function classes are implicitly treated with the noEvent function, i.e., relations within the scope of these
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operators never induce state or time events. [Using state events in when-clauses is unnecessary because
the body of a when-clause is not evaluated during continuous integration.]

[Example:

Limit1 = noEvent(x1 > 1); // E r r o r s i n c e L i m i t 1 i s a d i s c r e t e −t i m e v a r i a b l e
when noEvent(x1 >1) or x2 >10 then // e r r o r , when−c o n d i t i o n s i s not a d i s c r e t e −

t i m e e x p r e s s i o n
Close = true;

end when;

]

Modelica is based on the synchronous data flow principle (section 8.4).

[The rules for the synchronous data flow principle guarantee that variables are always defined by a unique
set of equations. It is not possible that a variable is e.g. defined by two equations, which would give rise
to conflicts or non-deterministic behavior. Furthermore, the continuous and the discrete parts of a model
are always automatically “synchronized”. Example:

equation // I l l e g a l example
when condition1 then

close = true;

end when;

when condition2 then

close = false;

end when;

This is not a valid model because rule 4 is violated since there are two equations for the single unknown
variable close. If this would be a valid model, a conflict occurs when both conditions become true at the
same time instant, since no priorities between the two equations are assigned. To become valid, the model
has to be changed to:

equation

when condition1 then

close = true;

elsewhen condition2 then

close = false;

end when;

Here, it is well-defined if both conditions become true at the same time instant ( condition1 has a higher
priority than condition2).

]

There is no guarantee that two different events occur at the same time instant.

[As a consequence, synchronization of events has to be explicitly programmed in the model, e.g. via
counters. Example:

Boolean fastSample , slowSample;

Integer ticks(start =0);

equation

fastSample = sample (0,1);

algorithm

when fastSample then

ticks := if pre(ticks) < 5 then pre(ticks)+1 else 0;

slowSample := pre(ticks) == 0;

end when;
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algorithm

when fastSample then // f a s t s a m p l i n g
...

end when;

algorithm

when slowSample then // s l o w s a m p l i n g (5− t i m e s s l o w e r )
...

end when;

The slowSample when-clause is evaluated at every 5th occurrence of the fastSample when-clause.

]

[The single assignment rule and the requirement to explicitly program the synchronization of events allow
a certain degree of model verification already at compile time.]

8.6 Initialization, initial equation, and initial algorithm

Before any operation is carried out with a Modelica model [e.g., simulation or linearization], initialization
takes place to assign consistent values for all variables present in the model. During this phase, also the
derivatives, der(..), and the pre-variables, pre(..), are interpreted as unknown algebraic variables.
The initialization uses all equations and algorithms that are utilized in the intended operation [such
as simulation or linearization]. The equations of a when-clause are active during initialization, if and
only if they are explicitly enabled with the initial() operator; and only in one of the two forms
when initial()then or when {...,initial(),...} then. In this case, the when-clause equations
remain active during the whole initialization phase. [If a when-clause equation v = expr; is not active
during the initialization phase, the equation v = pre(v) is added for initialization. This follows from
the mapping rule of when-clause equations. If the condition of the when-clause contains initial(), but not
in one of the specific forms, the when-clause is not active during initialization: when not initial() then
print(”simulation started”);end when; ]. In case of a reinit(x,expr) being active during initialization (due
to being inside when initial()) this is interpreted as adding x=expr (the reinit-equation) as an initial
equation.

Further constraints, necessary to determine the initial values of all variables, can be defined in the
following ways:

1. As equations in an initial equation section or as assignments in an initial algorithm section.
The equations and assignments in these initial sections are purely algebraic, stating constraints
between the variables at the initial time instant. It is not allowed to use when-clauses in these
sections.

2. For all non-discrete (that is continuous-time) Real variables vc, the equation pre(vc)= vc is added
to the initialization equations. [If pre(vc) is not present in the flattened model, a tool may choose
not to introduce this equation, or if it was introduced it can eliminate it (to avoid the introduction
of many dummy variables pre(vc)).]

3. Implicitly by using the attributes start=value and fixed=true in the declaration of variables:

• For all non-discrete (that is continuous-time) Real variables vc, the equation vc = startExpression

is added to the initialization equations, if start = startExpression and fixed = true.

• For all discrete variables vd, the equation pre(vd)= startExpression is added to the ini-
tialization equations, if start = startExpression and fixed = true.

• For all variables declared as constant and parameter, with fixed = true; no equation is
added to the initialization equations.

For constants and parameters, the attribute fixed is by default true. For other variables fixed is by
default false. For all variables declared as constant it is an error to have fixed = false.

Start-values of variables having fixed = false can be used as initial guesses, in case iterative solvers are
used in the initialization phase. [In case of iterative solver failure, it is recommended to specially report
those variables for which the solver needs an initial guess, but which only have the default value of the
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start attribute as defined in section 4.8, since the lack of appropriate initial guesses is a likely cause of
the solver failure.]

If a parameter has a modifier for the start-attribute, does not have fixed=false, and neither has a
binding equation nor is part of a record having a binding equation, the modifier for the start-attribute
can be used to add a parameter binding equation assigning the parameter to that start-modifier. In
this case a diagnostic message is recommended in a simulation model. [This is used in libraries to give
non-zero defaults so that users can quickly combine models and simulate without setting parameters; but
still easily find the parameters that need to be set.]

All variables declared as parameter having fixed = false are treated as unknowns during the initial-
ization phase, i.e. there must be additional equations for them – and the start-value can be used as a
guess-value during initialization.

[In the case a parameter has both a binding equation and fixed = false a diagnostics is recommended,
but the parameter should be solved from the binding equation.

Non-discrete (that is continuous-time) Real variables vc have exactly one initialization value since the
rules above assure that during initialization vc = pre(vc)= vc.startExpression (if fixed= true).

Before the start of the integration, it must be guaranteed that for all variables v, v = pre(v). If this is
not the case for some variables vi, “ pre(vi) := vi” must be set and an event iteration at the initial time
must follow, so the model is re-evaluated, until this condition is fulfilled.

A Modelica translator may first transform the continuous equations of a model, at least conceptually, to
state space form. This may require to differentiate equations for index reduction, i.e., additional equations
and, in some cases, additional unknown variables are introduced. This whole set of equations, together
with the additional constraints defined above, should lead to an algebraic system of equations where the
number of equations and the number of all variables (including der(..) and pre(..) variables) is equal.
Often, this is a nonlinear system of equations and therefore it may be necessary to provide appropriate
guess values (i.e., start values and fixed=false) in order to compute a solution numerically.

It may be difficult for a user to figure out how many initial equations have to be added, especially if
the system has a higher index. A tool may add or remove initial equations automatically such that the
resulting system is structurally nonsingular. In these cases diagnostics are appropriate since the result
is not unique and may not be what the user expects. A missing initial value of a discrete variable which
does not influence the simulation result, may be automatically set to the start value or its default without
informing the user. For example, variables assigned in a when-clause which are not accessed outside of
the when-clause and where the pre() operator is not explicitly used on these variables, do not have an
effect on the simulation.

Examples:

Continuous time controller initialized in steady-state:

Real y(fixed = false); // f i x e d= f a l s e i s r e d u n d a n t
equation

der(y) = a*y + b*u;

initial equation

der(y) = 0;

This has the following solution at initialization:

der(y) = 0;

y = -b/a *u;

Continuous time controller initialized either in steady-state or by providing a start value for state y:

parameter Boolean steadyState = true;

parameter Real y0 = 0 "start value for y, if not steadyState";

Real y;

equation

der(y) = a*y + b*u;

initial equation

if steadyState then
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der(y)=0;

else

y = y0;

end if;

This can also be written as follows (this form is less clear):

parameter Boolean steadyState=true;

Real y (start=0, fixed=not steadyState);

Real der_y(start=0, fixed=steadyState) = der(y);

equation

der(y) = a*y + b*u;

Discrete time controller initialized in steady-state:

discrete Real y;

equation

when {initial (), sampleTrigger} then

y = a*pre(y) + b*u;

end when;

initial equation

y = pre(y);

This leads to the following equations during initialization:

y = a*pre(y) + b*u;

y = pre(y);

With the solution:

y := (b*u)/(1-a)

pre(y) := y;

]

8.6.1 The Number of Equations Needed for Initialization

[In general, for the case of a pure (first order) ordinary differential equation (ODE) system with n
state variables and m output variables, we will have n+m unknowns in the simulation problem. The
ODE initialization problem has n additional unknowns corresponding to the derivative variables. At
initialization of an ODE we will need to find the values of 2n+m variables, in contrast to just n+m
variables to be solved for during simulation.

Example: Consider the following simple equation system:

der(x1) = f1(x1);

der(x2) = f2(x2);

y = x1+x2+u;

Here we have three variables with unknown values: two dynamic variables that also are state variables,
x1 and x2, i.e., n=2, one output variable y, i.e., m=1, and one input variable u with known value. A
consistent solution of the initial value problem providing initial values for x1, x2, der(x1), der(x2), and
y needs to be found. Two additional initial equations thus need to be provided to solve the initialization
problem.

Regarding DAEs, only that at most n additional equations are needed to arrive at 2n+m equations in
the initialization system. The reason is that in a higher index DAE problem the number of dynamic
continuous-time state variables might be less than the number of state variables n. As noted in section 8.6
a tool may add/remove initial equations to fulfill this requirement, if appropriate diagnostics are given.

]

103



8.6.2 Recommended selection of start-values

In general many variables have start-values that are not fixed and selecting a sub-set of these can give
a consistent set of start-values close to the user-expectations. The following gives a non-normative
procedure for finding such a sub-set.

[A model has a hierarchical component structure. Each component of a model can be given a unique
model component hierarchy level number. The top level model has a level number of 1. The level number
increases by 1 for each level down in the model component hierarchy. The model component hierarchy
level number is used to give start values a confidence number, where a lower number means that the start
value is more confident. Loosely, if the start value is set or modified on level i then the confidence number
is i. If a start value is set by a possibly hierarchical modifier at the top level, then this start value has
the highest confidence, namely 1 irrespectively on what level, the variable itself is declared.]
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Chapter 9

Connectors and Connections

This chapter covers connectors, connect-equations, and connections.

The special functions cardinality, rooted [ deprecated ], Connections.isRoot, and Connections.rooted may
not be used to control them.

9.1 Connect-Equations and Connectors

Connections between objects are introduced by connect-equations in the equation part of a class. A
connect-equation has the following syntax:

connect ”(” component-reference ”,” component-reference ”)” ”;”

The connect-equation construct takes two references to connectors [a connector is an instance of a
connector class], each of which is either of the following forms:

• c1.c2...cn, where c1 is a connector of the class, n>=1 and ci+1 is a connector element of ci for
i=1:(n-1).

• m.c, where m is a non-connector element in the class and c is a connector element of m.

There may optionally be array subscripts on any of the components; the array subscripts shall be
parameter expressions or the special operator “:”. If the connect construct references array of connectors,
the array dimensions must match, and each corresponding pair of elements from the arrays is connected
as a pair of scalar connectors.

[Example of array usage:

connector InPort = input Real;

connector OutPort = output Real;

block MatrixGain

input InPort u[size(A,2)];

output OutPort y[size(A,1)];

parameter Real A[:,:] = [1];

equation

y=A*u;

end MatrixGain;

Modelica.Blocks.Sources.Sine sinSource [5];

MatrixGain gain (A = 5* identity (5));

MatrixGain gain2(A = ones (2,5));

OutPort x[2];

equation

connect(sinSource.y , gain.u); // L e g a l
connect(gain.y , gain2.u); // L e g a l
connect(gain2.y , x); // L e g a l
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]

The three main tasks are to:

• Elaborate expandable connectors.

• Build connection sets from connect-equations.

• Generate equations for the complete model.

9.1.1 Connection Sets

A connection set is a set of variables connected by means of connect-equations. A connection set shall
contain either only flow variables or only non-flow variables.

9.1.2 Inside and Outside Connectors

In an element instance M, each connector element of M is called an outside connector with respect to M.
All other connector elements that are hierarchically inside M, but not in one of the outside connectors
of M, is called an inside connector with respect to M. This is done before resolving outer elements to
corresponding inner ones.

[Example:
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Figure 9.1: Example for inside and outside connectors

The figure visualizes the following connect equations to the connector c in the models mi. Consider the
following connect equations found in the model for component m0:

connect(m1.c , m3.c); // m1.c and m3.c a r e i n s i d e c o n n e c t o r s
connect(m2.c , m3.c); // m2.c and m3.c a r e i n s i d e c o n n e c t o r s

and in the model for component m3 (c.x is a sub-connector inside c):

connect(c, m4.c); // c i s an o u t s i d e
connector , m4.c is an inside connector

connect(c.x , m5.c); // c . x i s an o u t s i d e
connector , m5.c is an inside connector

connect(c , d) ; // c i s an o u t s i d e c o n n e c t o r , d i s an o u t s i d e c o n n e c t o r

and in the model for component m6:
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connect(d, m7.c); // d i s an o u t s i d e c o n n e c t o r , m7.c i s an i n s i d e c o n n e c t o r

]

9.1.3 Expandable Connectors

If the expandable qualifier is present on a connector definition, all instances of that connector are referred
to as expandable connectors. Instances of connectors that do not possess this qualifier will be referred
to as non-expandable connectors.

Before generating connection equations non-parameter scalar variables and non-parameter array elements
declared in expandable connectors are marked as only being potentially present. A non-parameter array
element may be declared with array dimensions “:” indicating that the size is unknown. This applies to
both variables of simple types, and variables of structured types.

Then connections containing expandable connectors are elaborated:

• One connector in the connect equation must reference a declared component, and if the other
connector is an undeclared element in a declared expandable connector it is handled as follows
(elements that are only potentially present are not seen as declared):

– The expandable connector instance is automatically augmented with a new component having
the used name and corresponding type.

– If the undeclared component is subscripted, an array variable is created, and a connection to
the specific array element is performed. Introducing elements in an array gives an array with
at least the specified elements, other elements are either not created or have a default value
(i.e. as if they were only potentially present).

– If the variable on the other side of the connect-equation is input or output the new component
will be either input or output to satisfy the restrictions in section 9.3 for a non-expandable
connector. [If the existing side refers to an inside connector (i.e. a connector of a component)
the new variable will copy its causality, i.e. input if input and output if output, since the
expandable connector must be an outside connector ]. For an array the input/output property
can be deduced separately for each array element.

• When two expandable connectors are connected, each is augmented with the variables that are
only declared in the other expandable connector (the new variables are neither input nor output).
This is repeated until all connected expandable connector instances have matching variables [i.e.
each of the connector instances is expanded to be the union of all connector variables.]

• The variables introduced in the elaboration follow additional rules for generating connection sets
(given in section 9.2).

• If a variable appears as an input in one expandable connector, it should appear as a non-input in
at least one other expandable connector instance in the same augmentation set. An augmentation
set is defined as the set of connected expandable connector instances that through the elaboration
will have matching variables.

[Example:

expandable connector EngineBus

end EngineBus;

block Sensor

RealOutput speed; // Output , i . e . , non−i n p u t
end Sensor;

block Actuator

RealInput speed; // I n p u t
end Actuator;

model Engine

EngineBus bus;

Sensor sensor;
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Actuator actuator;

equation

connect(bus.speed , sensor.speed); // p r o v i d e s t h e non−i n p u t from
s e n s o r . s p e e d

connect(bus.speed , actuator.speed);

end Engine;

]

• All components in an expandable connector are seen as connector instances even if they are not
declared as such [i.e. it is possible to connect to e.g. a Real variable].

[Example:

expandable connector EngineBus // has p r e d e f i n e d s i g n a l s
import SI=Modelica.SIunits;

SI.AngularVelocity speed;

SI.Temperature T;

end EngineBus;

block Sensor

RealOutput speed;

end Sensor;

model Engine

EngineBus bus;

Sensor sensor;

equation

connect(bus.speed , sensor.speed);

// c o n n e c t i o n t o non−c o n n e c t o r s p e e d i s p o s s i b l e
// i n e x p a n d a b l e c o n n e c t o r s

end Engine;

]

• An expandable connector may not contain a component declared with the prefix flow, but may
contain non-expandable connector components with flow components.

[Example:

import Interfaces=Modelica.Electrical.Analog.Interfaces;

expandable connector ElectricalBus

Interfaces.PositivePin p12 , n12; // OK
flow Modelica.SIunits.Current i; // not a l l o w e d

end ElectricalBus;

model Battery

Interfaces.PositivePin p42 , n42;

ElectricalBus bus;

equation

connect(p42 , bus.p42); // Adds new e l e c t r i c a l p i n
connect(n42 , bus.n42); // Adds a n o t h e r p i n

end Battery;

]

• expandable connectors can only be connected to other expandable connectors.

If a connect equation references a potentially present variable, or variable element, in an expandable
connector the variable or variable element is marked as being present, and due to the paragraphs above
it is possible to deduce whether the bus variable shall be treated as input, or shall be treated as output
in the connect equation. That input or output prefix is added if no input/output prefix is present on the
declaration

[Example:
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expandable connector EmptyBus

end EmptyBus;

model Controller

EmptyBus bus1;

EmptyBus bus2;

RealInput speed;

equation

connect(speed , bus1.speed); // ok , o n l y one u n d e c l a r e d
// and i t i s u n s u b s c r i p t e d

connect(bus1.pressure , bus2.pressure);

// not a l l o w e d , both u n d e c l a r e d

connect(speed , bus2.speed [2]);

// i n t r o d u c e s s p e e d a r r a y ( w i t h e l e m e n t [ 2 ] ) .
end Controller;

]

After this elaboration the expandable connectors are treated as normal connector instances, and the
connections as normal connections, and all potentially present variables and array elements that are
not actually present are undefined [a tool may remove them or set them to the default value, e.g. zero
for Real variables]. It is an error if there are expressions referring to potentially present variables or
array elements that are not actually present or non-declared variables [the expressions can only “read”
variables from the bus that are actually declared and present in the connector, in order that the types of
the variables can be determined in the local scope]. This elaboration implies that expandable connectors
can be connected even if they do not contain the same components.

[Note that the introduction of variables, as described above, is conceptual and does not necessarily impact
the flattening hierarchy in any way. Furthermore, it is important to note that these elaboration rules
must consider:

1. Expandable connectors nested hierarchically. This means that both outside and inside connectors
must be included at every level of the hierarchy in this elaboration process.

2. When processing an expandable connector that possesses the inner scope qualifier, all outer in-
stances must also be taken into account during elaboration.

Example:

Engine system with sensors, controllers, actuator and plant that exchange information via a bus (i.e. via
expandable connectors):

import SI=Modelica.SIunits;

import Modelica.Blocks.Interfaces.RealInput;

// P l a n t S i d e
model SparkPlug

RealInput spark_advance;

...

end SparkPlug;

expandable connector EngineBus

// No m i n i m a l s e t
end EngineBus;

expandable connector CylinderBus

Real spark_advance;

end CylinderBus;

model Cylinder

CylinderBus cylinder_bus;

SparkPlug spark_plug;

...
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equation

connect(spark_plug.spark_advance ,

cylinder_bus.spark_advance);

end Cylinder;

model I4

EngineBus engine_bus;

Modelica.Mechanics.Rotational.Sensors.SpeedSensor speed_sensor;

Modelica.Thermal.HeatTransfer.Sensors.TemperatureSensor temp_sensor;

parameter Integer nCylinder = 4 "Number of cylinders";

Cylinder cylinder[nCylinder ];

equation

// adds e n g i n e s p e e d ( a s o u t p u t )
connect(speed_sensor.w , engine_bus.engine_speed);

// adds e n g i n e t e m p ( a s o u t p u t )
connect(temp_sensor.T , engine_bus.engine_temp);

// adds c y l i n d e r b u s 1 ( a n e s t e d bus )
for i in 1: nCylinder loop

connect(cylinder[i].cylinder_bus ,

engine_bus.cylinder_bus[i]);

end for;

end I4;

Due to the above connection, conceptually a connector consisting of the union of all connectors is intro-
duced.

The engine bus contains the following variable declarations:

RealOutput engine_speed;

RealOutput engine_temp;

CylinderBus cylinder_bus [1];

CylinderBus cylinder_bus [2];

CylinderBus cylinder_bus [3];

CylinderBus cylinder_bus [4];

]

9.2 Generation of Connection Equations

When generating connection equations, outer elements are resolved to the corresponding inner elements
in the instance hierarchy (see instance hierarchy name lookup section 5.4). The arguments to each
connect-equation are resolved to two connector elements.

For every use of the connect-equation

connect(a, b);

the primitive components of a and b form a connection set – together with an indication of whether they
are from an inside or an outside connector; the primitive elements are of simple types – or of types defined
as operator record (i.e. a component of an operator record type is not split into sub-components).
The elements of the connection sets are tuples of primitive variables together with an indication of inside
or outside; if the same tuple belongs to two connection sets those two sets are merged, until every tuple
is only present in one set. Composite connector types are broken down into primitive components. The
outer components are handled by mapping the objects to the corresponding inner components – and
the inside indication is not influenced. The outer connectors are handled by mapping the objects to the
corresponding inner connectors – and they are always treated as outside connectors.

[Rationale: The inside/outside as part of the connection sets ensure that connections from different
hierarchical levels are treated separately. Connection sets are formed from the primitive elements and
not from the connectors; this handles connections to parts of hierarchical connectors and also makes it
easier to generate equations directly from the connection sets. All variables in one connection set will
either be flow variables or non-flow variables due to restriction on connect-equations. The mapping from

110



an outer to an inner element must occur before merging the sets in order to get one zero-sum equation,
and ensures that the equations for the outer elements are all given for “one side” of the connector, and
the inner element can define the other “side”.]

The following connection sets with just one member are also present (and merged):

• Each primitive flow-variable as inside connector.

• Each flow variable added during augmentation of expandable connectors, both as inside and as
outside. [Note that the flow variable is not directly in the expandable connector, but in a connector
inside the expandable connector.]

[Rationale: If these variables are not connected they will generate a set comprised only of this element,
and thus they will be implicitly set to zero (see below). If connected, this set will be merged and adding
this at the start has no impact.]

Each connection set is used to generate equations for potential and flow (zero-sum) variables of the form

• a1 = a2 = ... = an; // neither flow nor stream variables

• z1 + z2 + (-z3)+ ... + zn = 0 ; // flow−variables

The bold-face 0 represents an array or scalar zero of appropriate dimensions (i.e. the same size as z).

For an operator record type this uses the operator ’0’ – which must be defined in the operator record;
and all of the flow-variables for the operator record must be of the same operator record type. This
implies that in order to have flow variables of an operator record type the operator record must
define addition, negation, and ’0’; and these operations should define an additive group.

In order to generate equations for flow variables [using the flow prefix ], the sign used for the connector
variable zi above is +1 for inside connectors and -1 for outside connectors z3 in the example above].

[Example (simple):

model Circuit

Ground ground;

Load load;

Resistor resistor;

equation

connect(load.p , ground.p);

connect(resistor.p , ground.p);

end Circuit;

model Load

extends TwoPin;

Resistor resistor;

equation

connect(p, resistor.p);

connect(resistor.n , n);

end Load;

The connection sets are before merging (note that one part of the load and resistor is not connected):

{<load.p.i, inside>}

{<load.n.i, inside>}

{<ground.p.i, inside>}

{<load.resistor.p.i, inside>}

{<load.resistor.n.i, inside>}

{<resistor.p.i, inside>}

{<resistor.n.i, inside>}

{<resistor.p.i, inside>, <ground.p.i, inside>}
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{<resistor.p.v, inside>, <ground.p.v, inside>}

{<load.p.i, inside>, <ground.p.i, inside>}

{<load.p.v, inside>, <ground.p.v, inside>}

{<load.p.i, outside>, <load.resistor.p.i, inside>}

{<load.p.v, outside>, <load.resistor.p.v, inside>}

{<load.n.i, outside>, <load.resistor.n.i, inside>}

{<load.n.v, outside>, <load.resistor.n.v, inside>}

After merging this gives:

{<load.p.i, outside>, <load.resistor.p.i, inside>}

{<load.p.v, outside>, <load.resistor.p.v, inside>}

{<load.n.i, outside>, <load.resistor.n.i, inside>}

{<load.n.v, outside>, <load.resistor.n.v, inside>}

{<load.p.i, inside>, <ground.p.i, inside>, <resistor.p.i, inside> }

{<load.p.v, inside>, <ground.p.v, inside>, <resistor.p.v, inside>}

{<load.n.i, inside>}

{<resistor.n.i, inside>}

And thus the equations:

load.p.v = load.resistor.p.v;

load.n.v = load.resistor.n.v;

load.p.v = ground.p.v;

load.p.v = resistor.p.v;

0 = (-load.p.i) + load.resistor.p.i;

0 = (-load.n.i) + load.resistor.n.i;

0 = load.p.i + ground.p.i + resistor.p.i;

0 = load.n.i;

0 = resistor.n.i;

Example (outer component):

model Circuit

Ground ground;

Load load;

inner Resistor resistor;

equation

connect(load.p , ground.p);

end Circuit;

model Load

extends TwoPin;

outer Resistor resistor;

equation

connect(p, resistor.p);

connect(resistor.n , n);

end Load;
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The connection sets are before merging (note that one part of the load and resistor is not connected):

{<load.p.i, inside>}

{<load.n.i, inside>}

{<ground.p.i, inside>}

{<resistor.p.i, inside>}

{<resistor.n.i, inside>}

{<load.p.i, inside>, <ground.p.i, inside>}

{<load.p.v, inside>, <ground.p.v, inside>}

{<load.p.i, outside>, < resistor.p.i, inside>}

{<load.p.v, outside>, <resistor.p.v, inside>}

{<load.n.i, outside>, <resistor.n.i, inside>}

{<load.n.v, outside>, <resistor.n.v, inside>}

After merging this gives:

{<load.p.i, outside>, <resistor.p.i, inside>}

{<load.p.v, outside>, <resistor.p.v, inside>}

{<load.n.i, outside>, <resistor.n.i, inside>}

{<load.n.v, outside>, <resistor.n.v, inside>}

{<load.p.i, inside>, <ground.p.i, inside>}

{<load.p.v, inside>, <ground.p.v, inside>}

{<load.n.i, inside>}

And thus the equations:

load.p.v = resistor.p.v;

load.n.v = resistor.n.v;

load.p.v = ground.p.v;

0 = (-load.p.i) + resistor.p.i;

0 = (-load.n.i) + resistor.n.i;

0 = load.p.i + ground.p.i;

0 = load.n.i;

This corresponds to a direct connection of the resistor.

]

9.3 Restrictions of Connections and Connectors

• The connect-equations (and the special functions for overdetermined connectors) may only be
used in equations and may not be used inside if-equations with non-parametric condition, or in
when-equations. [For-equations always have parameter expressions for the array expression.]

• A connector component may not be declared with the prefix parameter or constant. In the connect-
equation the primitive components may only connect parameter variables to parameter variables
and constant variables to constant variables.

• The connect-equation construct only accepts forms of connector references as specified in sec-
tion 9.1.
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• In a connect-equation the two connectors must have the same named component elements with the
same dimensions; recursively down to the primitive components. The primitive components with
the same name are matched and belong to the same connection set.

• The matched primitive components of the two connectors must have the same primitive types,
and flow-variables may only connect to other flow-variables, stream-variables only to other stream-
variables, and causal variables (input/output) only to causal variables (input/output).

• A connection set of causal variables (input/output) may at most contain variables from one inside
output connector or one public outside input connector. [i.e., a connection set may at most
contain one source of a signal.]

• At least one of the following must hold for a connection set containing causal variables generated
for a non-partial model or block:

1. the connection set includes variables from an outside public expandable connector,

2. the set contains variables from protected outside connectors,

3. it contains variables from one inside output connector, or

4. from one public outside input connector, or

5. the set is comprised solely of one variable from one inside input connector that is not part of
an expandable connector.

[i.e., a connection set must – unless the model or block is partial - contain one source of a signal
(the last item (item 5) covers the case where a connector of a component is left unconnected and
the source given textually).]

• Variables from a protected outside connector must be part of a connection set containing at least one
inside connector or one declared public outside connector (i.e. it may not be an implicitly defined
part of an expandable connector). [Otherwise it would not be possible to deduce the causality for
the expandable connector element.]

• In a connection set all variables having non-empty quantity attribute must have the same quantity
attribute.

• A connect equation may not (directly or indirectly) connect two connectors of outer elements.
[indirectly is similar to them being part of the same connection set – however, connections to
outer elements are “moved up” before forming connection sets. Otherwise the connection sets could
contain “redundant” information breaking the equation count for locally balanced models and blocks.]

• Subscripts in a connector reference shall be parameter expressions or the special operator “:”.

• Constants or parameters in connected components yield the appropriate assert statements to check
that they have the same value; connections are not generated.

• For conditional connectors, see section 4.4.5.

9.3.1 Balancing Restriction and Size of Connectors

For each non-partial connector class the number of flow variables shall be equal to the number of variables
that are neither parameter, constant, input, output, stream nor flow. The “number of variables” is
the number of all elements in the connector class after expanding all records and arrays to a set of scalars
of primitive types. The number of variables of an overdetermined type or record class (see section 9.4.1)
is the size of the output argument of the corresponding equalityConstraint() function.

[Examples:

connector Pin // a p h y s i c a l c o n n e c t o r o f
Modelica.Electrical.Analog

Real v;

flow Real i;

end Pin;
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connector Plug // a h i e r a r c h i c a l c o n n e c t o r o f
Modelica.Electrical.MultiPhase

parameter Integer m=3;

Pin p[m];

end Plug;

connector InputReal = input Real; // A c a u s a l i n p u t c o n n e c t o r
connector OutputReal = output Real; // A c a u s a l o u t p u t c o n n e c t o r

connector Frame_Illegal

Modelica.SIunits.Position r0[3] "Position vector of frame origin";

Real S[3, 3] "Rotation matrix of frame";

Modelica.SIunits.Velocity v[3] "Abs. velocity of frame origin";

Modelica.SIunits.AngularVelocity w[3] "Abs. angular velocity of frame";

Modelica.SIunits.Acceleration a[3] "Abs. acc. of frame origin";

Modelica.SIunits.AngularAcceleration z[3] "Abs. angular acc. of frame";

flow Modelica.SIunits.Force f[3] "Cut force";

flow Modelica.SIunits.Torque t[3] "Cut torque";

end Frame_Illegal;

The Frame_Illegal connector (intended to be used in a simple MultiBody-package without over-determined
connectors) is illegal since the number of flow and non-flow variables do not match. The solution is to
create two connector classes, where two 3-vectors (e.g., a and z) are acausal Real and the other variables
are matching pairs of input and output. This ensures that the models can only be connected in a
tree-structure or require a “loop-breaker” joint for every closed kinematic loop:

connector Frame_a "correct connector"

input Modelica.SIunits.Position r0[3];

input Real S[3, 3];

input Modelica.SIunits.Velocity v[3];

input Modelica.SIunits.AngularVelocity w[3];

Modelica.SIunits.Acceleration a[3];

Modelica.SIunits.AngularAcceleration z[3];

flow Modelica.SIunits.Force f[3];

flow Modelica.SIunits.Torque t[3];

end Frame_a;

connector Frame_b "correct connector"

output Modelica.SIunits.Position r0[3];

output Real S[3, 3];

output Modelica.SIunits.Velocity v[3];

output Modelica.SIunits.AngularVelocity w[3];

Modelica.SIunits.Acceleration a[3];

Modelica.SIunits.AngularAcceleration z[3];

flow Modelica.SIunits.Force f[3];

flow Modelica.SIunits.Torque t[3];

end Frame_b;

The subsequent connectors Plug_Expanded and PlugExpanded2 are correct, but Plug_Expanded_Illegal
is illegal since the number of non-flow and flow variables is different if “ n” and “ m” are different. It is

not clear how a tool can detect in general that connectors such as Plug_Expanded_Illegal are illegal.
However, it is always possible to detect this defect after actual values of parameters and constants are
provided in the simulation model.

connector Plug_Expanded "correct connector"

parameter Integer m=3;

Real v[m];

flow Real i[m];

end Plug_Expanded;
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connector Plug_Expanded2 "correct connector"

parameter Integer m=3;

final parameter Integer n=m;

Real v[m];

flow Real i[n];

end Plug_Expanded2;

connector Plug_Expanded_Illegal "connector is illegal"

parameter Integer m=3;

parameter Integer n=m;

Real v[m];

flow Real i[n];

end Plug_Expanded_Illegal;

]

9.4 Equation Operators for Overconstrained Connection-Based
Equation Systems

There is a special problem regarding equation systems resulting from loops in connection graphs where the
connectors contain non-flow (i.e., potential) variables dependent on each other. When a loop structure
occurs in such a graph, the resulting equation system will be overconstrained, i.e., have more equations
than variables, since there are implicit constraints between certain non-flow variables in the connector in
addition to the connection equations around the loop. At the current state-of-the-art, it is not possible to
automatically eliminate the unneeded equations from the resulting equation system without additional
information from the model designer.

This section describes a set of equation operators for such overconstrained connection-based equation
systems, that makes it possible for the model designer to specify enough information in the model to
allow a Modelica environment to automatically remove the superfluous equations.

[Connectors may contain redundant variables. For example, the orientation between two coordinate
systems in 3 dimensions can be described by 3 independent variables. However, every description of
orientation with 3 variables has at least one singularity in the region where the variables are defined.
It is therefore not possible to declare only 3 variables in a connector. Instead n variables (n > 3) have
to be used. These variables are no longer independent from each other and there are n-3 constraint
equations that have to be fulfilled. A proper description of a redundant set of variables with constraint
equations does no longer have a singularity. A model that has loops in the connection structure formed by
components and connectors with redundant variables, may lead to a differential algebraic equation system
that has more equations than unknown variables. The superfluous equations are usually consistent with
the rest of the equations, i.e., a unique mathematical solution exists. Such models cannot be treated with
the currently known symbolic transformation methods. To overcome this situation, operators are defined
in order that a Modelica translator can remove the superfluous equations. This is performed by replacing
the equality equations of non-flow variables from connection sets by a reduced number of equations in
certain situations.

This section handles a certain class of overdetermined systems due to connectors that have a redundant
set of variables. There are other causes of overdetermined systems, e.g., explicit zero-sum equations for
flow variables, that are not handled by the method described below.]

9.4.1 Overconstrained Equation Operators for Connection Graphs

A type or record declaration may have an optional definition of function “equalityConstraint(..)”
that shall have the following prototype:

type Type // o v e r d e t e r m i n e d t y p e
extends <base type >;

function equalityConstraint // non−r e d u n d a n t e q u a l i t y
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input Type T1;

input Type T2;

output Real residue[ <n> ];

algorithm

residue := ...

end equalityConstraint;

end Type;

record Record

< declaration of record fields >

function equalityConstraint // non−r e d u n d a n t e q u a l i t y
input Record R1;

input Record R2;

output Real residue[ <n> ];

algorithm

residue := ...

end equalityConstraint;

end Record;

The “residue” output of the equalityConstraint(..) function shall have known size, say constant
n. The function shall express the equality between the two type instances T1 and T2 or the record
instances R1 and R2, respectively, with a non-redundant number n ≥ 0 of equations. The residues of
these equations are returned in vector “residue” of size n. The set of n non-redundant equations stating
that R1 = R2 is given by the equation (0 characterizes a vector of zeros of appropriate size):

Record R1 , R2;

equation

0 = Record.equalityConstraint(R1 ,R2);

[If the elements of a record Record are not independent from each other, the equation “ R1 = R2” contains
redundant equations].

A type class with an equalityConstraint function declaration is called overdetermined type. A record
class with an equalityConstraint function definition is called overdetermined record. A connector that
contains instances of overdetermined type and/or record classes is called overdetermined connector. An
overdetermined type or record may neither have flow components nor may be used as a type of flow
components. If an array is used as argument to any of the Connections.* functions it is treated as one
unit – there is no special treatment of this case – however, there is for connect – see section 9.1.

Every instance of an overdetermined type or record in an overdetermined connector is a node in a
virtual connection graph that is used to determine when the standard equation “R1 = R2” or when
the equation “0 = equalityConstraint(R1,R2)”has to be used for the generation of connect(...)

equations. The edges of the virtual connection graph are implicitly defined by “connect(..)” and
explicitly by Connections.branch(...) statements, see table below. Connections is a built-in package
in global scope containing built-in operators. Additionally, corresponding nodes of the virtual connection
graph have to be defined as roots or as potential roots with functions Connections.root(...) and
Connections.potentialRoot(...), respectively. In the following table, A and B are connector instances
that may be hierarchically structured, e.g., A may be an abbreviation for EnginePort.Frame.

connect(A,B); Defines optional spanning-tree edge from the overdetermined type
or record instances in connector instance A to the corresponding
overdetermined type or record instances in connector instance B
for a virtual connection graph. The types of the corresponding
overdetermined type or record instances shall be the same.
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Connections.branch(A.R,B.R)

;

Defines a required spanning-tree edge from the overdetermined
type or record instance R in connector instance A to the corre-
sponding overdetermined type or record instance R in connector
instance B for a virtual connection graph. This function can be
used at all places where a connect(..) statement is allowed [e.g.,
it is not allowed to use this function in a when-clause. This def-
inition shall be used if in a model with connectors A and B the
overdetermined records A.R and B.R are algebraically coupled in
the model, e.g., due to B.R = f(A.R, <other unknowns>)].

Connections.root(A.R); The overdetermined type or record instance R in connector in-
stance A is a (definite) root node in a virtual connection graph.
[This definition shall be used if in a model with connector A the
overdetermined record A.R is (consistently) assigned, e.g., from a
parameter expressions]

Connections.potentialRoot(

A.R);

Connections.potentialRoot(

A.R, priority = p);

The overdetermined type or record instance R in connector in-
stance A is a potential root node in a virtual connection graph
with priority “p” (p ≥ 0). If no second argument is provided, the
priority is zero. “p” shall be a parameter expression of type Inte-
ger. In a virtual connection subgraph without a Connections.root
definition, one of the potential roots with the lowest priority num-
ber is selected as root [This definition may be used if in a model
with connector A the overdetermined record A.R appears differen-
tiated – der(A.R) – together with the constraint equations of A.R,
i.e., a non-redundant subset of A.R maybe used as states]

b = Connections.isRoot(A.R)

;

Returns true, if the overdetermined type or record instance R in
connector instance A is selected as a root in the virtual connection
graph.

b = Connections.rooted(A.R)

;

b = rooted(A.R); //deprecated
If the operator Connections.rooted(A.R) is used, or the
equivalent but deprecated operator rooted(A.R), then there
must be exactly one statement Connections.branch(A.R,

B.R) involving A.R (the argument of Connections.rooted

must be the first argument of Connections.branch). In
that case Connections.rooted(A.R) returns true, if A.R is
closer to the root of the spanning tree than B.R; other-
wise false is returned. [This operator can be used to avoid
equation systems by providing analytic inverses, see Model-
ica.Mechanics.MultiBody.Parts.FixedRotation.]

[Note, that Connections.branch, Connections.root, Connections.potentialRoot do not generate
equations. They only generate nodes and edges in the virtual graph for analysis purposes.]

9.4.2 Converting the Connection Graph into Trees and Generating Connec-
tion Equations

Before connect(...) equations are generated, the virtual connection graph is transformed into a set
of spanning trees by removing optional spanning tree edges from the graph. This is performed in the
following way:

1. Every root node defined via the “Connections.root(..)” statement is a definite root of one
spanning tree.

2. The virtual connection graph may consist of sets of subgraphs that are not connected together.
Every subgraph in this set shall have at least one root node or one potential root node in a simulation
model. If a graph of this set does not contain any root node, then one potential root node in this
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subgraph that has the lowest priority number is selected to be the root of that subgraph. The
selection can be inquired in a class with function Connections.isRoot(..), see table above.

3. If there are n selected roots in a subgraph, then optional spanning-tree edges have to be removed
such that the result shall be a set of n spanning trees with the selected root nodes as roots.

After this analysis, the connection equations are generated in the following way:

1. For every optional spanning-tree edge [i.e., a connect(A,B) equation,] in one of the spanning trees,
the connection equations are generated according to section 9.2.

2. For every optional spanning-tree edge not in any of the spanning trees, the connection equations
are generated according to section 9.2, except for overdetermined type or record instances R. Here
the equations “0 = R.equalityConstraint(A.R,B.R)” are generated instead of “A.R = B.R”.

9.4.3 Examples of Overconstrained Connection Graphs

[Example:

Figure 9.2: Example of a virtual connection graph.
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]

9.4.3.1 An Overdetermined Connector for Power Systems

[An overdetermined connector for power systems based on the transformation theory of Park may be
defined as:

type AC_Angle "Angle of source , e.g. , rotor of generator"

extends Modelica.SIunits.Angle; // AC Angle i s a R e a l number
// w i t h u n i t = ” r a d ”
function equalityConstraint

input AC_Angle theta1;

input AC_Angle theta2;

output Real residue [0] "No constraints"

algorithm

/∗ make s u r e t h a t t h e t a 1 and t h e t a 2 from j o i n i n g e d g e s a r e i d e n t i c a l ∗/
assert(abs(theta1 - theta2) < 1.e -10, "Consistent angles");

end equalityConstraint;

end AC_Angle;

connector AC_Plug "3-phase alternating current connector"

import SI = Modelica.SIunits;
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AC_Angle theta;

SI.Voltage v[3] "Voltages resolved in AC_Angle frame";

flow SI.Current i[3] "Currents resolved in AC_Angle

frame";

end AC_Plug;

The currents and voltages in the connector are defined relatively to the harmonic, high-frequency signal
of a power source that is essentially described by angle theta of the rotor of the source. This allows much
faster simulations, since the basic high frequency signal of the power source is not part of the differential
equations. For example, when the source and the rest of the line operates with constant frequency (=
nominal case), then AC_Plug.v and AC_Plug.i are constant. In this case a variable step integrator can
select large time steps. An element, such as a 3-phase inductor, may be implemented as:

model AC_Inductor

parameter Real X[3,3], Y[3,3]; // component c o n s t a n t s
AC_plug p;

AC_plug n;

equation

Connections.branch(p.theta ,n.theta); // edge i n v i r t u a l g raph
// s i n c e n . t h e t a = p . t h e t a
n.theta = p.theta; // p a s s a n g l e t h e t a between p l u g s
omega = der (p.theta); // f r e q u e n c y o f s o u r c e
zeros (3) = p.i + n.i;

X*der (p.i) + omega*Y*p.i = p.v - n.v;

end AC_Inductor

At the place where the source frequency, i.e., essentially variable theta, is defined, a Connections.root

(..) must be present:

AC_plug p;

equation

Connections.root(p.theta);

der(p.theta) = 2* Modelica.Constants.pi *50 // 50 Hz ;

The graph analysis performed with the virtual connection graph identifies the connectors, where the
AC_Angle needs not to be passed between components, in order to avoid redundant equations.

9.4.3.2 An Overdetermined Connector for 3-dimensional Mechanical Systems

An overdetermined connector for 3-dimensional mechanical systems may be defined as:

type TransformationMatrix = Real [3 ,3];

type Orientation "Orientation from frame 1 to frame 2"

extendsTransformationMatrix;

function equalityConstraint

input Orientation R1 "Rotation from inertial frame to frame 1";

input Orientation R2 "Rotation from inertial frame to frame 2";

output Real residue [3];

protected

Orientation R_rel "Relative Rotation from frame 1 to frame 2";

algorithm

R_rel = R2*transpose(R1);

/∗ I f f r a m e 1 and f r a m e 2 a r e i d e n t i c a l , R r e l must be
t h e u n i t m a t r i x . I f t h e y a r e c l o s e t o g e t h e r , R r e l can be
l i n e a r i z e d y i e l d i n g :
R r e l = [ 1 , ph i3 , −p h i 2 ;
−ph i3 , 1 , p h i 1 ;
ph i2 , −ph i1 , 1 ] ;
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where ph i1 , ph i2 , p h i 3 a r e t h e s m a l l r o t a t i o n a n g l e s around
a x i s x , y , z o f f rame 1 t o r o t a t e f rame 1 i n t o f rame 2 .
The a t a n 2 i s used t o h a n d l e l a r g e r o t a t i o n a n g l e s , but d o e s not
m o d i f y t h e r e s u l t f o r s m a l l a n g l e s .
∗/

residue := { Modelica.Math.atan2(R_rel[2, 3], R_rel[1, 1]),

Modelica.Math.atan2(R_rel[3, 1], R_rel[2, 2]),

Modelica.Math.atan2(R_rel[1, 2], R_rel[3, 3])};

end equalityConstraint;

end Orientation;

connector Frame "3-dimensional mechanical connector"

import SI = Modelica.SIunits;

SI.Position r[3] "Vector from inertial frame to Frame";

Orientation R "Orientation from inertial frame to Frame";

flow SI.Force f[3] "Cut -force resolved in Frame";

flow SI.Torque t[3] "Cut -torque resolved in Frame";

end Frame;

A fixed translation from a frame A to a frame B may be defined as:

model FixedTranslation

parameter Modelica.SIunits.Position r[3];

Frame frame_a , frame_b;

equation

Connections.branch(frame_a.R , frame_b.R);

frame_b.r = frame_a.r + transpose(frame_a.R)*r;

frame_b.R = frame_a.R;

zeros (3) = frame_a.f + frame_b.f;

zeros (3) = frame_a.t + frame_b.t + cross(r, frame_b.f);

end FixedTranslation;

Since the transformation matrix frame_a.R is algebraically coupled with frame_b.R, an edge in the virtual
connection graph has to be defined. At the inertial system, the orientation is consistently initialized and
therefore the orientation in the inertial system connector has to be defined as root :

model InertialSystem

Frame frame_b;

equation

Connections.root(frame_b.R);

frame_b.r = zeros (3);

frame_b.R = identity (3);

end InertialSystem;

]
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Chapter 10

Arrays

An array can be regarded as a collection of values, all of the same type. Modelica arrays can be
multidimensional and are “rectangular,” which in the case of matrices has the consequence that all rows
in a matrix have equal length, and all columns have equal length.

Each array has a certain dimensionality, i.e., number of dimensions. The degenerate case of a scalar
variable is not really an array, but can be regarded as an array with zero dimensions. Vectors have one
dimension, matrices have two dimensions, etc. [So-called row vectors and column vectors do not exist in
Modelica and cannot be distinguished since vectors have only one dimension. If distinguishing these is de-
sired, row matrices and column matrices are available, being the corresponding two-dimensional entities.
However, in practice this is seldom needed since the usual matrix arithmetic and linear algebra operations
have been defined to give the expected behavior when operating on Modelica vectors and matrices.]

Modelica is a strongly typed language, which also applies to array types. The number of dimensions
of an array is fixed and cannot be changed at run-time [in order to permit strong type checking and
efficient implementation.] However, the sizes of array dimensions can be computed at run-time, [allowing
fairly generic array manipulation code to be written as well as interfacing to standard numeric libraries
implemented in other programming languages.]

An array is allocated by declaring an array variable or calling an array constructor. Elements of an array
can be indexed by Integer, Boolean, or enumeration values.

10.1 Array Declarations

The Modelica type system includes scalar number, vector, matrix (number of dimensions, ndim=2), and
arrays of more than two dimensions. [There is no distinguishing between a row and column vector.]

The following table shows the two possible forms of declarations and defines the terminology. C is a
placeholder for any class, including the built-in type classes Real, Integer, Boolean, String, and enumer-
ation types. The type of a dimension upper bound expression, e.g. n, m, p,... in the table below, need
to be a subtype of Integer or EB for a class EB that is an enumeration type or subtype of the Boolean
type. Colon (:) indicates that the dimension upper bound is unknown and is a subtype of Integer.

Upper and lower array dimension index bounds are described in section 10.1.1.

An array indexed by Boolean or enumeration type can only be used in the following ways:

• Subscripted using expressions of the appropriate type (i.e. Boolean or the enumerated type)

• Binding equations of the form x1 = x2 as well as declaration assignments of the form x1 := x2 are
allowed for arrays independent of whether the index types of dimensions are subtypes of Integer,
Boolean, or enumeration types.
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Table 10.1: General forms of declaration of arrays.

Modelica form 1 Modelica form 2 # dimensions Designation Explanation

Table 10.1: General forms of declaration of arrays.

Modelica form 1 Modelica form 2 # dimensions Designation Explanation
C x; C x; 0 Scalar Scalar
C[n] x; C x[n]; 1 Vector n – Vector
C[EB] x; C x[EB] 1 Vector Vector index by enumera-

tion or Boolean type EB
C[n, m] x; C x[n, m]; 2 Matrix n x m Matrix
C[n1, n2,. . . ,nk] x; C x[n1, n2,. . . ,nk]; k Array Array with k dimensions

(k>=0).

[The number of dimensions and the dimensions sizes are part of the type, and shall be checked for example
at redeclarations. Declaration form 1 displays clearly the type of an array, whereas declaration form 2 is
the traditional way of array declarations in languages such as Fortran, C, C++.

Real [:] v1, v2 // v e c t o r s v1 and v2 have unknown s i z e s . The a c t u a l s i z e s may
be d i f f e r e n t .

It is possible to mix the two declaration forms although it might be confusing.

Real [3,2] x[4 ,5]; // x has t y p e R e a l [ 4 , 5 , 3 , 2 ] ;

The reason for this order is given by examples such as:

type R3=Real [3];

R3 a;

R3 b[1]={a};

Real [3] c[1]=b;

Using a type for “a” and “b” in this way is normal, and substituting a type by its definition allow “c”.

A vector y indexed by enumeration values

type TwoEnums = enumeration(one ,two);

Real[TwoEnums] y;

]

Zero-valued dimensions are allowed, so: C x[0]; declares an empty vector and: C x[0,3]; an empty
matrix. [Special cases:

Table 10.2: Declaration of arrays as 1-vectors, row-vectors, or
column-vectors of arrays.

Modelica form 1 Modelica form 2 # dimensions Designation Explanation
C[1] x; C x[1]; 1 Vector 1 – Vector, repre-

senting a scalar
C[1,1] x; C x[1, 1]; 2 Matrix 1 x 1 – Matrix, rep-

resenting a scalar
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Table 10.2: Declaration of arrays as 1-vectors, row-vectors, or
column-vectors of arrays.

Modelica form 1 Modelica form 2 # dimensions Designation Explanation
C[n,1] x; C x[n, 1]; 2 Matrix n x 1 – Matrix, rep-

resenting a column
C[1,n] x; C x[1, n]; 2 Matrix 1 x n – Matrix, rep-

resenting a row

]

The type of an array of array is the multidimensional array which is constructed by taking the first
dimensions from the component declaration and subsequent dimensions from the maximally expanded
component type. A type is maximally expanded, if it is either one of the built-in types (Real, Integer,
Boolean, String, enumeration type) or it is not a type class. Before operator overloading is applied, a
type class of a variable is maximally expanded.

[Example:

type Voltage = Real(unit = "V");

type Current = Real(unit = "A");

connector Pin

Voltage v; // t y p e c l a s s o f v = V o l t a g e , t y p e o f v = R e a l
flow Current i; // t y p e c l a s s o f i = C u r r e n t , t y p e o f i = R e a l

end Pin;

type MultiPin = Pin [5];

MultiPin [4] p; // t y p e c l a s s o f p i s M u l t i P i n , t y p e o f p i s Pin [ 4 , 5 ] ;
type Point = Real [3];

Point p1 [10];

Real p2[10 ,3];

The components p1 and p2 have identical types.

p2[5] = p1[2]+ p2[4]; // e q u i v a l e n t t o p2 [ 5 , : ] = p1 [ 2 , : ] + p2 [ 4 , : ]
Real r[3] = p1[2]; // e q u i v a l e n t t o r [ 3 ] = p1 [ 2 , : ]

]

[Automatic assertions at simulation time:

Let A be a declared array and i be the declared maximum dimension size of the di-dimension, then an
assert statement assert(i>=0, ...) is generated provided this assertion cannot be checked at compile
time. It is a quality of implementation issue to generate a good error message if the assertion fails.

Let A be a declared array and i be an index accessing an index of the di-dimension. Then for every such
index-access an assert statement assert(i>=1 and i<=size(A,di), ... ) is generated, provided this
assertion cannot be checked at compile time.

For efficiency reasons, these implicit assert statement may be optionally suppressed.]

10.1.1 Array Dimension Lower and Upper Index Bounds

The lower and upper index bounds for a dimension of an array indexed by Integer, Boolean, or
enumeration values are as follows:

• An array dimension indexed by integers has a lower bound of 1 and an upper bound being the size
of the dimension.

• An array dimension indexed by Boolean values has the lower bound false and the upper bound
true.

• An array dimension indexed by enumeration values of the type E=enumeration(e1, e2, ..., en) has
the lower bound E.e1 and the upper bound E.en.
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10.2 Flexible Array Sizes

Regarding flexible array sizes and resizing of arrays in functions, see section 12.4.5.

10.3 Built-in Array Functions

Modelica provides a number of built-in functions that are applicable to arrays.

The following promote function cannot be used in Modelica, but is utilized below to define other array
operators and functions:

Table 10.3: Promote function (cannot be used in Modelica).

promote(A,n) Fills dimensions of size 1 from the right to array A upto
dimension n, where ”n >= ndims(A)” is required. Let C
= promote(A,n), with nA=ndims(A), then ndims(C) = n,
size(C,j) = size(A,j) for 1 <= j <= nA, size(C,j) = 1 for
nA+1 ¡= j ¡= n, C[i 1, ..., i nA, 1, ..., 1] =A[i 1, ..., i nA]

[The function promote cannot be used in Modelica, because the number of dimensions of the returned
array cannot be determined at compile time if n is a variable. Below, promote is only used for constant
n.

Some examples of using the functions defined in the following section 10.3.1 to section 10.3.5:

Real x[4,1,6];

size(x,1) = 4;

size(x); // v e c t o r w i t h e l e m e n t s 4 , 1 , 6
size (2*x+x ) = size(x);

Real [3] v1 = fill(1.0, 3);

Real [3,1] m = matrix(v1);

Real [3] v2 = vector(m);

Boolean check [3,4] = fill(true , 3, 4);

]

10.3.1 Array Dimension and Size Functions

The following built-in functions for array dimensions and dimension sizes are provided:

Table 10.4: Built-in array dimension and size functions.

Modelica Explanation
ndims(A) Returns the number of dimensions k of expression A, with

k >= 0.
size(A,i) Returns the size of dimension i of array expression A where

i shall be > 0 and <= ndims(A).
size(A) Returns a vector of length ndims(A) containing the dimen-

sion sizes of A.

10.3.2 Dimensionality Conversion Functions

The following built-in conversion functions convert scalars, vectors, and arrays to scalars, vectors, or
matrices by adding or removing 1-sized dimensions.
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Table 10.5: Built-in dimensionality conversion functions.

Modelica Explanation
scalar(A) Returns the single element of array A. size(A,i) = 1 is re-

quired for 1 <= i <= ndims(A).
vector(A) Returns a 1-vector, if A is a scalar and otherwise returns

a vector containing all the elements of the array, provided
there is at most one dimension size > 1.

matrix(A) Returns promote(A,2), if A is a scalar or vector and other-
wise returns the elements of the first two dimensions as a
matrix. size(A,i) = 1 is required for 2 < i <= ndims(A).

10.3.3 Specialized Array Constructor Functions

An array constructor function constructs and returns an array computed from its arguments. Most of
the constructor functions in the table below construct an array by filling in values according to a certain
pattern, in several cases just giving all array elements the same value. The general array constructor
with syntax array (. . . ) or {. . . } is described in section 10.4.

Table 10.6: Specialized array constructor functions.

Modelica Explanation
identity(n) Returns the n x n Integer identity matrix, with ones on the diagonal and

zeros at the other places.
diagonal(v) Returns a square matrix with the elements of vector v on the diagonal

and all other elements zero.
zeros(n1,n2,n3,...) Returns the n1 x n2 x n3 x ... Integer array with all elements equal

to zero (ni >= 0). The function need one or more arguments, that is
zeros() is not legal.

ones(n1,n2,n3,...) Return the n1 x n2 x n3 x ... Integer array with all elements equal to
one (ni >=0 ). The function need one or more arguments, that is ones()
is not legal.

fill(s,n1,n2,n3,...) Returns the n1 x n2 x n3 x ... array with all elements equal to scalar or
array expression s (ni >= 0). The returned array has the same type as
s. Recursive definition: fill(s,n1,n2,n3,...) = fill(fill(s,n2,n3, ...),
n1,); fill(s,n)={s,s,. . . , s}
The function needs two or more arguments; that is fill(s) is not legal.

linspace(x1,x2,n) Returns a Real vector with n equally spaced elements, such that
v=linspace(x1,x2,n),
v[i] = x1 + (x2-x1)*(i-1)/(n-1)for 1 <= i <= n. It is required
that n >= 2. The arguments x1 and x2 shall be numeric scalar expres-
sions.

10.3.4 Reduction Functions and Operators

A reduction function “reduces” an array (or several scalars) to one value (normally a scalar - but the
sum reduction function may give an array as result and also be applied to an operator record). Note that
none of these operators (particularly min and max) generate events themselves (but arguments could
generate events). The restriction on the type of the input in section 10.3.4.1 for reduction expressions
also apply to the array elements/scalar inputs for the reduction operator with the same name.

The sum reduction function (both variants) may be applied to an operator record, provided that the
operator record defines ’0’ and ’+’. It is then assumed to form an additive group.

The following reduction functions are available:
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Table 10.7: Array reduction functions and operators.

Modelica Explanation
min(A) Returns the least element of array expression A; as defined by <.
min(x,y) Returns the least element of the scalars x and y; as defined by <.
min(e(i, ..., j)

for i in u,

..., j in v)

Also described in section 10.3.4.1
Returns the least value (as defined by <) of the scalar expression
e(i, ..., j) evaluated for all combinations of i in u, ..., j in v:

max(A) Returns the greatest element of array expression A; as defined by
>.

max(x,y) Returns the greatest element of the scalars x and y; as defined by
>.

max(e(i, ..., j)

for i in u,

..., j in v)

Also described in section 10.3.4.1 Returns the greatest value (as
defined by >) of the scalar expression e(i, ..., j) evaluated for all
combinations of i in u, ..., j in v:

sum(A)
Returns the scalar sum of all the elements of array expression:
=sum(A[j,k,...])for j,k,...

sum(e(i, ..., j)

for i in u,

..., j in v)

Also described in section 10.3.4.1
Returns the sum of the expression e(i, ..., j) evaluated for all com-
binations of i in u, ..., j in v: For Integer indexing this is e(u[1],...
,v[1])+e(u[2],... ,v[1])+... +e(u[end],... ,v[1])+...+e(u[end],...
,v[end]) For non-Integer indexing this uses all valid indices in-
stead of 1..end. The type of sum(e(i, ..., j) for i in u, ..., j in v) is
the same as the type of e(i,...j).

product(A)

Returns the scalar product of all the elements of array expression
A.
=product(A[j,k,...] for j,k,...

product(e(i, ..., j)

for i in u,

..., j in v)

Also described in section 10.3.4.1.
Returns the product of the scalar expression e(i, ..., j) evaluated
for all combinations of i in u, ..., j in v: For Integer indexing this
is

e(u[1],... ,v[1])*e(u[2],... ,v[1])*...

*(u[end],... ,v[1])*...*e(u[end],... ,v[end])

For non-Integer indexing this uses all valid indices instead of
1..end. The type of product(e(i, ..., j) for i in u, ..., j in v) is the
same as the type of e(i,...j).

10.3.4.1 Reduction Expressions

An expression:

function-name "(" expression1 for iterators ")"

is a reduction-expression. The expressions in the iterators of a reduction-expression shall be vector
expressions. They are evaluated once for each reduction-expression, and are evaluated in the scope
immediately enclosing the reduction-expression.

For an iterator:

IDENT in expression2

the loop-variable, IDENT, is in scope inside expression1. The loop-variable may hide other variables, as
in for-clauses. The result depends on the function-name, and currently the only legal function-names
are the built-in operators array, sum, product, min, and max. For array, see section 10.4. If function
-name is sum, product, min, or max the result is of the same type as expression1 and is constructed
by evaluating expression1 for each value of the loop-variable and computing the sum, product, min,
or max of the computed elements. For deduction of ranges, see section 11.2.2.1; and for using types as
ranges see section 11.2.2.2.
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Table 10.8: Reduction expressions with iterators.

Function-name Restriction on expression1 Result if expression2 is empty
sum Integer or Real zeros(...)

product Scalar Integer or Real 1

min Scalar enumeration, Boolean, In-
teger or Real

Greatest value of type
( Modelica.Constants.inf for Real)

max Scalar enumeration, Boolean, In-
teger or Real

Least value of type
( -Modelica.Constants.inf for Real)

[Example:

sum(i for i in 1:10) // G i v e s
∑10

i=1 i =1+2+ . . . +10=55
// Read i t a s : compute t h e sum o f i f o r i i n t h e r a n g e 1 t o 10 .
sum(i^2 for i in {1,3,7,6}) // G i v e s

∑
i∈

{
1 3 7 6

} i2 =1+9+49+36=95

{product(j for j in 1:i) for i in 0:4} // G i v e s {1 , 1 , 2 , 6 , 2 4}
max(i^2 for i in {3,7,6}) // G i v e s 49

]

10.3.5 Matrix and Vector Algebra Functions

The following set of built-in matrix and vector algebra functions are available. The function transpose can
be applied to any matrix. The functions outerProduct, symmetric, cross and skew require Real/Integer
vector(s) or matrix as input(s) and returns a Real vector or matrix:

Table 10.9: Matrix and vector algebra functions.

Modelica Explanation
transpose(A) Permutes the first two dimensions of array A. It is an error, if array A does

not have at least 2 dimensions.
outerProduct(v1,v2

)

Returns the outer product of vectors v1 and v2 ( = matrix(v1)*transpose(
matrix(v2) ) ).

symmetric(A) Returns a matrix where the diagonal elements and the elements above the
diagonal are identical to the corresponding elements of matrix A and where
the elements below the diagonal are set equal to the elements above the
diagonal of A, i.e., B := symmetric(A)-> B[i,j] := A[i,j], if i <= j

, B[i,j] := A[j,i], if i > j.
cross(x,y) Returns the cross product of the 3-vectors x and y, i.e. cross(x,y)=

vector( [ x[2]*y[3]-x[3]*y[2]; x[3]*y[1]-x[1]*y[3]; x[1]*y[2]-

x[2]*y[1] ] );

skew(x) Returns the 3 x 3 skew symmetric matrix associated with a 3-vector,
i.e., cross(x,y)= skew(x)*y; skew(x)= [0, -x[3], x[2]; x[3], 0,

-x[1]; -x[2], x[1], 0];

10.4 Vector, Matrix and Array Constructors

The constructor function array(A,B,C,...) constructs an array from its arguments according to the
following rules:

• Size matching: All arguments must have the same sizes, i.e., size(A)=size(B)=size(C)=...

• All arguments must be type compatible expressions (section 6.6) giving the type of the elements.
The data type of the result array is the maximally expanded type of the arguments. Real and
Integer subtypes can be mixed resulting in a Real result array where the Integer numbers have
been transformed to Real numbers.
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• Each application of this constructor function adds a one-sized dimension to the left in the result
compared to the dimensions of the argument arrays, i.e., ndims(array(A,B,C))= ndims(A)+ 1 =

ndims(B)+ 1, ...

• {A, B, C, ...} is a shorthand notation for array(A, B, C, ...).

• There must be at least one argument [i.e., array() or {} is not defined ].

[Examples:

{1,2,3} is a 3-vector of type Integer.

{{11 ,12 ,13}, {21 ,22 ,23}} is a 2x3 matrix of type Integer

{{{1.0, 2.0, 3.0}}} is a 1x1x3 array of type Real.

Real [3] v = array(1, 2, 3.0);

type Angle = Real(unit="rad");

parameter Angle alpha = 2.0; // t y p e o f a l p h a i s R e a l .
// a r r a y ( a lpha , 2 , 3 . 0 ) o r { a lp ha , 2 , 3 . 0 } i s a 3− v e c t o r o f t y p e R e a l .
Angle [3] a = {1.0 , alpha , 4}; // t y p e o f a i s R e a l [ 3 ] .

]

10.4.1 Array Constructor with Iterators

An expression:

"{" expression for iterators "}"

or

array "(" expression for iterators ")"

is an array constructor with iterators. The expressions inside the iterators of an array constructor shall
be vector expressions. They are evaluated once for each array constructor, and are evaluated in the scope
immediately enclosing the array constructor.

For an iterator:

IDENT in array_expression

the loop-variable, IDENT, is in scope inside expression in the array construction. The loop-variable may
hide other variables, as in for-clauses. The loop-variable has the same type as the type of the elements
of array expression; and can be simple type as well as a record type. The loop-variable will have the
same type for the entire loop - i.e. for an array expression {1,3.2} the iterator will have the type of the
type-compatible expression (Real) for all iterations. For deduction of ranges, see section 11.2.2.1; and
for using types as range see section 11.2.2.2.

10.4.1.1 Array Constructor with One Iterator

If only one iterator is used, the result is a vector constructed by evaluating expression for each value of
the loop-variable and forming an array of the result.

[Example:

array(i for i in 1:10)

// G i v e s t h e v e c t o r 1 : 1 0 ={1 , 2 , 3 , . . . , 1 0}

{r for r in 1.0 : 1.5 : 5.5}

// G i v e s t h e v e c t o r 1 . 0 : 1 . 5 : 5 . 5 ={1 .0 , 2 .5 , 4 .0 , 5 . 5 }

{i^2 for i in {1,3,7,6}}

// G i v e s t h e v e c t o r {1 , 9 , 49 , 36}
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10.4.1.2 Array Constructor with Several Iterators

The notation with several iterators is a shorthand notation for nested array constructors. The notation
can be expanded into the usual form by replacing each ’,’ by ’} for’ and prepending the array constructor
with a ’{’.

[Example:

Real hilb [: ,:]= { 1/(i+j-1) for i in 1:n, j in 1:n};

Real hilb2 [: ,:]={{ 1/(i+j-1) for j in 1:n} for i in 1:n};

10.4.2 Array Concatenation

The function cat(k,A,B,C,...) concatenates arrays A,B,C,... along dimension k according to the fol-
lowing rules:

• Arrays A, B, C, ... must have the same number of dimensions, i.e., ndims(A) = ndims(B) = ...

• Arrays A, B, C, ... must be type compatible expressions (section 6.6) giving the type of the elements
of the result. The maximally expanded types should be equivalent. Real and Integer subtypes can
be mixed resulting in a Real result array where the Integer numbers have been transformed to Real
numbers.

• k has to characterize an existing dimension, i.e., 1 <= k <= ndims(A) = ndims(B) = ndims(C);
k shall be a parameter expression of Integer type.

• Size matching: Arrays A, B, C, ... must have identical array sizes with the exception of the size of
dimension k, i.e., size(A,j) = size(B,j), for 1 <= j <= ndims(A) and j 6= k.

[Examples:

Real [2,3] r1 = cat(1, {{1.0, 2.0, 3}}, {{4, 5, 6}});

Real [2,6] r2 = cat(2, r1, 2*r1);

]

Concatenation is formally defined according to:

Let R = cat(k,A,B,C,...), and let n = ndims(A) = ndims(B) = ndims(C) =

...., then

size(R,k) = size(A,k) + size(B,k) + size(C,k) + ...

size(R,j) = size(A,j) = size(B,j) = size(C,j) = .... , for 1 <=j <= n and j <>

k.

R[i_1 , ... , i_k , ... , i_n] = A[i_1 , ... , i_k , ... , i_n], for i_k <= size(A,k)

,

R[i_1 , ... , i_k , ... , i_n] = B[i_1 , ... , i_k - size(A,i), ... , i_n], for i_k

<= size(A,k) + size(B,k),

....

where 1 <= i_j <= size(R,j) for 1 <= j <= n.

10.4.2.1 Array Concatenation along First and Second Dimensions

For convenience, a special syntax is supported for the concatenation along the first and second dimensions.

• Concatenation along first dimension:
[A; B; C; ...] = cat(1, promote(A,n), promote(B,n), promote(C,n), ...) where n = max

(2, ndims(A), ndims(B), ndims(C), ....). If necessary, 1-sized dimensions are added to the
right of A, B, C before the operation is carried out, in order that the operands have the same
number of dimensions which will be at least two.
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• Concatenation along second dimension:
[A, B, C, ...] = cat(2, promote(A,n), promote(B,n), promote(C,n), ...) where n = max

(2, ndims(A), ndims(B), ndims(C), ....). If necessary, 1-sized dimensions are added to the
right of A, B, C before the operation is carried out, especially that each operand has at least two
dimensions.

• The two forms can be mixed. [...,...] has higher precedence than [...;...], e.g., [a, b; c,

d] is parsed as [[a,b];[c,d]].

• [A] = promote(A,max(2,ndims(A))), i.e., [A] = A, if A has 2 or more dimensions, and it is a
matrix with the elements of A, if A is a scalar or a vector.

• There must be at least one argument (i.e. [] is not defined)

[Examples:

Real s1, s2, v1[n1], v2[n2], M1[m1,n],

M2[m2,n], M3[n,m1], M4[n,m2], K1[m1,n,k],

K2[m2,n,k];

[v1;v2] is a (n1+n2) x 1 matrix

[M1;M2] is a (m1+m2) x n matrix

[M3,M4] is a n x (m1+m2) matrix

[K1;K2] is a (m1+m2) x n x k array

[s1;s2] is a 2 x 1 matrix

[s1,s1] is a 1 x 2 matrix

[s1] is a 1 x 1 matrix

[v1] is a n1 x 1 matrix

Real [3] v1 = array(1, 2, 3);

Real [3] v2 = {4, 5, 6};

Real [3,2] m1 = [v1, v2];

Real [3,2] m2 = [v1, [4;5;6]]; // m1 = m2
Real [2,3] m3 = [1, 2, 3; 4, 5, 6];

Real [1,3] m4 = [1, 2, 3];

Real [3,1] m5 = [1; 2; 3];

]

10.4.3 Vector Construction

Vectors can be constructed with the general array constructor, e.g.,

Real [3] v = {1,2,3}.

The range vector operator or colon operator of simple-expression can be used instead of or in combination
with this general constructor to construct Real, Integer, Boolean or enumeration type vectors. Semantics
of the colon operator:

• j : k is the Integer vector {j, j+1, ..., k}, if j and k are of type Integer.

• j : k is the Real vector {j, j+1.0, ... n}, with n = floor(k-j), if j and/or k are of type Real.

• j : k is a Real, Integer, Boolean, or enumeration type vector with zero elements, if j > k.

• j : d : k is the Integer vector {j, j+d, ..., j+n*d}, with n = div(k – j, d), if j, d, and k are of type
Integer.

• j : d : k is the Real vector {j, j+d, ..., j+n*d}, with n = floor((k-j)/d), if j, d, or k are of type
Real. In order to avoid rounding issues for the length it is recommended to use {j+d*i for i in 0:n}
or linspace(j, k, n+1) – if the number of elements are known.

• j : d : k is a Real or Integer vector with zero elements, if d > 0 and j > k or if d < 0 and j < k.

• false : true is the Boolean vector {false, true}.

• j:j is {j} if j is Real, Integer, Boolean, or enumeration type.
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• E.ei : E.ej is the enumeration type vector { E.ei, ... E.ej} where E.ej> E.ei, and ei and ej belong
to some enumeration type E=enumeration(...ei,...ej,...).

[Examples:

Real v1[5] = 2.7 : 6.8;

Real v2[5] = {2.7, 3.7, 4.7, 5.7, 6.7}; // = same a s v1
Boolean b1[2] = false:true;

Colors = enumeration (red ,blue ,green);

Colors ec[3] = Colors.red : Colors.green;

]

10.5 Array Indexing

The array indexing operator name[...] is used to access array elements for retrieval of their values or for
updating these values. An indexing operation is subject to upper and lower array dimension index bounds
(section 10.1.1). [An indexing operation is assumed to take constant time, i.e., largely independent of
the size of the array.] The indexing operator takes two or more operands, where the first operand is the
array to be indexed and the rest of the operands are index expressions:

arrayname[indexexpr1, indexexpr2, ...]

A colon is used to denote all indices of one dimension. A vector expression can be used to pick out
selected rows, columns and elements of vectors, matrices, and arrays. The number of dimensions of the
expression is reduced by the number of scalar index arguments. If the number of index arguments is
smaller than the number of dimensions of the array, the trailing indices will use ”:”.

It is also possible to use the array access operator to assign to element/elements of an array in algorithm
sections. If the index is an array the assignments take place in the order given by the index array. For
assignments to arrays and elements of arrays, the entire right-hand side and the index on the left-hand
side are evaluated before any element is assigned a new value.

[Examples:

a[:, j] is a vector of the j-th column of a,

a[j] is a vector of the j-th row of a: a[j, :]

a[j : k] is {[a[j], a[j+1], ... , a[k]}

a[:,j : k] is [a[:,j], a[:,j+1], ... , a[:,k]],

v[2:2:8] = v[ {2,4,6,8} ] .

v[{j,k}]:={2 ,3}; // Same a s v [ j ] : = 2 ; v [ k ] : = 3 ;
v[{1 ,1}]:={2 ,3}; // Same a s v [ 1 ] : = 3 ;

if ] x is a vector, x[1] is a scalar, but the slice x[1:5] is a vector (a vector-valued or colon index
expression causes a vector to be returned).

]

[Examples given the declaration x[n,m], v[k], z[i,j,p]:

Table 10.10: Examples of scalars vs. array slices created with the
colon index.

Expression # dimensions Type of value
x[1, 1] 0 Scalar
x[:, 1] 1 n – Vector
x[1, :] or x[1] 1 m – Vector
v[1:p] 1 p – Vector
x[1:p, :] 2 p x m – Matrix
x[1:1, :] 2 1 x m - ”row” matrix
x[{1, 3, 5\}, :] 2 3 x m – Matrix

132



Table 10.10: Examples of scalars vs. array slices created with the
colon index.

Expression # dimensions Type of value
x[: , v] 2 n x k – Matrix
z[: , 3, :] 2 i x p – Matrix
x[scalar([1]), :] 1 m – Vector
x[vector([1]), :] 2 1 x m - ”row” matrix

]

10.5.1 Indexing with Boolean or Enumeration Values

Arrays can be indexed using values of enumeration types or the Boolean type, not only by integers. The
type of the index should correspond to the type used for declaring the dimension of the array.

[Example:

type ShirtSizes = enumeration(small , medium , large , xlarge);

Real[ShirtSizes] w;

Real[Boolean] b2;

algorithm

w[ShirtSizes.large] := 2.28; // A s s i g n a v a l u e t o an e l e m e n t o f w
b2[true] := 10.0;

b2[ShirtSizes.medium] := 4; // E r r o r , b2 was d e c l a r e d w i t h Boo lean d i m e n s i o n
w[1] := 3; // E r r o r , w was d e c l a r e d w i t h S h i r t S i z e s d i m e n s i o n

]

10.5.2 Indexing with end

The expression end may only appear inside array subscripts, and if used in the i:th subscript of an array
expression A it is equivalent to size(A,i) provided indices to A are a subtype of Integer. If used inside
nested array subscripts it refers to the most closely nested array.

[Examples:

A[end -1,end] is A[size(A,1) -1,size(A,2)]

A[v[end ],end] is A[v[size(v,1)],size(A,2)] // since the first end is referring to
end of v.

]

10.6 Scalar, Vector, Matrix, and Array Operator Functions

The mathematical operations defined on scalars, vectors, and matrices are the subject of linear algebra.

In all contexts that require an expression which is a subtype of Real, an expression which is a subtype
of Integer can also be used; the Integer expression is automatically converted to Real.

The term numeric or numeric class is used below for a subtype of the Real or Integer type classes.

10.6.1 Equality and Assignment

Equality a=b and assignment a:=b of scalars, vectors, matrices, and arrays is defined element-wise and
require both objects to have the same number of dimensions and corresponding dimension sizes. The
operands need to be type equivalent. This is legal for the simple types and all types satisfying the
requirements for a record, and is in the latter case applied to each component-element of the records.
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Table 10.11: Equality and assignment of arrays and scalars.

Type of a Type of b Result of a = b Operation (j=1:n, k=1:m)
Scalar Scalar Scalar a = b
Vector[n] Vector[n] Vector[n] a[j] = b[j]
Matrix[n, m] Matrix[n, m] Matrix[n, m] a[j, k] = b[j, k]
Array[n, m, . . . ] Array[n, m, . . . ] Array[n, m, . . . ] a[j, k, . . . ] = b[j, k, . . . ]

10.6.2 Array Element-wise Addition, Subtraction, and String Concatenation

Addition a+b and subtraction a-b of numeric scalars, vectors, matrices, and arrays is defined element-
wise and require size(a)=size(b) and a numeric type for a and b. Unary plus and minus are defined
element-wise. Addition a+b of string scalars, vectors, matrices, and arrays is defined as element-wise
string concatenation of corresponding elements from a and b, and require size(a)=size(b).

Table 10.12: Array addition, subtraction, and string concatenation.

Type of a Type of b Result of a +/- b Operation c := a +/- b (j=1:n, k=1:m)
Scalar Scalar Scalar c := a +/- b
Vector[n] Vector[n] Vector[n] c[j] := a[j] +/- b[j]
Matrix[n, m] Matrix[n, m] Matrix[n, m] c[j, k] := a[j, k] +/- b[j, k]
Array[n, m, . . . ] Array[n, m, . . . ] Array[n, m, . . . ] c [j, k, . . . ] := a[j, k, . . . ] +/- b[j, k, . . . ]

Element-wise addition a.+b and subtraction a.-b of numeric scalars, vectors, matrices or arrays a and
b requires a numeric type class for a and b and either size(a) = size(b) or scalar a or scalar b. Element-
wise addition a.+b of string scalars, vectors, matrices, and arrays is defined as element-wise string
concatenation of corresponding elements from a and b, and require either size(a) = size(b) or scalar a or
scalar b.

Table 10.13: Array element-wise addition, subtraction, and string
concatenation.

Type of a Type of b Result of a .+/.- b Operation c := a .+/.- b (j=1:n, k=1:m)
Scalar Scalar Scalar c := a +/- b
Scalar Array[n, m, . . . ] Array[n, m, . . . ] c[j, k, . . . ] := a +/- b[j, k, . . . ]
Array[n, m, . . . ] Scalar Array[n, m, . . . ] c[j, k, . . . ] := a[j, k, . . . ] +/- b
Array[n, m, . . . ] Array[n, m, . . . ] Array[n, m, . . . ] c [j, k, . . . ] := a[j, k, . . . ] +/- b[j, k, . . . ]

Table 10.14: Unary operators. The element-wise (.+, .-) and nor-
mal (+, -) operators give the same results.

Type of a Result of +/- a Operation c := +/- a (j=1:n, k=1:m)
Scalar Scalar c := +/- a
Array[n, m, . . . ] Array[n, m, . . . ] c[j, k, . . . ] := +/-a[j, k, . . . ]

10.6.3 Array Element-wise Multiplication

Scalar multiplication s*a or a*s with numeric scalar s and numeric scalar, vector, matrix or array a is
defined element-wise:

Table 10.15: Scalar and scalar to array multiplication of numeric
elements

Type of s Type of a Type of s* a and a*s Operation c := s*a or c := a*s (j=1:n, k=1:m)
Scalar Scalar Scalar c := s * a
Scalar Vector [n] Vector [n] c[j] := s* a[j]
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Table 10.15: Scalar and scalar to array multiplication of numeric
elements

Type of s Type of a Type of s* a and a*s Operation c := s*a or c := a*s (j=1:n, k=1:m)
Scalar Matrix [n, m] Matrix [n, m] c[j, k] := s* a[j, k]
Scalar Array[n, m, ...] Array [n, m, ...] c[j, k, ...] := s*a[j, k, ...]

Element-wise multiplication a.*b of numeric scalars, vectors, matrices or arrays a and b requires a
numeric type class for a and b and either size(a) = size(b) or scalar a or scalar b.

Table 10.16: Array element-wise multiplication

Type of a Type of b Type of a .* b Operation c:=a .* b (j=1:n, k=1:m)
Scalar Scalar Scalar c := a * b
Scalar Array[n, m, . . . ] Array[n, m, . . . ] c[j, k, . . . ] := a* b[j, k, . . . ]
Array[n, m, . . . ] Scalar Array[n, m, . . . ] c[j, k, . . . ] := a[j, k, . . . ]* b
Array[n, m, . . . ] Array[n, m, ...] Array [n, m, ...] c[j, k, . . . ] := a[j, k, . . . ]* b[j, k, . . . ]

10.6.4 Matrix and Vector Multiplication of Numeric Arrays

Multiplication a*b of numeric vectors and matrices is defined only for the following combinations:

Table 10.17: Matrix and vector multiplication of arrays with nu-
meric elements.

Type of a Type of b Type of a* b Operation c := a*b
Vector [n] Vector [n] Scalar c := sumk(a[k]*b[k]), k=1:n
Vector [n] Matrix [n, m] Vector [m] c[j] := sumk(a[k]*b[k, j]), j=1:m, k=1:n
Matrix [n, m] Vector [m] Vector [n] c[j] := sumk(a[j, k]*b[k])
Matrix [n, m] Matrix [m, p] Matrix [n, p] c[i, j] = sumk(a[i, k]*b[k, j]), i=1:n, k=1:m, j=1:p

[Example:

Real A[3,3], x[3], b[3], v[3];

A*x = b;

x*A = b; // same a s t r a n s p o s e ( [ x ] ) ∗A∗b
[v]* transpose ([v]) // o u t e r p r o d u c t
v*A*v // s c a l a r
tranpose ([v])*A*v // v e c t o r w i t h one e l e m e n t

]

10.6.5 Division of Scalars or Numeric Arrays by Numeric Scalars

Division a/s of numeric scalars, vectors, matrices, or arrays a and numeric scalars s is defined element-
wise. The result is always of real type. In order to get integer division with truncation use the function
div.

Table 10.18: Division of scalars and arrays by numeric elements.

Type of a Type of s Result of a / s Operation c := a / s (j=1:n, k=1:m)
Scalar Scalar Scalar c := a / s
Vector[n] Scalar Vector[n] c[k] := a[k] / s
Matrix[n, m] Scalar Matrix[n, m] c[j, k] := a[j, k] / s
Array[n, m, . . . ] Scalar Array[n, m, . . . ] c[j, k, . . . ] := a[j, k, . . . ] / s
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10.6.6 Array Element-wise Division

Element-wise division a./b of numeric scalars, vectors, matrices or arrays a and b requires a numeric
type class for a and b and either size(a) = size(b) or scalar a or scalar b. The result is always of real
type. In order to get integer division with truncation use the function div.

Table 10.19: Element-wise division of arrays

Type of a Type of b Type of a ./ b Operation c:=a ./ b (j=1:n, k=1:m)
Scalar Scalar Scalar c := a / b
Scalar Array[n, m, . . . ] Array[n, m, . . . ] c[j, k, . . . ] := a / b[j, k, . . . ]
Array[n, m, . . . ] Scalar Array[n, m, . . . ] c[j, k, . . . ] := a[j, k, . . . ] / b
Array[n, m, . . . ] Array[n, m, ...] Array [n, m, ...] c[j, k, . . . ] := a[j, k, . . . ] / b[j, k, . . . ]

[Element-wise division by scalar (./) and division by scalar (/) are identical: a./s = a/s.

Example:

2./[1 ,2;3 ,4] // e r r o r , s i n c e 2 . 0 / [ 1 , 2 ; 3 , 4 ]
2 ./[1 ,2;3 ,4] // f i n e , e l ement−w i s e d i v i s i o n

This is a consequence of the parsing rules, since 2. is a lexical unit. Using a space after the literal solves
the problem.]

10.6.7 Exponentiation of Scalars of Numeric Elements

Exponentiation ”a^b” is defined as pow(double a,double b) in the ANSI C library if both ”a” and ”b”
are Real scalars. A Real scalar value is returned. If ”a” or ”b” are Integer scalars, they are automatically
promoted to ”Real”. Consequences of exceptional situations, such as (a==0.0 and b<=0.0, a<0 and b
is not an integer) or overflow are undefined

Element-wise exponentiation a.^b of numeric scalars, vectors, matrices, or arrays a and b requires a
numeric type class for a and b and either size(a) = size(b) or scalar a or scalar b.

Table 10.20: Element-wise exponentiation of arrays

Type of a Type of b Type of a .ˆ b Operation c:=a .ˆ b (j=1:n, k=1:m)
Scalar Scalar Scalar c := a ˆ b
Scalar Array[n, m, . . . ] Array[n, m, . . . ] c[j, k, . . . ] := a ˆ b[j, k, . . . ]
Array[n, m, . . . ] Scalar Array[n, m, . . . ] c[j, k, . . . ] := a[j, k, . . . ] ˆ b
Array[n, m, . . . ] Array[n, m, ...] Array [n, m, ...] c[j, k, . . . ] := a[j, k, . . . ] ˆ b[j, k, . . . ]

[Example:

2.^[1 ,2;3 ,4] // e r r o r , s i n c e 2 . 0 ˆ [ 1 , 2 ; 3 , 4 ]
2 .^[1 ,2;3 ,4] // f i n e , e l e m e n t w i s e e x p o n e n t i a t i o n

This is a consequence of the parsing rules, i.e. since 2. could be a lexical unit it seen as a lexical unit;
using a space after literals solves the problem.]

10.6.8 Scalar Exponentiation of Square Matrices of Numeric Elements

Exponentiation a^s is defined if a is a square numeric matrix and s is a scalar as a subtype of Integer
with s>=0. The exponentiation is done by repeated multiplication

(e.g.:
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a^3 = a*a*a; a^0 = identity(size(a,1));

assert(size(a,1)==size(a,2),"Matrix must be square");

a^1 = a;

[Non-Integer exponents are forbidden, because this would require computing the eigenvalues and eigen-
vectors of “a” and this is no longer an elementary operation].

10.6.9 Slice Operation

The following holds for slice operations:

• If a is an array containing scalar components and m is a component of those components, the
expression a.m is interpreted as a slice operation. It returns the array of components {a{[1].m,

...}.

• If m is also an array component, the slice operation is valid only if size(a[1].m)=size(a[2].m)=
...

• The slicing operation can be combined with indexing, e.g. a.m[1]. It returns the array of compo-
nents {a[1].m[1], a[2].m[1], ...}, and does not require that size(a[1].m)=size(a[2].m).
The number of subscripts on m must not be greater than the number of array dimension for m
(the number can be smaller, in which case the missing trailing indices are assumed to be ”:”), and
is only valid if size(a[1].m[...])=size(a[2].m[...])..

[Example: The size-restriction on the operand is only applicable if the indexing on the second operand
uses vectors or colon as in the example:

constant Integer m=3;

Modelica.Blocks.Continuous.LowpassButterworth tf[m](n=2:(m+1));

Real y[m];

Real y2,y3;

equation

// E x t r a c t t h e x1 s l i c e even though d i f f e r e n t x1 ’ s have d i f f e r e n t l e n g t h s
y=tf.x1 [1] ; // L e g a l , ={ t f [ 1 ] . x 1 [ 1 ] , t f [ 2 ] . x 1 [ 1 ] ,
... tf[m].x1 [1]};

y2=sum(tf.x1 [:]); // I l l e g a l t o e x t r a c t a l l e l e m e n t s s i n c e t h e y have
// d i f f e r e n t l e n g t h s . Does not s a t i s f y :
// s i z e ( t f [ 1 ] . x 1 [ : ] ) =s i z e ( t f [ 2 ] . x 1 [ : ] ) = . . . =s i z e ( t f [m] . x 1 [ : ] )
y3=sum(tf.x1 [1:2]); // L e g a l .
// S i n c e x1 has a t l e a s t 2 e l e m e n t s i n a l l t f , and
// s i z e ( t f [ 1 ] . x 1 [ 1 : 2 ] ) =s i z e ( t f [ 2 ] . x 1 [ 1 : 2 ] ) = . . . =s i z e ( t f [m] . x 1 [ 1 : 2 ] ) ={2}

In this example the different x1 vectors have different lengths, but it is still possible to perform some
operations on them.]

10.6.10 Relational Operators

Relational operators <, <=, >, >=, ==, <>, are only defined for scalar operands of simple types, not
for arrays, see section 3.5

10.6.11 Boolean Operators

The operators, and and or take expressions of Boolean type, which are either scalars or arrays of matching
dimensions. The operator not takes an expression of Boolean type, which is either scalar or an array.
The result is the element-wise logical operation. For short-circuit evaluation of and and or see section 3.3.

10.6.12 Vectorized Calls of Functions

See section 12.4.6.
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10.7 Empty Arrays

Arrays may have dimension sizes of 0. E.g.

Real x[0]; // an empty v e c t o r
Real A[0, 3], B[5, 0], C[0, 0]; // empty m a t r i c e s

Empty matrices can be constructed with the fill function. E.g.

Real A[:,:] = fill(0.0, 0, 1); // a R e a l 0 x 1 m a t r i x
Boolean B[:, :, :] = fill(false , 0, 1, 0); // a Boo lean 0 x 1 x 0 m a t r i x

It is not possible to access an element of an empty matrix, e.g. v[j,k] cannot be evaluated if v=[]
because the assertion fails that the index must be bigger than one.

Size-requirements of operations, such as +, -, have also to be fulfilled if a dimension is zero. E.g.

Real [3,0] A, B;

Real [0,0] C;

A + B // f i n e , r e s u l t i s an empty m a t r i x
A + C // e r r o r , s i z e s do not a g r e e

Multiplication of two empty matrices results in a zero matrix of corresponding numeric type if the result
matrix has no zero dimension sizes, i.e.,

Real[0,m]*Real[m,n] = Real[0,n] (empty matrix)

Real[m,n]*Real[n,0] = Real[m,0] (empty matrix)

Real[m,0]* Real[0,n] = fill(0.0, m, n) (non -empty matrix , with zero elements).

[Example:

Real u[p], x[n], y[q], A[n,n], B[n,p], C[q,n],

D[q,p];

der(x) = A*x + B*u

y = C*x + D*u

Assume n=0, p>0, q>0: Results in y = D*u

]
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Chapter 11

Statements and Algorithm Sections

Whereas equations are very well suited for physical modeling, there are situations where computations
are more conveniently expressed as algorithms, i.e., sequences of statements. In this chapter we describe
the algorithmic constructs that are available in Modelica.

Statements are imperative constructs allowed in algorithm sections.

11.1 Algorithm Sections

An algorithm section is comprised of the keyword algorithm followed by a sequence of statements. The
formal syntax is as follows:

algorithm-section :

[ initial ] algorithm { statement ";" | annotation ";" }

Equation equality = or any other kind of equation (see chapter 8) shall not be used in an algorithm
section.

11.1.1 Initial Algorithm Sections

See section 8.6 for a description of both initial algorithm sections and initial equation sections.

11.1.2 Execution of an algorithm in a model

An algorithm section is conceptually a code fragment that remains together and the statements of an
algorithm section are executed in the order of appearance. Whenever an algorithm section is invoked,
all variables appearing on the left hand side of the assignment operator ”:=” are initialized (at least
conceptually):

• A non-discrete variable is initialized with its start value (i.e. the value of the start-attribute).

• A discrete variable v is initialized with pre(v).

• If at least one element of an array appears on the left hand side of the assignment operator, then
the complete array is initialized in this algorithm section.

[Initialization is performed, in order that an algorithm section cannot introduce a ”memory” (except in the
case of discrete states which are explicitly given), which could invalidate the assumptions of a numerical
integration algorithm. Note, a Modelica tool may change the evaluation of an algorithm section, provided
the result is identical to the case, as if the above conceptual processing is performed.

An algorithm section is treated as an atomic vector-equation, which is sorted together with all other
equations. For the sorting process (BLT), every algorithm section with N different left-hand side variables,
is treated as an atomic N-dimensional vector-equation containing all variables appearing in the algorithm

139



section. This guarantees that all N equations end up in an algebraic loop and the statements of the
algorithm section remain together.

Example:

model Test // wrong M o d e l i c a model ( has 4 e q u a t i o n s f o r 2 unknowns )
Real x[2]( start ={-11, -22});

algorithm // c o n c e p t u a l l y : x = {1 ,−22}
x[1] := 1;

algorithm // c o n c e p t u a l l y : x = {−11 ,2}
x[2] := 2;

end Test;

]

11.1.3 Execution of the algorithm in a function

See section 12.4.4 “Initialization and Declaration Assignments of Components in Functions”.

11.2 Statements

Statements are imperative constructs allowed in algorithm sections. A flattened statement is identical
to the corresponding nonflattened statement.

Names in statements are found as follows:

• If the name occurs inside an expression: it is first found among the lexically enclosing reduction
functions (see section 10.3.4) in order starting from the inner-most, and if not found it proceeds as
if it were outside an expression:

• Names in a statement are first found among the lexically enclosing for-statements in order starting
from the inner-most, and if not found:

• Names in a statement shall be found by looking up in the partially flattened enclosing class of the
algorithm section.

The syntax of statements is as follows:

statement :

( component-reference ( ":=" expression | function-call-args )

| "(" output-expression-list ")" ":=" component-reference

function-call-args

| break

| return

| if-statement

| for-statement

| while-statement

| when-statement )

comment

11.2.1 Simple Assignment Statements

The syntax of simple assignment statement is as follows:

component-reference ":=" expression

The expression is evaluated. The resulting value is stored into the variable denoted by component-

reference.
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11.2.1.1 Assignments from Called Functions with Multiple Results

There is a special form of assignment statement that is used only when the right-hand side contains a call
to a function with multiple results. The left-hand side contains a parenthesized, comma-separated list of
variables receiving the results from the function call. A function with n results needs m<=n receiving
variables on the left-hand side, and the variables are assigned from left to right.

(out1 , out2 , out3) := function_name(in1 , in2 , in3 , in4);

It is possible to omit receiving variables from this list:

(out1 ,, out3) := function_name(in1 , in2 , in3 , in4);

[Example: The function f called below has three results and two inputs:

(a, b, c) := f(1.0 , 2.0);

(x[1], x[2], x[1]) := f(3,4);

In the second example above x[1] is assigned twice – first with the first output and then with the third
output. For that case the following will give the same result:

(, x[2], x[1]) := f(3,4);

]

The syntax of an assignment statement with a call to a function with multiple results is as follows:

"(" output-expression-list ")" ":=" component-reference function-call-args

[Also see section 8.3.1 regarding calling functions with multiple results within equations.]

11.2.2 For-statement

The syntax of a for-statement is as follows:

for for-indices loop

{ statement ";" }

end for

For-statements may optionally use several iterators (for-indices), see section 11.2.2.3 for more infor-
mation:

for-indices:

for-index {"," for-index}

for-index:

IDENT [ in expression ]

The following is an example of a prefix of a for-statement:

for IDENT in expression loop
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The expression of a for-statement shall be a vector expression. It is evaluated once for each for-
statement, and is evaluated in the scope immediately enclosing the for-statement. The loop-variable
(IDENT) is in scope inside the loop-construct and shall not be assigned to. The loop-variable has the
same type as the type of the elements of the vector expression.

[Example:

for i in 1:10 loop // i t a k e s t h e v a l u e s 1 , 2 , 3 , . . . , 1 0
for r in 1.0 : 1.5 : 5.5 loop // r t a k e s t h e v a l u e s 1 .0 , 2 .5 , 4 .0 , 5 . 5
for i in {1,3,6,7} loop // i t a k e s t h e v a l u e s 1 , 3 , 6 , 7
for i in TwoEnums loop // i t a k e s t h e v a l u e s TwoEnums.one , TwoEnums.two

// f o r TwoEnums = e n u m e r a t i o n ( one , two )

The loop-variable may hide other variables as in the following example. Using another name for the
loop-variable is, however, strongly recommended.

constant Integer j=4;

Real x[j];

equation

for j in 1:j loop // The loop−v a r i a b l e j t a k e s t h e v a l u e s 1 , 2 , 3 , 4
x[j]=j; // Uses t h e loop−v a r i a b l e j

end for;

]

11.2.2.1 Implicit Iteration Ranges

An iterator IDENT in range-expr without the in range-expr requires that the IDENT appears as the
subscript of one or several subscripted expressions. The dimension size of the array expression in the
indexed position is used to deduce the range-expr as 1:size(array-expression,indexpos) if the
indices are a subtype of Integer, or as E.e1:E.en if the indices are of an enumeration type E=enumeration
(e1, ..., en), or as false:true if the indices are of type Boolean. If it is used to subscript several
expressions, their ranges must be identical. The IDENT may also, inside a reduction-expression, array
constructor expression, for-statement, or for-equation, occur freely outside of subscript positions, but
only as a reference to the variable IDENT, and not for deducing ranges.

[Example:

Real x[4];

Real xsquared [:]={x[i]*x[i] for i};

// Same a s : {x [ i ]∗ x [ i ] f o r i i n 1 : s i z e ( x , 1 ) }
Real xsquared2[size(x,1)];

Real xsquared3[size(x,1)];

equation

for i loop // Same a s : f o r i i n 1 : s i z e ( x , 1 ) l o o p . . .
xsquared2[i]=x[i]^2;

end for;

algorithm

for i loop // Same a s : f o r i i n 1 : s i z e ( x , 1 ) l o o p . . .
xsquared3[i] := x[i]^2;

end for;

type FourEnums=enumeration(one ,two ,three ,four);

Real xe[FourEnums ]= x;

Real xsquared3[FourEnums ]={xe[i]*xe[i] for i};

Real xsquared4[FourEnums ]={xe[i]*xe[i] for i in FourEnums };

Real xsquared5[FourEnums ]={x[i]*x[i] for i};
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]

The size of an array – the iteration range is evaluated on entry to the for-loop and the array size may
not change during the execution of the for-loop.

11.2.2.2 Types as Iteration Ranges

The iteration range can be specified as Boolean or as an enumeration type. This means iteration over
the type from min to max, i.e. for Boolean it is the same as false:true and for an enumeration E it is
the same as E.min:E.max. This can be used for for loops and reduction expressions.

[Example:

type FourEnums=enumeration(one ,two ,three ,four);

Real xe[FourEnums ];

Real xsquared1[FourEnums ];

Real xsquared2[FourEnums ]={xe[i]*xe[i] for i in FourEnums };

equation

for i in FourEnums loop

xsquared1[i]=xe[i]^2;

end for;

]

11.2.2.3 Nested For-Loops and Reduction Expressions with Multiple Iterators

The notation with several iterators is a shorthand notation for nested for-statements or for-equations
(or reduction-expressions). For for-statements or for-equations it can be expanded into the usual form
by replacing each “,” by ‘loop for’ and adding extra ‘end for’. For reduction-expressions it can be
expanded into the usual form by replacing each ‘,’ by ‘) for’ and prepending the reduction-expression
with ‘function-name(‘.

[Example:

Real x[4 ,3];

algorithm

for j, i in 1:2 loop

// The loop−v a r i a b l e j t a k e s t h e v a l u e s 1 , 2 , 3 , 4 ( due t o u s e )
// The loop−v a r i a b l e i t a k e s t h e v a l u e s 1 ,2 ( g i v e n r a n g e )
x[j,i] := j+i;

end for;

]

11.2.3 While-Statement

The while-statement has the following syntax:

while expression loop

{ statement ";" }

end while

The expression of a while-statement shall be a scalar Boolean expression. The while-statement corre-
sponds to while-statements in programming languages, and is formally defined as follows:

1. The expression of the while-statement is evaluated.

2. If the expression of the while-statement is false, the execution continues after the while-statement.
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3. If the expression of the while-statement is true, the entire body of the while-statement is exe-
cuted (except if a break-statement, see section 11.2.4, or a return-statement, see section 11.2.5, is
executed), and then execution proceeds at step 1.

11.2.4 Break-Statement

The break-statement breaks the execution of the innermost while or for-loop enclosing the break-
statement and continues execution after the while- or for-loop. It can only be used in a while- or
for-loop in an algorithm section. It has the following syntax:

break;

[Example (note this could alternatively use return):

function findValue "Returns position of val or 0 if not found"

input Integer x[:];

input Integer val;

output Integer index;

algorithm

index := size(x,1);

while index >= 1 loop

if x[index ]== val then

break;

else

index := index -- 1;

end if;

end while;

end findValue;

]

11.2.5 Return-Statements

Can only be used inside functions, see section 12.1.2.

11.2.6 If-Statement

If-statements have the following syntax:

if expression then

{ statement ";" }

{ elseif expression then

{ statement ";" }

}

[ else

{ statement ";" }

]

end if;

The expression of an if- or elseif-clause must be scalar Boolean expression. One if-clause, and zero or
more elseif-clauses, and an optional else-clause together form a list of branches. One or zero of the bodies
of these if-, elseif- and else-clauses is selected, by evaluating the conditions of the if- and elseif-clauses
sequentially until a condition that evaluates to true is found. If none of the conditions evaluate to true
the body of the else-clause is selected (if an else-clause exists, otherwise no body is selected). In an
algorithm section, the selected body is then executed. The bodies that are not selected have no effect
on that model evaluation.

144



11.2.7 When-Statements

A when-statement has the following syntax:

when expression then

{ statement ";" }

{ elsewhen expression then

{ statement ";" } }

end when

The expression of a when-statement shall be a discrete-time Boolean scalar or vector expression. The
algorithmic statements within a when-statement are activated when the scalar or any one of the elements
of the vector-expression becomes true.

[Example:

Algorithms are activated when x becomes > 2:

when x > 2 then

y1 := sin(x);

y3 := 2*x + y1+y2;

end when;

The statements inside the when-statement are activated when either x becomes > 2 or sample(0,2)

becomes true or x becomes less than 5:

when {x > 2, sample (0,2), x < 5}

then

y1 := sin(x);

y3 := 2*x + y1+y2;

end when;

For when-statements in algorithm sections the order is significant and it is advisable to have only one
assignment within the when-statement and instead use several algorithm sections having when-statements
with identical conditions, e.g.:

algorithm

when x > 2 then

y1 := sin(x);

end when;

equation

y2 = sin(y1);

algorithm

when x > 2 then

y3 := 2*x +y1+y2;

end when;

Merging the when-statements can lead to less efficient code and different models with different behavior
depending on the order of the assignment to y1 and y3 in the algorithm.

]

11.2.7.1 Restrictions on When-Statements

• A when-statement shall not be used within a function.

• When-statements may not occur inside initial algorithms.
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• When-statements cannot be nested.

• When-statements may not occur inside while, if, and for-clauses in algorithms.

[Example:

The following nested when-statement is invalid:

when x > 2 then

when y1 > 3 then

y2 := sin(x);

end when;

end when;

]

11.2.7.2 Defining When-Statements by If-Statements

A when-statement:

algorithm

when {x>1, ... , y>p} then

...

elsewhen x > y.start then

...

end when;

is similar to the following special if-statement, where Boolean b1[N]; and Boolean b2; are necessary
because the edge() operator can only be applied to variables

Boolean b1[N]( start={x.start >1, ... ,

y.start >p});

Boolean b2(start=x.start >y.start);

algorithm

b1:={x>1, ... , y>p};

b2:=x>y.start;

if edge(b1[1]) or edge(b1[2]) or ...

edge(b1[N]) then

...

elseif edge(b2) then

...

end if;

with edge(A)= A and not pre(A) and the additional guarantee, that the statements within this special
if-statement are only evaluated at event instants. The difference compared to the when-statements is
that e.g. ‘pre’ may only be used on continuous-time real variables inside the body of a when-clause and
not inside these if-statements.

11.2.8 Special Statements

These special statements have the same form and semantics as the corresponding equations, apart from
the general difference in semantics between equations and statements.

11.2.8.1 Assert Statement

See section 8.3.7. A failed assert stops the execution of the current algorithm.
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11.2.8.2 Terminate Statement

See section 8.3.8. The terminate statement may not be in functions; In an algorithm outside a function
it does not stop the execution of the current algorithm.
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Chapter 12

Functions

This chapter describes the Modelica function construct.

12.1 Function Declaration

A Modelica function is a specialized class (section 12.2) using the keyword function. The body of a
Modelica function is an algorithm section that contains procedural algorithmic code to be executed when
the function is called, or alternatively an external function specifier (section 12.9). Formal parameters
are specified using the input keyword, whereas results are denoted using the output keyword. This
makes the syntax of function definitions quite close to Modelica class definitions, but using the keyword
function instead of class.

[The structure of a typical function declaration is sketched by the following schematic function example:

function functionname

input TypeI1 in1;

input TypeI2 in2;

input TypeI3 in3 := default expr1 "Comment" annotation(...);

...

output TypeO1 out1;

output TypeO2 out2 := default expr2 ;

...

protected

<local variables>
...

algorithm

...

<statements>
...

end functionname ;

]

Optional explicit default values can be associated with any input or output formal parameter through
declaration assignments. [Such defaults are shown for the third input parameter and the second output
parameter in our example.] Comment strings and annotations can be given for any formal parameter
declaration, as usual in Modelica declarations.

[All internal parts of a function are optional; i.e., the following is also a legal function:

function functionname

end functionname ;
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]

12.1.1 Ordering of Formal Parameters

The relative ordering between input formal parameter declarations is significant since that determines the
matching between actual arguments and formal parameters at function calls with positional parameter
passing. Likewise, the relative ordering between the declarations of the outputs is significant since
that determines the matching with receiving variables at function calls of functions with multiple results.
However, the declarations of the inputs and outputs can be intermixed as long as these internal orderings
are preserved. [Mixing declarations in this way is not recommended, however, since it makes the code
hard to read.]

[Example:

function <functionname>
output TypeO1 out1; // I n t e r m i x e d d e c l a r a t i o n s o f i n p u t s and o u t p u t s
input TypeI1 in1; // not recommended s i n c e code becomes h ar d t o r e a d
input TypeI2 in2;

...

output TypeO2 out2;

input TypeI3 in3;

...

end <functionname>;

]

12.1.2 Function return-statements

The return-statement terminates the current function call, see section 12.4. It can only be used in an
algorithm section of a function. It has the following form:

return;

[Example (note this could alternatively use break):

function findValue "Returns position of val or 0 if not found"

input Integer x[:];

input Integer val;

output Integer index;

algorithm

for i in 1:size(x,1) loop

if x[i] == val then

index := i;

return;

end if;

end for;

index := 0;

return;

end findValue;

]

12.1.3 Inheritance of Functions

It is allowed for a function to inherit and/or modify another function following the usual rules for
inheritance of classes (chapter 7). [For example, it is possible to modify and extend a function class to
add default values for input variables.]
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12.2 Function as a Specialized Class

The function concept in Modelica is a specialized class (section 4.6). [The syntax and semantics of a
function have many similarities to those of the block specialized class. A function has many of the
properties of a general class, e.g. being able to inherit other functions, or to redeclare or modify elements
of a function declaration.]

Modelica functions have the following restrictions compared to a general Modelica class:

• Each input formal parameter of the function must be prefixed by the keyword input, and each
result formal parameter by the keyword output. All public variables are formal parameters.

• Input formal parameters are read-only after being bound to the actual arguments or default values,
i.e., they may not be assigned values in the body of the function.

• A function may not be used in connections, may not have equations, may not have initial algorithms.

• A function can have at most one algorithm section or one external function interface (not both),
which, if present, is the body of the function.

• A function may only contain components of the restricted classes type, record, operator record,
and function; and it must not contain e.g. model, block, operator or connector components.

• The elements of a function may not have prefixes inner, or outer.

• A function may have zero or one external function interface, which, if present, is the external
definition of the function.

• For a function to be called in a simulation model, the function may not be partial, and the output
variables must be assigned inside the function either in declaration assignments or in an algorithm
section, or have an external function interface as its body, or be defined as a function partial deriva-
tive. The output variables of a function should be computed. [It is a quality of implementation
how much analysis a tool performs in order to determine if the output variables are computed ]. A
function cannot contain calls to the Modelica built-in operators der, initial, terminal, sample,
pre, edge, change, reinit, delay, cardinality, inStream, actualStream, to the operators of
the built-in package Connections, to the operators defined in chapter 16 and chapter 17, and is
not allowed to contain when-statements.

• The dimension sizes not declared with (:) of each array result or array local variable [i.e., a
non-input components] of a function must be either given by the input formal parameters, or
given by constant or parameter expressions, or by expressions containing combinations of those
(section 12.4.4).

• For initialization of local variables of a function see section 12.4.4).

• Components of a function will inside the function behave as though they had discrete-time vari-
ability.

Modelica functions have the following enhancements compared to a general Modelica class:

• Functions can be called, section 12.4.

– The calls can use a mix of positional and named arguments, see section 12.4.1.

– Instances of functions have a special meaning, see section 12.4.2.

– The lookup of the function class to be called is extended, see section 5.3.2.

• A function can be recursive.

• A formal parameter or local variable may be initialized through a binding (=) of a default value in
its declaration, see section 12.4.4. Using assignment (:=) is deprecated. If a non-input component
in the function uses a record class that contain one or more binding equations they are viewed as
initialization of those component of the record component.

• A function is dynamically instantiated when it is called rather than being statically instantiated
by an instance declaration, which is the case for other kinds of classes.

• A function may have an external function interface specifier as its body.
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• A function may have a return statement in its algorithm section body.

• A function allows dimension sizes declared with (:) to be resized for non-input array variables, see
section 12.4.5.

• A function may be defined in a short function definition to be a function partial derivative.

12.3 Pure Modelica Functions

Modelica functions are normally pure which makes it easy for humans to reason about the code since
they behave as mathematical functions, and possible for compilers to optimize.

• Pure Modelica functions always give the same output values or errors for the same input values and
only the output values influence the simulation result, i.e. is seen as equivalent to a mathematical
map from input values to output values. Some input values may map to errors. Pure functions are
thus allowed to fail by calling assert, or ModelicaError in C-code, or dividing by zero. Such errors
will only be reported when and if the function is called.Pure Modelica functions are not assumed
to be thread-safe.

• A Modelica function which does not have the pure function properties is impure.

The declaration of functions follow these rules:

• Functions defined in Modelica (non-external) are normally assumed to be pure (the exception is
the deprecated case below), if they are impure they shall be marked with the impure keyword.
They can be explicitly marked as pure. [However, since functions as default are pure it is not
recommended to explicitly declare them as pure.]

• External functions must be explicitly declared with pure or impure.

• A deprecated semantics is that external functions (and functions defined in Modelica directly or
indirectly calling them) without pure or impure keyword are assumed to be impure – but without
any restriction on calling them. Except for the function Modelica.Utilities.Streams.print diagnostics
must be given if called in a simulation model.

Calls of pure functions used inside expression may be skipped if the resulting expression will not depend
on the possible returned value; ignoring the possibility of the function generating an error.

A call to a function with no declared outputs is assumed to have desired side-effects or assertion checks.
[A tool shall thus not remove such function calls, with exception of non-triggered assert calls. A pure
function, used in an expression or used with a non-empty left hand side, need not be called if the output
from the function call do not mathematically influence the simulation result, even if errors would be
generated if it were called.]

[Comment 1: This property enables writing declarative specifications using Modelica. It also makes
it possible for Modelica compilers to freely perform algebraic manipulation of expressions containing
function calls while still preserving their semantics. For example, a tool may use common subexpression
elimination to call a pure function just once, if it is called several times with identical input arguments.
However, since functions may fail we can e.g. only move a common function call from inside a loop to
outside the loop if the loop is run at least once.]

[Comment 2: The Modelica translator is responsible for maintaining this property for pure non-external
functions. Regarding external functions, the external function implementor is responsible. Note that
external functions can have side-effects as long as they do not influence the internal Modelica simulation
state, e.g. caching variables for performance or printing trace output to a log file.]

With the prefix keyword impure it is stated that a Modelica function is impure and it is only allowed to
call such a function from within:

• another function marked with the prefix impure

• a when-equation,

• a when-statement,

• pure(impureFunctionCall(...)) - which allows calling impure functions in any pure context,
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• in initial equations and initial algorithms,

• in bindings for variables declared as parameter – which is seen as syntactic sugar for having a
parameter with fixed=false and the binding as an initial equation [thus there is no guarantee that
parameter is equal to the impure function call after initialization] – and in constructing external
objects.

For initial equations, initial algorithms, and bindings it is an error if the function calls are part of systems
of equations and thus have to be called multiple times.

[A tool is not allowed to perform any optimizations on function calls to an impure function, e.g., re-
ordering calls from different statements in an algorithm or common subexpression elimination is not
allowed.]

It is possible to mark a function formal parameter as impure. Only if the function formal parameter
is marked impure, it is allowed to pass an impure function to it. A function having a formal function
parameter marked impure must be marked pure or impure.

[Comment: The semantics are undefined if the function call of an impure function is part of an algebraic
loop.]

[Examples:

function evaluateLinear // p u r e f u n c t i o n
input Real a0;

input Real a1;

input Real x;

output Real y;

algorithm

y = a0 + a1*x;

end evaluateLinear;

impure function receiveRealSignal // impure f u n c t i o n
input HardwareDriverID id;

output Real y;

external "C" y = receiveSignal(id);

end receiveRealSignal;

Examples of allowed optimizations of pure functions:

model M // Assume s i n , cos , a s i n a r e p u r e f u n c t i o n s w i t h normal d e r i v a t i v e s .
input Real x[2];

input Real w;

Real y[2]=[ cos(w),sin(w);-sin(w),cos(w)]*x;

Real z[2]= der (y);

Real a=0* asin(w);

end M;

A tool only needs to generate one call of the pure function cos(w) in the model M – to handle the two
elements of the matrix above, and for the derivative of that matrix. A tool may also skip the possible
error for asin(w) and assume that a is zero.

Examples of restrictions on optimizing pure functions:

Real x=if noEvent(abs(x)) <1 then asin(x) else 0; // May not move a s i n ( x ) out
o f t h e n

algorithm

assertCheck(p, T); // Must c a l l f u n c t i o n
algorithm

if b then
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y:=2* someOtherFunction(x);

end if;

y:=y+asin(x);

y:=y+someOtherFunction(x);

// May not e v a l u a t e s o m e O t h e r F u n c t i o n ( x ) b e f o r e a s i n ( x ) − u n l e s s b i s t r u e
// The r e a s o n i s t h a t a s i n ( x ) may f a i l and s o m e O t h e r F u n c t i o n may hang ,
// and i t might be p o s s i b l e t o r e c o v e r from t h i s e r r o r .

]

12.4 Function Call

Function classes and record constructors (section 12.6) and enumeration type conversions (section 4.8.5.3)
can be called as described in this section.

12.4.1 Positional or Named Input Arguments of Functions

A function call has optional positional arguments followed by zero, one or more named arguments, such
as

f(3.5 , 5.76 , arg3=5, arg6=8.3);

The formal syntax of a function call (simplified by removing reduction expression, section 10.3.4.1):

primary :

component-reference function-call-args

function-call-args :

"(" [ function-arguments ] ")"

function-arguments :

function-argument [ "," function-arguments]

| named-arguments

named-arguments: named-argument [ "," named-arguments ]

named-argument: IDENT "=" function-argument

function-argument : function name "(" [ named-arguments ] ")" | expression

The interpretation of a function call is as follows: First, a list of unfilled slots is created for all formal
input parameters. If there are N positional arguments, they are placed in the first N slots, where the
order of the parameters is given by the order of the component declarations in the function definition.
Next, for each named argument identifier = expression, the identifier is used to determine the
corresponding slot. This slot shall be not filled [otherwise an error occurs] and the value of the argument
is placed in the slot, filling it. When all arguments have been processed, the slots that are still unfilled
are filled with the corresponding default value of the function definition. The default values may depend
on other inputs (these dependencies must be acyclical in the function) – the values for those other inputs
will then be substituted into the default values (this process may be repeated if the default value for that
input depend on another input). The default values for inputs may not depend on non-input variables in
the function. There shall be no remaining unfilled slots [otherwise an error occurs] and the list of filled
slots is used as the argument list for the call.

Special purpose operators with function syntax defined in the specification may not be called with named
arguments, unless otherwise noted.

The type of each argument must agree with the type of the corresponding parameter, except where the
standard type coercions can be used to make the types agree. (See also section 12.4.6 on applying scalar
functions to arrays.)
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[Example.

Assume a function RealToString is defined as follows to convert a Real number to a String:

function RealToString

input Real number;

input Real precision := 6 "number of significantdigits";

input Real length := 0 "minimum length of field";

output String string "number as string";

...

end RealToString;

Then the following applications are equivalent:

RealToString (2.0);

RealToString (2.0 , 6, 0);

RealToString (2.0 , 6);

RealToString (2.0 , precision =6);

RealToString (2.0 , length =0);

RealToString (2.0 , 6, precision =6); // e r r o r : s l o t i s used t w i c e

]

12.4.2 Functional Input Arguments to Functions

A functional input argument to a function is an argument of function type. The declared type of such an
input formal parameter in a function can be the class-name of a partial function that has no replaceable
elements. It cannot be the class-name of a record or enumeration [i.e., record constructor functions
and enumeration type conversions are not allowed in this context.] Such an input formal parameter of
function type can also have an optional functional default value.

[Example:

function quadrature "Integrate function y=integrand(x) from x1 to x2"

input Real x1;

input Real x2;

input Integrand integrand; // I n t e g r a n d i s a p a r t i a l f u n c t i o n ,
see below

// With d e f a u l t : i n p u t I n t e g r a n d i n t e g r a n d :=
Modelica.Math.sin;

output Real integral;

algorithm

integral :=(x2-x1)*( integrand(x1) + integrand(x2))/2;

end quadrature;

partial function Integrand

input Real x;

output Real y;

end Integrand;

]

A functional argument can be provided in one of the following forms to be passed to a scalar formal
parameter of function type in a function call:

a) as a function name [Parabola example below ],

b) as a function partial application (section 12.4.2.1 below),
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c) as a function that is a component (i.e., a formal parameter of function type of the enclosing
function),

d) as a function partial application of a function that is a component (example in section 12.4.2.1
below).

In all cases the provided function must be “function type compatible” (section 6.5) to the corresponding
formal parameter of function type.

[Example:

A function as a positional input argument according to case (a)

function Parabola

extends Integrand;

algorithm

y = x*x;

end Parabola;

area = quadrature (0, 1, Parabola);

The quadrature2 example below uses a function integrand that is a component as input argument
according to case (c):

function quadrature2 "Integrate function y=integrand(x) from x1 to x2"

input Real x1;

input Real x2;

input Integrand integrand; // I n t e g r a n d i s a p a r t i a l f u n c t i o n t y p e
output Real integral;

algorithm

integral := quadrature(x1, (x1+x2)/2, integrand)+ quadrature ((x1+x2)/2, x2 ,

integrand);

end quadrature2;

12.4.2.1 Function Partial Application

A function partial application is similar to a function call with certain formal parameters bound to
expressions, the specific rules are specified in this section and are not identical to the ones for function
call in section 12.4.1. A function partial application returns a partially evaluated function that is also a
function, with the remaining not bound formal parameters still present in the same order as in the original
function declaration. A function partial application is specified by the function keyword followed by a
function call to func_name giving named formal parameter associations for the formal parameters to be
bound, e.g.:

function func_name(... , formal_parameter_name = expr , ...)

[Note that the keyword function in a function partial application differentiates the syntax from a normal
function call where some parameters have been left out, and instead supplied via default values.]

The function created by the function partial application acts as the original function but with the
bound formal input parameters(s) removed, i.e., they cannot be supplied arguments at function call.
The binding occurs when the partially evaluated function is created. A partially evaluated function is
“function compatible” (see section 6.5) to the same function where all bound arguments are removed
[thus, for checking function type compatibility, bound formal parameters are ignored ].

[Example of function partial application as argument, positional argument passing, according to case (b)
above:
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model Test

parameter Integer N;

Real area;

algorithm

area := 0;

for i in 1:N loop

area := area + quadrature (0, 1, function Sine(A=2, w=i*time));

end for;

end Test;

function Sine "y = Sine(x,A,w)"

extends Integrand;

input Real A;

input Real w;

algorithm

y:=A*Modelica.Math.sin(w*x);

end Sine;

Call with function partial application as named input argument:

area := area + quadrature (0, 1, integrand = function Sine(A=2, w=i*time));

]

[Example showing that function types are matching after removing the bound arguments A and w in a
function partial application:

function Sine2 "y = Sine2(A,w,x)"

input Real A;

input Real w;

input Real x; // Note : x i s now l a s t i n argument l i s t .
output Real y;

algorithm

y:=A*Modelica.Math.sin(w*x);

end Sine2;

area = quadrature (0, 1, integrand = function Sine2(A=2, w=3));

The partially evaluated Sine2 has only one argument: x – and is thus type compatible with Integrand.

]

[Example of a function partial application of a function that is a component, according to case (d) above:

partial function SurfaceIntegrand

input Real x;

input Real y;

output Real z;

end SurfaceIntegrand;

function quadratureOnce

input Real x;

input Real y1;

input Real y2;

input SurfaceIntegrand integrand;

output Real z;

algorithm

z := quadrature(y1 , y2 , function integrand(y=x));

// T h i s i s a c c o r d i n g t o c a s e ( d ) and n e e d s t o b i n d t h e 2 nd argument
end quadratureOnce;
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function surfaceQuadrature

input Real x1;

input Real x2;

input Real y1;

input Real y2;

input SurfaceIntegrand integrand;

output Real integral;

algorithm

integral := quadrature(x1, x2,

function quadratureOnce(y1=y1, y2=y2, integrand=integrand));

// Case ( b ) and ( c )
end surfaceQuadrature;

]

12.4.3 Output Formal Parameters of Functions

A function may have more than one output component, corresponding to multiple return values. The
only way to use more than the first return value of such a function is to make the function call the right
hand side of an equation or assignment. In this case, the left hand side of the equation or assignment
shall contain a list of component references within parentheses:

(out1, out2, out3)= f(...);

The component references are associated with the output components according to their position in the
list. Thus output component i is set equal to, or assigned to, component reference i in the list, where
the order of the output components is given by the order of the component declarations in the function
definition. The type of each component reference in the list must agree with the type of the corresponding
output component.

A function application may be used as expression whose value and type is given by the value and type
of the first output component, if at least one return result is provided.

It is possible to omit left hand side component references and/or truncate the left hand side list in order
to discard outputs from a function call.

[Optimizations to avoid computation of unused output results can be automatically deduced by an opti-
mizing compiler ].

[Example:

Function ”eigen” to compute eigenvalues and optionally eigenvectors may be called in the following
ways:

ev = eigen(A); // c a l c u l a t e e i g e n v a l u e s
x = isStable(eigen(A)); // used i n an e x p r e s s i o n
(ev, vr) = eigen(A) // c a l c u l a t e e i g e n v e c t o r s
(ev,vr ,vl) = eigen(A) // and a l s o l e f t e i g e n v e c t o r s
(ev,,vl) = eigen(A) // no r i g h t e i g e n v e c t o r s

The function may be defined as:

function eigen "calculate eigenvalues and optionally eigenvectors"

input Real A[:, size(A,1)];

output Real eigenValues[size(A,1) ,2];

output Real rightEigenVectors[size(A,1),size(A,1)];

output Real leftEigenVectors [size(A,1),size(A,1)];

algorithm

// The o u t p u t v a r i a b l e s a r e computed s e p a r a t e l y ( and not , e . g . , by one
// c a l l o f a F o r t r a n f u n c t i o n ) i n o r d e r t h a t an o p t i m i z i n g c o m p i l e r can

remove
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// u n n e c e s s a r y c o m p u t a t i o n s , i f one o r more o u t p u t arguments a r e m i s s i n g
// compute e i g e n v a l u e s
// compute r i g h t e i g e n v e c t o r s u s i n g t h e computed e i g e n v a l u e s
// compute l e f t e i g e n v e c t o r s u s i n g t h e computed e i g e n v a l u e s

end eigen;

]

The only permissible use of an expression in the form of a list of expressions in parentheses, is when it
is used as the left hand side of an equation or assignment where the right hand side is an application of
a function.

[Example. The following are illegal :

(x+1, 3.0 , z/y) = f(1.0 , 2.0); // Not a l i s t o f component r e f e r e n c e s .
(x, y, z) + (u, v, w) // Not LHS o f s u i t a b l e eqn / a s s i g n m e n t .

]

12.4.4 Initialization and Declaration Assignments of Components in Func-
tions

Components in a function can be divided into three groups:

• Public components which are input formal parameters.

• Public components which are output formal parameters.

• Protected components which are local variables, parameters, or constants.

When a function is called components of a function do not have start-attributes. However, a declaration
assignment (:= expression) with an expression may be present for a component.

A declaration assignment for a non-input component initializes the component to this expression at the
start of every function invocation (before executing the algorithm section or calling the external function).
These bindings must be executed in an order where a variable is not used before its declaration assignment
has been executed; it is an error if no such order exists (i.e. the binding must be acyclic).

Declaration assignments can only be used for components of a function. If no declaration assignment
is given for a non-input component the variable is uninitialized (except for record components where
modifiers may also initialize that component). It is an error to use (or return) an uninitialized variable
in a function. [It is recommended to check this statically - if this is not possible a warning is recommended
combined with a run-time check.] Declaration assignments for input formal parameters are interpreted
as default arguments, as described in section 12.4.1.

[The properties of components in functions described in this section are also briefly described in sec-
tion 12.2.]

12.4.5 Flexible Array Sizes and Resizing of Arrays in Functions

[Flexible setting of array dimension sizes of arrays in functions is also briefly described in section 12.2.]

A dimension size not specified with colon(:) for a non-input array component of a function must be
given by the inputs or be constant.

[Example:

function joinThreeVectors

input Real v1[:],v2[:],v3[:];

output Real vres[size(v1 ,1)+size(v2 ,1)+size(v3 ,1)];

algorithm

vres := cat (1,v1,v2,v3);
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end joinThreeVectors;

]

• A non-input array component declared in a function with a dimension size specified by colon(:)
and no declaration assignment, can change size according to these special rules:Prior to execution
of the function algorithm the dimension size is zero.

• The entire array (without any subscripts) may be assigned with a corresponding array with arbi-
trary dimension size (the array variable is re-sized).

These rules also apply if the array component is an element of a record component in a function.

[Example: A function to collect the positive elements in a vector:

function collectPositive

input Real x[:];

output Real xpos [:];

algorithm

for i in 1:size(x,1) loop

if x[i]>0 then

xpos:=cat(1,xpos ,x[i:i]);

end if;

end for;

end collectPositive;

]

12.4.6 Scalar Functions Applied to Array Arguments

Functions with one scalar return value can be applied to arrays element-wise, e.g. if A is a vector of reals,
then sin(A) is a vector where each element is the result of applying the function sin to the corresponding
element in A. Only function classes that are transitively non-replaceable (section 6.2.1 and section 7.1.4)
may be called vectorized.

Consider the expression f(arg1,...,argn), an application of the function f to the arguments arg1,

..., argn is defined.

For each passed argument, the type of the argument is checked against the type of the corresponding
formal parameter of the function.

1. If the types match, nothing is done.

2. If the types do not match, and a type conversion can be applied, it is applied. Continue with step
1.

3. If the types do not match, and no type conversion is applicable, the passed argument type is checked
to see if it is an n-dimensional array of the formal parameter type. If it is not, the function call is
invalid. If it is, we call this a foreach argument.

4. For all foreach arguments, the number and sizes of dimensions must match. If they do not match,
the function call is invalid.

5. If no foreach argument exists, the function is applied in the normal fashion, and the result has the
type specified by the function definition.

6. The result of the function call expression is an n-dimensional array with the same dimension sizes
as the foreach arguments. Each element ei,..,j is the result of applying f to arguments constructed
from the original arguments in the following way:

• If the argument is not a foreach argument, it is used as-is.

• If the argument is a foreach argument, the element at index [i,...,j] is used.
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If more than one argument is an array, all of them have to be the same size, and they are traversed in
parallel.

[Examples:

sin({a, b, c}) = {sin(a), sin(b), sin(c)} // argument i s a v e c t o r
sin([a,b,c]) = [sin(a),sin(b),sin(c)] // argument may be a m a t r i x
atan({a,b,c},{d,e,f}) = {atan(a,d), atan(b,e), atan(c,f)}

This works even if the function is declared to take an array as one of its arguments. If pval is defined
as a function that takes one argument that is a vector of Reals and returns a Real, then it can be used
with an actual argument which is a two-dimensional array (a vector of vectors). The result type in this
case will be a vector of Real.

pval ([1 ,2;3 ,4]) = [pval ([1 ,2]); pval ([3 ,4])]

sin ([1 ,2;3 ,4]) = [sin ({1 ,2}); sin ({3 ,4})]

= [sin(1), sin(2); sin(3), sin(4)]

function Add

input Real e1 , e2;

output Real sum1;

algorithm

sum1 := e1 + e2;

end Add;

Add(1, [1,2,3]) adds one to each of the elements of the second argument giving the result [2,3,4]

. However, it is illegal to write 1 + [1,2,3], because the rules for the built-in operators are more
restrictive.]

12.4.7 Empty Function Calls

An “empty” function call is a call that does not return any results. [An empty call is of limited use in
Modelica since a function call without results does not contribute to the simulation, and is not allowed
to have side-effects that influence the simulation state.]

An empty call can occur either as a kind of “null” equation or “null” statement, [e.g. as in the empty
calls to eigen() in the example below :

equation

Modelica.Math.Matrices.eigen(A); // Empty f u n c t i o n c a l l a s an e q u a t i o n
algorithm

Modelica.Math.Matrices.eigen(A); // Empty f u n c t i o n c a l l a s a s t a t e m e n t

]

12.5 Built-in Functions

There are basically four groups of built-in functions in Modelica:

• Intrinsic mathematical and conversion functions, see section 3.7.1.

• Derivative and special operators with function syntax, see section 3.7.2.

• Event-related operators with function syntax, see section 3.7.3.

• Built-in array functions, see section 10.3.

Note that when the specification references a function having the name of a built-in function it
references the built-in function, not a user-defined function having the same name.
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12.6 Record Constructor Functions

Whenever a record is defined, a record constructor function with the same name and in the same scope
as the record class is implicitly defined according to the following rules:

The declaration of the record is partially flattened including inheritance, modifications, redeclarations,
and expansion of all names referring to declarations outside of the scope of the record to their fully
qualified names [in order to remove potentially conflicting import statements in the record constructor
function due to flattening the inheritance tree].

All record elements [i.e., components and local class definitions] of the partially flattened record decla-
ration are used as declarations in the record constructor function with the following exceptions:

• Component declarations which do not allow a modification [such as constant Real c=1 or final

parameter Real] are declared as protected components in the record constructor function.

• Prefixes (constant, parameter, final, discrete,...) of the remaining record components are removed.

• The prefix input is added to the public components of the record constructor function.

An instance of the record is declared as output parameter [using a name, not appearing in the record ]
together with a modification. In the modification, all input parameters are used to set the corresponding
record variables.

A record constructor can only be called if the referenced record class is found in the global scope, and
thus cannot be modified.

[This allows to construct an instance of a record, with an optional modification, at all places where a
function call is allowed. Examples:

record Complex "Complex number"

Real re "real part";

Real im "imaginary part";

end Complex;

function add

input Complex u, v;

output Complex w(re=u.re + v.re , im=u.im+v.re);

end add;

Complex c1 , c2;

equation

c2 = add(c1, Complex(sin(time), cos(time));

In the following example, a convenient data sheet library of components is built up:

package Motors

record MotorData "Data sheet of a motor"

parameter Real inertia;

parameter Real nominalTorque;

parameter Real maxTorque;

parameter Real maxSpeed;

end MotorData;

model Motor "Motor model" // u s i n g t h e g e n e r i c MotorData
MotorData data;

...

equation

...

end Motor;

record MotorI123 = MotorData( // d a t a o f a s p e c i f i c motor
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inertia = 0.001 ,

nominalTorque = 10,

maxTorque = 20,

maxSpeed = 3600) "Data sheet of motor I123";

record MotorI145 = MotorData( // d a t a o f a n o t h e r s p e c i f i c motor
inertia = 0.0015 ,

nominalTorque = 15,

maxTorque = 22,

maxSpeed = 3600) "Data sheet of motor I145";

end Motors

model Robot

import Motors. *;

Motor motor1(data = MotorI123 ()); // j u s t r e f e r t o d a t a s h e e t
Motor motor2(data = MotorI123(inertia =0 .0012));

// d a t a can s t i l l be m o d i f i e d ( i f no f i n a l d e c l a r a t i o n i n r e c o r d )
Motor motor3(data = MotorI145 ());

...

end Robot;

Example showing most of the situations, which may occur for the implicit record constructor function
creation. With the following record definitions

package Demo;

record Record1;

parameter Real r0 = 0;

end Record1;

record Record2

import Modelica.Math. *;

extends Record1;

constant Real c1 = 2.0;

constant Real c2;

parameter Integer n1 = 5;

parameter Integer n2;

parameter Real r1 "comment";

parameter Real r2 = sin(c1);

final parameter Real r3 = cos(r2);

Real r4;

Real r5 = 5.0;

Real r6[n1];

Real r7[n2];

end Record2;

end Demo;

the following record constructor functions are implicitly defined (the name of the output, given in italic
below, is not defined; it should be chosen to not cause any conflict)

package Demo;

function Record1

input Real r0 := 0;

output Record1 result (r0 = r0);

end Record1;

function Record2

input Real r0 := 0;

input Real c2;

input Integer n1 := 5;

input Integer n2;

input Real r1 "comment"; // t h e comment a l s o c o p i e d from r e c o r d
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input Real r2 := Modelica.Math.sin(c1);

input Real r4;

input Real r5 := 5.0;

input Real r6[n1];

input Real r7[n2];

output Record2 result (r0=r0,c2=c2 ,n1=n1 ,n2=n2 ,r1=r1 ,r2=r2 ,r4=r4 ,r5=r5 ,r6=r6 ,

r7=r7);

protected

constant Real c1 = 2.0; // r e f e r e n c e d from r 2
final parameter Real r3 = Modelica.Math.cos(r2);

end Record2;

end Demo;

and can be applied in the following way

Demo.Record2 r1 = Demo.Record2(r0=1, c2=2, n1=2, n2=3, r1=1, r2=2,r4=5, r5=5,

r6={1,2}, r7={1 ,2 ,3});

Demo.Record2 r2 = Demo.Record2 (1,2,2,3,1,2,5,5,{1,2},{1,2,3});

parameter Demo.Record2 r3 = Demo.Record2(c2=2, n2=1, r1=1,r4=4, r6=1:5, r7

={1});

The above example is only used to show the different variants appearing with prefixes, but it is not very
meaningful, because it is simpler to just use a direct modifier.

]

12.6.1 Casting to Record

A constructor of a record R can be used to cast an instance m of a model, block, connector class M to
a value of type R, provided that for each component defined in R (that do not have a default value) there
is also a public component defined in M with identical name and type. A nested record component of R
is handled as follows, if the corresponding component of M is a model/block/connector a nested record
constructor is called - otherwise the component is used directly; and the resulting call/component is used
as argument to the record constructor R. If the corresponding component of R in M is a conditional
component, it is an error. [The corresponding binding would be illegal since not a connect-statement.] The
instance m is given as single (un-named) argument to the record constructor of R. The interpretation is
that R(m) is replaced by a record constructor of type R where all public components of M that are present
in R are assigned to the corresponding components of R. The record cast can be used in vectorized form
according to section 12.4.6. [Note, this cast operation is uniquely distinguished from a record constructor
call, because an argument of the record constructor cannot be a model, block or connector instance.]

[Example:

connector Flange

Real phi;

flow Real tau;

end Flange;

model Model1

Real m1;

Boolean b1;

Flange flange;

end Model1;

model Model2

Real r1;

Real r2;

Integer i2

Pin p1 , p2;

Model1 sub1;

protected
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Integer i1;

...

end Model2;

record MyFlange

Real tau;

end MyFlange;

record MyRecord1

Boolean b1;

MyFlange flange;

end MyRecord1;

record MyRecord2

Real r1;

Integer i2;

MyRecord1 sub1;

end MyRecord2;

model Model

Model2 s1;

Model2 s2[2];

MyRecord2 rec1 = MyRecord2(s1);

MyRecord2 rec2 [2] = MyRecord2(s2);

...

end Model;

// Model i s c o n c e p t u a l l y mapped t o
model ModelExpanded

Model2 s1;

Model2 s2[2];

MyRecord2 rec1 = MyRecord2(r1=s1.r1 , i2=s1.i2 ,

sub1 = MyRecord1(b1=s1.sub1.b1 ,

flange = MyFlange(tau=s1.sub1.flange.tau));

MyRecord2 rec2 [2] = {MyRecord2(r1=s2[1].r1 , i2=s2[1].i2 ,

sub1 = MyRecord1(b1=s2[1] .sub1.b1 ,

flange = MyFlange(tau=s1[1] .sub1.flange.tau)),

MyRecord2(r1=s2[2].r1 , i2=s2[2].i2 ,

sub1 = MyRecord1(b1=s2[2] .sub1.b1 ,

flange = MyFlange(tau=s2[2] .sub1.flange.tau)};

...

end ModelExpanded;

]

12.7 Declaring Derivatives of Functions

Derivatives of functions can be declared explicitly using the derivative annotation, see section 12.7.1,
whereas a function can be defined as a partial derivative of another function using the der-operator in
a short function definition, see section 12.7.2.

12.7.1 Using the Derivative Annotation

A function declaration can have an annotation derivative specifying the derivative function or prefer-
ably, for a function written in Modelica, use the smoothOrder annotation to indicate that the tool can
construct the derivative function automatically, section 18.3. The derivative annotation can influence
simulation time and accuracy and can be applied to both functions written in Modelica and to exter-
nal functions. A derivative annotation can state that it is only valid under certain restrictions on the
input arguments. These restrictions are defined using the following optional attributes: order (only
a restriction if order>1, the default for order is 1), noDerivative, and zeroDerivative. The given
derivative-function can only be used to compute the derivative of a function call if these restrictions are
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satisfied. There may be multiple restrictions on the derivative, in which case they must all be satis-
fied. The restrictions also imply that some derivatives of some inputs are excluded from the call of the
derivative (since they are not necessary). A function may supply multiple derivative functions subject
to different restrictions, the first one that can be used (i.e. satisfying the restrictions) will be used for
each call. [This means that the most restrictive derivatives should be written first.]

[Example:

function foo0 annotation(derivative=foo1);

end foo0;

function foo1 annotation(derivative(order =2)=foo2);

end foo1;

function foo2 end foo2;

]

The inputs to the derivative function of order 1 are constructed as follows:

• First are all inputs to the original function, and after all them we will in order append one derivative
for each input containing reals. These common inputs must have the same name, type, and
declaration order for the function and its derivative.

• The outputs are constructed by starting with an empty list and then in order appending one
derivative for each output containing reals. The outputs must have the same type and declaration
order for the function and its derivative.

If the Modelica function call is a nth derivative (n>=1), i.e. this function call has been derived from
an (n-1)th derivative by differentiation inside the tool, an annotation(order=n+1)=..., specifies the
(n+1)th derivative, and the (n+1)th derivative call is constructed as follows:

• The input arguments are appended with the (n+1)th derivative, which are constructed in order
from the nth order derivatives.

• The output arguments are similar to the output argument for the nth derivative, but each output
is one higher in derivative order. The outputs must have the same type and declaration order for
the function and its derivative.

[The restriction that only the result of differentiation can use higher-order derivatives ensures that the
derivatives x, der x, . . . are in fact derivatives of each other. Without that restriction we would have
both der(x) and x der as inputs (or perform advanced tests to verify that they are the same).]

[Example: Given the declarations

function foo0

...

input Real x;

input Boolean linear;

input ...;

output Real y;

...

annotation(derivative=foo1);

end foo0;

function foo1

...

input Real x;

input Boolean linear;

input ...;

input Real der_x;

...
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output Real der_y;

...

annotation(derivative(order =2)=foo2);

end foo1;

function foo2

...

input Real x;

input Boolean linear;

input ...;

input Real der_x;

...;

input Real der_2_x;

...

output Real der_2_y;

...

the equation

(...,y(t),...)=foo0(...,x(t),b,...);

implies that:

(...,d y(t)/dt,...)=foo1(...,x(t),b,..., ...,d x(t)/dt,...);

(...,dˆ2 y(t)/dtˆ2,...)=foo2(...,x(t),b,...,d x(t)/dt,..., ...,dˆ2 x(t)/dtˆ2,...);

]

An input or output to the function may be any simple type (Real, Boolean, Integer, String and enumer-
ation types) or a record. For a record containing Reals the corresponding derivative uses a derivative
record, that only contain the real-predefined types and sub-records containing reals (handled recur-
sively) from the original record. When using smoothOrder, then the derivative record is automatically
constructed. The function must have at least one input containing reals. The output list of the derivative
function may not be empty.

[Here is one example use case with records mixing Reals and non-Reals as inputs and outputs

record ThermodynamicState "Thermodynamic state"

SpecificEnthalpy h "Specific enthalpy";

AbsolutePressure p "Pressure";

Integer phase(min=1, max=2, start =1);

end ThermodynamicState;

record ThermoDynamicState_der "Derivative"

SpecificEnthalpyDerivative h "Specific enthalphy derivative";

PressureDerivative p "Pressure derivative";

// I n t e g e r i n p u t i s s k i p p e d
end ThermodynamicState_der;

function density

input ThermodynamicState state "Thermodynamic state";

output Density d "Density";

algorithm

...

annotation(derivative=density_der);

end density;

function density_der

input ThermodynamicState state "Thermodynamic state";

input ThermodynamicState_der state_der;

output DensityDerivative d "Density derivative";

algorithm

...
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end density_der;

function setState_ph

input Pressure p;

input SpecificEnthalpy h;

input Integer phase = 0;

output ThermodynamicState state;

algorithm

...

annotation(derivative = setState_ph_der);

end setState_ph;

function setState_ph_der

input Pressure p;

input SpecificEnthalpy h;

input Integer phase;

input PressureDerivative p_der;

input SpecificEnthalpyDerivative h_der;

output ThermodynamicState_der state_der;

algorithm

...

end setState_ph_der;

ThermodynamicState state1 = setState_ph(p=... , h=... , phase=...);

Density rho1=density(state1);

DensityDerivative d_rho1=der (rho1);

Density rho2=density(setState_ph(p=... , h=... , phase=...));

DensityDerivative d_rho2=der (rho2);

]

• zeroDerivative=inputVar1 \{, zeroDerivative=inputVar2 \}

The derivative function is only valid if inputVar1 (and inputVar2 etc.) are independent of the variables
the function call is differentiated with respect to (i.e. that the derivative of inputVar1 is “zero”). The
derivative of inputVar1 (and inputVar2 etc.) are excluded from the argument list of the derivative-
function. If the derivative-function also specifies a derivative the common variables should have consistent
zeroDerivative.

[Assume that function f takes a matrix and a scalar. Since the matrix argument is usually a parameter
expression it is then useful to define the function as follows (the additional derivative = f_general_der

is optional and can be used when the derivative of the matrix or offset is non-zero). Note that f der must
have zeroDerivative for both y and offset, but f general der may not have zeroDerivative for either of
them (it may zeroDerivative for x der, y der, or offset der).

function f "Simple table lookup"

input Real x;

input Real y[:, 2];

input Real offset;

output Real z;

algorithm

...

annotation(derivative(zeroDerivative=y, zeroDerivative=offset)= f_der ,

derivative=f_general_der);

end f;

function f_der "Derivative of simple table lookup"

input Real x;

input Real y[:, 2];

input Real offset;

input Real x_der;

output Real z_der;
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algorithm

...

annotation(derivative(zeroDerivative=y, zeroDerivative=offset , order =2) =

f_der2);

end f_der;

function f_der "Second derivative of simple table lookup"

input Real x;

input Real y[:, 2];

input Real offset;

input Real x_der;

input Real x_der2;

output Real z_der2;

algorithm

...

end f_der;

function f_general_der "Derivative of table lookup taking

into account varying tables"

input Real x;

input Real y[:, 2];

input Real offset;

input Real x_der;

input Real y_der[:, 2];

input Real offset_der;

output Real z_der;

algorithm

...

// a n n o t a t i o n ( d e r i v a t i v e ( o r d e r =2) = f g e n e r a l d e r 2 ) ;
end f_general_der;

]

• noDerivative=inputVar1

The derivative of inputVar1 is excluded from the argument list of the derivative-function. This relies on
assumptions on the arguments to the function; and the function should document these assumptions (it
is not always straightforward to verify them). In many cases even the undifferentiated function will only
behave correctly under these assumptions.

The inputs excluded using zeroDerivative or noDerivative may be of any type (including types not
containing reals).

[Assume that function fg is defined as a composition f(x, g(x)). When differentiating f it is useful to give
the derivative under the assumption that the second argument is defined in this way :

function fg

input Real x;

output Real z;

algorithm

z := f(x, g(x));

end fg;

function f

input Real x;

input Real y;

output Real z;

algorithm

...

annotation(derivative(noDerivative=y) = f_der);

end f;

function f_der
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input Real x;

input Real y;

input Real x_der;

output Real z_der;

algorithm

...

end f_der;

This is useful if g represents the major computational effort of fg.]

12.7.2 Partial Derivatives of Functions

A class defined as:

IDENT "=" der "(" name "," IDENT { "," IDENT } ")" comment

is the partial derivative of a function, and may only be used as declarations of functions.

The semantics is that a function [and only a function] can be specified in this form, defining that it is
the partial derivative of the function to the right of the equal sign (looked up in the same way as a short
class definition - the looked up name must be a function), and partially differentiated with respect to
each IDENT in order (starting from the first one). The IDENT must be Real inputs to the function.

The comment allows a user to comment the function (in the info-layer and as one-line description, and
as icon).

[Example: The specific enthalpy can be computed from a Gibbs-function as follows:

function Gibbs

input Real p,T;

output Real g;

algorithm

...

end Gibbs;

function Gibbs_T=der(Gibbs , T);

function specificEnthalpy

input Real p,T;

output Real h;

algorithm

h:=Gibbs(p,T)-T*Gibbs_T(p,T);

end specificEnthalpy;

]

12.8 Declaring Inverses of Functions

Every function with one output formal parameter may have one or more “inverse” annotations to define
inverses of this function:

function f1
input A1 u1;

...

input T1 uk;

...

input Am um := am;

...

input An un;

output T2 y;

algorithm
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...

annotation(inverse(uk =f2(... , y, ....), ui =f3(... , y, ...), ...));

end f1;

The meaning is that function ”f2” is one inverse to function ”f1” where the previous output ”y” is now
an input and the previous input ”uk” is now an output. More than one inverse can be defined within the
same inverse annotation. Several inverses are separated by commas. [The inverse requires that for all
valid values of the input arguments of f2(...,y, ...) and uk being calculated as uk := f2(..., y, ...) implies
the equality y = f1(..., uk, ...,) up to a certain precision.]

Function ”f1” can have any number and types of formal parameters with and without default value. The
restriction is that the “number of unknown variables” (see section 4.7) in the output formal parameter
of both ”f1” and ”f2” must be the same and that ”f2” must have exactly the same formal parameters
as ”f1” (with the same defaults, if a formal parameter ”um” has a default), but the order of the formal
parameters may be permuted.

[Example:

function h_pTX

input Real p "pressure";

input Real T "temperature";

input Real X[:] "mass fractions";

output Real h "specific enthalpy";

algorithm

...

annotation(inverse(T = T_phX(p,h,X)));

end h_pTX;

function T_phX

input Real p "pressure";

input Real h "specific enthalpy";

input Real X[:] "mass fractions";

output Real T "temperature";

algorithm

...

end T_phX;

]

12.9 External Function Interface

Here, the word function is used to refer to an arbitrary external routine, whether or not the routine has
a return value or returns its result via output parameters (or both). The Modelica external function call
interface provides the following:

• Support for external functions written in C (specifically C89) and FORTRAN 77. Other languages,
e.g. C++ and Fortran 90, may be supported in the future, and provided the function is link-
compatible with C89 or FORTRAN 77 it can be written in any language.

• Mapping of argument types from Modelica to the target language and back.

• Natural type conversion rules in the sense that there is a mapping from Modelica to standard
libraries of the target language.

• Handling arbitrary parameter order for the external function.

• Passing arrays to and from external functions where the dimension sizes are passed as explicit
integer parameters.

• Handling of external function parameters which are used both for input and output, by passing an
output that has a declaration assignment to the external function. [Declaration assignments are
executed prior to calling the external function.]
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The format of an external function declaration is as follows.

function IDENT string-comment

{ component-clause ";" }

[ protected { component-clause ";" } ]

external [ language-specification ] [

external-function-call ] [annotation ] ";"

[ annotation ";" ]

end IDENT;

Components in the public part of an external function declaration shall be declared either as input or
output. [This is just as for any other function. The components in the protected part allow local variables
for temporary storage to be declared.]

The language-specification must currently be one of "builtin", "C", "C..." (for one of the specific
C-standards like C89, C99, and C11 – which specifies that it relies on the C standard library of that
version) or "FORTRAN 77". Unless the external language is specified, it is assumed to be "C". [The
intended use of e.g. C99 is to detect if the user tries to link with a C99-function using a C89 compiler.]

The "builtin" specification is only used for functions that are defined to be built-in in Modelica.
The external-function call mechanism for "builtin" functions is implementation-defined. [Typically, for
functions from the standard C-library, the prototype of the function is provided but no library annotation.
Currently, there are no other builtin functions defined in Modelica.]

[Example:

package Modelica

package Math

function sin

input Real x;

output Real y;

external "builtin" y=sin(x);

end sin;

end Math;

end Modelica;

model UserModel

parameter Real p=Modelica.Math.sin (2);

end UserModel;

]

The external-function-call specification allows functions whose prototypes do not match the default
assumptions as defined below to be called. It also gives the name used to call the external function. If
the external call is not given explicitly, this name is assumed to be the same as the Modelica name.

The only permissible kinds of expressions in the argument list are component references, scalar constants,
and the function size applied to an array and a constant dimension number. The annotations are used
to pass additional information to the compiler when necessary.

A component reference to a component that is part of an input or output is treated the same way as a
top-level input or output in the external call.

12.9.1 Argument type Mapping

The arguments of the external function are declared in the same order as in the Modelica declaration,
unless specified otherwise in an explicit external function call. Protected variables (i.e. temporaries) are
passed in the same way as outputs, whereas constants and size-expression are passed as inputs.
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12.9.1.1 Simple Types

Arguments of simple types are by default mapped as follows for C:

Modelica C
Input Output

Real double double *

Integer int int *

Boolean int int *

String const char * const char **

Enumeration type int int *

An exception is made when the argument is of the form size(. . . , . . . ). In this case the corresponding
C-type is size_t.

Strings are NUL-terminated (i.e., terminated by ’\0’) to facilitate calling of C functions. When returning
a non-literal string, the memory for this string must be allocated with function ModelicaAllocateString

(see section 12.9.6) [It is not suitable to use malloc, because a Modelica simulation environment may
have its own allocation scheme, e.g., a special stack for local variables of a function]. After return of the
external function, the Modelica environment is responsible for the memory allocated with ModelicaAl-
locateString (e.g., to free this memory, when appropriate). It is not allowed to access memory that was
allocated with ModelicaAllocateString in a previous call of this external function. [Memory that is not
passed to the Modelica simulation environment, such as memory that is freed before leaving the function,
or in an ExternalObject, see section 12.9.7, should be allocated with the standard C-mechanisms, like
calloc(..)].

Boolean values are mapped to C such that false in Modelica is 0 in C and true in Modelica is 1 in C.
[However, the C-function should interpret any non-zero value as true.] If the returned value from C is
zero it is treated as false in Modelica; otherwise as true.

Arguments of simple types are by default mapped as follows for FORTRAN 77:

Modelica FORTRAN 77
Input Output

Real DOUBLE PRECISION DOUBLE PRECISION

Integer INTEGER INTEGER

Boolean LOGICAL LOGICAL

Enumeration type INTEGER INTEGER

String Special Not Available

Sending string literals to FORTRAN 77 subroutines/functions is supported for Lapack/Blas-routines,
and the strings are NUL-terminated for compatibility with C. Returning strings from FORTRAN 77
subroutines/functions is currently not supported.

Enumeration types used as arguments are mapped to type int when calling an external C function, and
to type INTEGER when calling an external FORTRAN function. The i:th enumeration literal is mapped
to integer value i, starting at one.

Return values are mapped to enumeration types analogously: integer value 1 is mapped to the first enu-
meration literal, 2 to the second, etc. Returning a value which does not map to an existing enumeration
literal for the specified enumeration type is an error.

12.9.1.2 Arrays

Unless an explicit function call is present in the external declaration, an array is passed by its address
followed by n arguments of type size_t with the corresponding array dimension sizes, where n is the
number of dimensions. [The type size_t is a C unsigned integer type.]

Arrays are by default stored in row-major order when calling C functions and in column-major order
when calling FORTRAN 77 functions. These defaults can be overridden by the array layout annotation.
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See the example below.

The table below shows the mapping of an array argument in the absence of an explicit external function
call when calling a C function. The type T is allowed to be any of the simple types which can be passed
to C as defined in section 12.9.1.1 or a record type as defined in section 12.9.1.3 and it is mapped to the
type T’ as defined in these sections for input arguments.

Modelica C
Input and Output

T [dim1] T’ *, size t dim1

T [dim1,dim2] T’ *, size t dim1, size t dim2

T [dim1, . . . , dimn] T’ *, size t dim1, . . . , size t dimn

The method used to pass array arguments to FORTRAN 77 functions in the absence of an explicit
external function call is similar to the one defined above for C: first the address of the array, then the
dimension sizes as integers. See the table below. The type T is allowed to be any of the simple types
which can be passed to FORTRAN 77 as defined in section 12.9.1.1 and it is mapped to the type T’ as
defined in that section.

Modelica FORTRAN 77
Input and Output

T [dim1] T’, INTEGER dim1

T [dim1,dim2] T’, INTEGER dim1, INTEGER dim2

T [dim1, . . . , dimn] T’, INTEGER dim1, . . . , INTEGER dimn

[The following two examples illustrate the default mapping of array arguments to external C and FOR-
TRAN 77 functions.

function foo

input Real a[:,:,:];

output Real x;

external;

end foo;

The corresponding C prototype is as follows:

double foo(double *, size_t , size_t , size_t);

If the external function is written in FORTRAN 77, i.e.:

function foo

input Real a[:,:,:];

output Real x;

external "FORTRAN 77";

end foo;

the default assumptions correspond to a FORTRAN 77 function defined as follows:

FUNCTION foo(a, d1, d2, d3)

DOUBLE PRECISION(d1,d2,d3) a

INTEGER d1

INTEGER d2

INTEGER d3

DOUBLE PRECISION foo

...

END
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]

When an explicit call to the external function is present, the array and the sizes of its dimensions must
be passed explicitly.

[This example shows how arrays can be passed explicitly to an external FORTRAN 77 function when the
default assumptions are unsuitable.

function foo

input Real x[:];

input Real y[size(x,1) ,:];

input Integer i;

output Real u1[size(y,1)];

output Integer u2[size(y,2)];

external "FORTRAN 77" myfoo(x, y, size(x,1), size(y,2), u1, i, u2);

end foo;

The corresponding FORTRAN 77 subroutine would be declared as follows:

SUBROUTINE myfoo(x, y, n, m, u1 , i, u2)

DOUBLE PRECISION(n) x

DOUBLE PRECISION(n,m) y

INTEGER n

INTEGER m

DOUBLE PRECISION(n) u1

INTEGER i

DOUBLE PRECISION(m) u2

...

END

This example shows how to pass an array in column major order to a C function.

function fie

input Real [:,:] a;

output Real b;

external;

annotation(arrayLayout = "columnMajor");

end fie;

This corresponds to the following C-prototype:

double fie(double *, size t, size t);

]

12.9.1.3 Records

Mapping of record types is only supported for C. A Modelica record class that contains simple types,
other record elements, is mapped as follows:

• The record class is represented by a struct in C.

• Each element of the Modelica record is mapped to its corresponding C representation.

• The elements of the Modelica record class are declared in the same order in the C struct.

• Arrays cannot be mapped.

Records are passed by reference (i.e. a pointer to the record is being passed).

[For example:

174



record R

Real x;

Real z;

end R;

is mapped to:

struct R {

double x;

double z;

};

]

12.9.2 Return Type Mapping

If there is a single output parameter and no explicit call of the external function, or if there is an explicit
external call in the form of an equation, in which case the LHS must be one of the output parameters, the
external routine is assumed to be a value-returning function. Mapping of the return type of functions is
performed as indicated in the table below. Storage for arrays as return values is allocated by the calling
routine, so the dimensions of the returned array are fixed at call time. Otherwise the external function
is assumed not to return anything; i.e., it is really a procedure or, in C, a void-function. [In this case,
argument type mapping according to section 12.9.1.1 is performed in the absence of any explicit external
function call.]

Return types are by default mapped as follows for C and FORTRAN 77:

Modelica C FORTRAN 77
Real double DOUBLE PRECISION

Integer int INTEGER

Boolean int LOGICAL

String const char* Not allowed.
T[dim1, . . . , dimn] Not allowed. Not allowed.
Enumeration type int INTEGER

Record See section 12.9.1.3. Not allowed.

The element type T of an array can be any simple type as defined in section 12.9.1.1 or, for C, a record
type is returned as a value of the record type defined in section 12.9.1.3.

12.9.3 Aliasing

Any potential aliasing in the external function is the responsibility of the tool and not the user. An
external function is not allowed to internally change the inputs (even if they are restored before the end
of the function).

[Example:

function foo

input Real x;

input Real y;

output Real z:=x;

external "FORTRAN 77" myfoo(x,y,z);

end foo;

The following Modelica function:
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function f

input Real a;

output Real b;

algorithm

b:=foo(a,a);

b:=foo(b,2*b);

end f;

can on most systems be transformed into the following C function:

double f(double a) {

extern void myfoo_(double*,double*,double *);

double b,temp1 ,temp2;

myfoo_ (&a,&a,&b);

temp1 =2*b;

temp2=b;

myfoo_ (&b,&temp1 ,& temp2);

return temp2;

}

The reason for not allowing the external function to change the inputs is to ensure that inputs can be
stored in static memory and to avoid superfluous copying (especially of matrices). If the routine does
not satisfy the requirements the interface must copy the input argument to a temporary. This is rare but
occurs e.g. in dormlq in some Lapack implementations. In those special cases the writer of the external
interface have to copy the input to a temporary. If the first input was changed internally in myfoo the
designer of the interface would have to change the interface function “ foo” to:

function foo

input Real x;

protected Real xtemp:=x; // Temporary used b e c a u s e myfoo c h a n g e s i t s i n p u t
public input Real y;

output Real z;

external "FORTRAN 77" myfoo(xtemp ,y,z);

end foo;

Note that we discuss input arguments for Fortran-routines even though FORTRAN 77 does not formally
have input arguments and forbid aliasing between any pair of arguments to a function (Section 15.9.3.6
of X3J3/90.4). For the few (if any) FORTRAN 77 compilers that strictly follow the standard and are
unable to handle aliasing between input variables the tool must transform the first call of foo into

temp1=a; /∗ Temporary t o a v o i d a l i a s i n g ∗/
myfoo_ (&a,&temp1 ,&b);

The use of the function foo in Modelica is uninfluenced by these considerations.

]

12.9.4 Annotations for External Libraries and Include Files

The following annotations are useful in the context of calling external functions from Modelica, and they
should occur on the external clause and no other standard annotations should occur on the external-
clause. They can all specify either a scalar value or an array of values as indicated below for annotation
(Library=. . . ):

• The annotation(Library="libraryName"), used by the linker to include the library file where
the compiled external function is available.
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• The annotation(Library=("libraryName1","libraryName2")), used by the linker to include
the library files where the compiled external function is available and additional libraries used to
implement it. For shared libraries it is recommended to include all non-system libraries in this list.

• The annotation(Include="includeDirective"), used to include source files, [e.g., header files
or source files that contain the functions referenced in the external function declaration], needed
for calling the external function in the code generated by the Modelica compiler. The included
code should be valid C89 code.

• The annotation(IncludeDirectory="modelica://ModelicaLibraryName/Resources/Include"
), used to specify a location for header files. The preceding one is the default and need not be
specified; but another location could be specified by using an URI name for the include directory,
see section 13.2.3.

• The annotation(LibraryDirectory="modelica://ModelicaLibraryName/Resources/Library"
), used to specify a location for library files. The preceding one is the default and need not be
specified; but another location could be specified by using an URI name for the library directory,
see section 13.2.3. Different versions of one object library can be provided [e.g. for Windows and
for Linux] by providing a “platform” directory below the “LibraryDirectory”. If no “platform”
directory is present, the object library must be present in the “LibraryDirectory”. The following
“platform” names are standardized:

– win32 [Microsoft Windows 32 bit]

– win64 [Microsoft Windows 64 bit]

– linux32 [Linux Intel 32 bit]

– linux64 [Linux Intel 64 bit]

The ”win32”/”win64” directories may contain ”gcc47”, ”vs2010”, ”vs2012” for specific versions of these
compilers and these are used instead of the general ”win32”/”win64” directories, and similarly for other
platforms.

The library on Windows may refer to a lib-file (static library), both a lib- and dll-file (in this case the
lib-file is an import-library), or just a dll-file. It may not refer to an obj-file.

If the directory for the specific compiler version is missing the platform specific directory is used. [A tool
may give diagnostics if the directory corresponding to the selected compiler version is missing. The direc-
tories may use symbolic links - or use a text-file as described below: e.g. a text-file ”vs2008” containing
the text ”../win32/vs2005” (or ”vs2005”) suggesting that it is compatible with vs2005.]

The ModelicaLibraryName used for IncludeDirectory and LibraryDirectory indicates the top-level
class where the annotation is found in the Modelica source code.

[Example: to show the use of external functions and of object libraries:

package ExternalFunctions

model Example

Real x(start =1.0),y(start =2.0);

equation

der(x)=-ExternalFunc1(x);

der(y)=-ExternalFunc2(y);

end Example;

model OtherExample

Real x(start =1.0);

equation

der(x)=-ExternalFunc3(x);

end OtherExample;

function ExternalFunc1

input Real x;

output Real y;

external "C"
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y=ExternalFunc1_ext(x) annotation(Library="ExternalLib1",Include="#include

\" ExternalFunc1.h \"");

end ExternalFunc1;

function ExternalFunc2

input Real x;

output Real y;

external "C" annotation(Library="ExternalLib2", Include="#include \"

ExternalFunc2.h \"");

end ExternalFunc2;

function ExternalFunc3

input Real x;

output Real y;

external "C" annotation(Include="#include \" ExternalFunc3.c \"");

end ExternalFunc3;

end ExternalFunctions;

package MyExternalFunctions

extends ExternalFunctions;

end MyExternalFunctions;

Directory structure:

ExternalFunctions

package.mo // c o n t a i n s t h e M o d e l i c a code from above
Resources

Include // c o n t a i n s t h e i n c l u d e f i l e s
ExternalFunc1.h // C−h e a d e r f i l e
ExternalFunc2.h // C−h e a d e r f i l e
ExternalFunc3.c // C−s o u r c e f i l e

Library // c o n t a i n s t h e o b j e c t l i b r a r i e s f o r d i f f e r e n t
platforms

win32

ExternalLib1.lib // s t a t i c l i n k l i b r a r y f o r V i s u a l S t u d i o
ExternalLib2.lib // s t a t i c a l l y l i n k i n g t h e dynamic l i n k l i b r a r y
ExternalLib2.dll // dynamic l i n k l i b r a r y ( w i t h m a n i f e s t )

linux32

libExternalLib1.a // s t a t i c l i n k l i b r a r y
libExternalLib2.so // s h a r e d l i b r a r y

MyExternalFunctions

package.mo

Note that calling MyExternalFunctions.ExternalFunc1 will use header and library files from External-
Function, the ExternalFunctions.Example will not use ExternalFunc3.c, and one library file may contain
multiple functions.

Header file for the function in the dynamic link / shared library ExternalLib2 so that the desired functions
are defined to be exported for Microsoft VisualStudio and for GNU C-compiler (note, for Linux it is
recommended to use the compiler option “-fPIC” to build shared libraries or object libraries that are later
transformed to a shared library):

// F i l e E x t e r n a l F u n c 2 . h
#ifdef __cplusplus

extern "C" {

#endif

#ifdef _MSC_VER

#ifdef EXTERNAL_FUNCTION_EXPORT
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# define EXTLIB2_EXPORT __declspec( dllexport )

#else

# define EXTLIB2_EXPORT __declspec( dllimport )

#endif

#elif __GNUC__ >= 4

/∗ I n gnuc , a l l s y m b o l s a r e by d e f a u l t e x p o r t e d . I t i s s t i l l o f t e n
u s e f u l ,

t o n o t e x p o r t a l l s y m b o l s b u t o n l y t h e n e e d e d o n e s ∗/
# define EXTLIB2_EXPORT __attribute__ (( visibility("default")))

#else

# define EXTLIB2_EXPORT

#endif

EXTLIB2_EXPORT void ExternalFunc2(<function arguments >);

#ifdef __cplusplus

}

#endif

]

The Library name and the LibraryDirectory name in the function annotation are mapped to a linkage
directive in a compiler-dependent way thereby selecting the object library suited for the respective
computer platform.

12.9.5 Examples

12.9.5.1 Input Parameters, Function Value

[Here all parameters to the external function are input parameters. One function value is returned. If
the external language is not specified, the default is "C", as below.

function foo

input Real x;

input Integer y;

output Real w;

external;

end foo;

This corresponds to the following C-prototype:

double foo(double , int);

Example call in Modelica:

z = foo(2.4 , 3);

Translated call in C:

z = foo(2.4, 3);

]

12.9.5.2 Arbitrary Placement of Output Parameters, No External Function Value

[In the following example, the external function call is given explicitly which allows passing the arguments
in a different order than in the Modelica version.
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function foo

input Real x;

input Integer y;

output Real u1;

output Integer u2;

external "C" myfoo(x, u1, y, u2);

end foo;

This corresponds to the following C-prototype:

void myfoo(double , double *, int , int *);

Example call in Modelica:

(z1 ,i2) = foo(2.4 , 3);

Translated call in C:

myfoo (2.4, \&z1 , 3, \&i2);

]

12.9.5.3 External Function with Both Function Value and Output Variable

[The following external function returns two results: one function value and one output parameter value.
Both are mapped to Modelica output parameters.

function foo

input Real x;

input Integer y;

output Real funcvalue;

output Integer out1;

external "C" funcvalue = myfoo(x, y, out1);

end foo;

This corresponds to the following C-prototype:

double myfoo(double , int , int *);

Example call in Modelica:

(z1 ,i2) = foo(2.4 , 3);

Translated call in C:

z1 = myfoo (2.4, 3, \&i2);

]

12.9.6 Utility Functions

The following utility functions can be called in external Modelica functions written in C. These functions
are defined in file ModelicaUtilities.h:

The following functions produce a message in different ways. The Message-functions only produce the
message, but the Warning- and Error-functions combine this with error handling as follows.

The Warning-functions view the message as a warning and can skip duplicated messages similarly as an
assert with level=AssertionLevel.Warning in the Modelica code.

The Error-functions never return to the calling function, but handle the error similarly to an assert with
level=AssertionLevel.Error in the Modelica code.
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ModelicaMessage

ModelicaWarning

ModelicaError

void Modelica{Message,Warning,Error}(const char* string)
Output the message string (no format control).

ModelicaFormatMessage

ModelicaFormatWarning

ModelicaFormatError

void ModelicaFormat{Message,Warning,Error}(const char* string,...)
Output the message under the same format control as the C-function printf.

ModelicaVFormatMessage

ModelicaVFormatWarning

ModelicaVFormatError

void ModelicaVFormat{Message,Warning,Error}(const char*string, va list)
Output the message under the same format control as the C-function vprintf.

And then the string handling functions:

ModelicaAllocateString

char* ModelicaAllocateString(size t len)
Allocate memory for a non-literal string which is
used as a return argument of an external Modelica
function. If an error occurs, this function does not
return, but calls ”ModelicaError”.

ModelicaAllocateStringWithErrorReturn

char*
ModelicaAllocateStringWithErrorReturn(size t len)
Same as ModelicaAllocateString, except that in
case of error, the function returns 0. This allows the
external function to close files and free other open re-
sources in case of error. After cleaning up resources
use ModelicaError or ModelicaFormatError to sig-
nal the error.

The valid return values for an external function returning a String are:

• A literal String.

• A string given as String input to the external function

• A string pointer returned by ModelicaAllocateString or ModelicaAllocateStringWithErrorReturn
.

12.9.7 External Objects

External functions may have internal memory reported between function calls. Within Modelica this
memory is defined as instance of the predefined class ExternalObject according to the following rules:

• There is a predefined partial class ExternalObject [since the class is partial, it is not possible to
define an instance of this class[.

• An external object class shall be directly extended from ExternalObject, shall have exactly two
function definitions, called ”constructor” and ”destructor”, and shall not contain other ele-
ments. The functions ”constructor” and ”destructor” shall not be replaceable.

• The constructor function is called exactly once before the first use of the object. For each
completely constructed object, the destructor is called exactly once, after the last use of the object,
even if an error occurs. The constructor shall have exactly one output argument in which the
constructed instance derived from ExternalObject is returned. The destructor shall have no
output arguments and the only input argument of the destructor shall be of the type derived from
ExternalObject. It is not legal to call explicitly the constructor and destructor functions. The
constructor shall initialize the object, and must not require any other calls to be made for the
initialization to be complete (e.g., from an initial algorithm or initial equation). The destructor
shall delete the object, and must not require any other calls to be made for the deletion to be
complete (e.g., from a ’when terminal()’ clause). The constructor may not assume that pointers
sent to the external object will remain valid for the life-time of the external object. [An exception
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is that if the pointer to another external object is given as argument to the constructor, that pointer
will remain valid as long as the other external object lives.]

External objects may be a protected component (or part of one) in a function. The constructor is
in that case called at the start of the function call, and the destructor when the function returns,
or when recovering from errors in the function.

External objects may be an input (or part of an input) to a function, in that case the destructor is
not called (since the external object is active before and after the function call). Normally this is
an external function, but it could be a non-external function as well (e.g. calling external functions
one or more times). The function input may not have a default value using the constructor.

• Classes derived from ExternalObject can neither be used in an extends-clause nor in a short class
definition.

• Only the constructor may return external objects and external object can only be bound in com-
ponent declarations and neither modified later nor assigned to.

No function may return a component containing an external object (since only the constructor may
return an external object and the constructor exactly returns the external object).

• External functions may be defined which operate on the internal memory of an ExternalObject.
An ExternalObject used as input argument or return value of an external C-function is mapped
to the C-type ”void*”.

[Example:

A user-defined table may be defined in the following way as an ExternalObject

(the table is read in a user-defined format from file and has memory for the last used table interval):

class MyTable

extends ExternalObject;

function constructor

input String fileName := "";

input String tableName := "";

output MyTable table;

external "C" table = initMyTable(fileName , tableName);

end constructor;

function destructor "Release storage of table"

input MyTable table;

external "C" closeMyTable(table);

end destructor;

end MyTable;

and used in the following way:

model test "Define a new table and interpolate in it"

MyTable table=MyTable(fileName ="testTables.txt",

tableName="table1"); // c a l l i n i t M y T a b l e
Real y;

equation

y = interpolateMyTable(table , time);

end test;

This requires to provide the following Modelica function:

function interpolateMyTable "Interpolate in table"

input MyTable table;

input Real u;
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output Real y;

external "C" y = interpolateMyTable(table , u);

end interpolateTable;

The external C-functions may be defined in the following way:

typedef struct { /∗ User−d e f i n e d d a t a s t r u c t u r e o f t h e t a b l e ∗/
double* array; /∗ nrow ∗ nco lumn v e c t o r ∗/
int nrow; /∗ number o f r o w s ∗/
int ncol; /∗ number o f c o l u m n s ∗/
int type; /∗ i n t e r p o l a t i o n t y p e ∗/
int lastIndex; /∗ l a s t row i n d e x f o r s e a r c h ∗/

} MyTable;

void* initMyTable(const char* fileName , const char* tableName) {

MyTable* table = malloc(sizeof(MyTable));

if ( table == NULL ) ModelicaError("Not enough memory");

// r e a d t a b l e f rom f i l e and s t o r e a l l d a t a i n ∗ t a b l e
return (void*) table;

};

void closeMyTable(void* object) { /∗ R e l e a s e t a b l e s t o r a g e ∗/
MyTable* table = (MyTable *) object;

if ( object == NULL ) return;

free(table ->array);

free(table);

}

double interpolateMyTable(void* object , double u) {

MyTable* table = (MyTable *) object;

double y;

// I n t e r p o l a t e u s i n g ” t a b l e ” d a t a ( compute y )
return y;

};

]
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Chapter 13

Packages

13.1 Package as Specialized Class

The package concept is a specialized class (section 4.6), using the keyword package.

13.2 Motivation and Usage of Packages

[Packages in Modelica may contain definitions of constants and classes including all kinds of specialized
classes, functions, and subpackages. By the term subpackage we mean that the package is declared inside
another package, no inheritance relationship is implied. Parameters and variables cannot be declared in
a package. The definitions in a package should typically be related in some way, which is the main reason
they are placed in a particular package. Packages are useful for a number of reasons:

• Definitions that are related to some particular topic are typically grouped into a package. This
makes those definitions easier to find and the code more understandable.

• Packages provide encapsulation and coarse-grained structuring that reduces the complexity of large
systems. An important example is the use of packages for construction of (hierarchical) class
libraries.

• Name conflicts between definitions in different packages are eliminated since the package name is
implicitly prefixed to names of definitions declared in a package.

• Information hiding and encapsulation can be supported to some extent by declaring protected

classes, types, and other definitions that are available only inside the package and therefore inac-
cessible to outside code.

• Modelica defines a method for locating a package by providing a standard mapping of package names
to storage places, typically file or directory locations in the file system.

]

13.2.1 Importing Definitions from a Package

The import-clause makes public classes and other public definitions declared in some package available
for use by shorter names in a class or a package. It is the only way of referring to definitions declared in
some other package for use inside an encapsulated package or class.

[Import-clauses in a package or class fill the following two needs:

• Making definitions from other packages available for use (by shorter names) in a package or class.

• Explicit declaration of usage dependences on other packages.

]

An import-clause can occur in one of the following five syntactic forms:
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import packagename; (qualified import)

import [packagename.]definitionname; (single definition import)

import [packagename.]{def1,def2,. . . defN }; (multiple definition import)

import packagename.*; (unqualified import)

import shortpackagename = packagename; (renaming import)

import shortpackagename = [packagename.]definitionname; (renaming single def. import)

Here packagename is the fully qualified name of the imported package including possible dot notation
and definitionname is the name of an element in a package. The multiple definition import is equivalent
to multiple single definition imports with corresponding packagename and definition names.

13.2.1.1 Lookup of Imported Names

This section only defines how the imported name is looked up in the import clause. For lookup in general
– including how import clauses are used, see section 5.3.

Lookup of the name of an imported package or class, e.g. A.B.C in the clauses import A.B.C; import

D=A.B.C; import A.B.C.*, deviates from the normal lexical lookup by starting the lexical lookup of
the first part of the name at the top-level.

Qualified import clauses may only refer to packages or elements of packages, i.e., in import A.B.C; or
import D=A.B.C;, A.B must be a package. Unqualified import clauses may only import from packages,
i.e., in import A.B.*;, A.B must be a package. [Note: in import A; the class A can be any class which
is an element of the unnamed top-level package]

[For example, if the package ComplexNumbers would have been declared as a subpackage inside the package
Modelica.Math, its fully qualified name would be Modelica.Math.ComplexNumbers. Definitionname is
the simple name without dot notation of a single definition that is imported. A shortpackagename is a
simple name without dot notation that can be used to refer to the package after import instead of the
presumably much longer packagename.

The forms of import are exemplified below assuming that we want to access the addition operation of
the hypothetical package Modelica.Math.ComplexNumbers:

import Modelica.Math.ComplexNumbers; // A c c e s s e d by ComplexNumbers.Add
import Modelica.Math.ComplexNumbers.Add; // A c c e s s e d by Add
import Modelica.Math.ComplexNumbers.{Add ,Sub}; // A c c e s s e d by Add and Sub
import Modelica.Math.ComplexNumbers. *; // A c c e s s e d by Add
import Co = Modelica.Math.ComplexNumbers; // A c c e s s e d by Co.Add

]

13.2.1.2 Summary of Rules for Import Clauses

The following rules apply to import-clauses:

• Import-clauses are not inherited.

• Import-clauses are not named elements of a class or package. This means that import-clauses
cannot be changed by modifiers or redeclarations.

• The order of import-clauses does not matter.

• One can only import from packages, not from other kinds of classes. Both packages and classes
can be imported into i.e., they may contain import-clauses.

• An imported package or definition should always be referred to by its fully qualified name in the
import-clause.

• Multiple qualified import-clauses may not have the same import name.
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13.2.2 Mapping Package/Class Structures to a Hierarchical File System

Packages/classes may be represented in the hierarchical structure of the operating system [the file system].
For classes with version information see also section 18.8.3. The nature of such an external entity falls
into one of the following two groups:

• Directory in the file system.

• File in the file system.

Each Modelica file in the file-system is stored in UTF-8 format (defined by The Unicode Consortium;
http://www.unicode.org) and may start with the UTF-8 encoded byte order mark (0xef 0xbb 0xbf);
this is treated as white-space in the grammar. [Tools may also store classes in data-base systems, but
that is not standardized.]

13.2.2.1 Mapping a Package/Class Hierarchy into a Directory Hierarchy (Structured En-
tity)

A directory shall contain a node, the file package.mo. The node shall contain a stored-definition that
defines a class [A] with a name matching the name of the structured entity. [The node typically contains
documentation and graphical information for a package, but may also contain additional elements of the
class A.]

A directory may also contain one or more sub-entities (directories or files). The sub-entities are mapped
as elements of the class defined by their enclosing structured entity. [For example, if directory A contains
the three files package.mo, B.mo and C.mo the classes defined are A, A.B, and A.C.] Two sub-entities shall
not define classes with identical names [for example, a directory shall not contain both the sub-directory
A and the file A.mo].

In order to preserve the order of sub-entities it is advisable to create a file package.order where each
line contains the name of one class or constant. If a package.order is present when reading a structured
entity the classes and constants are added in this order; if the contents does not exactly match the classes
and constants in the package, the resulting order is tool specific and a warning may be given. Classes
and constants that are stored in package.mo are also present in package.order but their relative order
should be identical to the one in package.mo (this ensures that the relative order between classes and
constants stored in different ways is preserved).

13.2.2.2 Mapping a Package/Class Hierarchy into a Single File (Nonstructured Entity)

When mapping a package or class-hierarchy to a file [e.g. the file A.mo], that file shall only define a single
class [A] with a name matching the name of the nonstructured entity. In a file hierarchy the files shall
have the extension “.mo”.

A “.mo” file defining more than one class cannot be part of the mapping to file-structure and it is an
error if it is loaded from the MODELICAPATH

13.2.2.3 The within Clause

A within-clause has the following syntax:

within [ packageprefixname ] ";"

A non-top-level entity shall begin with a within-clause which for the class defined in the entity specifies
the location in the Modelica class hierarchy. A top-level class may contain a within-clause with no name.
For a sub-entity of an enclosing structured entity, the within-clause shall designate the class of the
enclosing entity; and this class must exist and must not have been defined using a short class definition.

[Example: The subpackage Rotational declared within Modelica.Mechanics has the fully qualified name
Modelica.Mechanics.Rotational, which is formed by concatenating the packageprefixname with the
short name of the package. The declaration of Rotational could be given as below :
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within Modelica.Mechanics;

package Rotational // M o d e l i c a . M e c h a n i c s . R o t a t i o n a l
...

]

13.2.3 External resources

In order to reference external resources from documentation (such as links and images in html-text)
and/or to reference images in the Bitmap annotation (see section 18.6.5.6). URIs should be used, for
example file:/// and the URI scheme modelica:// which can be used to retrieve resources associated
with a package. [Note scheme names are case-insensitive, but the lower-case form should be used, that
is ‘Modelica://’ is allowed but ‘modelica://’ is the recommended form.]

The Modelica-scheme has the ability to reference a hierarchical structure of resources associated with
packages. The same structure is used for all kind of resource references, independent of use (external
file, image in documentation, bitmap in icon layer, and link to external file in the documentation), and
regardless of the storage mechanism.

Any Modelica-scheme URI containing a slash after the package-name is interpreted as a reference to a
resource. The ‘authority’ portion of the URI is interpreted as a fully qualified package name and the
path portion of the URI is interpreted as the path (relative to the package) of the resource. Each storage
scheme can define its own interpretation of the path (but care should be taken when converting from one
storage scheme or when restructuring packages that resource references resolve to the same resource).
Any storage scheme should be constrained such that a resource with a given path should be unique for
any package name that precedes it. The first part of the path may not be the name of a class in the
package given by the authority.

When Modelica packages are stored hierarchically in a file-system (i.e. package A in a directory A
containing ”package.mo”) the resource ”modelica://A/Resources/C.jpg” should be stored in the file
”A/Resources/C.jpg”, it is not recommend to use ”modelica://A.B/C.jpg” for referencing resources; it
could be stored in the file ”A/B/C.jpg” - which is counter-intuitive if A.B is stored together with A. When
Modelica packages are stored in other formats a similar mapping should be defined, such that a resource
with a given path should be unique for any package name that precedes it. The first part of the path may
not be the name of a class in the package given by the authority. As above for ”Modelica 3.2.1/pack-
age.mo” i.e. resources starting from ”Modelica 3.2.1”, and ”modelica://Modelica.Mechanics/C.jpg” is
”Modelica 3.2.1/Mechanics/C.jpg” - regardless of whether Modelica.Mechanics is stored in ”Modelica
3.2.1/package.mo”, ”Modelica 3.2.1/Mechanics/package.mo”, or ”Modelica 3.2.1/Mechanics.mo”.

For a Modelica-package stored as a single file, ”A.mo”, the resource ”modelica://A/C.jpg” refers to a file
”C.jpg” stored in the same directory as ”A.mo”, but using resources in this variant is not recommended
since multiple packages will share resources.

In case the class-name contains quoted identifiers, the single-quote ”‘” and any reserved characters (“:”,
“/”, “?”, “#”, “[“, “]”, “@”, “!”, “$”, “&”, “(“, “)”, “*”, “+”, “,”, “;”, “=”) should be percent-encoded
as normal in URIs.

[Example:

Consider a top-level package Modelica and a class Mechanics inside it, a reference such as modelica://
Modelica.Mechanics/C.jpg is legal, while modelica://Modelica/Mechanics/C.jpg is illegal. The reference
modelica://Modelica.Mechanics/C.jpg must also refer to a different resource than modelica://Modelica
/C.jpg.]

13.2.4 The Modelica Library Path – MODELICAPATH

The top-level scope implicitly contains a number of classes stored externally. If a top-level name is
not found at global scope, a Modelica translator shall look up additional classes in an ordered list of
library roots, called MODELICAPATH. [The implementation of MODELICAPATH is tool dependent. In order
that a user can work in parallel with different Modelica tools, it is advisable to not have this list as
environment variable, but as a setting in the respective tool. Since MODELICAPATH is tool dependent,
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it is not specified in which way the list of library roots is stored. Typically, on a Windows system
MODELICAPATH is a string with path names separated by “;” whereas on a Linux system it is a string
with path names separated by a “:”.]

In addition a tool may define an internal list of libraries, since it is in general not advisable for a program
installation to modify global environment variables. The version information for a library (as defined
in section 18.8) may also be used during this search to search for a specific version of the library (e.g.
if Modelica library version 2.2 is needed and the first directory in MODELICAPATH contain Modelica
library version 2.1, whereas the second directory contains Modelica version 2.2, then Modelica library
version 2.2 is loaded from the second directory.).

[The first part of the path A.B.C (i.e., A) is located by searching the ordered list of roots in MODELICAPATH.
If no root contains A the lookup fails. If A has been found in one of the roots, the rest of the path is
located in A; if that fails, the entire lookup fails without searching for A in any of the remaining roots in
MODELICAPATH.]

13.2.4.1 Example of Searching MODELICAPATH

If during lookup a top-level name is not found in the unnamed top-level scope, the search continues in the
package hierarchies stored in these directories. [Figure 13.1 below shows an example MODELICAPATH =
"C:\library;C:\lib1;C:\lib2", with three directories containing the roots of the package hierarchies
Modelica , MyLib, and ComplexNumbers. The first two are represented as the subdirectories C:\library

\Modelica and C:\lib1\MyLib, whereas the third is stored as the file C:\lib2\ComplexNumbers.mo.

Figure 13.1: Roots of package hierarchies, e.g., Modelica, MyLib, and ComplexNumbers in MODELICAPATH

="C:\library;C:\lib1;C:\lib2".
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Assume that we want to access the package MyLib.Pack2 in Figure 13.1 above, e.g. through an import

clause import MyLib.Pack2;. During lookup we first try to find a package MyLib corresponding to the
first part of the import name. It is not found in the top-level scope since it has not previously been loaded
into the environment.

Since the name was not found in the top-level scope the search continues in the directories in the
MODELICAPATH in the specified order. For the search to succeed, there must be a subdirectory MyLib

or a file MyLib.mo in one of the directories mentioned in the MODELICAPATH. If there is no such sub-
directory or file, the lookup fails. If MyLib is found in one of the directories, the rest of the name, in
this case Pack2, is located in MyLib. If that fails, the entire lookup fails without continuing the search in
possibly remaining directories.

In this example the name matches the subdirectory named MyLib in the second directory “C:\lib1”
mentioned in the MODELICAPATH. This subdirectory must have a file package.mo containing a definition
of the package MyLib, according to the Modelica rules on how to map a package hierarchy to the file
system. The subpackage Pack2 is stored in its own subdirectory or file in the subdirectory MyLib. In this
case the search succeeds and the package MyLib.Pack2 is loaded into the environment.]
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Chapter 14

Overloaded Operators

A Modelica operator record can define the behavior for operations such as constructing, adding, mul-
tiplying etc. This is done using the specialized class operator (a restricted class similar to package,
see section 4.6) comprised of functions implementing different variants of the operation for the record
class in which the respective operator definition resides. [The overloading is defined in such a way that
ambiguities are not allowed and give an error. Furthermore, it is sufficient to define overloading for
scalars. Overloaded array operations are automatically deduced from the overloaded scalar operations.]
The operator keyword is followed by the name of the operation:

Overloaded constructors, see section 14.2:
’constructor’, ’0’

Overloaded string conversions, see section 14.3:
’String’

Overloaded binary operations, see section 14.4:
’+’, ’-’ (subtraction), ’*’, ’/’, ’^’,
’==’, ’<=’’, ’>’, ’<’, ’>=’, ’<=’, ’and’, ’or’

Overloaded unary operations, see section 14.5:
’-’ (negation), ’not’

The functions defined in the operator-class must take at least one component of the record class as input,
except for the constructor-functions which instead must return one component of the record class. All
of the functions shall return exactly one output.

The functions can be either called as defined in this section, or they can be called directly using the
hierarchical name. The operator or operator function must be encapsulated; this allows direct calls of
the functions and prohibits the functions from using the elements of operator record class.

The operator record may also contain additional functions, and declarations of components of the
record. It is not legal to extend from an operator record, except as a short class definition modifying
the default attributes for the component elements directly inside the operator record.

If an operator record was derived by a short class definition, the overloaded operators of this operator
record are the operators that are defined in its base class, for subtyping see chapter 6.

The precedence and associativity of the overloaded operators is identical to the one defined in Table 3.1
in section 3.2.

[Note, the operator overloading as defined in this section is only a short hand notation for function calls.]

14.1 Matching Function

All functions defined inside the operator class must return one output (based on the restriction above),
and may include functions with optional arguments, i.e. functions of the form
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function f

input A1 u1;

...

input Am um := Am;

...

input An un;

output B y;

algorithm

...

end f;

The vector P indicates whether argument m of f has a default value (true for default value, false

otherwise). A call f(A1, a2,. . . , ak, b1 = w1 ,. . . , bp= wp) with distinct names bj is a valid match for the
function f, provided (treating Integer and Real as the same type)

• Ai = typeOf(Ai) for 1 ≤ i ≤ k,

• the names bj = uQj , Qj > k, AQj =typeOf(wi) for 1 ≤ j ≤ p, and

• if the union of {i: 1 ≤ i ≤ k }, {Qj: 1 ≤ j ≤ p}, and {m: Pm true and 1 ≤ m ≤ n } is the set {i:
1 ≤ i ≤ n}.

[This corresponds to the normal treatment of function calls with named arguments, requiring that all
inputs have some value given by a positional argument, named argument, or a default value (and that
positional and named arguments do not overlap). Note, that this only defines a valid call, but does not
explicitly define the set of domains.]

14.2 Overloaded Constructors

Let C denote an operator record class and consider an expression C(A1, a2,. . . , ak, b1= w1 ,. . . , bp=
wp).

1. If there exists a unique function f in C.’constructor’ such that (A1, a2,. . . , ak, b1= w1 ,. . . , bp=
wp) is a valid match for the function f, then C(A1, a2,. . . , ak, b1= w1 ,. . . , bp= wp) is resolved to
C.’constructor’.f(A1, a2,. . . , ak, b1= w1 ,. . . , bp= wp).

2. If there is no operator C. ’constructor’ the automatically generated record constructor is called.

3. Otherwise the expression is erroneous.

Restrictions:

• The operator C.’constructor’ shall only contain functions that declare one output component, which
shall be of the operator record class C.

• For an operator recordclass there shall not exist any potential call that lead to multiple matches
in (1) above. [How to verify this is not specified.]

• For a pair of operator record classes C and D and components c and d of these classes both of
C.’constructor’ (d) and D.’constructor’ (c) shall not both be legal [, so one of the two definitions
must be removed ].

[By the last restriction the following problem for binary operators is avoided:

Assume there are two operator record classes C and D that both have a constructor from Real. If we
want to extend c+c and d+d to support mixed operations, one variant would be to define c+d and d+c;
but then c+2 becomes ambiguous (since it is not clear which instance should be converted to). Without
mixed operations expressions such as c+d are only ambiguous if both conversion from C to D and back
from D to C are both available, and this possibility is not allowed by the restriction above.]

Additionally there is an operator ‘0’ defining the zero-value which can also be used to construct an
element. The operator ‘0’ for an operator record C can contain only one function, having zero inputs
and one output – of class C (the called function is therefore unambiguous). It should return the identity
element of addition, and is used for generating flow-equations for connect-equations and zero elements
for matrix-multiplication.
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14.3 Overloaded String Conversions

Consider an expression String(A1, a2,. . . , ak, b1= w1 ,. . . , bp= wp), k ≥ 1 where A1 is an element of
class A.

1. If A is a predefined type, i.e., Boolean, Integer, Real, String or an enumeration, or a type derived
from them, then the corresponding built-in operation is performed.

2. If A is an operator record class and there exists a unique function f in A.’String’ such that (A1,
a2,. . . , ak, b1= w1 ,. . . , bp= wp) is a valid match for f, then String(A1, a2,. . . , ak, b1= w1 ,. . . , bp=
wp) is evaluated to
A.’String’.f(A1, a2,. . . , ak, b1= w1 ,. . . , bp= wp).

3. Otherwise the expression is erroneous.

Restrictions:

• The operator A.’String’ shall only contain functions that declare one output component, which
shall be of the String type, and the first input argument shall be of the operator record class A.

• For an operator record class there shall not exist any call that lead to multiple matches in (2)
above. [How to verify this is not specified.]

14.4 Overloaded Binary Operations

Let op denote a binary operator and consider an expression a op b where a is an instance or array of
instances of class A and b is an instance or array of instances of class B.

1. If A and B are predefined types of such, then the corresponding built-in operation is performed.

2. Otherwise, if there exists exactly one function f in the union of A.op and B.op such that f(a,b)
is a valid match for the function f , then a op b is evaluated using this function. It is an error,
if multiple functions match. If A is not an operator record class, A.op is seen as the empty set,
and similarly for B. [Having a union of the operators ensures that if A and B are the same, each
function only appears once.]

3. Otherwise, consider the set given by f in A.op and an operator record class C (different from B)
with a constructor, g, such that C.’constructor’.g(b) is a valid match, and f(a, C.’constructor’.g(b))
is a valid match; and another set given by f in B.op and an operator record class D (different from
A) with a constructor, h, such that D.’constructor’.h(a) is a valid match and f(D.’constructor’.h(a),
b) is a valid match. If the sum of the sizes of these sets is one this gives the unique match. If the
sum of the sizes is larger than one it is an error.

[Informally, this means: If there is no direct match of “a op b”, then it is tried to find a direct
match by automatic type casts of “a” or “b”, by converting either “a” or “b” to the needed type
using an appropriate constructor function from one of the operator record classes used as arguments
of the overloaded “op” functions. Example using the Complex-definition below:

Real a;

Complex b;

Complex c = a*b; // i n t e r p r e t e d a s :
// Complex . ’∗ ’ . m u l t i p l y ( Complex . ’ c o n s t r u c t o r ’ . f r o m R e a l ( a ) , b ) ;

]

4. Otherwise, if a or b is an array expression, then the expression is conceptually evaluated according
to the rules of section 10.6 with the following exceptions concerning section 10.6.4:

(a) vector*vector should be left undefined [as the scalar product of Table 10.15 does not generalize
to the expected linear and conjugate linear scalar product of complex numbers].

(b) vector*matrix should be left undefined [as the corresponding definition of Table 10.15 does
not generalize to complex numbers in the expected way ].
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(c) If the inner dimension for matrix*vector or matrix*matrix is zero, this uses the overloaded
’0’ operator of the result array element type. If the operator ’0’ is not defined for that class
it is an error if the inner dimension is zero.

[For array multiplication it is assumed that the scalar elements form a non-commutative ring that
does not necessarily have a multiplicative identity.]

5. Otherwise the expression is erroneous.

For an element-wise operator, a .op b, items 1, 4, and 5 are used; e.g. the operator .+ will always be
defined in terms of ’+’.

Restrictions:

• A function is allowed for a binary operator if and only if it has at least two inputs; at least one of
which is of the operator record class, and the first two inputs shall not have default values, and all
inputs after the first two must have default values.

• For an operator record class there shall not exist any [potential ] call that lead to multiple matches
in (2) above.

14.5 Overloaded Unary Operations

Let op denote a unary operator and consider an expression op a where a is an instance or array of
instances of class A. Then op a is evaluated in the following way.

1. If A is a predefined type, then the corresponding built-in operation is performed.

2. If A is an operator record class and there exists a unique function f in A.op such that A.op.f(a)
is a valid match, then op a is evaluated to A.op.f(a). It is an error, if there are multiple valid
matches.

3. Otherwise, if a is an array expression, then the expression is conceptually evaluated according to
the rules of section 10.6.

4. Otherwise the expression is erroneous.

Restrictions:

• A function is allowed for a unary operator if and only if it has least one input; and the first input
is of the record type (or suitable arrays of such) and does not have a default value, and all inputs
after the first one must have default values.

• For an operator record class there shall not exist any [potential ] call that lead to multiple matches
in (2) above.

• A binary and/or unary operator-class may only contain functions that are allowed for this binary
and/or unary operator-class; and in case of ‘-‘ it is the union of these sets, since it may define both
a unary (negation) and binary (subtraction) operator.

14.6 Example of Overloading for Complex Numbers

[The rules in the previous subsections are demonstrated at hand of a record class to work conveniently
with complex numbers:

operator record Complex "Record defining a Complex number"

Real re "Real part of complex number";

Real im "Imaginary part of complex number";

encapsulated operator ’constructor ’

import Complex;

function fromReal

input Real re;

input Real im := 0;

output Complex result(re=re, im=im);
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algorithm

annotation(Inline=true);

end fromReal;

end ’constructor ’;

encapsulated operator function ’+’ // s h o r t hand n o t a t i o n , s e e section 4.6

import Complex;

input Complex c1;

input Complex c2;

output Complex result "= c1 + c2";

algorithm

result := Complex(c1.re + c2.re , c1.im + c2.im);

annotation(Inline=true);

end ’+’;

encapsulated operator ’-’

import Complex;

function negate

input Complex c;

output Complex result "= - c";

algorithm

result := Complex(-c.re , -c.im);

annotation(Inline=true);

end negate;

function subtract

input Complex c1;

input Complex c2;

output Complex result "= c1 - c2";

algorithm

result := Complex(c1.re - c2.re , c1.im - c2.im);

annotation(Inline=true);

end subtract;

end ’-’;

encapsulated operator function ’*’

import Complex;

input Complex c1;

input Complex c2;

output Complex result "= c1 * c2";

algorithm

result := Complex(c1.re*c2.re - c1.im*c2.im , c1.re*c2.im + c1.im*c2.re);

annotation(Inline=true);

end ’*’;

encapsulated operator function ’/’

import Complex; input Complex c1;

input Complex c2;

output Complex result "= c1 / c2";

algorithm

result := Complex (( c1.re*c2.re + c1.im*c2.im)/(c2.re ^2 +

c2.im ^2),

(-c1.re*c2.im + c1.im*c2.re)/( c2.re^2 + c2.im ^2));

annotation(Inline=true);

end ’/’;

encapsulated operator function ’==’

import Complex;

input Complex c1;

input Complex c2;

output Boolean result "= c1 == c2";

algorithm

result := c1.re == c2.re and c1.im == c2.im;
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annotation(Inline=true);

end ’==’;

encapsulated operator function ’String ’

import Complex;

input Complex c;

input String name := "j" "Name of variable representing sqrt(-1) in the

string";

input Integer significantDigits =6 "Number of significant digits to be shown

";

output String s;

algorithm

s := String(c.re , significantDigits=significantDigits);

if c.im <> 0 then

s := if c.im > 0 then s + " + "

else s + " - ";

s := s + String(abs(c.im), significantDigits=significantDigits) + name;

end if;

end ’String ’;

encapsulated function j

import Complex;

output Complex c;

algorithm

c := Complex (0,1);

annotation(Inline=true);

end j;

encapsulated operator function ’0’

import Complex;

output Complex c;

algorithm

c := Complex (0,0);

annotation(Inline=true);

end ’0’;

end Complex;

function eigenValues

input Real A [:,:];

output Complex ev[size(A, 1)];

protected

Integer nx=size(A, 1);

Real eval[nx ,2];

Integer i;

algorithm

eval := Modelica.Math.Matrices.eigenValues(A);

for i in 1:nx loop

ev[i] := Complex(eval[i, 1], eval[i, 2]);

end for;

end eigenValues;

// Usage o f Complex number above :
Complex j = Complex.j ();

Complex c1 = 2 + 3*j;

Complex c2 = 3 + 4*j;

Complex c3 = c1 + c2;

Complex c4[:] = eigenValues ([1 ,2; -3,4]);

algorithm

Modelica.Utilities.Streams.print("c4 = " + String(c4));

// r e s u l t s i n o u t p u t :
// c4 = {2 . 5 + 1 . 9 3 6 4 9 j , 2 . 5 − 1 . 9 3 6 4 9 j }

How overloaded operators can be symbolically processed. Example:
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Real a;

Complex b;

Complex c = a + b;

Due to inlining of functions, the equation for “c” is transformed to:

c = Complex. ’+’.add(Complex. ’constructor ’.fromReal(a), b);

= Complex. ’+’.add(Complex(re=a,im=0), b)

= Complex(re=a+b.re , im=b.im);

or

c.re = a + b.re;

c.im = b.im;

These equations can be symbolically processed as other equations.

Complex can be used in a connector:

operator record ComplexVoltage = Complex(re(unit="V"),im(unit="V"));

operator record ComplexCurrent = Complex(re(unit="A"),im(unit="A"));

connector ComplexPin

ComplexVoltage v;

flow ComplexCurrent i;

end ComplexPin;

ComplexPin p1,p2,p3;

equation

connect(p1 ,p2);

connect(p1 ,p3);

The two connect equations result in the following connection equations:

p1.v = p2.v;

p1.v = p3.v;

p1.i + p2.i + p3.i = Complex. ’0’();

// Complex . ’+ ’( p 1 . i , Complex . ’+ ’( p 2 . i , p 3 . i ) ) = Complex . ’ 0 ’ ( ) ;

The restrictions on extends are intended to avoid combining two variants inheriting from the same oper-
ator record, but with possibly different operations; thus ComplexVoltage and ComplexCurrent still use the
operations from Complex. The restriction that it is not legal to extend from any of its enclosing scopes
implies that:

package A

extends Icon; // Ok.
operator record B ... end B;

end A;

package A2

extends A(...); // Not l e g a l
end A2;

package A3=A(...); // Not l e g a l

]
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Chapter 15

Stream Connectors

The two basic variable types in a connector – “potential” (or across) variable and “flow” (or through)
variable – are not sufficient to describe in a numerically sound way the bi-directional flow of matter
with convective transport of specific quantities, such as specific enthalpy and chemical composition. The
values of these specific quantities are determined from the upstream side of the flow, i.e., they depend
on the flow direction. When using across and through variables, the corresponding models would include
nonlinear systems of equations with Boolean unknowns for the flow directions and singularities around
zero flow. Such equation systems cannot be solved reliably in general. The model formulations can be
simplified when formulating two different balance equations for the two possible flow directions. This is
not possible with across and through variables though.

This fundamental problem is addressed in Modelica by introducing a third type of connector variable,
called stream variable, declared with the prefix stream. A stream variable describes a quantity that
is carried by a flow variable, i.e., a purely convective transport phenomenon. The value of the stream
variable is the specific property inside the component close to the boundary, assuming that matter flows
out of the component into the connection point. In other words, it is the value the carried quantity
would have if the fluid was flowing out of the connector, irrespective of the actual flow direction.

The rationale of the definition and typical use cases are described in Appendix D.

15.1 Definition of Stream Connectors

If at least one variable in a connector has the stream prefix, the connector is called “stream connector”
and the corresponding variable is called “stream variable”. The following definitions hold:

• The stream prefix can only be used in a connector declaration.

• A stream connector must have exactly one scalar variable with the flow prefix. [The idea is that
all stream variables of a connector are associated with this flow variable].

• For every outside connector [see section 9.1.2], one equation is generated for every variable with
the stream prefix [to describe the propagation of the stream variable along a model hierarchy ]. For
the exact definition, see the end of section 15.2.

• For inside connectors [see section 9.1.2], variables with the stream prefix do not lead to connection
equations.

• Connection equations with stream variables are generated in a model when using the inStream()

operator or the actualStream() operator, see section 15.2 and section 15.3.

[Example:

connector FluidPort

replaceable package Medium =

Modelica.Media.Interfaces.PartialMedium;

Medium.AbsolutePressure p "Pressure in connection point";
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flow Medium.MassFlowRate m_flow "> 0, if flow into component";

stream Medium.SpecificEnthalpy h_outflow "h close to port if m_flow < 0";

stream Medium.MassFraction X_outflow[Medium.nX] "X close to port if m_flow <

0";

end FluidPort;

FluidPort is a stream connector, because some connector variables have the stream prefix. The Medium
definition and the stream variables are associated with the only flow variable (m flow) that defines a
fluid stream. The Medium and the stream variables are transported with this flow variable. The stream
variables h outflow and X outflow are the stream properties inside the component close to the boundary,
when fluid flows out of the component into the connection point. The stream properties for the other
flow direction can be inquired with the built-in operator inStream(). The value of the stream variable
corresponding to the actual flow direction can be inquired through the built-in operator actualStream(),
see section 15.3.]

15.2 Stream Operator inStream and Connection Equations

In combination with the stream variables of a connector, the inStream() operator is designed to describe
in a numerically reliable way the bi-directional transport of specific quantities carried by a flow of matter.

inStream(v) is only allowed on stream variables v and is informally the value the stream variable has,
assuming that the flow is from the connection point into the component. This value is computed from
the stream connection equations of the flow variables and of the stream variables.

For the following definition it is assumed that N inside connectors mj.c (j=1,2,...,N) and M outside connec-
tors ck (k=1,2,...,M) belonging to the same connection set [see definition in section 9.1.2] are connected
together and a stream variable h_outflow is associated with a flow variable m_flow in connector c.

connector FluidPort

...

flow Real m_flow "Flow of matter; m_flow > 0 if flow into component";

stream Real h_outflow "Specific variable in component if m_flow < 0"

end FluidPort

model FluidSystem

...

FluidComponent m1, m2, ... ,

m_N;

FluidPort c1, c2, ... ,

c_M;

equation

connect(m1.c, m2.c);

connect(m1.c, m3.c);

...

connect(m1.c, mN .c);

connect(m1.c, c1);
connect(m1.c, c2);
...

connect(m1.c, cM );

...

end FluidSystem;
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Figure 15.1: Examplary FluidSystem with N=3 and M=2
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[The connection set represents an infinitesimally small control volume, for which the stream connection
equations are equivalent to the conservation equations for mass and energy.]

With these prerequisites, the semantics of the expression inStream(mi.c.h outflow) is given implicitly
by defining an additional variable h mix ini, and by adding to the model the conservation equations
for mass and energy corresponding to the infinitesimally small volume spanning the connection set.
The connection equation for the flow variables has already been added to the system according to the
connection semantics of flow variables defined in section 9.2.

// S t a n d a r d c o n n e c t i o n e q u a t i o n f o r f l o w v a r i a b l e s
0 = sum(m_j.c.m_flow for j in 1:N) + sum(-ck.m_flow for k in 1:M);

Whenever the inStream() operator is applied to a stream variable of an inside connector, the balance
equation of the transported property must be added under the assumption of flow going into the connector

// I m p l i c i t d e f i n i t i o n o f t h e i n S t r e a m ( ) o p e r a t o r a p p l i e d t o i n s i d e c o n n e c t o r i
0 = sum(mj.c.m_flow *(if mj.c.m_flow > 0 or j==i then h_mix_ini else

mj.c.h_outflow)

for j in 1:N) +

sum(-ck.m_flow* (if -ck.m_flow > 0 then h_mix_ini else inStream(

ck.h_outflow)

for k in 1:M);

inStream(mi.c.h_outflow) = h_mix_ini;

Note that the result of the inStream(mi.c.h outflow) operator is different for each port i, because the
assumption of flow entering the port is different for each of them.

Additional equations need to be generated for the stream variables of outside connectors.

// A d d i t i o n a l c o n n e c t i o n e q u a t i o n s f o r o u t s i d e c o n n e c t o r s
for q in 1:M loop

0 = sum(mj .c.m_flow *(if

mj .c.m_flow > 0 then

h_mix_out_q

else mj .c.h_outflow) for j

in 1:N) +

sum(-ck .m_flow* (if

-ck .m_flow > 0 or k==q

then h_mix_outq

else inStream(ck .h_outflow)
for k in 1:M);

cq .h_outflow = h_mix_outq;
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end for;

Neglecting zero flow conditions, the solution of the above-defined stream connection equations for in-
Stream values of inside connectors and outflow stream variables of outside connectors is (for a derivation,
see Appendix D):

inStream(mi.c.h_outflow) :=

(sum(max(-mj .c.m_flow ,0)*mj .c.h_outflow for j in cat(1,1:i-1, i+1:N) +

sum(max( ck.m_flow ,0)*inStream(ck .h_outflow) for k in 1:M))/

(sum(max(-mj .c.m_flow ,0) for j in cat(1,1:i-1, i+1:N) +

sum(max( ck .m_flow ,0) for k in 1:M));

// A d d i t i o n a l e q u a t i o n s t o be g e n e r a t e d f o r o u t s i d e c o n n e c t o r s q
for q in 1:M loop

cq .h_outflow :=

(sum(max(-mj .c.m_flow ,0)*mj .c.h_outflow for j in 1:N) +

sum(max( ck.m_flow ,0)*inStream(ck .h_outflow) for k in cat(1,1:q-1, q+1:M))/

(sum(max(-mj .c.m_flow ,0) for j in 1:N) +

sum(max( ck .m_flow ,0) for k in cat(1,1:q-1, q+1:M)));

end for;

Note, that inStream(ck.h outflow) is computed from the connection set that is present one hierarchical
level above. At this higher level ck.h outflow is no longer an outside connector, but an inside connector
and then the formula from above for inside connectors can be used to compute it.

If the argument of inStream() is an array, the implicit equation system holds elementwise, i.e., inStream
() is vectorizable.

The stream connection equations have singularities and/or multiple solutions if one or more of the flow
variables become zero. When all the flows are zero, a singularity is always present, so it is neces-
sary to approximate the solution in an open neighbourhood of that point. [For example assume that
mj.c.m flow = ck.m flow = 0, then all equations above are identically fulfilled and inStream(..) can
have any value]. However, specific optimizations may be applied to avoid the regularization if the flow
through one port is zero or non-negative, see Appendix D. It is required that the inStream() opera-
tor is appropriately approximated when regularization is needed and the approximation must fulfill the
following requirements:

1. inStream(mi.c.h outflow) and inStream(ck.h outflow) must be unique with respect to all val-
ues of the flow and stream variables in the connection set, and must have a continuous dependency
on them.

2. Every solution of the implicit equation system above must fulfill the equation system identically
[upto the usual numerical accuracy ], provided the absolute value of every flow variable in the
connection set is greater than a small value (|m1.c.m flow| > eps and |m2.c.m flow| > eps and

... and |cM.m flow| > eps).

[Based on the above requirements, the following implementation is recommended:

• N = 1, M = 0:

inStream(m1.c.h_outflow) =m1.c.h_outflow;

• N = 2, M = 0:

inStream(m1.c.h_outflow) =m2.c.h_outflow;

inStream(m2.c.h_outflow) =m1.c.h_outflow;

• N = 1, M = 1:
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inStream(m1.c.h_outflow) =inStream(c1.h_outflow);
// A d d i t i o n a l e q u a t i o n t o be g e n e r a t e d
c1.h_outflow = m1.c.h_outflow;

• N = 0, M = 2:

// A d d i t i o n a l e q u a t i o n t o be g e n e r a t e d
c1.h_outflow = inStream(c2.h_outflow);

c2.h_outflow = inStream(c1.h_outflow);

• All other cases:

if mj .c.m_flow.min >= 0 for all j = 1:N with j <> i and

ck .m_flow.max <= 0 for all k = 1:M

then

inStream(mi.c.h_outflow) = mi.c.h_outflow;

else

si = sum (max(-mj .c.m_flow ,0) for j in cat(1,1:i-1, i+1:N) +

sum(max( ck .m_flow ,0) for k in 1:M);

inStream(mi.c.h_outflow) =

(sum(positiveMax(-mj .c.m_flow ,si)*mj .c.h_outflow)

+ sum(positiveMax(ck.m_flow ,s_i)*inStream(ck .h_outflow)))/
(sum(positiveMax(-mj .c.m_flow ,s_i))

+ sum(positiveMax(ck.m_flow ,s_i)))
for j in 1:N and i <> j and mj .c.m_flow.min < 0,

for k in 1:M and ck .m_flow.max > 0

// A d d i t i o n a l e q u a t i o n s t o be g e n e r a t e d
for q in 1:M loop

if mj .c.m_flow.min >= 0 for all j = 1:N and

ck .m_flow.max <= 0 for all k = 1:M and k <> q

then

cq .h_outflow = 0;

else

sq = (sum(max(-mj .c.m_flow ,0) for j in 1:N) +

sum(max( ck .m_flow ,0) for k in cat(1,1:q-1, q+1:M)));

cq .h_outflow = (sum(positiveMax(-mj .c.m_flow ,s_q)*mj .c.h_outflow) +

sum(positiveMax(ck.m_flow ,sq)* inStream(ck .h_outflow)))/
(sum(positiveMax(-mj .c.m_flow ,s_q)) +

sum(positiveMax(ck.m_flow ,s_q)))
for j in 1:N and mj .c.m_flow.min < 0,

for k in 1:M and k <> q and ck .m_flow.max > 0

end for;

The operator positiveMax(-mj.c.m flow,si) should be such that:

• positiveMax(-mj.c.m flow,si) = -mj.c m flow if -mj.c.m flow>eps1j>=0, where eps1j are small
flows, compared to typical problem-specific value,

• all denominators should be > eps2 > 0, where eps2 is also a small flow, compared to typical
problem-specific values.

Trivial implementation of positiveMax guarantees continuity of inStream():

postiveMax(-mj .c.m_flow , si)= max(-m_j.c.m_flow , eps1); // so si i s not needed

More sophisticated implementation, with smooth approximation, applied only when all flows are small:

// D e f i n e a ” s m a l l number ” e p s (nominal( v ) i s t h e n o m i n a l v a l u e o f v -- s e e
section 4.8.6)

eps := relativeTolerance*min(nominal(mj .c.m_flow));
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// D e f i n e a smooth c u r v e , such t h a t a l p h a (si >= eps)=1 and a l p h a (si < 0)=0
alpha := smooth(1, if si > eps then 1 else

if si > 0 then ( si/eps)^2*(3 -2* si/eps)) else 0);

// D e f i n e f u n c t i o n p o s i t i v e M a x ( v , s i ) a s a l i n e a r c o m b i n a t i o n o f max ( v , 0 )
// and o f e p s a l o n g a l p h a
positiveMax ((-mj .c.m_flow ,s_i) := alpha*max(-mj .c.m_flow ,0) + (1-alpha)*eps;

The derivation of this implementation is discussed in Appendix D. Note that in the cases N = 1, M
=0 (unconnected port, physically corresponding to a plugged-up flange), and N = 2, M=0 (one-to-one
connection), the result of inStream() is trivial and no non-linear equations are left in the model, despite
the fact that the original definition equations are nonlinear.

The following properties hold for this implementation:

• inStream(..) is continuous (and differentiable), provided that mj.c.h outflow, mj.c.m flow,

ck.h outflow, and ck.m flow are continuous and differentiable.

• A division by zero can no longer occur (since sum(positiveMax(-mj.c.m flow,si))>=eps2 >
0), so the result is always well-defined.

• The balance equations are exactly fulfilled if the denominator is not close to zero
(since the exact formula is used, if sum(positiveMax(-mj.c.m flow,si) ) > eps).

• If all flows are zero, inStream(mi.c.h outflow) = sum(mj.c.h outflow for j<>i and mj.c.m flow.min

< 0)/Np, i.e., it is the mean value of all the Np variables mj.c.h outflow, such that j<>i and
mj.c.m flow.min < 0. This is a meaningful approximation, considering the physical diffusion ef-
fects that are relevant at small flow rates in a small connection volume (thermal conduction for
enthalpy, mass diffusion for mass fractions).

The value of relativeTolerance should be larger than the relative tolerance of the nonlinear solver used to
solve the implicit algebraic equations.

As a final remark, further symbolic simplifications could be carried out by taking into account equa-
tions that affect the flows in the connection set (i.e., equivalent to mj.c.m flow = 0, which then implies
mj.c.m flow.min >= 0). This is interesting, e.g., in the case of a valve when the stem position is set
identically to closed by its controller.

]

15.3 Stream Operator actualStream

The actualStream(v) operator is provided for convenience, in order to return the actual value of the
stream variable, depending on the actual flow direction. The only argument of this built-in operator needs
to be a reference to a stream variable. The operator is vectorizable, in the case of vector arguments. For
the following definition it is assumed that an (inside or outside) connector c contains a stream variable
h_outflow which is associated with a flow variable m_flow in the same connector c:

actualStream(c.h_outflow) = if c.m_flow > 0 then inStream(c.h_outflow) else

c.h_outflow;

[The actualStream(v) operator is typically used in two contexts:

der(U) = c.m_flow*actualStream(c.h_outflow); // ( 1 ) e n e r g y b a l a n c e e q u a t i o n
h_c = actualStream(c.h); // ( 2 ) m o n i t o r i n g t h e e n t h a l p y

a t p o r t c

In the case of equation (1), although the actualStream() operator is discontinuous, the product with
the flow variable is not, because actualStream() is discontinuous when the flow is zero by construction.
Therefore, a tool might infer that the expression is smooth(0, ...) automatically, and decide whether or
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not to generate an event. If a user wants to avoid events entirely, he/she may enclose the right-hand
side of (1) with the noEvent() operator.

Equations like (2) might be used for monitoring purposes (e.g. plots), in order to inspect what the ‘actual’
enthalpy of the fluid flowing through a port is. In this case, the user will probably want to see the change
due to flow reversal at the exact instant, so an event should be generated. If the user doesn’t bother, then
he/she should enclose the right-hand side of (2) with noEvent(). Since the output of actualStream() will
be discontinuous, it should not be used by itself to model physical behaviour (e.g., to compute densities
used in momentum balances) - inStream() should be used for this purpose. The operator actualStream()
should be used to model physical behaviour only when multiplied by the corresponding flow variable (like
in the above energy balance equation), because this removes the discontinuity.

]
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Chapter 16

Synchronous Language Elements

This section presents language elements for describing synchronous behavior suited for implementation
of control systems.

16.1 Introduction

16.1.1 Overview

[This chapter defines additional kinds of discrete-time variables and equations, as well as an additional
kind of when-clause, in order to define sampled data systems in a safe way, so that the translator can
provide good diagnostics in case of a modeling error.

The following small example shows the most important elements

Figure 16.1: A continuous plant and a sampled data controller connected together with sample and
(zero-order) hold elements

 

// plant 

0 = f(der(x),x,u); 

y = g(x); 

// sample continuous signal 

yd = sample(y, Clock(3)); 

// discrete controller 

when Clock() then 

  E*xd = A*previous(xd) + B*yd; 

    ud = C*previous(xd) + D*yd; 

end when; 

// hold 

u = hold(ud) 

u 

y yd 

ud 
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• A periodic clock is defined with Clock(3). The argument of Clock(..) defines the sampling interval
(for details see section 16.3).

• Clocked variables (such as yd, xd, ud) are associated uniquely with a clock and can only be directly
accessed when the associated clock is active. Since all variables in a clocked equation must belong
to the same clock, clocking errors can be detected at compile time. If variables from different clocks
shall be used in an equation, explicit cast operators must be used, such as sample(..) to convert
from continuous-time to clocked discrete-time or hold(..) to convert from clocked discrete-time to
continuous-time.

• A continuous-time variable is sampled at a clock tick with the sample(..) operator. The operator
returns the value of the continuous-time variable when the clock is active.

• When no argument is defined for Clock(), the clock is deduced by clock inference.

• For a when-clause with an associated clock, all equations inside the when-clause are clocked with
the given clock. All equations on an associated clock are treated together and in the same way
regardless of whether they are inside a when-clause or not. This means that automatic sampling
and hold of variables inside the when-clause does not apply (explicit sampling and hold is required)
and that general equations can be used in such when-clauses (this is not allowed for when-clauses
with Boolean conditions, that require a variable reference on the left-hand side of an equation).

• The when-clause in the controller could also be removed and the controller could just be defined by
the equations:

// d i s c r e t e c o n t r o l l e r
E*xd = A*previous(xd) + B*yd;

ud = C*previous(xd) + D*yd;

• The operator previous(xd) returns the value of xd at the previous clock tick. At the first sample
instant, the start value of xd is returned.

• A discrete-time signal (such as ud) is converted to a continuous-time signal with the hold(..)
operator.

• If a variable belongs to a particular clock, then all other equations where this variable is used, with
the exception of as argument to certain special operators, belong also to this clock, as well as all
variables that are used in these equations. This property is used for “clock inference” and allows to
define an associated clock only at a few places (above only in the sampler, whereas in the discrete
controller and the hold the sampling period is inferred)

• The approach in this chapter is based on the clock calculus and inference system proposed by (Colaco
and Pouzet 2003) and implemented in Lucid Synchrone version 2 and 3 (Pouzet 2006). However,
the Modelica approach also uses multi-rate periodic clocks based on rational arithmetic introduced
by (Forget et. al. 2008), as an extension of the Lucid Synchrone semantics. These approaches
belong to the class of synchronous languages (Benveniste et. al. 2002).

16.1.2 Rationale for Clocked Semantics

Periodically sampled control systems could also be defined with standard when-clauses, see section 8.3.5,
and the sample operator, see section 3.7.3. For example:

when sample (0,3) then

xd = A*pre(xd) + B*y;

u = C*pre(xd) + D*y;

end when;

Equations in a when-clause with a Boolean condition have the property that (a) variables on the left hand
side of the equal sign are assigned a value when the when-condition becomes true and otherwise hold
their value, (b) variables not assigned in the when-clause are directly accessed (= automatic “sample”
semantics), and (c) the variables assigned in the when-clause can be directly accessed outside of the
when-clause (= automatic “hold” semantics). This approach to define periodically sample data systems
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has the following drawbacks that are not present with the solution in this chapter using clocks and clocked
equations:

1. It is not possible to detect sampling errors due to the automatic sample and hold semantics. Ex-
amples:

a. If when-clauses in different blocks should belong to the same controller part, but by accident
different when-conditions are given, then this is accepted (no error is detected)..

b. If a sampled data library such as the Modelica LinearSystems2.Contoller library is used, at
every block the sampling of the block has to be defined as integer multiple of a base sampling
rate. If several blocks should belong to the same controller part, and different integer multiples
are given, then the translator has to accept this (no error is detected).

2. Due to the automatic sample and hold semantics, all variables assigned in a when-clause of the
above kind must have an initial value because they might be used, before they are assigned a value
the first time. As a result, all these variables are “discrete-time states” although in reality only a
small subset of them need an initial value.

3. Only a restricted form of equations can be used in a standard when-clause, since the left hand side
has to be a variable, in order to identify the variables that are assigned in the when-clause. This is
a severe restriction, especially if nonlinear control algorithms shall be defined. This restriction is
not present for clocked equations.

4. All equations belonging to a discrete controller must be in a when clause. If the controller is built-up
with several building blocks, then the clock condition (sampling) must be explicitly propagated to all
blocks. This is tedious and error prone. With clocked equations, the clock condition need to be
defined only at one place, and otherwise is automatically propagated by clock inference.

5. It is not possible to use a continuous-time model in when clauses (e.g. some advanced controllers
use an inverse model of a plant in the feedforward path of the controller, see (Thümmel et. al.
2005)). This powerful feature of Modelica to use a nonlinear plant model in a controller would
require to export the continuous-time model with an embedded integration method and then import
it in an environment where the rest of the controller is defined. With clocked equations, clocked
controllers with continuous-time models can be directly defined in Modelica.

6. At a sample instant, an event iteration occurs (as for any other event). A clocked partition, as well
as a when-clause with a sample(..) is evaluated exactly once at such an event instant. However,
the continuous-time model to which the sampled data controller is connected, will be evaluated
several times when the overall system is simulated. With when-clauses, the continuous-time part
is typically evaluated three times at a sample instant (once, when the sample instant is reached,
once to evaluate the continuous equations at the sample instant, and once when an event iteration
occurs since a discrete variable v is changed and pre(v) appears in the equations). With clocked
equations, no event iteration is triggered if a clocked variable v is changed and previous(v) appears
in the equations, because the event iteration cannot change the value of v. As a result, typically
the simulation model is evaluated twice at a sample instant and therefore the simulation is more
efficient with clocked equations.

]

16.2 Definitions

In this section various terms are defined.

16.2.1 Clocks and Clocked Variables

In section 3.8.3 the term “discrete-time” Modelica expression and in section 3.8.4 the term “continuous-
time” Modelica expression is defined. In this chapter, two additional kinds of discrete-time expression-
s/variables are defined that are associated to clocks and are therefore called “clocked discrete-time”
expressions:
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The different kinds of discrete-time variables in Modelica

 
time t 

t0 t1 t2 

m(t) 

m–(t1) 

m(t1) 

Piecewise-constant variables (see sec-
tion 3.8.3)
Variables m(t) of base type Real, Integer,
Boolean, enumeration, and String that are
constant inside each interval ti ≤ t < ti+1

(= piecewise constant continuous-time vari-
ables). In other words, m(t) changes value
only at events. This means, m(t) = m(ti),
for ti ≤ t < ti+1. Such variables depend con-
tinuously on time and they are discrete-time
variables.

 

time t 
t0 t1 t3 

c(ti) 

t2 

Clock variables
Clock variables c(ti) are of base type Clock. A
clock is either defined by a constructor [such
as Clock(3)] that defines when the clock ticks
(is active) at a particular time instant, or it is
defined with clock operators relatively to other
clocks, see section 16.5.1.
[Examples:

Clock c1 = Clock(...);

Clock c2 = c1;

Clock c3 = subSample(c2 ,4);

]

 
time t 

t0 t1 t3 

r(ti) 

t2 

c(ti) 

Clocked variables
The elements of clocked variables r(ti) are of
base type Real, Integer, Boolean, enumera-
tion, String that are associated uniquely with
a clock c(ti). A clocked variable can only be
directly accessed at the event instant where
the associated clock is active. A constant
and a parameter can always be used at a place
where a clocked variable is required.
At time instants where the associated clock is
not active, the value of a clocked variable can
be inquired by using an explicit cast operator,
see below. In such a case a “hold” semantics is
used, in other words the value of the clocked
variable from the last event instant is used.
[This is visualized in the left figure with the
dashed green lines.]

]

16.2.2 Base-Clock and Sub-Clock Partitions

The following concepts are used:

• A “base-clock partition” identifies a set of equations and a set of variables which must be
executed together in one task. Different base-clock partitions can be associated to separate tasks
for asynchronous execution.

• A “sub-clock partition” identifies a subset of equations and a subset of variables of a base-clock
partition which are partially synchronized with other sub-clock partitions of the same base-clock
partition, i.e., synchronized when the ticks of the respective clocks are simultaneous.
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16.2.3 Argument Restrictions (Component Expression)

The built-in operators (with function syntax) defined in the following sections have partially restrictions
on their input arguments that are not present for Modelica functions. To define the restrictions, the
following term is defined:

Component Expression:

A Component Reference which is an Expression, i.e. does not refer to models or blocks with
equations. It is an instance of a (a) base type, (b) derived type, (c) record, (d) an array of such an
instance (a-c), (e) one or more elements of such an array (d) defined by index expressions which
are parameter expressions (see below), or (f) an element of records. [The essential features are
that one or several values are associated with the instance, that start values can be defined on these
values, and that no equations are associated with the instance. A Component Expression can be
constant or can vary with time.]

In the following sections the following notation is partially used when defining the operators:

• The input argument is a Component Expression:

The meaning is that the input argument when calling the operator must be a Component Expres-
sion.

[The reason for this restriction is that the start value of the input argument is returned before the
first tick of the clock of the input argument and this is not possible for a general expression.

Examples:

Real u1;

Real u2[4];

Complex c;

Resistor R;

...

y1 = previous(u1); // f i n e
y2 = previous(u2); // f i n e
y3 = previous(u2[2]); // f i n e
y4 = previous(c.im); // f i n e
y5 = previous (2*u); // e r r o r ( g e n e r a l e x p r e s s i o n , no Component

E x p r e s s i o n )
y6 = previous(R); // e r r o r ( component , no Component E x p r e s s i o n )

]

• The input argument is a parameter expression:

The meaning is that the input argument when calling the operator must have parameter variability,
that is the argument must depend directly or indirectly only on parameters, constants or literals,
see section 3.8.

[The reason for this restriction is that the value of the input argument needs to be evaluated during
translation, in order that clock analysis can be performed during translation.

Examples:

Real u;

parameter Real p=3;

...

y1 = subSample(u, factor =3); // f i n e ( l i t e r a l )
y2 = subSample(u, factor =2*p - 3); // f i n e ( p a r a m e t e r e x p r e s s i o n )
y3 = subSample(u, factor =3*u); // e r r o r ( g e n e r a l e x p r e s s i o n )

]

• The input argument is an expression:
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There is no restriction on the input argument when calling the operator. This notation is used
to emphasis when a standard function call is used (“is an expression”), instead of restricting the
input (“is a Component Expression”).

Note that the operators defined in this chapter do not automatically vectorize, but some operate on
arrays in a similar way.

16.3 Clock Constructors

The following overloaded constructors are available to generate clocks:

Clock()

Inferred Clock
The operator returns a clock that is inferred.
[Example:

when Clock () then // e q u a t i o n s a r e on t h e same c l o c k
x = A*previous(x) + B*u;

Modelica.Utilities.Streams.print

("clock ticks at = " + String(sample(time)));

end when;

Note, in most cases, the operator is not needed and equations could be written
without a when-clause (but not in the example above, since the “print” state-
ment is otherwise not associated to a clock). This style is useful if a modeler
would clearly like to mark the equations that must belong to one clock (although
a tool could figure this out as well, if the when-clause is not present).]

208



Clock(
intervalCounter,
resolution)

Clock with Rational Interval
The first input argument, intervalCounter, is a clocked Component Ex-
pression (see section 16.2.3) or a parameter expression of type Integer with
min=0. The optional second argument resolution (default=1) is a parameter
expression of type Integer with min=1 and unit “Hz”. If intervalCounter is a
parameter expression with value zero, the period of the clock is derived by clock
inference, see section 16.7.5. The output argument is of base type Clock that
ticks when time becomes tstart, tstart+interval1, tstart+interval1+interval2, ...
The clock starts at the start of the simulation tstart or when the controller
is switched on. At the start of the simulation, previous(intervalCounter) =
intervalCounter.start and the clocks ticks the first time. At the first clock
tick intervalCounter must be computed and the second clock tick is then trig-
gered at interval1=intervalCounter/resolution. At the second clock tick at
time tstart+interval1, a new value for intervalCounter must be computed and
the next clock tick is scheduled at interval2 = intervalCounter/resolution, and
so on. If interval is a parameter expression, the clock defines a periodic clock.
[The given interval and time shift can be modified by using the subSample,
superSample, shiftSample and backSample operators on the returned clock, see
section 16.5.2.
Example:

// f i r s t c l o c k t i c k : p r e v i o u s ( n e x t I n t e r v a l )=2
Integer nextInterval(start =2);

Real y1(start =0);

Real y2(start =0);

equation

when Clock (2 ,1000) then

// p e r i o d i c c l o c k t h a t t i c k s a t 0 , 0 .002 , 0 .004 , . . .
y1 = previous(y1) + 1;

end when;

when Clock(nextInterval , 1000) then

// i n t e r v a l c l o c k t h a t t i c k s a t 0 , 0 .003 , 0 .007 , 0 .012 ,
. . .

nextInterval = previous(nextInterval) + 1;

y2 = previous(y2) + 1;

end when;

]
Note that operator interval(c) of Clock c = Clock(nextInterval,resolution)
returns:
previous(intervalCounter)/resolution; // in seconds

Clock(interval)

Clock with Real Interval
The input argument, interval, is a clocked Component Expression (see
section 16.2.3) or a parameter expression. The interval must be strictly
positive (interval>0.0) of type Real unit “s”. The output argument is
of base type Clock that ticks when time becomes tstart, tstart+interval1,
tstart+interval1+interval2, ... The clock starts at the start of the simulation
tstart or when the controller is switched on. Here the next clock tick is sched-
uled at interval1 = previous(interval) = interval.start. At the second clock
tick at time tstart+interval1, the next clock tick is scheduled at interval2 =
previous(interval), and so on. If interval is a parameter expression, the clock
defines a periodic clock.
[Note, the clock is defined with previous(interval). Therefore, for sorting the
input argument is treated as known. The given interval and time shift can
be modified by using the subSample, superSample, shiftSample and backSample
operators on the returned clock, see section 16.5.2. There are restrictions where
this operator can be used, see Clock expressions below.]
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Clock(
condition,
startInterval)

Clock with Boolean Condition
The input argument, condition, is a continuous-time expression of type
Boolean. The optional startInterval argument (default = 0.0) is the value
returned by the operator interval() at the first tick of the clock, see sec-
tion 16.9. The output argument is of base type Clock that ticks when
edge(condition) becomes true.
[This clock is used to trigger a clocked partition due to a state event, that
is a zero-crossing of a Real variable, in a continuous-time partition or due
to a hardware interrupt that is modeled as Boolean in the simulation model.
Example:

Clock c = Clock(angle > 0, 0.1) // b e f o r e f i r s t t i c k o f c
:

// i n t e r v a l ( c ) = 0 . 1

The implicitly given interval and time shift can be modified by using the sub-
sample, superSample, shiftSample and backSample operators on the returned
clock, see section 16.5.2, provided the base interval is not smaller than the
implicitly given interval. ]

Clock(
c,
solverMethod)

Solver Clock
The first input argument “c” is a clock and the operator returns this clock.
The returned clock is associated with the second input argument of type String
“solverMethod”. The meaning of solverMethod is defined in section 16.8.2. If
the second input argument solverMethod is an empty String, then this Clock-
construct does not associate an integrator with the returned clock.
[Examples:

Clock c1 = Clock (1,10) // 100 ms , no s o l v e r
Clock c2 = Clock(c1 , "ImplicitTrapezoid");

// 100 ms , I m p l i c i t T r a p e z o i d s o l v e r
Clock c3 = Clock(c2 , ""); // 100 ms , no s o l v e r

]

Besides inferred clocks and solver clocks, one of the following mutually exclusive associations of clocks
are possible in one base partition:

1. One or more Rational interval clocks, provided they are consistent with each other, see sec-
tion 16.7.5.
[For example, assume “y = subSample(u)”, and Clock(1,10) is associated to “u” and Clock(2,10)
is associated with “y”, then this is correct, but it would be an error if “y” is associated to a Clock
(1,3). ]

2. Exactly one Real interval clock. [Assume“Clock c = Clock(2.5)”, then variables in the same base
partition can be associated multiple times with “c” but not multiple times with “Clock(2.5)”]

3. Exactly one Boolean clock.

4. A default clock, if neither a Real interval, nor a Rational interval nor a Boolean clock is associated
with a base partition. In this case the default clock is associated with the fastest sub-clock partition.
[Typically, a tool will use Clock(1.0) as a default clock and will raise a warning, that it selected a
default clock.]

Clock variables can be used in a restricted form of expressions. Generally, every expression containing
clock variables must have parametric variability [in order that clock analysis can be performed when
translating a model.]. Otherwise, the following expressions are allowed:

• Declaring arrays of clocks [Example: Clock c1[3] ={Clock(1), Clock(2), Clock(3)} ]

• Array constructors of clocks: {}, [], cat(...).

• Array access of clocks [Example: sample(u, c1[2])]
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• Equality of clocks [Example: c1 = c2].

• If-expressions of clocks in equations
[Example: Clock c2 = if f>0 then subSample(c1, f)elseif f<0 then superSample(c1, f

)else c1].

• Clock variables can be declared in models, blocks, connectors, and records,. A Clock variable
can be declared with the prefixes input, output, inner, outer, but not with the prefixes flow,
stream, discrete, parameter, or constant [Example: connector ClockInput = input Clock;]

16.4 Discrete States

The previous value of a clocked variable can be accessed with the previous operator. Such a variable is
called a clocked state variable.

previous(u) The input argument is a Component Expression (see section 16.2.3) or a pa-
rameter expression. The return argument has the same type as the input
argument. Input and return arguments are on the same clock. At the first tick
of the clock of u or after a reset transition (see section 17.3.2), the start value
of u is returned, see section 16.9. At subsequent activations of the clock of u,
the value of u from the previous clock activation is returned.

16.5 Partitioning Operators

A set of “clock conversion operators” together act as boundaries between different clock partitions.

16.5.1 Base-clock conversion operators

The following operators convert between a continuous-time and a clocked-time representation and vice
versa:

sample(u, c) Input argument u is a continuous-time expression according to section 3.8.4.
The optional input argument c is of type Clock. The operator returns a clocked
variable that has c as associated clock and has the value of the left limit of u
when c is active (that is the value of u just before the event of c is triggered).
If argument c is not provided, it is inferred, see section 16.7.5.
[Since the operator returns the left limit of u, it introduces an infinitesimal small
delay between the continuous-time and the clocked partition. This corresponds
to the reality, where a sampled data system cannot act infinitely fast and even
for a very idealized simulation, an infinitesimal small delay is present. The
consequences for the sorting are discussed below.
Input argument u can be a general expression, because the argument is
continuous-time and therefore has always a value. It can also be a constant, a
parameter or a piecewise constant expression.
Note that sample() is an overloaded function: If sample(..) has two input
arguments and the second argument is of type Real, it is the operator from
section 3.7.3. If sample(..) has one input argument, or it has two input argu-
ments and the second argument if of type Clock, it is the base-clock conversion
operator from this section.]

hold(u) Input argument u is a clocked Component Expression (see section 16.2.3) or
a parameter expression. The operator returns a piecewise constant signal of
the same type of u. When the clock of u ticks, the operator returns u and
otherwise returns the value of u from the last clock activation. Before the first
clock activation of u, the operator returns the start value of u, see section 16.9.
[Since the input argument is not defined before the first tick of the clock of u, the
restriction is present, that it must be a Component Expression (or a parameter
expression), in order that the initial value of u can be used in such a case.]
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[Example:

Assume there is the following model:

Real y(start =1), yc;

equation

der(y) + y = 2;

yc = sample (y, Clock (0.1));

initial equation

der(y) = 0;

The value of yc at the first clock tick is yc=2 (and not yc=1 ). The reason is that the continuous-time
model der(y)+y=2 is first initialized and after initialization y has the value 2. At the first clock tick at
time=0, the left limit of y is 2 and therefore yc = 2.

Sorting of a simulation model:
Since sample(u) returns the left limit of u, and the left limit of u is a known value, all inputs to a base-
clock partition are treated as known during sorting. Since a periodic and interval clock can tick at most
once at a time instant, and since the left limit of a variable does not change during event iteration (i.e.,
re-evaluating a base-clock partition associated with a condition clock always gives the same result because
the sample(u) inputs do not change and therefore need not to be re-evaluated) all base-clock partitions,
see section 16.7.3, need not to be sorted with respect to each other. Instead, at an event instant, active
base-clock partitions can be evaluated first (and once) in any order. Afterwards, the continuous-time
partition is evaluated. Event iteration takes place only over the continuous-time partition. In such a
scenario, accessing the left limit of u in sample(u) just means to pick the latest available value of u when
the partition is entered, storing it in a local variable of the partition and only using this local copy during
evaluation of the equations in this partition.]

16.5.2 Sub-clock conversion operators

The following operators convert between synchronous clocks:

The operators in this table have the following properties:
The input argument u is a clocked expression or an expression of type Clock. [The operators can
operate on all types of clocks]. If u is a clocked expression, the operator returns a clocked variable
that has the same type as the expression. If u is an expression of type Clock, the operator returns
a Clock.
The optional input arguments factor (default=0, min=0), and resolution (default=1, min=1)
are parameter expressions of type Integer.
The input arguments shiftCounter and backCounter are parameter expressions of type Integer
(min=0).
subSample(u, factor) The clock of y = subSample(u,factor) is factor-times slower than the

clock of u. At every factor ticks of the clock of u, the operator returns
the value of u.. The first activation of the clock of y coincides with the
first activation of the clock of u. If argument factor is not provided or is
equal to zero, it is inferred, see section 16.7.5.
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superSample(u, factor) The clock of y = superSample(u,factor) is factor-times faster than the
clock of u. At every tick of the clock of y, the operator returns the value
of u from the last tick of the clock of u. The first activation of the clock
of y coincides with the first activation of the clock of u. If argument
factor is not provided or is equal to zero, it is inferred, see section 16.7.5.
If a Boolean clock is associated to a base-clock partition, all its sub-
clock partitions must have resulting clocks that are sub-sampled with an
Integer factor with respect to this base clock. [Example:

Clock u = Clock(x > 0);

Clock y1 = subSample(u,4);

Clock y2 = superSample(y1 ,2); // f i n e ; y2 =
subSample ( u , 2 )

Clock y3 = superSample(u ,2); // e r r o r
Clock y4 = superSample(y1 ,5); // e r r o r

]
shiftSample(u,
shiftCounter, resolution)

[The first activation of the clock of y = shiftSample(..) is shifted in
time shiftCounter/resolution*interval(u) later than the first activation of
the clock of u.].
Conceptually, the operator constructs a clock “cBase”

Clock cBase = subSample(superSample(u,resolution),

shiftCounter)

and the clock of y = shiftSample(..) starts at the second clock tick of
cBase. At every tick of the clock of y, the operator returns the value of
u from the last tick of the clock of u.
[Note, due to the restriction of superSample on Boolean clocks, shiftSam-
ple can only shift the number of ticks of the Boolean clock, but cannot
introduce new ticks. Example:

// R a t i o n a l i n t e r v a l c l o c k
Clock u = Clock(3, 10); // t i c k s : 0 , 3/10 , 6/10 , . .
Clock y1 = shiftSample(u,1,3); // t i c k s : 1/10 , 4/10 ,
...

// Boo lean c l o c k
Clock u = Clock(sin(2*pi*time)>0, startInterval =0.0)

// t i c k s : 0 .0 , 1 .0 , 2 .0 , 3 .0 , . . .
Clock y1 = shiftSample(u,2); // t i c k s : 2 .0 , 3 .0 , . . .
Clock y2 = shiftSample(u,2,3);// e r r o r ( r e s o l u t i o n must

be 1)

]
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backSample(u,
backCounter, resolution)

The input argument u is either a Component Expression (see sec-
tion 16.2.3) or an expression of type Clock. [The first activation of
the clock of y = backSample(..) is shifted in time backCounter/resolu-
tion*interval(u) before the first activation of the clock of u]. Concep-
tually, the operator constructs a clock “cBase”

Clock cBase = subSample(superSample(u,resolution),

backCounter)

and the clock of y = shiftSample(..) is shifted a time duration before
the clock of u, such that this duration is identical to the duration between
the first and second clock tick of cBase. It is an error, if the clock of
y starts before the base clock of u. At every tick of the clock of y, the
operator returns the value of u from the last tick of the clock of u. If u
is a clocked Component Expression, the operator returns the start value
of u, see section 16.9, before the first tick of the clock of u.
[Example:

// R a t i o n a l i n t e r v a l c l o c k 1

Clock u = Clock(3, 10); // t i c k s : 0 , 3/10 , 6/10 , . .
Clock y1 = shiftSample(u,3); // t i c k s : 9/10 , 12/10 , . .
Clock y2 = backSample(y1 ,2); // t i c k s : 3/10 , 6/10 ,
...

Clock y3 = backSample(y1 ,4); // e r r o r ( t i c k s b e f o r e u )
Clock y4 = shiftSample(u,2,3); // t i c k s : 2/10 , 5/10 ,
...

Clock y5 = backSample(y4 ,1,3); // t i c k s : 1/10 , 4/10 ,
...

// Boo lean c l o c k
Clock u = Clock(sin(2*pi*time) > 0, startInterval=xx)

// t i c k s : 0 , 1 .0 , 2 .0 , 3 .0 , . . . .
Clock y1 = shiftSample(u,3); // t i c k s : 3 .0 , 4 .0 , . . .
Clock y2 = backSample(y1 ,2); // t i c k s : 1 .0 , 2 .0 , . . .

]
noClock(u) The clock of y = noClock(u) is always inferred. At every tick of the

clock of y, the operator returns the value of u from the last tick of the
clock of u. If noClock(u) is called before the first tick of the clock of u,
the start value of u is returned.

[Clarification of backSample(..) operator:

Let a and b be positive integers with a < b, and

yb = backSample (u, a , b)

ys = shiftSample(u, b-a, b)

Then when ys exists, also yb exists and ys = yb.
The variable yb exists for the above parameterization with a<b one clock tick before ys. Therefore,
backSample is basically a shiftSample with a different parameterization and the clock of backSample.y

ticks before the clock of u. Before the clock of u ticks, yb = u.start.

Clarification of noClock(..) operator:

Note, that noClock(u) is not equivalent to sample(hold(u)). Consider the following model:

model NoClockVsSampleHold

Clock clk1 = Clock(0.1);

Clock clk2 = subSample(clk1 ,2);
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Real x(start =0), y(start =0), z(start =0);

equation

when clk1 then

x = previous (x) + 0.1;

end when;

when clk2 then

y = noClock (x); // most r e c e n t v a l u e o f x
z = sample (hold(x)); // l e f t l i m i t o f x ( i n f i n i t e s i m a l l y d e l a y e d ) !

end when;

end NoClockVsSampleHold;

Due to the infinitesimal delay of sample; z will not show the current value of x as clk2 ticks, but will
show its previous value (left limit). However, y will show the current value, since it has no infinitesimal
delay.]

Note that it is not legal to compute the derivative of the sample, subSample, superSample, backSample,
shiftSample, and noClock operators.

16.6 Clocked When Clause

In addition to the previously discussed conditional when-clause, a clocked when-clause is introduced:

when clock-expression then

clocked-equation

...

end when;

The clocked when-clause cannot be nested and does not have any elsewhen part. It cannot be used inside
an algorithm. General equations are allowed in a clocked when-clause.

For a clocked when-clause, all equations inside the when-clause are clocked with the same clock given by
the clock-expression.

16.7 Clock Partitioning

This section defines how clock-partitions and clocks associated with equations are inferred. [Typically
clock partitioning is performed before sorting the equations. The benefit is that clocking and symbolic
transformation errors are separated.]

Every clocked variable is uniquely associated with exactly one clock.

After model flattening, every equation in an equation section, every expression and every algorithm
section is either continuous-time, or it is uniquely associated with exactly one clock. In the latter case it
is called a clocked equation, a clocked expression or clocked algorithm section respectively. The associated
clock is either explicitly defined by a when-clause, see section 16.5.2, or it is implicitly defined by the
requirement that a clocked equation, a clocked expression and a clocked algorithm section must have
the same clock as the variables used in them with exception of the expressions used as first arguments
in the conversion operators of section 16.5. Clock inference means to infer the clock of a variable, an
equation, an expression or an algorithm section if the clock is not explicitly defined and is deduced from
the required properties in the previous two paragraphs.

All variables in an expression without clock conversion operators must have the same clock to infer the
clocks for each variable and expression. The clock inference works both forward and backwards regarding
the data flow and is also being able to handle algebraic loops. The clock inference method uses the set
of variable incidences of the equations, i.e., what variables that appear in each equation.

Note that incidences of the first argument of clock conversion operators of section 16.5 are handled
specially.
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16.7.1 Flattening of Model

The clock partitioning is conceptually performed after model flattening, i.e., redeclarations have been
elaborated, arrays of model components expanded into scalar model components, and overloading re-
solved. Furthermore, function calls to inline functions have been inlined. [This is called “conceptually”,
because a tool might do this more efficiently in a different way, provided the result is the same as if ev-
erything is flattened. For example, array and matrix equations and records don’t not need to be expanded
if they have the same clock.]

Furthermore, each non-trivial expression (non-literal, non-constant, non-parameter, non-variable), expri,
appearing as first argument of a clock conversion operator (except hold and backSample) is recursively
replaced by a unique variable, vi, and the equation vi = expri is added to the equation set.

16.7.2 Connected Components of the Equations and Variables Graph

Consider the set E of equations and the set V of unknown variables (not constants and parameters) in
a flattened model, i.e. M = <E, V>. The partitioning is described in terms of an undirected graph
<N, F> with the nodes N being the set of equations and variables, N = E + V. The set incidence(e)
for an equation e in E is a subset of V, in general, the unknowns which lexically appear in e. There is
an edge in F of the graph between an equation, e, and a variable, v, if v = incidence(e):

F = {(e, v) : e ∈ E, v ∈ incidence(e)}

A set of clock partitions is the “connected components” (Wikipedia, “Connected components”) of this
graph with appropriate definition of the incidence operator.

16.7.3 Base-clock Partitioning

The goal is to identify all clocked equations and variables that should be executed together in the same
task, as well as to identify the continuous-time partition.

The base-clock partitioning is performed with base-clock inference which uses the following incidence
definition:

incidence(e) = the unknown variables, as well as variables x in der(x), pre(x), and previous(x),
which lexically appear in e

except as first argument of base-clock conversion operators: sample() and hold() and
Clock(condition,startInterval).

The resulting set of connected components, is the partitioning of the equations and variables, Bi = <Ei,
Vi>, according to base-clocks and continuous-time partitions.

The base clock partitions are identified as clocked or as continuous-time partitions according to the
following properties:

A variable u in sample(u), a variable y in y = hold(ud), and a variable b in Clock(b, startInterval)

where b is of Boolean type is in a continuous-time partition.

Correspondingly, variables u and y in y = sample(uc), y = subSample(u), y = superSample(u), y
= shiftSample(u), y = backSample(u), y = previous(u), are in a clocked partition. Equations in
a clocked when clause are also in a clocked partition. Other partitions where none of the variables in
the partition are associated with any of the operators above have an unspecified partition kind and are
considered continuous-time partitions.

All continuous-time partitions are collected together and form “the” continuous-time partition.

[Example:

// C o n t r o l l e r 1
ud1 = sample(y,c1);

0 = f1(yd1 , ud1 , previous(yd1));

// C o n t r o l l e r 2
ud2 = superSample(yd1 ,2);
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0 = f2(yd2 , ud2);

// C o n t i n u o u s−t i m e s y s t e m
u = hold(yd2);

0 = f3(der(x1), x1 , u);

0 = f4(der(x2), x2 , x1);

0 = f5(der(x3), x3);

0 = f6(y, x1 , u);

After base clock partitioning, the following partitions are identified:

// Base p a r t i t i o n 1 // c l o c k e d p a r t i t i o n
ud1 = sample (y,c1); // i n c i d e n c e ( e ) = {ud1}
0 = f1(yd1 , ud1 , previous(ud1)); // i n c i d e n c e ( e ) = {yd1 , ud1}
ud2 = superSample (yd1 ,2); // i n c i d e n c e ( e ) = {ud2 , yd1}
0 = f2(yd2 , ud2); // i n c i d e n c e ( e ) = {yd2 , ud2}

// Base p a r t i t i o n 2 // c o n t i n u o u s−t i m e p a r t i t i o n
u = hold (yd2); // i n c i d e n c e ( e ) = {u}
0 = f3(der(x1), x1 , u); // i n c i d e n c e ( e ) = {x1 , u}
0 = f4(der(x2), x2 , x1); // i n c i d e n c e ( e ) = {x2 , x1}
0 = f6(y, x1 , u); // i n c i d e n c e ( e ) = {y , x1 , u}

// I d e n t i f i e d a s s e p a r a t e p a r t i t i o n , but b e l o n g i n g t o p a r t i t i o n 2
0 = f5(der(x3), x3); // i n c i d e n c e ( e ) = { x3}

]

16.7.4 Sub-clock Partitioning

For each clocked partition Bi, identified in section 16.7.3, the sub-clock partitioning is performed with
sub-clock inference which uses the following incidence definition:

incidence(e) = the unknown variables, as well as variables x in der(x), pre(x), and previous(x),
which lexically appear in e

except as first argument of sub-clock conversion operators:
subSample, superSample, shiftSample, backSample, noClock, and Clock with
first argument of Boolean type.

The resulting set of connected components, is the partitioning of the equations and variables, Sij = <Eij,
Vij>, according to sub-clocks.

It can be noted that:

Eij
⋂
Ekl = ∅ ∀i 6= k, j 6= l

Vij
⋂
Vkl = ∅ ∀i 6= k, j 6= l

V =
⋃
Vij

E =
⋃
Eij

[Example:

After sub-clock partitioning of the example from section 16.7.3, the following partitions are identified:

// Base p a r t i t i o n 1 ( c l o c k e d p a r t i t i o n )
// Sub−c l o c k p a r t i t i o n 1 . 1
ud1 = sample (y,c1); // i n c i d e n c e ( e ) = {ud1}
0 = f1(yd1 ,ud1 ,previous(yd1)); // i n c i d e n c e ( e ) = {yd1 , ud1}

// Sub−C l o c k p a r t i t i o n 1 . 2
ud2 = superSample (yd1 ,2); // i n c i d e n c e ( e ) = {ud2}
0 = f2(yd2 ,ud2); // i n c i d e n c e ( e ) = {yd2 , ud2}
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// Base p a r t i t i o n 2 ( no sub−c l o c k p a r t i t i o n i n g , s i n c e c o n t i n u o u s−t i m e )
u = hold (yd2);

0 = f3(der(x1), x1 , u);

0 = f4(der(x2), x2 , x1);

0 = f5(der(x3), x3);

0 = f6(y, x1 , u);

]

16.7.5 Sub-clock Inferencing

For each base-clock partition, the base interval needs to be determined and for each sub-clock partition,
the sub-sampling factors and shift need to be determined. For each sub-clock partition, the interval
might be rational or Real type and known or parametric or being unspecified. The sub-clock partition
intervals are constrained by subSample and superSample factors which might be known (or parametric) or
unspecified and by shiftSample shiftCounter and resolution or backSample, backCounter and resolution.
This constraint set is used to solve for all intervals and sub-sampling factors and shift of the sub-clock
partitions. The model is erroneous if no solution exist.

[It must be possible to determine that the constraint set is valid at compile time. However, in certain
cases, it could be possible to defer providing actual numbers until run-time. ]

It is required that accumulated sub- and super sampling factors in the range of 1 to 263 can be handled.

[64 bit internal representation of numerator and denominator with sign can be used and gives
minimum resolution 1.08E-19 seconds and maximum range 9.22E+18 seconds = 2.92E+11 years.]

16.8 Continuous-Time Equations in Clocked Partitions

[The goal is that every continuous-time Modelica model can be utilized in a sampled data control system.
This is achieved by solving the continuous-time equations with a defined integration method between clock
ticks. With this feature, it is for example possible to invert the nonlinear dynamic model of a plant, see
(Thümmel et.al. 2005), and use it in a feedforward path of an advanced control system that is associated
with a clock.

This feature also allows to define multi-rate systems: Different parts of the continuous-time model are
associated to different clocks and are solved with different integration methods between clock ticks, e.g., a
very fast sub-system with an implicit solver with a small step-size and a slow sub-system with an explicit
solver with a large step-size.]

With the language elements defined in this section, continuous-time equations can be used in clocked
partitions. Hereby, the continuous-time equations are solved with the defined integration method between
clock ticks.

From the view of the continuous-time partition, the clock ticks are not interpreted as events, but
as step-sizes of the integrator that the integrator must exactly hit. [This is the same assumption as for
manually discretized controllers, such as the z-transform.] So no event handling is triggered at clock
ticks (provided an explicit event is not triggered from the model at this time instant). [It is not defined,
how events are handled that appear when solving the continuous-time partition. For example, a tool
could handle events exactly in the same way as for a usual simulation. Alternatively, relations might be
interpreted literally, so that events are no longer triggered (in order that the time for an integration step
is always the same, as needed for hard real-time requirements).]

From the view of the clocked partition, the continuous-time partition is discretized and the discretized
continuous-time variables have only a value at a clock tick. Therefore, such a partition is handled in
the same way as any other clocked partition. Especially, operators such as sample, hold, subSample
must be used to communicate signals of the discretized continuous-time partition with other partitions.
Hereby, a discretized continuous-time partition is seen as a clocked partition.
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16.8.1 Clocked Discrete-Time and Clocked Discretized Continuous-Time Par-
tition

Additionally to the variability of expressions defined in section 3.8, an orthogonal concept “clocked
variability” is defined in this section. If not explicitly stated otherwise, an expression with a variability
such as “continuous-time” or “discrete-time” means that the expression is inside a partition that is not
associated to a clock. If an expression is present in a partition that is not a continuous-time partition,
it is a “clocked expression” and has “clocked variability”.

After sub-clock inferencing, see section 16.7.5, every partition that is associated to a clock has to be
categorized as “clocked discrete-time” or “clocked discretized continuous-time” partition.

If a clocked partition contains no operator der, delay, spatialDistribution, no event related operators
from section 3.7.3 (with exception of noEvent(..)), and no when-clause with a Boolean condition, it is
a “clocked discrete-time” partition [that is, it is a standard sampled data system that is described by
difference equations.]

If a clocked partition is not a “clocked discrete-time” partition, it is a “clocked discretized continuous-
time” partition. Such a partition has to be solved with a “solver method” of section 16.8.2. When
previous(x) is used on a continuous-time state variable x, then previous(x) uses the start value of x
as value for the first clock tick.

In a clocked discrete-time partition all event generating mechanisms do no longer apply. Especially
neither relations, nor one of the built-in operators of section 3.7.1.1 (event triggering mathematical
functions) will trigger an event.

16.8.2 Solver Methods

The integration method associated with a clocked discretized continuous-time partition is defined with a
string. A predefined type ModelicaServices.Types.SolverMethod defines the methods supported by
the respective tool by using the choices annotation. [The ModelicaServices package contains tool specific
definitions. A string is used instead of an enumeration, since different tools might have different values
and then the integer mapping of an enumeration is misleading since the same value might characterize
different integrators.] The following names of solver methods are standardized:

type SolverMethod = String annotation(choices(

choice="External" "Solver specified externally",

choice="ExplicitEuler" "Explicit Euler method (order 1)",

choice="ExplicitMidPoint2" "Explicit mid point rule (order 2)",

choice="ExplicitRungeKutta4" "Explicit Runge -Kutta method (order 4)",

choice="ImplicitEuler" "Implicit Euler method (order 1)",

choice="ImplicitTrapezoid" "Implicit trapezoid rule (order 2)"

)) "Type of integration method to solve differential equations in a clocked

discretized"

+"continuous -time partition."

If a tool supports one of the integrators of SolverMethod, it must use the solver method name of above.
[A tool may support also other integrators. Typically, a tool supports at least methods “External” and
“ExplicitEuler”. If a tool does not support the integration method defined in a model, typically a warning
message is printed and the method is changed to “External”.]

If the solver method is "External", then the partition associated with this method is integrated by
the simulation environment for an interval of length of interval() using a solution method defined
in the simulation environment [(for example by having a table of the clocks that are associated with
discretized continuous-time partitions and a method selection per clock). In such a case, the solution
method might be a variable step solver with step-size control that integrates between two clock ticks. The
simulation environment might also combine all partitions associated with method ”External”, as well
as all continuous-time partitions, and integrate them together with the solver selected by the simulation
environment.]
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If the solver method is not "External", then the partition is integrated using the given method with
the step-size interval(). [For a periodic clock, the integration is thus performed with fixed step size.]

The solvers are defined with respect to the underlying ordinary differential equation in state space form
to which the continuous-time partition can be transformed, at least conceptually (t is time, uc(t) is the
continuous-time Real vector of input variables, ud(t) is the discrete-time Real/Integer/Boolean/String
vector of input variables, x(t) is the continuous-time real vector of states, and y(t) is the continuous-time
or discrete-time Real/Integer/Boolean/String vector of algebraic and/or output variables):

ẋ = f(x, u, t)

y = g(x, u, t)

A solver method is applied on a subclock partition. Such a partition has explicit inputs u marked by
sample(u), subSample(u), superSample(u), shiftSample(u) and/or backSample(u). Furthermore,
the outputs y of such a partition are marked by hold(y), subSample(y), superSample(y), shiftSample
(y), and/or backSample(y). The arguments of these operators are to be used as input signals u and
output signals y in the conceptual ordinary differential equation above, and in the discretization formulae
below, respectively.

The solver methods (with exception of ”External”) are defined by integrating from clock tick t i-1 to
clock tick t i and computing the desired variables at t i, with h = t i – t i-1 = interval(u) and xi = x(ti):

SolverMethod Solution method
(for all methods: yi = g(xi, uc,i, ud,i, ti))

ExplicitEuler
xi := xi−1 + h · ẋi−1
ẋi := f(xi, uc,i, ud,i, ti)

ExplicitMidPoint2
xi := xi−1 + h · f(xi−1 +

1

2
· h · ẋi−1,

uc,i−1 + uc,i
2

, ud,i−1, ti−1 + 1
2 · h)

ẋi := f(xi, uc,i, ud,i, ti)

ExplicitRungeKutta4

k1 := h · ẋi−1

k2 := h · f(xi−1 + 1
2k1,

uc,i−1 + uc,i
2

, ud,i−1, ti−1 + 1
2 · h)

k3 := h · f(xi−1 + 1
2k2,

uc,i−1 + uc,i
2

, ud,i−1, ti−1 + 1
2 · h)

k4 := h · f(xi−1 + k3, uc,i, ud,i, ti)

xi := xi−1 + 1
6 · (k1 + 2 · k2 + 2 · k3 + k4)

ẋi := f(xi, uc,i, ud,i, ti)

ImplicitEuler
xi = xi−1 + h · ẋi// equations system with unknowns:xi, ẋi

ẋi = f(xi, uc,i, ud,i, ti)

ImplicitTrapezoid
xi = xi−1 + 1

2h · (ẋi + ẋi−1)// equations system with unknowns:xi, ẋi

ẋi = f(xi, uc,i, ud,i, ti)

The initial conditions will be used at the first tick of the clock, and the first integration step will go from
the first to the second tick of the clock.

[Example: Assume the differential equation

input Real u;

Real x(start=1, fixed=true);

equation

der(x) = -x + u

shall be transformed to a clocked discretized continuous-time partition with the ExplicitEuler method.
The following model is a manual implementation:

input Real u;

parameter Real x_start = 1;
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Real x(start=x_start); // p r e v i o u s ( x ) = x s t a r t a t f i r s t c l o c k t i c k
Real der_x(start =0); // p r e v i o u s ( d e r x ) = 0 a t f i r s t c l o c k t i c k

protected

Boolean first(start=true);

equation

when Clock () then

first = false;

if previous(first) then

// f i r s t c l o c k t i c k ( i n i t i a l i z e s y s t e m )
x = previous (x);

else

// s e c o n d and f u r t h e r c l o c k t i c k
x = previous (x) +

interval ()*previous(der_x);

end if;

der_x = -x + u;

end when;

]

[For the implicit integration methods the efficiency can be enhanced by utilizing the discretization formula
during the symbolic transformation of the equations. For example, linear differential equations are then
mapped to linear and not non-linear algebraic equation systems, and also the structure of the equations
can be utilized. For details see (Elmqvist et. al. 1995). It might be necessary to associate additional data
for an implicit integration method, e.g. the relative tolerance to solve the non-linear algebraic equation
systems, or the maximum number of iterations in case of hard realtime requirements. This data is tool
specific and is typically either defined with a vendor annotation or is given in the simulation environment.]

16.8.3 Associating a Solver to a Partition

A solverMethod can be associated to a clock with the overloaded Clock constructor Clock(c, solver-
Method), see section 16.3. If a clock is associated with a clocked partition and a solverMethod is
associated with this clock, then the partition is integrated with it.

[Example:

// C o n t i n u o u s PI c o n t r o l l e r i n a c l o c k e d p a r t i t i o n
vd = sample(x2, Clock(Clock (1 ,10),solverMethod="ImplicitEuler"));

e = ref -vd;

der(xd) = e/Ti;

u = k*(e + xd);

// P h y s i c a l model
f = hold(u);

der(x1) = x2;

m*der(x2) = f;

]

16.8.4 Inferencing of solverMethod

If a solverMethod is not explicitly associated with a partition, it is inferred with a similar mechanism as
for sub-clock inferencing, see section 16.7.5.

For each sub-clock partition we build a set corresponding to this sub-clock partition. These sets are then
merged as follows: for each set without a specified solverMethod we merge it with sets connected to it
(these may contain a solverMethod); and this is repeated until it is not possible to merge more sets.
The sets connected in this way should be part of the same base-clock partition and connected through
a sub-clock conversion operator (subSample, superSample, shiftSample, backSample, or noClock).

• If this set contains multiple different values for solverMethod it is an error.

• If the set contains continuous time-equations:
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– If this set contains no solverMethod it is an error.

– Otherwise we use the specified solverMethod.

• If the set does not contain continuous time-equations there is no need for a solverMethod.

[Example:

model InferenceTest

Real x(start =3) "Explicitly using ExplicitEuler";

Real y "Explicitly using ImplicitEuler method";

Real z "Inferred to use ExplicitEuler";

equation

der(x)=-x+sample(1,Clock(Clock (1,10), solverMethod="ExplicitEuler"));

der(y)=subSample(x,2)+sample(1,Clock(Clock (2,10), solverMethod="ImplicitEuler

"));

der(z)=subSample(x,2) +1;

end InferenceTest;

model IllegalInference

Real x(start =3) "Explicitly using ExplicitEuler";

Real y "Explicitly using ImplicitEuler method";

Real z;

equation

der(x)=-x+sample(1,Clock(Clock (1,10), solverMethod="ExplicitEuler"));

der(y)=subSample(x,2)+sample(1,Clock(Clock (2,10), solverMethod="ImplicitEuler

"));

der(z)=subSample(x,4) +1+ subSample(y);

end IllegalInference;

Here z is a continuous-time equation connected directly to both x and y partitions that have different
solverMethod. ]

16.9 Initialization of Clocked Partitions

The standard scheme for initialization of Modelica models does not apply for clocked discrete-time
partitions. Instead, initialization is performed in the following way:

• Clocked discrete-time variables cannot be used in initial equation or initial algorithm sections.

• Attribute “fixed” cannot be applied on clocked discrete-time variables. The attribute “fixed” is
true for variables to which the previous operator is applied, otherwise false.

16.10 Other Operators

The following additional utility operators are provided:

firstTick(u) This operator returns true at the first tick of the clock of the expression, in
which this operator is called. The operator returns false at all subsequent ticks
of the clock. The optional argument u is only used for clock inference, see
section 16.7.

interval(u) This operator returns the interval between the previous and present tick of the
clock of the expression, in which this operator is called. The optional argument
u is only used for clock inference, see section 16.7. At the first tick of the clock
the following is returned: a) if the specified clock interval is parametric, this
value is returned; b) otherwise the start value of the variable specifying the
interval is returned; c) for an event clock the additional startInterval argument
to the event clock constructor is returned. The return value of the interval
operator is a scalar Real number.
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It is an error if these operators are called in the continuous-time partition.

[Example:

A discrete PI controller is parameterized with the parameters of a continuous PI controller, in order
that the discrete block is robust against changes in the sample period. This is achieved by discretizing a
continuous PI controller (here with an implicit Euler method):

block ClockedPI

parameter Real T "Time constant of continuous PI controller";

parameter Real k "Gain of continuous PI controller";

input Real u;

output Real y;

Real x(start =0);

protected

Real Ts = interval(u);

equation

/∗ C o n t i n u o u s PI e q u a t i o n s : d e r ( x ) = u/T ; y = k ∗( x + u ) ;
D i s c r e t i z a t i o n e q u a t i o n : d e r ( x ) = ( x − p r e v i o u s ( x ) ) /Ts ;

∗/
when Clock () then

x = previous (x) + Ts/T*u;

y = k*(x + u);

end when;

end ClockedPI;

A continuous-time model is inverted, discretized and used as feedforward controller for a PI controller
(der(..), previous, interval are used in the same partition):

block MixedController

parameter Real T "Time constant of continuous PI controller";

parameter Real k "Gain of continuous PI controller";

input Real y_ref , y_meas;

Real y;

output Real yc;

Real z(start =0);

Real xc(start=1, fixed=true);

Clock c = Clock(Clock(0.1), solverMethod="ImplicitEuler");

protected

Real uc;

Real Ts = interval(uc);

equation

/∗ C o n t i n u o u s−t ime , i n v e r s e model ∗/
uc = sample(y_ref , c);

der(xc) = uc;

/∗ PI c o n t r o l l e r ∗/
z = if firstTick () then 0 else

previous(z) + Ts/T*(uc - y_meas);

y = xc + k*(xc + uc);

yc = hold (y);

end MixedController;

]

16.11 Semantics

The execution of sub partitions requires exact time management for proper synchronization. The impli-
cation is that testing a Real valued time variable to determine sampling instants is not possible. One
possible method is to use counters to handle sub-sampling scheduling.
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Clock_i_j_ticks = if pre(Clock_i_j_ticks)<subSamplingFactor_i_j then 1+pre(

Clock_i_j_ticks) else 1;

and to test the counter to determine when the sub-clock is ticking:

Clock_i_j_activated = BaseClock_i_activated and Clock_i_j_ticks >=

subSamplingFactor_i_j;

The Clock i j activated flag is used as the guard for the sub partition equations.

[ Consider the following example:

model ClockTicks

Integer second = sample(1, Clock (1));

Integer seconds(start=-1) = mod(previous(seconds) + second , 60);

Integer milliSeconds(start=-1)=

mod(previous(milliSeconds) + superSample(second , 1000), 1000);

Integer minutes(start=-1)=

mod(previous(minutes) + subSample(second , 60), 60);

end ClockTicks;

A possible implementation model is shown below using Modelica 3.2 semantics. The base-clock is deter-
mined to 0.001 seconds and the sub-sampling factors to 1000 and 60000.

model ClockTicksWithModelica32

Integer second;

Integer seconds(start = -1);

Integer milliSeconds(start = -1);

Integer minutes(start = -1);

Boolean BaseClock_1_activated;

Integer Clock_1_1_ticks(start =59999);

Integer Clock_1_2_ticks(start =0);

Integer Clock_1_3_ticks(start =999);

Boolean Clock_1_1_activated;

Boolean Clock_1_2_activated;

Boolean Clock_1_3_activated;

equation

// P r e p a r e c l o c k t i c k
BaseClock_1_activated = sample(0, 0.001);

when BaseClock_1_activated then

Clock_1_1_ticks = if pre(Clock_1_1_ticks) < 60000 then 1+pre(

Clock_1_1_ticks) else 1;

Clock_1_2_ticks = if pre(Clock_1_2_ticks) < 1 then 1+pre(Clock_1_2_ticks)

else 1;

Clock_1_3_ticks = if pre(Clock_1_3_ticks) < 1000 then 1+pre(

Clock_1_3_ticks) else 1;

end when;

Clock_1_1_activated = BaseClock_1_activated and Clock_1_1_ticks >= 60000;

Clock_1_2_activated = BaseClock_1_activated and Clock_1_2_ticks >= 1;

Clock_1_3_activated = BaseClock_1_activated and Clock_1_3_ticks >= 1000;

//
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

// Sub p a r t i t i o n e x e c u t i o n
when {Clock_1_3_activated} then

second = 1;

end when;
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when {Clock_1_1_activated} then

minutes = mod(pre(minutes)+second , 60);

end when;

when {Clock_1_2_activated} then

milliSeconds = mod(pre(milliSeconds)+second , 1000);

end when;

when {Clock_1_3_activated} then

seconds = mod(pre(seconds)+second , 60);

end when;

end ClockTicksWithModelica32;

]
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Chapter 17

State Machines

[This chapter defines language elements to define clocked state machines. These state machines have
a similar modeling power as Statecharts (Harel 1987) and have the important feature that at one clock
tick, there is only one assignment to every variable (for example, it is an error if state machines are
executed in parallel and they assign to the same variable at the same clock tick; such errors are detected
during translation). Furthermore, it is possible to activate and deactivate clocked equations and blocks at
a clock tick. An efficient implementation will only evaluate the equations and blocks that are active at
the current clock tick. With other Modelica language elements, this important feature cannot be defined.

The semantics of the state machines defined in this chapter is inspired by mode automata and is basically
the one from Lucid Synchrone 3.0 (Pouzet 2006). Note, safety critical control software in aircrafts is
often defined with such kind of state machines. The following properties are different to Lucid Synchrone
3.0:

• Lucid Synchrone has two kinds of transitions: “strong” and “weak” transitions. Strong transitions
are executed before the actions of a state are evaluated and weak transitions are executed after the
actions of a state are evaluated. This can lead to surprising behavior, because the actions of a state
are skipped if it is activated by a weak transition and exited by a true strong transition.
For this reason, the state machines in this chapter use “immediate” (= the same as “strong”)
and “delayed” transitions. Delayed transitions are “immediate” transitions where the condition is
automatically delayed with an implicit previous(..).

• Parallel state machines can be explicitly synchronized with a language element (similarly as parallel
branches in Sequential Function Charts). This often occurring operation can also be defined in
Statecharts or in Lucid Synchrone state machines but only indirectly with appropriate conditions
on transitions.

• Modelica blocks can be used as states. They might contain clocked or clocked discretized continuous-
time equations (in the latter case, the equations are integrated between the previous and the next
clock tick, if the corresponding state is active).

]

17.1 Transitions

Any Modelica block instance without continuous-time equations or algorithms can potentially be a state
of a state machine. A cluster of instances which are coupled by transition statements makes a state
machine. All parts of a state machine must have the same clock. All transitions leaving one state must
have different priorities. One and only one instance in each state machine must be marked as initial by
appearing in an initialState statement. The following special kinds of connect-statements are used to
define transitions between states and to define the initial state:

Statements to define a state machine
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transition(from, to,
condition,
immediate, reset,
synchronize, priority)

Arguments “from” and “to” are block instances and “condition”
is a Boolean argument. The optional arguments “immediate”,
“reset”, and “synchronize” are of type Boolean, have parametric
variability and a default of true, true, false respectively. The
optional argument “priority” is of type Integer, has parametric
variability and a default of 1.
This operator defines a transition from instance “from” to in-
stance “to”. The “from” and “to” instances become states of
a state machine. The transition fires when condition = true if
immediate = true (this is called an “immediate transition”) or
previous(condition) when immediate = false (this is called a
“delayed transition”). Argument “priority” defines the priority of
firing when several transitions could fire. In this case the transi-
tion with the smallest value of “priority” fires. It is required that
priority ≥ 1 and that for all transitions from the same state, the
priorities are different. If reset = true, the states of the target
state are reinitialized, i.e. state machines are restarted in initial
state and state variables are reset to their start values. If synchro-
nize=true, any transition is disabled until all state machines of the
from-state have reached final states, i.e. states without outgoing
transitions. For the precise details about firing a transition, see
section 17.3.

initialState(state) Argument “state” is the block instance that is defined to be the
initial state of a state machine. At the first clock tick of the state
machine, this state becomes active.

The transition-, and initialState-equations may only be used in equations and may not be used inside
if-equations with non-parametric condition, or in when-equations.

It is possible to query the status of the state machine by using the following operators:

activeState(state) Argument “state” is a block instance. The operator returns true,
if this instance is a state of a state machine and this state is active
at the actual clock tick. If it is not active, the operator returns
false.
It is an error if the instance is not a state of a state machine.

ticksInState() Returns the number of ticks of the clock of the state machine since
a transition was made to the currently active state. This function
can only be used in transition conditions of state machines not
present in states of hierarchical state machines. [For example if
there is a transition with immediate=false from state A1 to A2
and the condition is ticksInState() ≥ 5, and A1 became active at
10ms, and the clock period is 1ms, then A1 will be active at 10ms,
11ms, 12ms, 13ms, 14ms, and will be not active at 15 ms.]

timeInState() Returns the time duration as Real in [s] since a transition was
made to the currently active state. This function can only be used
in transition conditions of state machines not present in states of
hierarchical state machines.

17.2 State Machine Graphics

[ The recommended layout of state machines is shown below for a simple state machine with 5 transitions.
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For the 5 transitions above, the settings are as follows, from left to right: immediate = true, false, true,
false, true; reset = true, true, false, false, true; synchronize = false, false, false, false, true; priority = 1,
2, 3, 4, 5. The recommended color is {95, 95, 95} for states and for transition text and {175,175,175}
for transition lines. ]

The annotation for graphics of transition() has the following structure: annotation(Line(. . . ), Text(. . . ));
and for initialState(): graphical-primitives(Line(. . . )); with Line and Text annotations defined in
chapter 18.

[ Example:

transition(state2 , state1 , x < 10, immediate=true , reset=true , synchronize=

false , priority =1)

annotation (

Line(

points ={{-40,-16},{-36,-4},{-32,8},{-40,26},{-40,32},{-46,50}},

color ={175 ,175 ,175} ,

thickness =0.25 ,

smooth=Smooth.Bezier),

Text(

string="%condition",

extent ={{4,-4},{4,-10}},

fontSize =10,

textStyle ={ TextStyle.Bold},

textColor ={95 ,95 ,95} ,

horizontalAlignment=TextAlignment.Left),

);

]

The Text annotation representing the transition condition can use the notation %condition to refer to
the condition expression.

The extent of the Text is interpreted relative to either the first point of the Line, in the case of immedi-
ate=false, or the last point (immediate=true).

In addition to the line defined by the points of the Line annotation, a perpendicular line is used to
represent the transition. This line is closer to the first point if immediate=false otherwise closer to the
last point.

If the condition text is somewhat distant from the perpendicular line, a dimmed straight line joins the
transition text and the perpendicular line [ See the rightmost transition above. ].
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If reset=true, a filled arrow head is used otherwise an open arrow head. For synchronize=true, an inverse
“fork” symbol is used in the beginning of the arrow [ See the rightmost transition above. ].

The value of the priority attribute is prefixing the condition text followed by a colon if priority > 1.

The initialState line has a filled arrow head and a bullet at the opposite end of the initial state [ as shown
above ].

17.3 State Machine Semantics

For the purpose of defining the semantics of state machines, assume that the data of all transitions are
stored in an array of records:

record Transition

Integer from;

Integer to;

Boolean immediate = true;

Boolean reset = true;

Boolean synchronize = false;

Integer priority = 1;

end Transition;

The transitions are sorted with lowest priority number last in the array; and the priorities must be unique
for each value of “from”. The states are enumerated from 1 and up. The transition conditions are stored
in a separate array c[:] since they are time varying.

The semantics model is a discrete-time system with inputs { c[:], active, reset} with t being an array
corresponding to the inputs to the transition operator, outputs {activeState, activeReset, activeReset-
States[:]} and states {nextState, nextReset, nextResetStates[:]}. For a top level state machine, active is
always true. For sub-state machines, active is true only when the parent state is active. For a top level
state machine, reset is true at the first activation only. For sub-state machine, reset is propagated from
the state machines higher up.

17.3.1 State Activation

The state update starts from nextState, i.e., what has been determined to be the next state at the
previous time. selectedState takes into account if a reset of the state machine is to be done.

output Integer selectedState = if reset then 1 else previous(nextState);

The integer fired is calculated as the index of the transition to be fired by checking that selectedState is
the from-state and the condition is true for an immediate transition or previous(condition) is true for a
delayed transition. The max function returns the index of the transition with highest priority or 0.

Integer fired = max(if

(if t[i].from == selectedState

then (if t[i].immediate then c[i] else previous(c[i]))

else false)

then i

else 0

for i in 1:size(t,1));

The start value of c is false. This definition would require that the previous value is recorded for all
transitions conditions. Below is described an equivalent semantics which just require to record the value
of one integer variable delayed.
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The integer immediate is calculated as the index of the immediate transition to potentially be fired by
checking that selectedState is the from-state and the condition is true. The max function returns the
index of the transition with true condition and highest priority or 0.

Integer immediate = max(if

(if t[i].immediate and t[i].from == selectedState

then c[i]

else false)

then i

else 0

for i in 1:size(t,1));

In a similar way, the Integer delayed is calculated as the index for a potentially delayed transition, i.e. a
transition taking place at the next clock tick. In this case the from-state needs to be equal to nextState:

Integer delayed = max(if

(if not t[i].immediate and t[i].from == nextState

then c[i]

else false)

then i

else 0

for i in 1:size(t,1));

The transition to be fired is determined as follows, taking into account that a delayed transition might
have higher priority than an immediate:

Integer fired = max(previous(delayed), immediate);

nextState is set to the found transitions to-state:

Integer nextState = if active then

(if fired > 0

then t[fired].to

else selectedState)

else previous(nextState);

In order to define synchronize transitions, each state machine must determine which are the final states,
i.e. states without from-transitions and to determine if the state machine is in a final state currently:

Boolean finalStates[nStates] = {

max(if t[j].from == i then 1 else 0 for j in 1:size(t,1)) == 0

for i in 1: nStates };

Boolean stateMachineInFinalState = finalStates[activeState ];

To enable a synchronize transition, all the stateMachineInFinalState conditions of all state machines
within the meta state must be true. An example is given below in the semantic example model.

17.3.2 Reset Handling

A state can be reset for two reasons:

• The whole state machine has been reset from its context.
In this case, all states must be reset, and the initial state becomes active.
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• A reset transition has been fired.
Then, its target state is reset, but not other states.

The first reset mechanism is handled by the activeResetStates and nextResetStates vectors.

The state machine reset flag is propagated and maintained to each state individually:

output Boolean activeResetStates[nStates] = {if reset then true else previous

(nextResetStates[i]) for i in 1: nStates };

until a state is eventually executed, then its corresponding reset condition is set to false:

Boolean nextResetStates[nStates] = if active then {if activeState == i then

false else activeResetStates[i] for i in 1: nStates}

else previous(nextResetStates)

The second reset mechanism is implemented with the selectedReset and nextReset variables. If no reset
transition is fired, the nextReset is set to false for the next cycle.

17.3.3 Activation handling

The execution of a sub-state machine has to be suspended when its enclosing state is not active. This
activation flag is given as a Boolean input active. When this flag is true, the sub-state machine
maintains its previous state, by guarding the equations of the state variables nextState, nextReset and
nextResetStates.

17.3.4 Semantics Summary

The entire semantics model is given below:

model StateMachineSemantics "Semantics of state machines"

parameter Integer nStates;

parameter Transition t[:] "Array of transition data sorted in priority";

input

Boolean c[size(t,1)] "Transition conditions sorted in priority";

input Boolean active "true if the state machine is active";

input Boolean reset "true when the state

machine should be reset";

Integer selectedState = if reset then 1 else previous(nextState);

Boolean selectedReset = if reset then true else previous(nextReset);

// For s t r o n g ( i m m e d i a t e ) and weak ( d e l a y e d ) t r a n s i t i o n s
Integer immediate = max(if (if t[i].immediate and t[i].from == selectedState

then c[i] else false) then i else 0 for i in 1:size(t,1));

Integer delayed = max(if (if not t[i].immediate and t[i].from == nextState

then c[i] else false) then i else 0 for i in 1:size(t,1));

Integer fired = max(previous(delayed), immediate);

output Integer activeState = if reset then 1 elseif fired > 0 then t[fired]

.to else selectedState;

output Boolean activeReset = if reset then true elseif fired > 0 then t[fired

].reset else selectedReset;

// Update s t a t e s
Integer nextState = if active then activeState else previous(nextState);

Boolean nextReset = if active then false else previous(nextReset);

// D e l a y e d r e s e t t i n g o f i n d i v i d u a l s t a t e s
output Boolean activeResetStates[nStates] = {if reset then true else

previous(nextResetStates[i]) for i in 1: nStates };

Boolean nextResetStates[nStates] = if active then {if activeState == i then

false
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else activeResetStates[i] for i in 1: nStates} else previous(nextResetStates

);

Boolean finalStates[nStates] = {max(if t[j].from == i then 1 else 0 for j in

1:size(t,1))== 0 for i in 1: nStates };

Boolean stateMachineInFinalState = finalStates[activeState ];

end StateMachineSemantics;

17.3.5 Merging Variable Definitions

[ When a state class uses an outer output declaration, the equations have access to the corresponding
variable declared inner. Special rules are then needed to maintain the single assignment rule since
multiple definitions of such outer variables in different mutually exclusive states needs to be merged. ]

In each state, the outer output variables are solved for and for each such variable a single definition is
formed:

v := if activeState(state1) then expre1 elseif activeState(state2) then expre2

elseif ... else last(v)

last() is special internal semantic operator returning its input. It is just used to mark for the sorting
that the incidence of its argument should be ignored. A start value must be given to the variable if not
assigned in the initial state.

A new assignment equation is formed which might be merged on higher levels in nested state machines.

17.3.6 Merging Connections to Multiple Outputs

[ Since instances of blocks can be used as states of a state machine it is natural to extend the connection
semantics of Modelica to allow several outputs to be connected to one input. ]

It is possible to connect several outputs to an input if all the outputs come from states of the same state
machine. In such cases, we get the following constraint equations:

u1 = u2 = ... = y1 = y2 = ...

with ui inputs and yi outputs. The semantics is defined as follows. Introduce a variable v representing the
signal flow and rewrite the equation above as a set of equations for ui and a set of assignment equations
for v:

v := if activeState(state1) then y1 else last(v);

v := if activeState(state2) then y2 else last(v);

...

u1 = v

u2 = v

...

The merge of the definitions of v is then made according to section 17.3.5: Merging Variable Definitions.
The result is after simplification:

v := if activeState(state1) then y1 elseif activeState(state2) then y2 elseif ...

else last(v);

u1 = v

u2 = v

...
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17.3.7 Example

[ Consider the following hierarchical state machine:

The model demonstrates the following properties:

• state1 is a meta state with two parallel state machines in it.

• stateA declares v as outer output. state1 is on an intermediate level and declares v as inner outer
output, i.e. matches lower level outer v by being inner and also matches higher level inner v by
being outer. The top level declares v as inner and gives the start value.

• count is defined with a start value in state1. It is reset when a reset transition (v>=20) is made
to state1.

• stateX declares the local variable w to be equal to v declared as inner input.

• stateY declares a local counter j. It is reset at start and as a consequence of the reset transition
(v>=20) to state1: When the reset transition (v ≥ 20) fires, then the variables of the active states
are reset immediately (so ”count” from state1, and ”i” from stateX). The variables of other states
are only reset at the time instants when these states become active. So ”j” in StateY is reset
to 0, when the transition stateX.i > 20 fires (after state1 became active again, so after the reset
transition v ≥ 20).

• Synchronizing the exit from the two parallel state machines of state1 is done by checking that stated
and stateY are active using the activeState function.
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The Modelica code (without annotations) is:

block HierarchicalAndParallelStateMachine

inner Integer v(start =0);

State1 state1;

State2 state2;

equation

initialState(state1);

transition(state1 ,state2 ,activeState(state1.stateD) and

activeState(state1.stateY), immediate=false);

transition(state2 ,state1 ,v >= 20, immediate=false);

public

block State1

inner Integer count(start =0);

inner outer output Integer v;

block StateA

outer output Integer v;

equation

v = previous(v) + 2;

end StateA;

StateA stateA;

block StateB

outer output Integer v;

equation

v = previous(v) - 1;

end StateB;

StateB stateB;

block StateC

outer output Integer count;

equation

count = previous(count) + 1;

end StateC;

StateC stateC;

block StateD

end StateD;

StateD stateD;

equation

initialState(stateA);

transition(stateA , stateB , v >= 6, immediate=false);

transition(stateB , stateC , v == 0, immediate=false);

transition(stateC , stateA , true , immediate=false , priority =2);

transition(stateC , stateD , count >= 2, immediate=false);

public

block StateX

outer input Integer v;

Integer i(start =0);

Integer w; // = v ;
equation

i = previous(i) + 1;

w = v;

end StateX;

StateX stateX;

block StateY
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Integer j(start =0);

equation

j = previous(j) + 1;

end StateY;

StateY stateY;

equation

initialState(stateX);

transition(stateX , stateY , stateX.i > 20, immediate=false ,

reset=false);

end State1;

block State2

outer output Integer v;

equation

v = previous(v) + 5;

end State2;

end HierarchicalAndParallelStateMachine;

The behavior of the state machine can be seen in the plots of v:

The transition from state1 to state2 could have been done with a synchronize transition with condi-
tion=true instead. The semantically equivalent model is shown below:

block HierarchicalAndParallelStateMachine

extends StateMachineSemantics(

nStates=2,

t={ Transition(from=1, to=2, immediate=false , synchronize=true),

Transition(from=2, to=1, immediate=false)},

c={true , v >= 20});

Boolean init(start=true) = sample(false);

block State1

Boolean active;

Boolean reset;

outer input Integer v_previous;

inner output Integer v;

inner Integer count(start =0);

inner Integer count_previous = if reset then 0 else previous(count);

block StateMachineOf_stateA
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extends StateMachineSemantics(

nStates=4,

t={ Transition(from=1, to=2, immediate=false),

Transition(from=2, to=3, immediate=false),

Transition(from=3, to=1, immediate=false),

Transition(from=3, to=4, immediate=false)},

c={v >= 6, v==0, true , count >= 2});

outer input Integer v_previous;

outer output Integer v;

outer input Integer count_previous;

outer output Integer count;

equation

inFinalState = true; // no macro s t a t e s
if activeState == 1 then

// e q u a t i o n s f o r s t a t e A
v = v_previous + 2;

count = count_previous;

elseif activeState == 2 then

// e q u a t i o n s f o r s t a t e B
v = v_previous - 1;

count = count_previous;

elseif activeState == 3 then

// e q u a t i o n s f o r s t a t e C
v = v_previous;

count = count_previous + 1;

else // i f a c t i v e S t a t e == 4 t h e n
// e q u a t i o n s f o r s t a t e D
v = v_previous;

count = count_previous;

end if;

end StateMachineOf_stateA;

StateMachineOf_stateA stateMachineOf_stateA(active=active ,

reset=reset);

block StateMachineOf_stateX

extends StateMachineSemantics(

nStates=2,

t={ Transition(from=1, to=2, immediate=false , reset=false)},

c={i >25});

outer input Integer v;

Integer i(start =0);

Integer i_previous;

Integer j(start =0);

Integer j_previous;

Integer w;

equation

inFinalState = true; // no macro s t a t e s
if activeState == 1 then

// e q u a t i o n s f o r s t a t e X
i_previous = if activeReset or

activeResetStates [1] then 0 else previous(i);

j_previous = previous(j);

i = i_previous + 1;

w = v;

j = j_previous;

else // i f a c t i v e S t a t e == 2 t h e n
// e q u a t i o n s f o r s t a t e Y
i_previous = previous(i);

j_previous = if activeReset or activeResetStates [2] then 0 else

previous(j);

i = i_previous;

w = previous(w);
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j = j_previous + 1;

end if;

end StateMachineOf_stateX;

StateMachineOf_stateX stateMachineOf_stateX(active=active ,

reset=reset);

Boolean inFinalState = stateMachineOf_stateA.stateMachineInFinalState and

stateMachineOf_stateX.stateMachineInFinalState;

end State1;

State1 state1;

Integer v(start =0);

inner Integer v_previous = if reset then 0 else previous(v);

equation

active = true;

reset = previous(init);

if activeState == 1 then

// e q u a t i o n s f o r s t a t e 1
inFinalState = state1.inFinalState;

state1.active = true;

state1.reset = activeReset or activeResetStates [1];

v = state1.v;

else // i f a c t i v e S t a t e == 2 t h e n
// e q u a t i o n s f o r s t a t e 2
inFinalState = true; // not macro s t a t e
state1.active = false;

state1.reset = false;

v = previous(v) + 5;

end if;

end HierarchcialAndParallelStateMachine;

237



Chapter 18

Annotations

Annotations are intended for storing extra information about a model, such as graphics, documentation
or versioning, etc. A Modelica tool is free to define and use other annotations, in addition to those
defined here, according to section 18.1. The only requirement is that any tool shall save files with all
annotations from this chapter and all vendor-specific annotations intact. To ensure this, annotations must
be represented with constructs according to the Modelica grammar (for replaceable class declarations
with a constraining-clause also refer to section 7.3.2.1). The specification in this document defines the
semantic meaning if a tool implements any of these annotations.

18.1 Vendor-Specific Annotations

A vendor may – anywhere inside an annotation – add specific, possibly undocumented, annotations which
are not intended to be interpreted by other tools. Two variants of vendor-specific annotations exist; one
simple and one hierarchical. Double underscore concatenated with a vendor name as initial characters
of the identifier are used to identify vendor-specific annotations.

[Example:

annotation (

Icon(coordinateSystem(extent ={{-100,-100}, {100 ,100}}) ,

graphics ={ __NameOfVendor(Circle(center ={0,0}, radius =10))}) );

This introduces a new graphical primitive Circle using the hierarchical variant of vendor-specific anno-
tations.

annotation (

Icon(coordinateSystem(extent ={{-100,-100}, {100 ,100}}) ,

graphics ={ Rectangle(extent ={{-5,-5},{7,7}}, __NameOfVendor_shadow =2)})

);

This introduces a new attribute __NameOfVendor_shadow for the Rectangle primitive using the simple
variant of vendor-specific annotations.]

18.2 Annotations for Documentation

documentation-annotation:

annotation "(" Documentation "(" "info" "=" STRING ["," "revisions" "="

STRING ] ")" ")"

The “Documentation” annotation can contain the “info” annotation giving a textual description, the
“revisions” annotation giving a list of revisions and other annotations defined by a tool [The “revisions”
documentation may be omitted in printed documentation]. How the tool interprets the information in
“Documentation” is unspecified. Within a string of the “Documentation” annotation, the tags <HTML>
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and </HTML> or <html> and </html> define optionally begin and end of content that is HTML encoded.
For external links see section 13.2.3. Links to Modelica classes may be defined with the HTML link
command using scheme “Modelica”, e.g.,

<a href="Modelica :// MultiBody.Tutorial">MultiBody.Tutorial </a>

Together with scheme “Modelica” the (URI) fragment specifiers #diagram, #info, #text, #icon may
be used to reference different layers. Example:

<a href="Modelica :// MultiBody.Joints.Revolute#info">Revolute </a>

preferred-view-annotation:

annotation "(" preferredView "=" ("info" | "diagram" | "text") ")"

The preferredView annotation defines the default view when selecting the class. info means info layer,
i.e., the documentation of the class, diagram means diagram layer and text means the Modelica text
layer.

documentation-class-annotation:

annotation "(" DocumentationClass "=" true ")"

Only allowed as class annotation on any kind of class and implies that this class and all classes within it
are treated as having the annotation preferredView=”info”. If the annotation preferredView is explicitly
set for a class, it has precedence over a DocumentationClass annotation [A tool may display such classes
in special ways. For example, the description texts of the classes might be displayed instead of the class
names, and if no icon is defined, a special information default icon may be displayed in the package
browser.]

18.3 Annotations for Code Generation

code-annotation:

annotation "(" codeGenerationFlag "=" ( false | true ) ")"

codeGenerationFlag :

"Evaluate" | "HideResult" | "Inline" | "LateInline" | "GenerateEvents"

These annotations can influence the code generation. The details are defined in the next table:

Evaluate The annotation Evaluate can occur in the component declaration,
its type declaration, or a base-class of the type-declaration. In the
case of multiple conflicting annotations it is handled similarly to
modifiers (e.g., an Evaluate-annotation on the component decla-
ration takes precedence). The annotation Evaluate only has effect
for a component declared with the prefix parameter.
If Evaluate = true, the model developer proposes to utilize the
value for the symbolic processing. In that case, it is not possible
to change the parameter value after symbolic pre-processing.
If Evaluate = false, the model developer proposes to not uti-
lize the value of the corresponding parameter for the symbolic
processing.
[Evaluate is for example used for axis of rotation parameters in
the Modelica.Mechanics.MultiBody library in order to improve
the efficiency of the generated code]
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HideResult HideResult = true defines that the model developer proposes
to not show the simulator results of the corresponding component
[e.g., it will not be possible to plot this variable].
HideResult = false defines that the developer proposes to show
the corresponding component [if a variable is declared in a pro-
tected section, a tool might not include it in a simulation result.
By setting HideResult = false, the modeler would like to have the
variable in the simulation result, even if in the protected section].
[HideResult is for example used in the connectors of the
Modelica.StateGraph library to not show variables to the mod-
eler that are of no interest to him and would confuse him]

Inline Has only an effect within a function declaration.
If “Inline = true”, the model developer proposes to inline the
function. This means, that the body of the function is included
at all places where the function is called.
If “Inline = true”, the model developer proposes to not inline
the function.
[The annotation Inline = true is for example used in Model-
ica.Mechanics.MultiBody.Frames and in functions of Modelica
.Media to have no overhead for function calls such as resolving
a vector in a different coordinate system and at the same time the
function can be analytically differentiated, e.g., for index reduction
needed for mechanical systems.]

LateInline Has only an effect within a function declaration.
If “LateInline = true”, the model developer proposes to inline
the function after all symbolic transformations have been per-
formed [especially differentiation and inversion of functions; for
efficiency reasons it is then useful to replace all function calls with
identical input arguments by one function call, before the inlining].
If “LateInline = false”, the model developer proposes to not
inline the function after symbolic transformations have been per-
formed.
“Inline=true, LateInline=false” is identical to “Inline=
true”
“Inline=true, LateInline=true” is identical to “LateInline=
true”
“Inline=false, LateInline=true” is identical to “LateInline
=true”
[This annotation is for example used in Modelica.Media.Water
.IF97 Utilities.T props ph to provide in combination with common
subexpression elimination the automatic caching of function calls.
Furthermore, it is used in order that a tool is able to propagate
specific enthalpy over connectors in the Modelica Fluid library.]

InlineAfterIndexReductionHas only an effect within a function declaration.
If true, the model developer proposes to inline the function after
the function is differentiated for index reduction, and before any
other symbolic transformations are performed. This annotation
cannot be combined with annotations Inline and LateInline.

GenerateEvents Has only an effect within a function declaration
If “GenerateEvents = true”, the model developer proposes that
crossing functions in the function should generate events (one pos-
sibility of doing this is to inline the function and generate events
for the inlined function).
[This annotation is for example used in Modelica.Media.Water
.IF97 Utilities.phase dT to indicate that the output should gener-
ate an event when it changes.]
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smoothOrder-annotation:

annotation "(" smoothOrder "=" UNSIGNED-NUMBER ")" |

annotation "(" smoothOrder "(" normallyConstant "=" NAME

["," normallyConstant "=" NAME] ")"

"=" UNSIGNED-NUMBER ")"

This annotation has only an effect within a function declaration. smoothOrder defines the number of
differentiations of the function, in order that all of the differentiated outputs are continuous provided
all input arguments and their derivatives up to order smoothOrder are continuous [This means that the
function is at least CsmoothOrder. smoothOrder = 1 means that the function can be differentiated at least
once in order that all output arguments are still continuous, provided the input arguments are continuous.
If a tool needs the derivative of a function, e.g. for index reduction or to compute an analytic Jacobian,
the function can be differentiated analytically at least smoothOrder times].

The optional argument normallyConstant of smoothOrder defines that the function argument NAME is
usually constant [A tool might check whether the actual argument to NAME is a parameter expression at the
place where the function is called. If this is the case, the derivative of the function might be constructed
under the assumption that the corresponding argument is constant, to enhance efficiency. Typically, a
tool would generate at most two different derivative functions of a function: One, under the assumption
that all normallyConstant arguments are actually constant. And one, under the assumption that all
input arguments are time varying. Based on the actual arguments of the function call either of the two
derivative functions is used.

This annotation is used by many functions of the Modelica.Fluid library, such as
Modelica.Fluid.Dissipation.PressureLoss.StraightPipe.dp_laminar_DP, since geometric arguments
to these functions are usually constant ]

18.4 Annotations for Simulation Experiments

experiment-annotation:

annotation "(" "experiment" [ "(" [experimentOption

{"," experimentOption }] ")" ] ")"

experimentOption:

StartTime "=" [ "+" | "-" ] UNSIGNED-NUMBER |

StopTime "=" [ "+" | "-"] UNSIGNED-NUMBER |

Interval "=" UNSIGNED-NUMBER |

Tolerance "=" UNSIGNED-NUMBER

The experiment annotation defines the default start time (StartTime) in [s], the default stop time (Stop-
Time) in [s], the suitable time resolution for the result grid (Interval) in [s], and the default relative
integration tolerance (Tolerance) for simulation experiments to be carried out with the model or block
at hand. If StartTime is not specified it is assumed to be 0.0.

18.5 Annotation for single use of class

For state machines it is useful to have single instances of local classes. This can be done using:

annotation(singleInstance=true)

The annotation singleInstance in a class indicates that there should only be one component instance of
the class, and it should be in the same scope as the class is defined. The intent is to remove the class
when the component is removed and to prevent duplication of the component.
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18.6 Annotations for Graphical Objects

A graphical representation of a class consists of two abstraction layers, icon layer and diagram layer
showing graphical objects, component icons, connectors and connection lines. The icon representation
typically visualizes the component by hiding hierarchical details. The hierarchical decomposition is
described in the diagram layer showing icons of subcomponents and connections between these.

Graphical annotations described in this chapter ties into the Modelica grammar as follows.

graphical-annotations :

annotation "(" [ layer-annotations ] ")"

layer-annotations :

( icon\_layer | diagram\_layer ) [ "," layer-annotations ]

Layer descriptions (start of syntactic description):

icon-layer :

"Icon" "(" [ coordsys-specification "," ] graphics ")"

diagram-layer :

"Diagram" "(" [ coordsys-specification "," ] graphics ")"

[Example:

annotation (

Icon(coordinateSystem(extent ={{-100,-100}, {100 ,100}}) ,

graphics ={ Rectangle(extent ={{-100,-100}, {100 ,100}}) ,

Text(extent ={{-100,-100}, {100 ,100}} , textString="Icon")}));

]

The graphics is specified as an ordered sequence of graphical primitives, which are described below. First
base-class contents is drawn according to the order of the extends-clauses, and then graphical primitives
are drawn according to the order such that later objects can cover earlier ones. [Note that the ordered
sequence is syntactically a valid Modelica annotation, although there is no mechanism for defining an
array of heterogeneous objects in Modelica.]

These Icon, Diagram, and Documentation annotations are only allowed directly in classes (e.g. not on
components or connections). The allowed annotations for a short class definition is the union of the
allowed annotations in classes and on extends-clauses.

18.6.1 Common Definitions

The following common definitions are used to define graphical annotations in the later sections.

type DrawingUnit = Real(final unit="mm");

type Point = DrawingUnit [2] "{x, y}";

type Extent = Point [2] "Defines a rectangular area {{x1, y1}, {x2, y2}}";

The interpretation of ”unit” is with respect to printer output in natural size (not zoomed).

All graphical entities have a visible attribute which indicates if the entity should be shown.

partial record GraphicItem

Boolean visible = true;

Point origin = {0, 0};

Real rotation(quantity="angle", unit="deg")=0;

end GraphicItem;
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The origin attribute specifies the origin of the graphical item in the coordinate system of the layer
in which it is defined. The origin is used to define the geometric information of the item and for all
transformations applied to the item. All geometric information is given relative the origin attribute,
which by default is {0, 0}.

The rotation attribute specifies the rotation of the graphical item counter-clockwise around the point
defined by the origin attribute.

18.6.1.1 Coordinate Systems

Each of the layers has its own coordinate system. A coordinate system is defined by the coordinates of
two points, the left (x1) lower (y1) corner and the right (x2) upper (y2) corner, where the coordinates of
the first point shall be less than the coordinates of the second point [a first quadrant coordinate system].

The attribute preserveAspectRatio specifies a constraint on the shape of components of the class. If
preserveAspectRatio is true, changing the extent of components shall preserve the aspect ratio of the
coordinate system of the class.

The attribute initialScale specifies the default component size as initialScale times the size of the
coordinate system of the class. An application may use a different default value of initialScale.

The attribute grid specifies the spacing between grid points which can be used by tools for alignment of
points in the coordinate system [e.g. “snap-to-grid”]. Its use and default value is tool-dependent.

record CoordinateSystem

Extent extent;

Boolean preserveAspectRatio=true;

Real initialScale = 0.1;

DrawingUnit grid [2];

end CoordinateSystem;

[Example: A coordinate system for an icon could for example be defined as:

CoordinateSystem(extent = {{-10, -10}, {10, 10}});

i.e. a coordinate system with width 20 units and height 20 units.]

The coordinate systems for the icon and diagram layers are by default defined as follows; where the array
of GraphicsItem represents an ordered list of graphical primitives.

record Icon "Representation of the icon layer"

CoordinateSystem coordinateSystem(extent = {{-100, -100}, {100, 100}});

GraphicItem [:] graphics;

end Icon;

record Diagram "Representation of the diagram layer"

CoordinateSystem coordinateSystem(extent = {{-100, -100}, {100, 100}});

GraphicItem [:] graphics;

end Diagram;

The coordinate system (including preserveAspectRatio) of a class is defined by the following priority:

1. The coordinate system annotation given in the class (if specified).

2. The coordinate systems of the first base-class where the extent on the extends-clause specifies a
null-region (if any). Note that null-region is the default for base-classes, see section 18.6.3.

3. The default coordinate system CoordinateSystem(extent={{-100, -100}, {100, 100}}).
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18.6.1.2 Graphical Properties

Properties of graphical objects and connection lines are described using the following attribute types.

type Color = Integer [3]( min=0, max =255) "RGB representation";

constant Color Black = zeros (3);

type LinePattern = enumeration(None , Solid , Dash , Dot , DashDot , DashDotDot);

type FillPattern = enumeration(None , Solid , Horizontal , Vertical ,

Cross , Forward , Backward , CrossDiag , HorizontalCylinder , VerticalCylinder ,

Sphere);

type BorderPattern = enumeration(None , Raised , Sunken , Engraved);

type Smooth = enumeration(None , Bezier);

type EllipseClosure = enumeration(None , Chord , Radial);

The LinePattern attribute Solid indicates a normal line, None an invisible line, and the other attributes
various forms of dashed/dotted lines.

The FillPattern attributes Horizontal, Vertical, Cross, Forward, Backward and CrossDiag specify
fill patterns drawn with the line color over the fill color.

The attributes HorizontalCylinder, VerticalCylinder and Sphere specify gradients that represent a
horizontal cylinder, a vertical cylinder and a sphere, respectively. The gradient goes from line color to
fill color.

The border pattern attributes Raised, Sunken and Engraved represent frames which are rendered in a
tool-dependent way – inside the extent of the filled shape.

The smooth attribute specifies that a line can be drawn as straight line segments (None) or using a spline
(Bezier), where the line’s points specify control points of a quadratic Bezier curve.

For lines with only two points, the smooth attribute has no effect.

For lines with three or more points (P1, P2, . . . , Pn), the middle point of each line segment (P12, P23, . . . ,
P(n-1)n) becomes the starting point and ending points of each quadratic Bezier curve. For each quadratic
Bezier curve, the common point of the two line segment becomes the control point. For instance, point
P2 becomes the control point for the Bezier curve starting at P12 and ending at P23. A straight line is
drawn between the starting point of the line and the starting point of the first quadratic Bezier curve,
as well as between the ending point of the line and the ending point of the last quadratic Bezier curve.

In the illustration above, the square points (P1, P2, P3, and P4) represent the points that define the
line, and the circle points (P12, P23, and P34) are the calculated middle points of each line segment.
Points P12, P2, and P23 define the first quadratic Bezier curve, and the points P23, P3, and P34 define
the second quadratic Bezier curve. Finally a straight line is drawn between points P1 and P12 as well as
between P34 and P4.

The values of the EllipseClosure enumeration specify if and how the endpoints of an elliptical arc are
to be joined (see section 18.6.5.4 Ellipse).

type Arrow = enumeration(None , Open , Filled , Half);

type TextStyle = enumeration(Bold , Italic , UnderLine);
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type TextAlignment = enumeration(Left , Center , Right);

Filled shapes have the following attributes for the border and interior.

record FilledShape "Style attributes for filled shapes"

Color lineColor = Black "Color of border line";

Color fillColor = Black "Interior fill color";

LinePattern pattern = LinePattern.Solid "Border line pattern";

FillPattern fillPattern = FillPattern.None "Interior fill pattern";

DrawingUnit lineThickness = 0.25 "Line thickness";

end FilledShape;

The extent/points of the filled shape describe the theoretical zero-thickness filled shape, and the actual
rendered border is then half inside and half outside the extent.

18.6.2 Component Instance

A component instance can be placed within a diagram or icon layer. It has an annotation with a
Placement modifier to describe the placement. Placements are defined in term of coordinate systems
transformations:

record Transformation

Point origin = {0, 0};

Extent extent;

Real rotation(quantity="angle", unit="deg")=0;

end Transformation;

The origin attribute defines the position of the component in the coordinate system of the enclosing class.
The extent defines the position, size and flipping of the component, relative to the origin attribute.
The extent is defined relative to the origin attribute of the component instance. Given an extent {{x1,
y1}, {x2, y2}}, x2<x1 defines horizontal flipping and y2<y1 defines vertical flipping around the center
of the object.

The rotation attribute specifies rotation of the extent around the point defined by the origin attribute.

The graphical operations are applied in the order: scaling, flipping and rotation.

record Placement

Boolean visible = true;

Transformation transformation "Placement in the diagram layer";

Boolean iconVisible "Visible in icon layer; for public connector";

Transformation iconTransformation "Placement in the icon layer; for public

connector";

end Placement;

If no iconTransformation is given the transformation is also used for placement in the icon layer. If
no iconVisible is given for a public connector the visible is also used for visibility in the icon layer.

[A connector can be shown in both an icon layer and a diagram layer of a class. Since the coordinate
systems typically are different, placement information needs to be given using two different coordinate
systems. More flexibility than just using scaling and translation is needed since the abstraction views might
need different visual placement of the connectors. The attribute transformation gives the placement in
the diagram layer and iconTransformation gives the placement in the icon layer. When a connector is
shown in a diagram layer, its diagram layer is shown to facilitate opening up a hierarchical connector to
allow connections to its internal subconnectors.]
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For connectors, the icon layer is used to represent a connector when it is shown in the icon layer of
the enclosing model. The diagram layer of the connector is used to represent it when shown in the
diagram layer of the enclosing model. Protected connectors are only shown in the diagram layer. Public
connectors are shown in both the diagram layer and the icon layer. Non-connector components are only
shown in the diagram layer.

18.6.3 Extends clause

Each extends-clause (and short-class-definition, as stated in section 18.6) may have layer specific anno-
tations which describe the rendering of the base class’ icon and diagram layers in the subclass.

record IconMap

Extent extent = {{0, 0}, {0, 0}};

Boolean primitivesVisible = true;

end IconMap;

record DiagramMap

Extent extent = {{0, 0}, {0, 0}};

Boolean primitivesVisible = true;

end DiagramMap;

All graphical objects are by default inherited from a base class. If the primitivesVisible attribute is
false, components and connections are visible but graphical primitives are not.

• If the extent of the extends-clause defines a null region (the default), the base class contents
is mapped to the same coordinates in the derived class, and the coordinate system (including
preserveAspectRatio) can be inherited as described in section 18.6.1.1.

• If the extent of the extends-clause defines a non-null region, the base class coordinate system
is mapped to the region specified by the attribute extent, if preserveAspectRatio is true for the
base class the mapping shall preserve the aspect ratio. The base class coordinate system (and
preserveAspectRatio) is not inherited.

[Example:

model A

extends B annotation(

IconMap(extent ={{-100,-100}, {100 ,100}} , primitivesVisible=false),

DiagramMap(extent ={{-50,-50}, {0,0}}, primitivesVisible=true)

);

end A;

model B

extends C annotation(DiagramMap(primitivesVisible=false));

...

end B;

In this example the diagram of A contain the graphical primitives from A and B (but not from C since
they were hidden in B) – the ones from B are rescaled, and the icon of A contain the graphical primitives
from A (but neither from B nor from C).

]

18.6.4 Connections

A connection is specified with an annotation containing a Line primitive and optionally a Text-primitive,
as specified below. [Example:

connect(a.x , b.x)

annotation(Line(points ={{-25,30}, {10,30}, {10, -20}, {40 , -20}}));
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]

The optional Text-primitive defines a text that will be written on the connection line. It has the following
definition (it is not equal to the Text-primitive as part of graphics – the differences are marked as bold
lines):

record Text

extends GraphicItem;

extends FilledShape;

Extent extent;

String string;

Real fontSize = 0 "unit pt";

String fontName;

TextStyle textStyle [:];

Color textColor=lineColor;

TextAlignment horizontalAlignment = if index <0 then TextAlignment.Right else

TextAligment.Left;

Integer index;

end Text;

The index is one of the points of Line (numbered 1, 2, 3, . . . where negative numbers count from the
end, thus -1 indicate the last one). The string may use the special symbols “%first” and “%second” to
indicate the connectors in the connect-equation.

The extent and rotation are relative to the origin (default {0,0}) and the origin is relative to the
point on the Line.

The textColor attribute defines the color of the text. The text is drawn with transparent background and
no border around the text (and without outline). The contents inherited from FilledShape is deprecated.
The default value for horizontalAlignment is deprecated. Having a zero size for the extent is deprecated
and is handled as if upper part is moved up an appropriate amount.

[Example:

connect(controlBus.axisControlBus1 , axis1.axisControlBus) annotation (

Text(string="%first", index=-1, extent =[-6,3; -6,7]),

Line(points ={{-80,-10},{-80,-14.5},{-79,-14.5

},{-79,-17},{-65,-17},{-65,-65},

{-25,-65}}));

Draws a connection line and adds the text ”axisControlBus1” ending at {-6, 3}+{-25, -65} and 4 vertical
units of space for the text. Using a height of zero, such as extent=[-6,3; -6,3] is deprecated, but gives
similar result. ]

18.6.5 Graphical primitives

This section describes the graphical primitives that can be used to define the graphical objects in an
annotation.

18.6.5.1 Line

A line is specified as follows:

record Line

extends GraphicItem;

Point points [:];

Color color = Black;

LinePattern pattern = LinePattern.Solid;

DrawingUnit thickness = 0.25;

Arrow arrow [2] = {Arrow.None , Arrow.None} "{start arrow , end arrow}";

DrawingUnit arrowSize =3;

Smooth smooth = Smooth.None "Spline";
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end Line;

Note that the Line primitive is also used to specify the graphical representation of a connection.

For arrows:

• The arrow is drawn with an aspect ratio of 1/3 for each arrow part.

• The arrowSize gives the width of the arrow (including the imagined other half for Half) so that
lineThickness=10 and arrowSize=10 will touch at the outer parts.

• All arrow variants overlap for overlapping lines.

• The lines for the Open and Half variants are drawn with lineThickness.

18.6.5.2 Polygon

A polygon is specified as follows:

record Polygon

extends GraphicItem;

extends FilledShape;

Point points [:];

Smooth smooth = Smooth.None "Spline outline";

end Polygon;

The polygon is automatically closed, if the first and the last points are not identical.

18.6.5.3 Rectangle

A rectangle is specified as follows:

record Rectangle

extends GraphicItem;

extends FilledShape;

BorderPattern borderPattern = BorderPattern.None;

Extent extent;

DrawingUnit radius = 0 "Corner radius";

end Rectangle;

The extent attribute specifies the bounding box of the rectangle. If the radius attribute is specified,
the rectangle is drawn with rounded corners of the given radius.

18.6.5.4 Ellipse

An ellipse is specified as follows:

record Ellipse

extends GraphicItem;

extends FilledShape;

Extent extent;

Real startAngle(quantity="angle", unit="deg")=0;

Real endAngle(quantity="angle", unit="deg")=360;

EllipseClosure closure = if startAngle == 0 and endAngle == 360

then EllipseClosure.Chord

else EllipseClosure.Radial;

end Ellipse;
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The extent attribute specifies the bounding box of the ellipse.

Partial ellipses can be drawn using the startAngle and endAngle attributes. These specify the endpoints
of the arc prior to the stretch and rotate operations. The arc is drawn counter-clockwise from startAngle

to endAngle, where startAngle and endAngle are defined counter-clockwise from 3 o’clock (the positive
x-axis).

The closure attribute specifies whether the endpoints specified by startAngle and endAngle are to
be joined by lines to the centre of the extent (closure=EllipseClosure.Radial), joined by a single
straight line between the end points (closure=EllipseClosure.Chord), or left unconnected (closure
=EllipseClosure.None). In the latter case, the ellipse is treated as an open curve instead of a closed
shape, and the fillPattern and fillColor are not applied (if present, they are ignored).

The default closure is EllipseClosure.Chord when startAngle is 0 and endAngle is 360, or EllipseClosure.Radial
otherwise. [The default for a closed ellipse is not EllipseClosure.None, since that would result in
fillColor and fillPattern being ignored, making it impossible to draw a filled ellipse. EllipseClosure.Chord
is equivalent in this case, since the chord will be of zero length.]

18.6.5.5 Text

A text string is specified as follows:

record Text

extends GraphicItem;

extends FilledShape;

Extent extent;

String textString;

Real fontSize = 0 "unit pt";

String fontName;

TextStyle textStyle [:];

Color textColor=lineColor;

TextAlignment horizontalAlignment = TextAlignment.Center;

end Text;

The textColor attribute defines the color of the text. The text is drawn with transparent background
and no border around the text (and without outline). The contents inherited from FilledShape is
deprecated.

There are a number of common macros that can be used in the text, and they should be replaced when
displaying the text as follows:

• %par and %{par} replaced by the value of the parameter par. The intent is that the text is easily
readable, thus if par is of an enumeration type, replace %par by the item name, not by the full
name.
[Example: if par=”Modelica.Blocks.Types.Enumeration.Periodic”, then %par should be displayed
as ”Periodic”] The form %{par} allows component-references, and can be directly followed by a
letter. Thus %{par}m gives the value of par directly followed by m – and %parm gives the value
of the parameter parm. If the parameter does not exist it is an error.

• %% replaced by %

• %name replaced by the name of the component (i.e. the identifier for it in in the enclosing class).

• %class replaced by the name of the class.

The style attribute fontSize specifies the font size. If the fontSize attribute is 0 the text is scaled to
fit its extent. Otherwise, the size specifies the absolute size. The text is vertically centered in the extent.

If the extent specifies a box with zero width and positive height the height is used as height for the text
(unless fontSize attribute is non-zero – which specifies the absolute size), and the text is not truncated
(the horizontalAlignment is still used in this case). [This is convenient for handling texts where the width
is unknown.]
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If the string fontName is empty, the tool may choose a font. The font names "serif", "sans-serif",
and "monospace" shall be recognized. If possible the correct font should be used - otherwise a reasonable
match, or treat as if font-name was empty.

The style attribute textStyle specifies variations of the font.

18.6.5.6 Bitmap

A bitmap image is specified as follows:

record Bitmap

extends GraphicItem;

Extent extent;

String fileName "Name of bitmap file";

String imageSource "Base64 representation of bitmap";

end Bitmap;

The Bitmap primitive renders a graphical bitmap image. The data of the image can either be stored on
an external file or in the annotation itself. The image is scaled to fit the extent. Given an extent {{x1,
y1}, {x2, y2}}, x2<x1 defines horizontal flipping and y2<y1 defines vertical flipping around the center
of the object.

The graphical operations are applied in the order: scaling, flipping and rotation.

When the attribute fileName is specified, the string refers to an external file containing image data.
The mapping from the string to the file is specified for some URIs in section 13.2.3. The supported file
formats include PNG, BMP and JPEG, other supported file formats are unspecified.

When the attribute imageSource is specified, the string contains the image data – and the image format
is determined based on the contents. The image is represented as a Base64 encoding of the image file
format (see RFC 4648, http://tools.ietf.org/html/rfc4648).

The image is uniformly scaled [to preserve aspect ratio] so it exactly fits within the extent [touching the
extent along one axis]. The center of the image is positioned at the center of the extent.

18.6.6 Variable Graphics and Schematic Animation

Any value (coordinates, color, text, etc.) in graphical annotations can be dependent on class variables
using the DynamicSelect expression. DynamicSelect has the syntax of a function call with two argu-
ments, where the first argument specifies the value of the editing state and the second argument the
value of the non-editing state. The first argument must be a literal expression. The second argument
may contain references to variables to enable a dynamic behavior.

[Example: The level of a tank could be animated by a rectangle expanding in vertical direction and its
color depending on a variable overflow:

annotation (

Icon(graphics ={ Rectangle(

extent=DynamicSelect ({{0 ,0} ,{20 ,20}} ,{{0 ,0} ,{20 , level }}),

fillColor=DynamicSelect ({0,0,255},

if overflow then {255,0 ,0} else {0 ,0 ,255}))}

);

]

18.6.7 User input

It is possible to interactively modify variables during a simulation. The variables may either be pa-
rameters, discrete variables or states. New numeric values can be given, a mouse click can change a
Boolean variable or a mouse movement can change a Real variable. Input fields may be associated with
a GraphicItem or a component as an array named interaction. The interaction array may occur
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as an attribute of a graphic primitive, an attribute of a component annotation or as an attribute of the
layer annotation of a class.

18.6.7.1 Mouse input

A Boolean variable can be changed when the cursor is held over a graphical item or component and the
selection button is pressed if the interaction annotation contains OnMouseDownSetBoolean:

record OnMouseDownSetBoolean

Boolean variable "Name of variable to change when mouse button pressed";

Boolean value "Assigned value";

end OnMouseDownSetBoolean;

[Example: A button can be represented by a rectangle changing color depending on a Boolean variable on
and toggles the variable when the rectangle is clicked on:

annotation (Icon(graphics ={ Rectangle(extent =[0,0; 20,20],

fillColor=if on then {255 ,0,0} else

{0 ,0 ,255})},

interaction ={ OnMouseDownSetBoolean (on, not on)}));

]

In a similar way, a variable can be changed when the mouse button is released :

record OnMouseUpSetBoolean

Boolean variable "Name of variable to change when mouse button released";

Boolean value "Assigned value";

end OnMouseUpSetBoolean;

Note that several interaction objects can be associated with the same graphical item or component.

[Example:

interaction ={ OnMouseDownSetBoolean(on, true), OnMouseUpSetBoolean(on, false)};

]

The OnMouseMoveXSetReal interaction object sets the variable to the position of the cursor in X direction
in the local coordinate system mapped to the interval defined by the minValue and maxValue attributes.

record OnMouseMoveXSetReal

Real xVariable "Name of variable to change when cursor moved in x direction";

Real minValue;

Real maxValue;

end OnMouseMoveXSetReal;

The OnMouseMoveYSetReal interaction object works in a corresponding way as the OnMouseMoveXSetReal
object but in the Y direction.

record OnMouseMoveYSetReal

Real yVariable "Name of variable to change when cursor moved in y direction";

Real minValue;

Real maxValue;

end OnMouseMoveYSetReal;
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18.6.7.2 Edit input

The OnMouseDownEditInteger interaction object presents an input field when the graphical item or
component is clicked on. The field shows the actual value of the variable and allows changing the value.
If a too small or too large value according to the min and max parameter values of the variable is given,
the input is rejected.

record OnMouseDownEditInteger

Integer variable "Name of variable to change";

end OnMouseDownEditInteger;

The OnMouseDownEditReal interaction object presents an input field when the graphical item or com-
ponent is clicked on. The field shows the actual value of the variable and allows changing the value. If a
too small or too large value according to the min and max parameter values of the variable is given, the
input is rejected.

record OnMouseDownEditReal

Real variable "Name of variable to change";

end OnMouseDownEditReal;

The OnMouseDownEditString interaction object presents an input field when the graphical item or
component is clicked on. The field shows the actual value of the variable and allows changing the value.

record OnMouseDownEditString

String variable "Name of variable to change";

end OnMouseDownEditString;

18.7 Annotations for the Graphical User Interface

A class may have the following annotations to define properties of the graphical user interface:

annotation(defaultComponentName = "name")

When creating a component of the given class, the recommended component name is name.

annotation(defaultComponentPrefixes = "prefixes")

When creating a component, it is recommended to generate a declaration of the form

prefixes class -name component -name

The following prefixes may be included in the string prefixes: inner, outer, replaceable, constant, param-
eter, discrete. [In combination with defaultComponentName it can be used to make it easy for users to
create inner components matching the outer declarations; see also example below ]

annotation(missingInnerMessage = "message")

When an outer component of the class does not have a corresponding inner component, the string
message may be used as a diagnostic message, see section 5.4.

[Example:
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model World

...

annotation(defaultComponentName = "world",

defaultComponentPrefixes = "inner replaceable",

missingInnerMessage = "The World object is missing");

end World;

When an instance of model World is dragged in to the diagram layer, the following declaration is gener-
ated:

inner replaceable World world;

]

A simple type or component of a simple type may have:

annotation(absoluteValue=false);

If false, then the variable defines a relative quantity, and if true an absolute quantity. [When converting
between units (in the user-interface for plotting and entering parameters), the offset must be ignored, for a
variable defined with annotation absoluteValue = false. This annotation is used in the Modelica Standard
Library for example in Modelica.SIunits for the type definition TemperatureDifference.]

A model or block definition may contain:

annotation(defaultConnectionStructurallyInconsistent=true)

If true, it is stated that a default connection will result in a structurally inconsistent model or block1. A
”default connection” is constructed by instantiating the respective model or block and for every input
u providing an equation 0=f(u), and for every (potential,flow) pair of the form (v,i), providing an
equation of the form 0=f(v,i).

[It is useful to check all models/blocks of a Modelica package in a simple way. One check is to default con-
nect every model/block and to check whether the resulting class is structurally consistent (= a stronger re-
quirement as “balanced”). It is rarely needed; but is for example used in Modelica.Blocks.Math.InverseBlockConstraints,
in order to prevent a wrong error message. Additionally, when a user defined model is structurally in-
consistent, a tool should try to pinpoint in which class the error is present. This annotation avoids then
to show a wrong error message.]

A class may have the following annotation:

annotation(obsolete = "message");

It indicates that the class ideally should not be used anymore and gives a message indicating the recom-
mended action.

A declaration may have the following annotations:

annotation(unassignedMessage = "message");

When the variable to which this annotation is attached in the declaration cannot be computed due to
the structure of the equations, the string message can be used as a diagnostic message. [When using BLT
partitioning, this means if a variable “a” or one of its aliases “b = a”, “b = -a”, cannot be assigned, the
message is displayed. This annotation is used to provide library specific error messages.]

[Example:

1For the precise definition of ”structurally inconsistent” see the article: Pantelides C.C.: The Consistent Initialization
of Differential-Algebraic Systems, SIAM J. Sci. and Stat. Comput. Volume 9, Issue 2, pp. 213–231 (March 1988)

253

http://epubs.siam.org/doi/abs/10.1137/0909014
http://epubs.siam.org/doi/abs/10.1137/0909014


connector Frame "Frame of a mechanical system"

...

flow Modelica.SIunits.Force f[3]

annotation(unassignedMessage =

"All Forces cannot be uniquely calculated. The reason could be that the

mechanism contains a planar loop or that joints constrain the same motion.

For planar loops , use in one revolute joint per loop the option

PlanarCutJoint=true in the Advanced menu.

");

end Frame;

]

annotation(Dialog(enable = true , tab = "General",

group = "Parameters",

showStartAttribute = false ,

colorSelector = false ,

groupImage="modelica :// MyPackage/Resources/Images/switch.png"

,

connectorSizing = false));

The annotations tab and group define the placement of the component or of variables in a dialog with
optional tab and group specification. If enable = false, the input field may be disabled [and no input
can be given]. If showStartAttribute = true the dialog should allow the user to set the start-value
and the fixed attribute for the variable instead of the value-attribute [this is primarily intended for
non-parameter values and avoids introducing a separate parameter for the start-value of the variable].

If colorSelector=true, it indicates that an rgb-value selector can be presented for a vector of three
elements and generate values 0..255 (the annotation should be useable both for vectors of Integers and
Reals).

The annotation groupImage references an image using an URI (see section 13.2.3), and the image is
intended to be shown together with the parameter-group (only one image per group is supported).
Disabling the input field will not disable the image.

The background of the groupImage and any image used in HTML-documentation is recommended to be
transparent (intended to be a light color) - or white.

The value of the connectorSizing annotation must be a literal false or true value [since if the value
is an expression, the connectorSizing functionality is conditional and this will then lead easily to wrong
models]. If connectorSizing = false, this annotation has no effect. If connectorSizing = true, the
corresponding variable must be declared with the parameter prefix, must be a subtype of a scalar Integer
and must have a literal default value of zero [since this annotation is designed for a parameter that is
used as vector dimension and the dimension of the vector should be zero when the component is dragged
or redeclared; furthermore, when a tool does not support the connectorSizing annotation, dragging will
still result in a correct model ].

If connectorSizing = true, a tool may set the parameter value in a modifier automatically, if used
as dimension size of a vector of connectors. [The connectorSizing annotation is used in cases where
connections to a vector of connectors shall be made and a new connection requires to resize the vector
and to connect to the new index (unary connections). The annotation allows a tool to perform these
two actions in many cases automatically. This is, e.g., very useful for state machines and for certain
components of fluid libraries.]

Annotation “Dialog” is defined as:

record Dialog

parameter String tab = "General";

parameter String group = "Parameters";

parameter Boolean enable = true;

parameter Boolean showStartAttribute = false;
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parameter Boolean colorSelector = false;

parameter Selector loadSelector;

parameter Selector saveSelector;

parameter String groupImage = "";

parameter Boolean connectorSizing = false;

end Dialog;

record Selector

parameter String filter="";

parameter String caption="";

end Selector;

A parameter dialog is a sequence of tabs with a sequence of groups inside them.

A Selector displays a file dialog to select a file. Setting filter only shows files that fulfill the given
pattern defined by “text1 (*.ext1);;text2 (*.ext2)” to show only files with file extension ext1 or ext2 and
displaying a description text “text1” and “text2”, respectively. Parameter caption is the text displayed
in the dialog menu. Parameter loadSelector is used to select an existing file for reading, whereas
parameter saveSelector is used to define a file for writing.

[Example:

model DialogDemo

parameter Boolean b = true "Boolean parameter";

parameter Modelica.SIunits.Length length "Real parameter with unit";

parameter Integer nInports =0

annotation(Dialog(connectorSizing=true));

parameter Real r1 "Real parameter in Group 1"

annotation(Dialog(group="Group 1"));

parameter Real r2 "Disabled Real parameter in Group 1"

annotation(Dialog(group="Group 1",enable = not b));

parameter Real r3 "Real parameter in Tab 1"

annotation(Dialog(tab="Tab 1"));

parameter Real r4 "Real parameter in Tab 1 and Group 2"

annotation(Dialog(tab="Tab 1", group="Group 2"));

StepIn stepIn[nInports ];

...

end DialogDemo;

When clicking on an instance of model DialogDemo, a menu pops up that may have the following layout
(other layouts are also possible, this is vendor specific). Note, parameter nInports is not present in the
menu since it has the “connectorSizing” annotation and therefore it should not be modified by the user
(an alternative is to show parameter nInports in the menu but with disabled input field):

The following part is non-normative text and describes a useful way to handle the connectorSizing anno-
tation in a tool (still a tool may use another strategy and/or may handle other cases than described below).
The recommended rules are clarified at hand of the following example which represents a connector and
a model from the Modelica.StateGraph library:

connector StepIn // Only 1 : 1 c o n n e c t i o n s a r e p o s s i b l e s i n c e i n p u t used
output Boolean occupied;

input Boolean set;
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end StepIn;

model Step

// n I n c a n n o t be s e t i n t h e p a r a m e t e r d i a l o g ( but maybe shown )
parameter Integer nIn=0

annotation(Dialog(connectorSizing=true));

StepIn inPorts[nIn];

...

end Step;

If the parameter is used as dimension size of a vector of connectors, it is automatically updated according
to the following rules:

1. If a new connection line is drawn between one outside and one inside vector of connectors both
dimensioned with (connectorSizing) parameters, a connection between the two vectors is performed
and the (connectorSizing) parameter is propagated from connector to component. Other types of
outside connections do not lead to an automatic update of a (connectorSizing) parameter. Example:
Assume there is a connector inPorts and a component step1:

parameter Integer nIn=0 annotation(Dialog(connectorSizing=true));

StepIn inPorts[nIn];

Step step1(nIn =0);

Drawing a connection line between connectors inPorts and step1.inPorts results in:

parameter Integer nIn=0 annotation(Dialog(connectorSizing=true));

StepIn inPorts[nIn];

Step step1(nIn=nIn); // n I n=0 changed t o n I n=n I n
equation

connect(inPorts , step1.inPorts); // new c o n n e c t e q u a t i o n

2. If a connection line is deleted between one outside and one inside vector of connectors both dimen-
sioned with (connectorSizing) parameters, the connect equation is removed and the (connectorSiz-
ing) parameter of the component is set to zero or the modifier is removed. Example: Assume the
connection line in (3) is removed. This results in:

parameter Integer nIn=0 annotation(Dialog(connectorSizing=true));

StepIn inPorts[nIn];

Step step1; // m o d i f i e r n I n=n I n i s removed

3. If a new connection line is drawn to an inside connector with connectorSizing and case 1 does not
apply then, the parameter is incremented by one and the connection is performed for the new highest
index. Example: Assume that 3 connections are present and a new connection is performed. The
result is:

Step step1(nIn =4); // i n d e x changed from n I n=3 t o n I n=4
equation

connect(.. , step1.inPorts [4]); // new c o n n e c t e q u a t i o n

In some applications, like state machines, the vector index is used as a priority, e.g., to define
which transition is firing if several transitions become active at the same time instant. It is then
not sufficient to only provide a mechanism to always connect to the last index. Instead, some
mechanism to select an index conveniently should be provided.

4. If a connection line is deleted to an inside connector with connectorSizing and case 2 does not
apply then, then the (connectorSizing) parameter is decremented by one and all connections with
index above the deleted connection index are also decremented by one. Example: Assume there are
4 connections:

Step step1(nIn =4);

equation

connect(a1 , step1.inPorts [1]);
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connect(a2 , step1.inPorts [2]);

connect(a3 , step1.inPorts [3]);

connect(a4 , step1.inPorts [4]);

and the connection from a2 to step1. inPorts[2] is deleted. This results in

Step step1(nIn =3);

equation

connect(a1 , step1.inPorts [1]);

connect(a3 , step1.inPorts [2]);

connect(a4 , step1.inPorts [3]);

These rules also apply if the connectors and/or components are defined in superclass. Example: Assume
that step1 is defined in superclass CompositeStep with 3 connections, and a new connection is performed
in a subclass. The result is:

extends CompositeStep(step1(nIn =4)); // new m o d i f i e r n I n=4
equation

connect(.. , step1.inPorts [4]); // new c o n n e c t e q u a t i o n

]

18.8 Annotations for Version Handling

A top-level package or model can specify the version of top-level classes it uses, its own version number,
and if possible how to convert from previous versions. This can be used by a tool to guarantee that
consistent versions are used, and if possible to upgrade usage from an earlier version to a current one.

18.8.1 Version Numbering

Version numbers are of the forms:

• Main release versions: ””” UNSIGNED-INTEGER { ”.” UNSIGNED-INTEGER } ””” [Example: ”2.1”]

• Pre-release versions: ””” UNSIGNED-INTEGER { ”.” UNSIGNED-INTEGER } ” ” {S-CHAR} ””” [Exam-
ple: ”2.1 Beta 1”]

• Un-ordered versions: ””” NON-DIGIT {S-CHAR} ”””
[Example: ”Test 1”]

The main release versions are ordered using the hierarchical numerical names, and follow the correspond-
ing pre-release versions. The pre-release versions of the same main release version are internally ordered
alphabetically.

18.8.2 Version Handling

In a top-level class, the version number and the dependency to earlier versions of this class are defined
using one or more of the following annotations:

• version = CURRENT-VERSION-NUMBER

Defines the version number of the model or package. All classes within this top-level class have
this version number.

• conversion(noneFromVersion = VERSION-NUMBER)

Defines that user models using the VERSION-NUMBER can be upgraded to the CURRENT-VERSION-

NUMBER of the current class without any changes.

• conversion(from(version = Versions, [to=VERSION-NUMBER,] Convert))

where Versions is VERSION-NUMBER | {VERSION-NUMBER,VERSION-NUMBER, ...} and Convert is

script="..." | change={conversionRule(), ..., conversionRule()}

Defines that user models using the VERSION-NUMBER or any of the given VERSION-NUMBER can be up-
graded to the given VERSION-NUMBER (if the to-tag is missing this is the CURRENT-VERSION-NUMBER)
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of the current class by applying the given conversion rules. The script consists of an unordered
sequence of conversionRule(); (and optionally Modelica comments). The conversionRule func-
tions are defined in section 18.8.2.1. [The to-tag is added for clarity and optionally allows a tool to
convert in multiple steps.]

• uses(IDENT (version = VERSION-NUMBER [, versionBuild=INTEGER] [, dateModified=STRING

] ))

Defines that classes within this top-level class uses version VERSION-NUMBER of classes within the
top-level class IDENT.

The annotations uses and conversion may contain several different sub-entries.

[Example:

package Modelica

...

annotation(version="3.1",

conversion(noneFromVersion="3.1 Beta 1",

noneFromVersion="3.1 Beta 2",

from(version ={"2.1", "2.2", "2.2.1"},

script="convertTo3.mos"),

from(version="1.5",

script="convertFromModelica1_5.mos")));

end Modelica;

model A

...

annotation(version="1.0",

uses(Modelica(version="1.5")));

end A;

model B

...

annotation(uses(Modelica(version="3.1 Beta 1")));

end B;

In this example the model A uses an older version of the Modelica library and can be upgraded using the
given script, and model B uses an older version of the Modelica library but no changes are required when
upgrading.

]

18.8.2.1 Conversion rules

There are a number of functions: convertClass, convertClassIf, convertElement, convertModifiers, con-
vertMessage defined as follows. The calls of these functions do not directly convert, instead they define
conversion rules as below. The order between the function calls does not matter, instead the longer paths
(in terms number of hierarchical names) are used first as indicated below, and it is an error if there are
any ambiguities.

These functions can be called with literal strings or array of strings and vectorize according to sec-
tion 12.4.6.

All of these convert-functions only use inheritance among user models, and not in the library that is used
for the conversion – thus conversions of base-classes will require multiple conversion-calls; this ensures
that the conversion is independent of the new library structure. The class-name used as argument to
convertElement and convertModifiers is similarly the old name of the class, i.e. the name before it is
possibly converted by convertClass. [This allows the conversion to be done without access to the old
version of the library (by suitable modifications of the lookup). Another alternative is to use the old
version of the library during the conversion.]
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convertClass(”OldClass”,”NewClass”) Convert class OldClass to NewClass.

Match longer path first, so if converting both A to C and A.B to D then A.F is converted to C.F and
A.B.E to D.E. This is considered before convertMessage for the same OldClass.

convertClassIf(”OldClass”, ”oldElement”, ”whenValue”,”NewClass”) Convert class OldClass
to NewClass if the literal modifier for oldElement has the value whenValue, and also remove the modifier
for oldElement.

These are considered before convertClass and convertMessage for the same OldClass.

convertElement(”OldClass”,”OldName”,”NewName”) In OldClass convert element OldName

to NewName. Both OldName and NewName normally refer to components – but they may also refer to
class-parameters, or hierarchical names. For hierarchical names the longest match is used first.

convertModifiers

convertModifiers("OldClass",

{"OldModifier1=default1", "OldModifier2=default2", ...},

{"NewModifier1=...%OldModifier1 \%"} [, simplify=true] )

Normal case; if any modifier among OldModifier exist then replace all of them with the NewModifiers.
The defaults (if present) are used if there are multiple OldModifier and not all are set in the component
instance.

If simplify is specified and true then perform obvious simplifications to clean up the new modifier;
otherwise leave as is. [Note: simplify is primarily intended for converting enumerations and emulated
enumerations that naturally lead to large nested if-expressions. The simplifications may also simplify
parts of the original expression.]

If the modifiers contain literal string values they must be quoted.

Behaviour in unusual cases:

• if NewModifier list is empty then the modifier is just removed

• If OldModifer list is empty it is added for all uses of the class

• If OldModifier i is cardinality(a)=0 the conversion will only be applied for a component comp
if there is no inside connection to comp.a. This can be combined with other modifiers that are
handled in the usual way.

• If OldModifier i is cardinality(a)=1 the conversion will only be applied for a component comp if
there is are any inside connections to comp.a

Converting modifiers with cardinality is used to remove the deprecated operator cardinality from model
libraries, and replace tests on cardinality in models by parameters explicitly enabling the different cases.
[I.e. instead of model A internally testing if its connector B is connected, there will be a parameter
for enabling connector B, and the conversion ensures that each component of model A will have this
parameter set accordingly.] The case where the old class is used as a base-class, and there are any
outside connections to a, and there is convertModifiers involving the cardinality of a is not handled. [In
case a parameter is simply renamed it is preferable to use convertElement, since that also handles e.g.
binding equations using the parameter.]

convertMessage(”OldClass”, ”Failed Message”); For any use of OldClass (or element of OldClass
) report that conversion could not be applied with the given message. [This may be useful if there is
no possibility to convert a specific class. An alternative is to construct ObsoleteLibraryA for problematic
cases, which may be more work but allows users to directly run the models after the conversion and later
convert them.]
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18.8.3 Mapping of Versions to File System

A top-level class, IDENT, with version VERSION-NUMBER can be stored in one of the following ways in a
directory given in the MODELICAPATH:

• The file IDENT ".mo" [Example: Modelica.mo]

• The file IDENT "" VERSION-NUMBER ".mo" [Example: Modelica 2.1.mo]

• The directory IDENT [Example: Modelica] with the file package.mo directly inside it

• The directory IDENT "" VERSION-NUMBER [Example: Modelica 2.1] with the file package.mo di-
rectly inside it

This allows a tool to access multiple versions of the same package.

18.8.4 Version Date and Build Information

Besides version information, a top level class can have additionally the following top-level annotations
to specify associated information to the version number:

String versionDate "UTC date of first version build (in format: YYYY -MM-DD)";

Integer versionBuild "Larger number is a more recent maintenance update";

String dateModified "UTC date and time of the latest change to the package in

the

following format (with one space between date and time):

YYYY -MM-DD hh:mm:ssZ";

String revisionId "Revision identifier of the version management system used

to manage this library. It marks the latest submitted

change to

any file belonging to the package";

[Example:

package Modelica

...

annotation(version = "3.0.1",

versionDate = "2008 -04 -10",

versionBuild = 4,

dateModified = "2009 -02 -15 16:33:14Z",

revisionId = "$Id:: package.mo 2566 2009 -05 -26 13:25:54Z #$");

end Modelica;

model M1

annotation(uses(Modelica(version = "3.0.1"))); // Common c a s e
end M1

model M2

annotation(uses(Modelica(version = "3.0.1", versionBuild = 4)));

end M2

]

The meaning of these annotation is:

• “version” is the version number of the released library, see section 18.8.2.

• “versionDate” is the date in UTC format (according to ISO 8601) when the library was released.
This string is updated by the library author to correspond with the version number.

• “versionBuild” is the optional build number of the library. When a new version is released
“versionBuild” should be omitted or “versionBuild = 1”. There might be bug fixes to the library
that do not justify a new library version. Such maintenance changes are called a “build” release
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of the library. For every new maintenance change, the “versionBuild” number is increased. A
“versionBuild” number A that is higher as “versionBuild” number B, is a newer release of the
library. There are no conversions between the same versions with different build numbers.
Two releases of a library with the same “version” but different “versionBuild” are in general
assumed to be compatible. In special cases, the uses clause of a model may specify “versionBuild”
and/or “dateModified” [in such a case the tool is expected to give a warning if there is a mismatch
between library and model ].

• “dateModified” is the UTC date and time (according to ISO 8601) of the last modification of the
package. [The intention is that a Modelica tool updates this annotation whenever the package or
part of it was modified and is saved on persistent storage (like file or database system).]

• “revisionId” is a tool specific revision identifier possibly generated by a source code management
system (e.g. Subversion or CVS). This information allows to exactly identify the library source
code in the source code management system.

The versionBuild and dateModified annotations can also be specified in the “uses” annotation (together
with the version number). [The recommendation is that they are not stored in the uses annotation
automatically by a tool.]

18.9 Annotations for Access Control to Protect Intellectual Prop-
erty

This section presents annotations to define the protection and the licensing of packages. The goal is to
unify basic mechanisms to control the access to a package in order to protect the intellectual property
contained in it. This information is used to encrypt a package and bind it optionally to a particular
target machine, and/or restrict the usage for a particular period of time.

[Protecting the intellectual property of a Modelica package is considerably more difficult than protecting
code from a programming language. The reason is that a Modelica tool needs the model equations in order
that it can process the equations symbolically, as needed for acausal modeling. Furthermore, if a Modelica
tool generates C-code of the processed equations, this code is then potentially available for inspection by
the user. Finally, the Modelica tool vendors have to be trusted, that they do not have a backdoor in
their tools to store the (internally) decrypted classes in human readable format. The only way to protect
against such misuse is legally binding warranties of the tool vendors.

The intent of this section is to enable a library vendor to maintain one source version of their Modelica
library that can be encrypted and used with several different Modelica tools, using different encryption
formats.]

Definitions:

Term Description
Protection Define what parts of a class are visible.
Obfuscation Changing a Modelica class or generated code so that it is difficult to inspect by

a user [(e.g. by automatically renaming variables to non-meaningful names).]
Encryption Encoding of a model or a package in a form so that the modeler cannot inspect

any content of a class without an appropriate key. An encrypted package that
has the Protection annotation is read-only; the way to modify it is to generate
a new encrypted version.

Licensing Restrict the use of an encrypted package for particular users for a specified
period of time.

In this section annotations are defined for “Protection” and “Licensing”. Obfuscation and encryption
are not standardized. “Protection” and “Licensing” are both defined inside the “Protection” annotation:

annotation(Protection(...));
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18.9.1 Protection of Classes

A class may have the following annotations to define what parts of a class are visible (if a class
is encrypted and no Protection annotation is defined, the access annotation has the default value
Access.documentation):

type Access = enumeration(hide , icon , documentation ,

diagram , nonPackageText , nonPackageDuplicate ,

packageText , packageDuplicate);

annotation(Protection(access = Access.documentation));

The items of the Access enumeration have the following meaning:

1. Access.hide

Do not show the class anywhere (it is not possible to inspect any part of the class).

2. Access.icon

The class can be instantiated and public parameter, constant, input, output variables as well
as public connectors can be accessed, as well as the icon annotation, as defined in section 18.6
(the declared information of these elements can be shown). Additionally, the class name and its
description text can be accessed.

3. Access.documentation

Same as Access.icon and additionally the documentation annotation (as defined in section 18.2)
can be accessed. HTML-generation in the documentation annotation is normally performed before
encryption, but the generated HTML is intended to be used with the encrypted package. Thus the
HTML-generation should use the same access as the encrypted version– even before encryption.

4. Access.diagram

Same as Access.documentation and additionally, the diagram annotation, and all components
and connect equations that have a graphical annotation can be accessed.

5. Access.nonPackageText

Same as Access.diagram and additionally if it is not a package: the whole class definition can be
accessed (but cannot be copied).

6. Access.nonPackageDuplicate

Same as Access.nonPackageText and additionally if it is not a package: the class, or part of the
class, can be copied and pasted.

7. Access.packageText

Same as Access.diagram (note: not including all rights of Access.nonPackageDuplicate) and
additionally the whole class definition can be accessed (but cannot be copied).

8. Access.packageDuplicate

Same as Access.packageText and additionally the class, or part of the class, can be copied and
pasted.

The “access” annotation holds for the respective class and all classes that are hierarchically on a lower
level, unless overriden by a Protection annotation with “access” [e.g. if the annotation is given on the
top level of a package and at no other class in this package, then the annotation holds for all classes
in this package]. Overriding “access=Access.hide” and “access=Access.packageDuplicate” has no
meaningful effect.

[It is currently not standardized which result variables are accessible for plotting. It seems natural to not
introduce new flags for this, but reuse the Access.XXX definition, e.g., for Access.icon only the variables
can be stored in a result file that can also be inspected in the class, and for Access.nonPackageText all
public and protected variables can be stored in a result file, because all variables can be inspected in the
class.

package CommercialFluid // A c c e s s i c o n , documentat ion , d iagram
package Examples // A c c e s s i c o n , documentat ion , d iagram
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model PipeExample // A c c e s s e v e r y t h i n g , can be c o p i e d
end PipeExample;

package Circuits // A c c e s s i c o n , documentat ion , d iagram
model ClosedCircuit // A c c e s s e v e r y t h i n g , can be c o p i e d
end ClosedCircuit;

end Circuits;

model SecretExample // No a c c e s s
annotation(Protection(access=Access.hide));

end SecretExample;

annotation(Protection(access=Access.nonPackageDuplicate));

end Examples;

package Pipe // A c c e s s i c o n
model StraightPipe // A c c e s s i c o n
end StraightPipe;

annotation(Protection(access=Access.icon));

end Pipe;

package Vessels // A c c e s s i c o n , documentat ion , d iagram
model Tank // A c c e s s i c o n , documentat ion , d iagram , t e x t
end Tank;

end Vessels;

annotation(Protection(access=Access.nonPackageText));

end CommercialFluid;

]

18.9.2 Licensing

In this section annotations within the “Protection” annotation are defined to restrict the usage of the
encrypted package:

record Protection

...

String features [:]= fill("", 0) "Required license features";

record License

String libraryKey;

String licenseFile="" "Optional , default mapping if empty";

end License;

end Protection;

The License annotation has only an effect on the top of an encrypted class and is then valid for the whole
class hierarchy. [Usually the licensed class is a package]. The libraryKey is a secret string from the
library vendor and is the protection mechanism so that a user cannot generate his/her own authorization
file since the libraryKey is unknown to him/her.

The features annotation defines the required license options. If the features vector has more than one
element, then at least a license feature according to one of the elements must be present. As with the
other annotations, the “features” annotation holds for the respective class and for all classes that are
hierarchically on a lower level, unless further restricted by a corresponding annotation. If no license
according to the “features” annotation is provided in the authorization file, the corresponding classes
are not visible and cannot be used, not even internally in the package.

[Examples:

// R e q u i r e s l i c e n s e f e a t u r e ” L i c e n s e O p t i o n ”
annotation(Protection(features ={"LicenseOption"}));

// R e q u i r e s l i c e n s e f e a t u r e s ” L i c e n s e O p t i o n 1 ” o r ” L i c e n s e O p t i o n 2 ”
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annotation(Protection(features ={"LicenseOption1", "LicenseOption2"}));

// R e q u i r e s l i c e n s e f e a t u r e s (” L i c e n s e O p t i o n 1 ” and ” L i c e n s e O p t i o n 2 ”) o r ”
L i c e n s e O p t i o n 3 ”

annotation(Protection(features ={"LicenseOption1 LicenseOption2", "

LicenseOption3"}));

]

In order that the protected class can be used either a tool specific license manager, or a license file
(called “licenseFile”) must be present. The license file is standardized. It is a Modelica package
without classes that has a Protection annotation of the following form which specifies a sequence of
target records, which makes it natural to define start/end dates for different sets of targets individually:

record Authorization

String licensor="" "Optional string to show information about the licensor";

String libraryKey "Matching the key in the class. Must be encrypted and not

visible";

License license [:] "Definition of the license options and of the access

rights";

end Authorization;

record License

String licensee ="" "Optional string to show information about the licensee";

String id[:] "Unique machine identifications , e.g. MAC addresses";

String features [:] =fill("", 0) "Activated library license features";

String startDate ="" "Optional start date in UTCformat YYYY -MM-DD";

String expirationDate="" "Optional expiration date in UTCformat YYYY -MM-DD";

String operations [:]= fill("" ,0) "Library usage conditions";

end License;

The format of the strings used for libraryKey and id are not specified (they are vendor specific). The
libraryKey is a secret of the library developer. The operations define the usage conditions and the
following are default names:

• ”ExportBinary” Binary code generated from the Modelica code of the library can be can be included
in binaries produced by a simulation tool.

• ”ExportSource” Source code generated from the Modelica code of the library can be included in
sources produced by a simulation tool.

Additional tool-specific names can also be used. To protect the “libraryKey” and the target definitions,
the authorization file must be encrypted and must never show the libraryKey. [All other information,
especially licensor and license should be visible, in order that the user can get information about the
license. It is useful to include the name of the tool in the authorization file name with which it was
encrypted. Note, it is not useful to store this information in the annotation, because only the tool that
encrypted the Authorization package can also decrypt it.]

[Example (before encryption):

// F i l e M y L i b r a r y \ package.mo
package MyLibrary

annotation(Protection(License(libraryKey="15783 -A39323 -498222 -444 ckk4ll",

licenseFile="MyLibraryAuthorization_Tool.mo_lic), ...));

end MyLibrary;

// File MyLibrary\MyLibraryAuthorization_Tool.mo\

// (authorization file before encryption)

package MyLibraryAuthorization_Tool

annotation(Authorization(

libraryKey="15783 -A39323 -498222 -444 ckk4ll",

264



licensor ="Organization A\nRoad , Country",

license ={

License(licensee="Organization B, Mr.X",

id ={"lic :1269"}), // tool license number

License(licensee="Organization C, Mr. Y",

id ={"lic :511"}, expirationDate="2010 -06 -30",

operations ={"ExportBinary"}),

License(licensee="Organization D, Mr. Z",

id ={"mac :0019 d2c9bfe7"}) // MAC address

}));

end MyLibraryAuthorization_Tool;

]

18.10 Annotations for Functions

18.10.1 Function Derivative Annotations

See section 12.7.1

18.10.2 Inverse Function Annotation

See section 12.8.

18.10.3 External Function Annotations

See section 12.9.4.

18.11 Annotation Choices for Modifications and Redeclarations

See section 7.3.4.

18.12 Annotation for External Libraries and Include Files

See section 12.9.4.
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Chapter 19

Unit Expressions

Unless otherwise stated, the syntax and semantics of unit expressions in Modelica conform with the
international standards ”International System of Units (SI)” by BIPM superseding parts of ISO 31/0-
1992 ”General principles concerning quantities, units and symbols” and ISO 1000-1992 ”SI units and
recommendations for the use of their multiples and of certain other units”. Unfortunately, these standards
do not define a formal syntax for unit expressions. There are recommendations and Modelica exploits
them.

Note that this document uses the American spelling meter, whereas the SI specification from BIPM uses
the British spelling metre.

Examples for the syntax of unit expressions used in Modelica: "N.m", "kg.m/s2", "kg.m.s-2" "1/rad",
"mm/s".

19.1 The Syntax of Unit Expressions

unit_expression:

unit_numerator [ "/" unit_denominator ]

unit_numerator:

"1" | unit_factors | "(" unit_expression ")"

unit_denominator:

unit_factor | "(" unit_expression ")"

The unit of measure of a dimension free quantity is denoted by "1". The SI standard does not define
any precedence between multiplications and divisions. The SI standard does not allow multiple units to
the right of the division-symbol (/) since the result is ambigous; either the divisor shall be enclosed in
parentheses, or negative exponents used instead of division, for example, "J/(kg.K)" may be written as
"J.kg-1.K-1".

unit_factors:

unit_factor [ unit_mulop unit_factors ]

unit_mulop:

"."

The SI standard specifies that a multiplication operator symbol is written as space or as a dot. The SI
standard requires that this ”dot” is a bit above the base line: ”·”, which is not part of ASCII. The ISO
standard also prefers ”·”, but Modelica supports the ISO alternative ”.”, which is an ordinary ”dot” on
the base line.

For example, Modelica does not support "Nm" for newton-meter, but requires it to written as "N.m".
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unit_factor:

unit_operand [ unit_exponent ]

unit_exponent:

[ "+" | "-" ] integer

The SI standard uses super-script for the exponentation, and does thus not define any operator symbol for
exponentiation. A unit_factor consists of a unit_operand possibly suffixed by a possibly signed integer
number, which is interpreted as an exponent. There must be no spacing between the unit_operand and
a possible unit_exponent.

unit_operand:

unit_symbol | unit_prefix unit_symbol

unit_prefix:

Y | Z | E | P | T | G | M | k | h | da | d | c | m | u | n | p | f | a | z

| y

A unit_symbol is a string of letters. A basic support of units in Modelica should know the basic and
derived units of the SI system. It is possible to support user defined unit symbols. In the base version
Greek letters is not supported, but full names must then be written, for example "Ohm".

A unit_operand should first be interpreted as a unit_symbol and only if not successful the second
alternative assuming a prefixed operand should be exploited. There must be no spacing between the
unit_symbol and a possible unit_prefix. The values of the prefixes are according to the ISO standard.
The letter u is used as a symbol for the prefix micro.

[A tool may present Ohm as Ω and the prefix u as µ, and similarly m2 as m2.]

19.2 Examples

The unit expression "m" means meter and not milli (10-3), since prefixes cannot be used in isolation. For
millimeter use "mm" and for square meter, m2, write "m2".

The expression "mm2" means (10-3m)2 = 10-6m2. Note that exponentiation includes the prefix.

The unit expression "T" means tesla, but note that the letter T is also the symbol for the prefix tera
which has a multiplier value of 1012.
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Chapter 20

The Modelica Standard Library

In order that a modeler can quickly build up system models, it is important that libraries of the most com-
monly used components are available, ready to use, and sharable between applications. For this reason,
the Modelica Association develops and maintains a growing Modelica Standard Library called package

Modelica. For an overview of the current version see http://doc.modelica.org/help/Modelica_

UsersGuide.html or http://doc.modelica.org/om/Modelica.UsersGuide.html. This is a free library
that can be used without essential restrictions, e.g., in commercial Modelica simulation environments.
The Modelica Standard Library is tool-neutral, and relies on a small library, ModelicaServices, that each
conformant tool must implement to handle tool-specific couplings e.g. for animation. Furthermore, other
people and organizations are developing free and commercial Modelica libraries. For information about
these libraries and for downloading the free libraries see https://www.modelica.org/libraries/.
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Appendix A

Glossary

algorithm section: part of a class definition consisting of the keyword algorithm followed by a se-
quence of statements. Like an equation, an algorithm section relates variables, i.e. constrains the values
that these variables can take simultaneously. In contrast to an equation section, an algorithm section
distinguishes inputs from outputs: An algorithm section specifies how to compute output variables as
a function of given input variables. A Modelica processor may actually invert an algorithm section,
i.e. compute inputs from given outputs, e.g. by search (generate and test), or by deriving an inverse
algorithm symbolically. (See chapter 11.)

array or array variable: a component whose components are array elements. For an array, the ordering
of its components matters: The kth element in the sequence of components of an array x is the array
element with index k, denoted x[k]. All elements of an array have the same type. An array element
may again be an array, i.e. arrays can be nested. An array element is hence referenced using n indices
in general, where n is the number of dimensions of the array. Special cases are matrix (n=2) and vector
(n=1). Integer indices start with 1, not zero. (See chapter 10.)

array constructor: an array can be built using the array-function – with the shorthand {a, b, . . . },
and can also include an iterator to build an array of expressions. (See section 10.4.)

array element: a component contained in an array. An array element has no identifier. Instead they
are referenced by array access expressions called indices that use enumeration values or positive integer
index values. (See chapter 10.)

assignment: a statement of the form x := expr. The expression expr must not have higher variability
than x. (See section 11.2.1.)

attribute: a component contained in a scalar component, such as min, max, and unit. All attributes are
predefined and attribute values can only be defined using a modification, such as in Real x(unit="kg").
Attributes cannot be accessed using dot notation, and are not constrained by equations and algorithm
sections. E.g. in Real x(unit="kg")= y; only the values of x and y are declared to be equal, but not
their unit attributes, nor any other attribute of x and y. (See section 4.8.)

base class: class A is called a base class of B, if class B extends class A. This relation is specified by an
extends clause in B or in one of B’s base classes. A class inherits all elements from its base classes, and
may modify all non-final elements inherited from base classes. (See section 7.1.)

binding equation: Either a declaration equation or an element modification for the value of the variable.
A component with a binding equation has its value bound to some expression. (See section 8.1.)

class: a description that generates an object called instance. The description consists of a class definition,
a modification environment that modifies the class definition, an optional list of dimension expressions
if the class is an array class, and a lexically enclosing class for all classes. (See section 4.5.)

class type or inheritance interface: property of a class, consisting of a number of attributes and a
set of public or protected elements consisting of element name, element type, and element attributes.
(See section 6.2.2.)
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component or variable: an instance (object) generated by a component declaration. Special kinds of
components are scalar, array, and attribute. (See section 4.4.)

component declaration: an element of a class definition that generates a component. A component
declaration specifies (1) a component name, i.e., an identifier, (2) the class to be flattened in order to
generate the component, and (3) an optional Boolean parameter expression. Generation of the component
is suppressed if this parameter expression evaluates to false. A component declaration may be overridden
by an element-redeclaration. (See section 4.4.)

component reference: An expression containing a sequence of identifiers and indices. A component
reference is equivalent to the referenced object, which must be a component. A component reference is
resolved (evaluated) in the scope of a class (or expression for the case of a local iterator variable). A
scope defines a set of visible components and classes. Example reference: Ele.Resistor.u[21].r (See
section 4.4 and section 10.6.9.)

declaration assignment: assignment of the form x := expression defined by a component decla-
ration. This is similar to a declaration equation. In contrast to a declaration equation, a declaration
assignment is allowed only when declaring a component contained in a function. (See section 12.4.4.)

declaration equation: Equation of the form x = expression defined by a component declaration.
The expression must not have higher variability than the declared component x. Unlike other equa-
tions, a declaration equation can be overridden (replaced or removed) by an element modification. (See
section 4.4.2.1.)

derived class or subclass or extended class: class B is called derived from A, if B extends A. (See
chapter 7.)

element: part of a class definition, one of: class definition, component declaration, or extends clause.
Component declarations and class definitions are called named elements. An element is either inherited
from a base class or local.

element modification: part of a modification, overrides the declaration equation in the class used by
the instance generated by the modified element. Example: vcc(unit="V")=1000. (See section 7.2.)

element-redeclaration: part of a modification, replaces one of the named elements possibly used to
build the instance geneated by the element that contains the redeclaration. Example: redeclare type

Voltage = Real(unit="V") replaces type Voltage. (See section 7.3.)

encapsulated: a class that does not depend on where it is placed in the package-hierarchy, since its
lookup is stopped at the encapsulated boundary. (See section 5.3.1).

equation: part of a class definition. A scalar equation relates scalar variables, i.e. constrains the values
that these variables can take simultaneously. When n-1 variables of an equation containing n variables
are known, the value of the nth variable can be inferred (solved for). In contrast to a statement in an
algorithm section, an equation does not define for which of its variable it is to be solved. Special cases
are: initial equations, instantaneous equations, declaration equations. (See chapter 8.)

event: something that occurs instantaneously at a specific time or when a specific condition occurs.
Events are for example defined by the condition occurring in a when clause, if clause, or if expression.
(See section 8.5.)

expression: a term built from operators, function references, components, or component references
(referring to components) and literals. Each expression has a type and a variability. (See chapter 3.)

extends clause: an unnamed element of a class definition that uses a name and an optional modification
to specify a base class of the class defined using the class definition. (See chapter 7.)

flattening: the computation that creates a flattened class of a given class, where all inheritance, modi-
fication, etc. has been performed and all names resolved, consisting of a flat set of equations, algorithm
sections, component declarations, and functions. (See section 5.6.)

function: a class of the specialized class function. (See chapter 12.)

function subtype or function compatible interface: A is a function subtype of B iff A is a subtype
of B and the additional arguments of function A that are not in function B are defined in such a way

270



(e.g. additional arguments need to have default values), that A can be called at places where B is called.
(See section 6.5.)

identifier or ident: an atomic (not composed) name. Example: Resistor (See section 2.3.)

index or subscript: An expression, typically of Integer type or the colon symbol (:), used to reference
a component (or a range of components) of an array. (See section 10.5.)

inheritance interface or class type: property of a class, consisting of a number of attributes and a
set of public or protected elements consisting of element name, element type, and element attributes.
(See section 6.2.2.)

instance: the object generated by a class. An instance contains zero or more components (i.e. instances),
equations, algorithms, and local classes. An instance has a type. Basically, two instances have same
type, if their important attributes are the same and their public components and classes have pair wise
equal identifiers and types. More specific type equivalence definitions are given e.g. for functions.

instantaneous: An equation or statement is instantaneous if it holds only at events, i.e., at single
points in time. The equations and statements of a when-clause are instantaneous. (See section 8.3.5 and
section 11.2.7.)

interface: see type. (See section 6.2.)

literal: a real, integer, boolean, enumeration, or string literal. Used to build expressions. (See sec-
tion 2.4.)

matrix: an array where the number of dimensions is 2. (See chapter 10.)

modification: part of an element. Modifies the instance generated by that element. A modification
contains element modifications and element redeclarations. (See section 7.2.)

modification environment: the modification environment of a class defines how to modify the corre-
sponding class definition when flattening the class. (See section 7.2.2.)

name: Sequence of one or more identifiers. Used to reference a class. A class name is resolved in
the scope of a class, which defines a set of visible classes. Example name: ”Ele.Resistor”. (See
section 2.3.2.)

operator record: A record with user-defined operations; defining e.g. multiplication and addition see
chapter 14.

partial: a class that is incomplete and cannot be instantiated in a simulation model; useful e.g. as a
base-class. (See section 4.4.2.)

partial flattening: first find the names of declared local classes and components. Modifiers, if present,
are merged to the local elements and redeclarations are performed. Then base-classes are looked up,
flattened and inserted into the class. See also flattening, which additionally flattens local elements and
performs modifications. (See section 5.6.)

plug-compatibility: see restricted subtyping and section 6.4.

predefined type: one of the types Real, Boolean, Integer, String and types defined as enumeration
types. The component declarations of the predefined types define attributes such as min, max, and unit.
(See section 4.8.)

prefix: property of an element of a class definition which can be present or not be present, e.g. final,
public, flow. (See section 4.4.2.2.)

primitive type: one of the built-in types RealType, BooleanType, IntegerType, StringType, EnumType
. The primitive types are used to define attributes and value of predefined types and enumeration types.
(See section 4.8.)

redeclare: the modifier that changes a replaceable element. (See section 7.3)

replaceable: an element that can be replaced by a different element having a compatible interface. (See
section 7.3)

restricted subtyping or plug-compatibility: a type A is a restricted subtype of type B iff A is a
subtype of B, and all public components present in A but not in B must be default-connectable. This is
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used to avoid introducing, via a redeclaration, an un-connected connector in the object/class of type A
at a level where a connection is not possible. (See section 6.4.)

scalar or scalar variable: a variable that is not an array.

simple type: Real, Boolean, Integer, String and enumeration types

specialized class: one of: model, connector, package, record, block, function, type. The class restriction
of a class represents an assertion regarding the content of the class and restricts its use in other classes.
For example, a class having the package class restriction must only contain classes and constants. (See
section 4.6.)

subtype or interface compatible: relation between types. A is a subtype of (interface compatible
with) B iff a number of properties of A and B are the same and all important elements of B have
corresponding elements in A with the same names and their types being subtypes of the corresponding
element types in B. See also restricted subtyping and function restricted subtyping. (See section 6.3.)

supertype: relation between types. The inverse of subtype. A is a subtype of B means that B is a
supertype of A. (See section 6.3.)

transitively nonreplaceable: a class reference is considered transitively non-replaceable if there are no
replaceable elements in the referenced class, or any of its base classes or constraining types transitively
at any level. (See section 6.2.1.)

type or interface: property of an instance, expression, consisting of a number of attributes and a set of
public elements consisting of element name, element type, and element attributes. Note: The concept of
class type is a property of a class definition. (See section 6.2.)

variability: property of an expression: one of

• continuous: an expression that may change its value at any point in time.

• discrete: may change its value only at events during simulation.

• parameter: constant during the entire simulation, recommended to change for a component.

• constant: constant during the entire simulation (can be used in a package) .

Assignments x := expr and binding equations x = expr must satisfy a variability constraint: The expres-
sion must not have a higher variability than component x. (See section 3.8.)

variable: synonym for component. (See section 4.4.)

vector: an array where the number of dimensions is 1. (See chapter 10.)
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Appendix B

Modelica Concrete Syntax

B.1 Lexical conventions

The following syntactic meta symbols are used (extended BNF):

[ ] optional

{ } repeat zero or more times

| or

"text" The text is treated as a single token (no whitespace between any

characters)

The following lexical units are defined (the ones in boldface are the ones used in the grammar, the rest
are just internal to the definition of other lexical units):

IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT

Q-IDENT = "’" ( Q-CHAR | S-ESCAPE ) { Q-CHAR | S-ESCAPE | """ } "’"

NONDIGIT = "_" | letters "a" to "z" | letters "A" to "Z"

STRING = """ { S-CHAR | S-ESCAPE } """

S-CHAR = see below

Q-CHAR = NONDIGIT | DIGIT | "!" | "#" | "$" | "%" | "&" | "(" | ")" | "*" |

"+" | "," |

"-" | "." | "/" | ":" | ";" | "<" | ">" | "=" | "?" | "@" | "[" | "]"

| "^" |

"{" | "}" | "|" | "~" | " "

S-ESCAPE = "\’" | "\"" | "\?" | "\\" |

"\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v"

DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

UNSIGNED-INTEGER = DIGIT { DIGIT }

UNSIGNED-NUMBER = UNSIGNED-INTEGER [ "." [ UNSIGNED-INTEGER ] ]

[ ( "e" | "E" ) [ "+" | "-" ] UNSIGNED-INTEGER ]

S-CHAR is any member of the Unicode character set (http://www.unicode.org; see section 13.2.2 for
storing as UTF-8 on files) except double-quote ”””, and backslash ”\”

For identifiers the redundant escapes (’\?’ and ’\"’) are the same as the corresponding non-escaped
variants (’?’ and ’"’). [The single quotes are part of an identifier. E.g. ’x’ and x are different IDENTs].

Note:

• Whitespace and comments can be used between separate lexical units and/or symbols, and also
separates them. Whitespace and comments cannot be used inside other lexical units, except for
STRING and Q-IDENT where they are treated as part of the STRING or Q-IDENT lexical unit.

• String constant concatenation "a" "b" becoming "ab" (as in C) is replaced by the "+" operator in
Modelica.
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• Modelica uses the same comment syntax as C++ and Java (i.e., // signals the start of a line
comment and /∗ .... */ is a multi-line comment); comments may contain any Unicode character.
Modelica also has structured comments in the form of annotations and string comments.

• Description strings (= production “string-comment” in the grammar) and strings in annotations
(= STRING with production annotation-comment in the grammar) may contain any member of
the Unicode character set. All other strings have to contain only the sub-set of Unicode characters
identical with the 7-bit US-ASCII character set. [As a consequence, operators like “>” or “<”, and
external functions only operate on ASCII strings and not on Unicode-strings. Within a description
string the tags <HTML> and </HTML> or <html> and </html> define optionally begin and end of
content that is HTML encoded.]

• Boldface denotes keywords of the Modelica language. Keywords are reserved words and may not
be used as identifiers.

• Productions use hyphen as separator both in the grammar and in the text. Previously the grammar
used underscore.

B.2 Grammar

B.2.1 Stored Definition – Within

stored-definition:

[ within [ name ] ";" ]

{ [ final ] class-definition ";" }

B.2.2 Class Definition

class-definition :

[ encapsulated ] class-prefixes

class-specifier

class-prefixes :

[ partial ]

( class | model | [ operator ] record | block | [ expandable ] connector |

type |

package | [ ( pure | impure ) ] [ operator ] function | operator )

class-specifier :

long-class-specifier | short-class-specifier | der-class-specifier

long-class-specifier :

IDENT string-comment composition end IDENT

| extends IDENT [ class-modification ] string-comment composition

end IDENT

short-class-specifier :

IDENT "=" base-prefix type-specifier [ array-subscripts ]

[ class-modification ] comment

| IDENT "=" enumeration "(" ( [enum-list] | ":" ) ")" comment

der-class-specifier :

IDENT "=" der "(" type-specifier "," IDENT { "," IDENT } ")" comment

base-prefix :

[ input | output ]

enum-list : enumeration-literal { "," enumeration-literal}

enumeration-literal : IDENT comment
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composition :

element-list

{ public element-list |

protected element-list |

equation-section |

algorithm-section

}

[ external [ language-specification ]

[ external-function-call ] [ annotation-comment ] ";" ]

[ annotation-comment ";" ]

language-specification :

STRING

external-function-call :

[ component-reference "=" ]

IDENT "(" [ expression-list ] ")"

element-list :

{ element ";" }

element :

import-clause |

extends-clause |

[ redeclare ]

[ final ]

[ inner ] [ outer ]

( ( class-definition | component-clause) |

replaceable ( class-definition | component-clause)

[constraining-clause comment ])

import-clause :

import ( IDENT "=" name | name ["." ( "*" | "{" import-list "}" ) ] )

comment

import-list :

IDENT { "," IDENT }

B.2.3 Extends

extends-clause :

extends type-specifier [ class-modification ] [annotation]

constraining-clause :

constrainedby type-specifier [ class-modification ]

B.2.4 Component Clause

component-clause:

type-prefix type-specifier [ array-subscripts ] component-list

type-prefix :

[ flow | stream ]

[ discrete | parameter | constant ] [ input | output ]

component-list :

component-declaration { "," component-declaration }

component-declaration :

declaration [ condition-attribute ] comment
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condition-attribute:

if expression

declaration :

IDENT [ array-subscripts ] [ modification ]

B.2.5 Modification

modification :

class-modification [ "=" expression ]

| "=" expression

| ":=" expression

class-modification :

"(" [ argument-list ] ")"

argument-list :

argument { "," argument }

argument :

element-modification-or-replaceable

| element-redeclaration

element-modification-or-replaceable:

[ each ] [ final ] ( element-modification | element-replaceable)

element-modification :

name [ modification ] string-comment

element-redeclaration :

redeclare [ each ] [ final ]

( ( short-class-definition | component-clause1) | element-replaceable )

element-replaceable:

replaceable ( short-class-definition | component-clause1)

[constraining-clause]

component-clause1 :

type-prefix type-specifier component-declaration1

component-declaration1 :

declaration comment

short-class-definition :

class-prefixes short-class-specifier

B.2.6 Equations

equation-section :

[ initial ] equation { equation ";" }

algorithm-section :

[ initial ] algorithm { statement ";" }

equation :

( simple-expression "=" expression

| if-equation

| for-equation

| connect-clause

| when-equation
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| component-reference function-call-args )

comment

statement :

( component-reference ( ":=" expression | function-call-args )

| "(" output-expression-list ")" ":=" component-reference

function-call-args

| break

| return

| if-statement

| for-statement

| while-statement

| when-statement )

comment

if-equation :

if expression then

{ equation ";" }

{ elseif expression then

{ equation ";" }

}

[ else

{ equation ";" }

]

end if

if-statement :

if expression then

{ statement ";" }

{ elseif expression then

{ statement ";" }

}

[ else

{ statement ";" }

]

end if

for-equation :

for for-indices loop

{ equation ";" }

end for

for-statement :

for for-indices loop

{ statement ";" }

end for

for-indices :

for-index {"," for-index}

for-index:

IDENT [ in expression ]

while-statement :

while expression loop

{ statement ";" }

end while

when-equation :

when expression then

{ equation ";" }

{ elsewhen expression then

{ equation ";" } }
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end when

when-statement :

when expression then

{ statement ";" }

{ elsewhen expression then

{ statement ";" } }

end when

connect-clause :

connect "(" component-reference "," component-reference ")"

B.2.7 Expressions

expression :

simple-expression

| if expression then expression { elseif expression then expression }

else expression

simple-expression :

logical-expression [ ":" logical-expression [ ":" logical-expression ] ]

logical-expression :

logical-term { or logical-term }

logical-term :

logical-factor { and logical-factor }

logical-factor :

[ not ] relation

relation :

arithmetic-expression [ relational-operator arithmetic-expression ]

relational-operator :

"<" | "<=" | ">" | ">=" | "==" | "<>"

arithmetic-expression :

[ add-operator ] term { add-operator term }

add-operator :

"+" | "-" | ".+" | ".-"

term :

factor { mul-operator factor }

mul-operator :

"*" | "/" | ".*" | "./"

factor :

primary [ ("^" | ".^") primary ]

primary :

UNSIGNED-NUMBER

| STRING

| false

| true

| (component-reference | der | initial | pure ) function-call-args

| component-reference

| "(" output-expression-list ")"

| "[" expression-list { ";" expression-list } "]"

| "{" array-arguments "}"
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| end

type-specifier : ["."] name

name : IDENT { "." IDENT }

component-reference :

[ "." ] IDENT [ array-subscripts ] { "." IDENT [ array-subscripts ] }

function-call-args :

"(" [ function-arguments ] ")"

function-arguments :

expression [ "," function_arguments-non-first | for for_indices ]

| function name "(" [ named_arguments ] ")" [ ","

function-arguments-non-first ]

| named-arguments

function-arguments-non-first :

function-argument [ "," function-arguments-non-first ]

| named-arguments

array-arguments :

expression [ "," array-arguments-non-first | for for-indices ]

array-arguments-non-first :

expression [ "," array-arguments-non-first ]

named-arguments: named-argument [ "," named-arguments ]

named-argument: IDENT "=" function-argument

function-argument :

function name "(" [ named-arguments ] ")" | expression

output-expression-list:

[ expression ] { "," [ expression ] }

expression-list :

expression { "," expression }

array-subscripts :

"[" subscript { "," subscript } "]"

subscript :

":" | expression

comment :

string-comment [ annotation-comment ]

string-comment :

[ STRING { "+" STRING } ]

annotation-comment :

annotation class-modification
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Appendix C

Modelica DAE Representation

In this appendix, the mapping of a Modelica model into an appropriate mathematical description form
is discussed.

In a first step, a Modelica translator transforms a hierarchical Modelica simulation model into a “flat”
set of Modelica “statements”, consisting of the equation and algorithm sections of all used components
by:

• expanding all class definitions (flattening the inheritance tree) and adding the equations and as-
signment statements of the expanded classes for every instance of the model.

• replacing all connect-equations by the corresponding equations of the connection set (see sec-
tion 9.2).

• mapping all algorithm sections to equation sets.

• mapping all when-clauses to equation sets (see section 8.3.5).

As a result of this transformation process, a set of equations is obtained consisting of differential, algebraic
and discrete equations of the following form where (v := [ẋ;x; y; t;m; pre(m); p] ):

c := fc(relation(v)) (C.1a)

ṁ := fm(v, v) (C.1b)

0 = fx(v, v) (C.1c)

and where

p Modelica variables declared as parameter or constant, i.e., variables without
any time-dependency.

t Modelica variable time, the independent (real) variable.
x(t) Modelica variables of type Real, appearing differentiated.
m(te) Modelica variables of type discrete Real, Boolean, Integer which are unknown.

These variables change their value only at event instants te. pre(m) are the
values of m immediately before the current event occurred.

y(t) Modelica variables of type Real which do not fall into any other category (=
algebraic variables).

c(te) The conditions of all if-expressions generated including when-clauses after con-
version, see section 8.3.5).

relation(v) A relation containing variables vi, e.g. v1 > v2, v3 >= 0.

For simplicity, the special cases of the noEvent() operator and of the reinit() operator are not contained
in the equations above and are not discussed below.

The generated set of equations is used for simulation and other analysis activities. Simulation means that
an initial value problem is solved, i.e., initial values have to be provided for the states x, section 8.6. The
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equations define a DAE (Differential Algebraic Equations) which may have discontinuities, a variable
structure and/or which are controlled by a discrete-event system. Such types of systems are called hybrid
DAEs. Simulation is performed in the following way:

1. The DAE (C.1c) is solved by a numerical integration method. In this phase the conditions c of the
if- and when-clauses, as well as the discrete variables m are kept constant. Therefore, (C.1c) is a
continuous function of continuous variables and the most basic requirement of numerical integrators
is fulfilled.

2. During integration, all relations from (C.1a) are monitored. If one of the relations changes its value
an event is triggered, i.e., the exact time instant of the change is determined and the integration
is halted. As discussed in section 8.5, relations which depend only on time are usually treated in
a special way, because this allows to determine the time instant of the next event in advance.

3. At an event instant, (C.1) is a mixed set of algebraic equations which is solved for the Real, Boolean
and Integer unknowns.

4. After an event is processed, the integration is restarted with 1.

Note, that both the values of the conditions c as well as the values of m (all discrete Real, Boolean
and Integer variables) are only changed at an event instant and that these variables remain constant
during continuous integration. At every event instant, new values of the discrete variables m and of
new initial values for the states x are determined. The change of discrete variables may characterize a
new structure of a DAE where elements of the state vector x are disabled. In other words, the number
of state variables, algebraic variables and residue equations of a DAE may change at event instants by
disabling the appropriate part of the DAE. For clarity of the equations, this is not explicitly shown by
an additional index in (C.1).

At an event instant, including the initial event, the model equations are reinitialized according to the
following iteration procedure:

known variables: x, t, p

unkown variables: dx/dt, y, m, pre(m), c

// p r e (m) = v a l u e o f m b e f o r e e v e n t o c c u r e d
loop

solve (1) for the unknowns , with pre(m) fixed

if m == pre(m) then break

pre(m) := m

end loop

Solving (C.1) for the unknowns is non-trivial, because this set of equations contains not only Real, but
also Boolean and Integer unknowns. Usually, in a first step these equations are sorted and in many
cases the Boolean and Integer unknowns can be just computed by a forward evaluation sequence. In
some cases, there remain systems of equations (e.g. for ideal diodes, Coulomb friction elements) and
specialized algorithms have to be used to solve them.

Due to the construction of the equations by ”flattening” a Modelica model, the hybrid DAE (C.1) contains
a huge number of sparse equations. Therefore, direct simulation of (C.1) requires sparse matrix methods.
However, solving this initial set of equations directly with a numerical method is both unreliable and
inefficient. One reason is that many Modelica models, like the mechanical ones, have a DAE index of 2 or
3, i.e., the overall number of states of the model is less than the sum of the states of the sub-components.
In such a case, every direct numerical method has the difficulty that the numerical condition becomes
worse, if the integrator step size is reduced and that a step size of zero leads to a singularity. Another
problem is the handling of idealized elements, such as ideal diodes or Coulomb friction. These elements
lead to mixed systems of equations having both Real and Boolean unknowns. Specialized algorithms are
needed to solve such systems.

To summarize, symbolic transformation techniques are needed to transform (1) in a set of equations which
can be numerically solved reliably. Most important, the algorithm of Pantelides should to be applied
to differentiate certain parts of the equations in order to reduce the index. Note, that also explicit
integration methods, such as Runge-Kutta algorithms, can be used to solve (C.1c), after the index of
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(C.1c) has been reduced by the Pantelides algorithm: During continuous integration, the integrator
provides x and t. Then, (C.1c) is a linear or nonlinear system of equations to compute the algebraic
variables y and the state derivatives dx/dt and the model returns dx/dt to the integrator by solving
these systems of equations. Often, (C.1c) is just a linear system of equations in these unknowns, so that
the solution is straightforward. This procedure is especially useful for real-time simulation where usually
explicit one-step methods are used.
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Appendix D

Derivation of Stream Equations

This appendix contains a derivation of the equation for stream connectors from chapter 15.

D.1 Reasons for avoiding the actual mixing enthalpy in connec-
tor definitions

Consider a connection set with n connectors. The mixing enthalpy is defined by the mass balance

0 =

n∑
j=1

ṁj

and the energy balance

0 =

n∑
j=1

Ḣj

with

Ḣj = ṁj

{
hmix if ṁj > 0

houtflow,j if ṁj <= 0

Herein, mass flow rates are positive when entering models (exiting the connection set). The specific
enthalpy represents the specific enthalpy inside the component, close to the connector, for the case of
outflow. Expressed with variables used in the balance equations we arrive at:

houtflow,j =

{
Ḣj

ṁj
if ṁj < 0

arbitrary if ṁj >= 0

While these equations are suitable for device-oriented modeling, the straightforward usage of this defi-
nition leads to models with discontinuous residual equations, which violates the prerequisites of several
solvers for nonlinear equation systems. This is the reason why the actual mixing enthalpy is not modelled
directly in the model equations. The stream connectors provide a suitable alternative.
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Figure D.1: Exemplary connection set with three connected components and a common mixing enthalpy

D.2 Rationale for the formulation of the inStream() operator

For simplicity, the derivation of the inStream() operator is shown at hand of 3 model components that
are connected together. The case for N connections follows correspondingly.

The energy and mass balance equations for the connection set for 3 components are (see above):

0 =ṁ1 ·

{
hmix if ṁ1 > 0

houtflow,1 if ṁ1 <= 0

+ṁ2 ·

{
hmix if ṁ2 > 0

houtflow,2 if ṁ2 <= 0

+ṁ3 ·

{
hmix if ṁ3 > 0

houtflow,3 if ṁ3 <= 0

(D.1a)

0 = ṁ1 + ṁ2 + ṁ3 (D.1b)

The balance equations are implemented using a max() operator in place of the piecewise expressions,
taking care of the different flow directions:

0 =max(ṁ1, 0)hmix −max(−ṁ1, 0)houtflow,1

+max(ṁ2, 0)hmix −max(−ṁ2, 0)houtflow,2

+max(ṁ3, 0)hmix −max(−ṁ3, 0)houtflow,3

(D.2a)

0 =max(ṁ1, 0)−max(−ṁ1, 0)

+max(ṁ2, 0)−max(−ṁ2, 0)

+max(ṁ3, 0)−max(−ṁ3, 0)

(D.2b)

Equation (D.2a) is solved for hmix

hmix =
max(−ṁ1, 0)houtflow,1 + max(−ṁ2, 0)houtflow,2 + max(−ṁ3, 0)houtflow,3

max(ṁ1, 0) + max(ṁ2, 0) + max(ṁ3, 0)
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Using (D.2b), the denominator can be changed to:

hmix =
max(−ṁ1, 0)houtflow,1 + max(−ṁ2, 0)houtflow,2 + max(−ṁ3, 0)houtflow,3

max(−ṁ1, 0) + max(−ṁ2, 0) + max(−ṁ3, 0)

Above it was shown that an equation of this type does not yield properly formulated model equations. In
the streams concept we therefore decide to split the energy balance, which consists of different branches
depending on the mass flow direction. Consequently, separate energy balances are the result; each valid
for specific flow directions.

In a model governing equations have to establish the specific enthalpy of fluid leaving the model based
on the specific enthalpy of fluid flowing into it. Whenever the mixing enthalpy is used in a model it is
therefore the mixing enthalpy under the assumption of fluid flowing into said model.

We establish this quantity using a dedicated operator inStream(houtflow,i) = hmix assuming that ṁi >=
0. This leads to three different incarnations of (n in the general case). This is illustrated in the figure
below. For the present example of three components in a connection set, this means the following.

inStream(houtflow,1) =
max(−ṁ2, 0)houtflow,2 + max(−ṁ3, 0)houtflow,3

max(−ṁ2, 0) + max(−ṁ3, 0)

inStream(houtflow,2) =
max(−ṁ1, 0)houtflow,1 + max(−ṁ3, 0)houtflow,3

max(−ṁ1, 0) + max(−ṁ3, 0)

inStream(houtflow,3) =
max(−ṁ1, 0)houtflow,1 + max(−ṁ2, 0)houtflow,2

max(−ṁ1, 0) + max(−ṁ2, 0)

Figure D.2: Exemplary connection set with three connected components

In the general case of a connection set with n components, similar considerations lead to the following.

inStream(houtflow,i) =

∑
j=1,...,n;j 6=i max(−ṁj , 0)houtflow,j∑

j=1,...,n;j 6=i max(−ṁj , 0)

D.3 Special cases covered by the inStream() operator definition

D.3.1 Stream connector is not connected (N=1):

For this case, the return value of the inStream() operator is arbitrary. Therefore, it is set to the outflow
value.
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D.3.2 Connection of 2 stream connectors, one to one connections (N=2):

inStream(houtflow,1) =
max(−ṁ2, 0)houtflow,2

max(−ṁ2, 0)
= houtflow,2

inStream(houtflow,2) =
max(−ṁ1, 0)houtflow,1

max(−ṁ1, 0)
= houtflow,1

In this case, inStream() is continuous (contrary to hmix) and does not depend on flow rates. The latter
result means that this transformation may remove nonlinear systems of equations, which requires that
either simplifications of the form “a*b/a = b” must be provided, or that this case is treated directly.

D.3.3 Connection of 3 stream connectors where one mass flow rate is iden-
tical to zero (N=3 and ṁ3 = 0):

This case occurs, when a one-port sensor (like a temperature sensor) is connected to two connected
components. For the sensor, the min attribute of the mass flow rate has to be set to zero (no fluid exiting
the component via this connector). The suggested implementation results in the following equations,
and as indicated the last formula can be simplified further by using ṁ3 = 0:

inStream(houtflow,1) = houtflow,2

inStream(houtflow,2) = houtflow,1

inStream(houtflow,3) =
max(−ṁ1, 0)houtflow,1 + max(−ṁ2, 0)houtflow,2

max(−ṁ1, 0) + max(−ṁ2, 0)

=

{
houtflow,2 if ṁ1 >= 0

houtflow,1 if ṁ1 < 0 and ṁ3 = 0

Figure D.3: Example series connection of multiple models with stream connectors

For the two components with finite mass flow rates (not the sensor), the properties discussed for two
connected components still hold. The connection set equations reflect that the sensor does not any
influence by discarding the flow rate of the latter. In several cases a non-linear equation system is
removed by this transformation. However, inStream(..) results in a discontinuous equation for the
sensor, which is consistent with modeling the convective phenomena only. The discontinuous equation
is uncritical, if the sensor variable is not used in a feedback loop with direct feedthrough, since the
discontinuous equation is then not part of an algebraic loop. Otherwise, it is advisable to regularize or
filter the sensor signal.
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D.3.4 Connection of 3 stream connectors where two mass flow rates are
positive (ideal splitting junction for uni-directional flow)

If uni-directional flow is present and an ideal splitter is modelled, the required flow direction should be
defined in the connector instance with the “min” attribute (the “max” attribute could be also defined,
however it does not lead to simplifications):

model m2

Fluidport c(m_flow(min=0));

...

end m2;

Consider the case of and all other mass flow rates positive (with the min attribute set accordingly).
Connecting m1.c with m2.c and m3.c, such that

m2.c.m_flow.min = 0; // max(−m 2 . c . m f l o w , 0 ) = 0
m3.c.m_flow.min = 0; // max(−m 3 . c . m f l o w , 0 ) = 0

results in the following equation:

inStream(houtflow,1) =
max(−ṁ2, 0)houtflow,2 + max(−ṁ3, 0)houtflow,3

max(−ṁ2, 0) + max(−ṁ3, 0)
=

0

0

The inStream() operator cannot be evaluated for a connector, on which the mass flow rate has to be
negative by definition. The reason is that the value is arbitrary, which is why it is defined as follows.

inStream(houtflow,1) := houtflow,1

For the remaining connectors the inStream() operator reduces to a simple result.

inStream(houtflow,2) =
max(−ṁ1,0)houtflow,1+max(−ṁ3,0)houtflow,3

max(−ṁ1,0)+max(−ṁ3,0)
= houtflow,1

inStream(houtflow,3) =
max(−ṁ1,0)houtflow,1+max(−ṁ2,0)houtflow,2

max(−ṁ1,0)+max(−ṁ2,0)
= houtflow,1

Again, the previous non-linear algebraic system of equations is removed. This means that utilizing the
information about uni-directional flow is very important.

To summarize, if all mass flow rates are zero, the balance equations for stream variables (D.1) and
for flows (D.2) are identically fulfilled. In such a case, any value of h mix fulfills (D.1), i.e., a unique
mathematical solution does not exist. This specification only requires that a solution fulfills the balance
equations. Additionally, a recommendation is given to compute all unknowns in a unique way, by
providing an explicit formula for the inStream operator. Due to the definition, that only flows where the
corresponding “min” attribute is neither zero nor positive enter this formula, a meaningful physcial result
is always obtained, even in case of zero mass flow rate. As a side effect, non-linear equation systems
are automatically removed in special cases, like sensors or uni-directional flow, without any symbolic
transformations (no equation must be analyzed; only the “min”-attributes of the corresponding flow
variables).
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Appendix E

Modelica Revision History

This appendix describes the history of the Modelica Language Design, and its contributors. This ap-
pendix is just present for historic reasons and is not normative. The current version of this document is
available from https://www.modelica.org/documents.

E.1 Modelica 3.4

Modelica 3.4 was released April 10, 2017. The Modelica 3.4 specification was edited by Hans Olsson.

E.1.1 Main changes in Modelica 3.4

The following Modelica Change Proposals are backward compatible extensions added in 3.4:

• Automatic conversions between different versions (MCP-0014), section 18.8.2. Ticket #1622.

• Flattening is clearly specified (MCP-0019), section 5.3.1 and section 5.6. Ticket #1829.

• Convert from Integer to Enumeration (MCP-0022), primarily section 4.8.5.3. Ticket #1842.

• Explicitly casting a Model to Record (MCP-0023), section 12.6.1. Ticket #1953.

• Initialization of Clocked Continuous States (MCP-0024), section 16.8.1, section 16.9 and sec-
tion 16.10. Ticket #2007.

• An added option to Ellipse Annotation to draw only an arc (MCP-0026), section 18.6.5.4. Ticket
#2045.

• Allowing mixed Real and non-Real Record Derivatives (MCP-0028), section 12.7.1. Ticket #2134.

The definition of pure functions was refined, in particular to restore backwards compatibility with Mod-
elica 3.2, section 12.3. Ticket #1937.

The following minor improvements were made (starting from 3.3 Revision 1):

• Clarified simulation model, section 1.2. Ticket #730.

• Clarified structural analysis, section 1.2. Ticket #588.

• Clarified meta-symbols, section 1.4 and 2.3.1. Ticket #1616.

• Typo, section 2.3.1. Ticket #1702.

• Clarified newline, section 2.4.4. Ticket #1479.

• Allow ’”’ and define it to be equal to ’\”’ (and similarly for ’\?’), section 2.3.1. Ticket #1176.

• Clarified that built-in functions in the specification, section 3.7 and 12.5. Ticket #1608.

• Clarified named arguments for builtin operators, in particular spatialDistribution, section 3.7.2 and
section 12.4.1. Ticket #2002.
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• Clarified that semiLinear is continuous, section 3.7.2. Ticket #112.

• Corrected spelling, section 3.7.2. Ticket #1828.

• Corrected typo in code and reformulated description, section 3.7.2.2. Ticket #1588, #1729, and
#2166.

• Corrected typo for events, section 3.7.3.2. Ticket #1657.

• Clarified sample operator, section 3.7.3. Ticket #677.

• Additional functions give parameter expression, section 3.8.2. Ticket #1082.

• Clarified ExternalObject, section 4.4.2.2. Ticket #1546.

• Simplified rules type prefixes for structured components, section 4.4.2.2. Ticket #1686.

• Clarified that unexpanded bindings shall be unexpanded, section 4.4.3. Ticket #2153.

• Clarified conditional components, section 4.4.5. Ticket #2057.

• Improved example to avoid using class, section 4.5.3. Ticket #553.

• Clarify inheritance from predefines types, section 4.6. Ticket #1250.

• Allow connector inheriting from operator record, section 4.6. Ticket #1714.

• Clarify restrictions on record components, section 4.6. Ticket #1615.

• Clarify that only functions may have external clause, section 4.6 and section 12.2. Ticket #2014.

• Clarified equation count for operator record, section 4.7. Ticket #866.

• Clarified restriction on attributes, section 4.8. Ticket #1426.

• Clarified how reserved the different built-in types are, section 4.8. Ticket #1538.

• Removed restriction on nominal and explained purpose, section 4.8.1. Ticket #1445.

• Added unbounded to Real, section 4.8.1 and section 4.8.6. Ticket #926.

• Added fixed-attribute for String, section 4.8.4. Ticket #1797.

• Clarified and corrected example in section 4.8.5. Ticket #1849 and #2150.

• Clarified nominal attribute, section 4.8.6 and section 15.2. Ticket #1877.

• Added that Connections is builtin package, section 4.8.7.4. Ticket #1883.

• Clarified lookup-order regarding import, section 5.3.1. Ticket #1573.

• Extend calling functions through component to array case, section 5.3.2 and section 3.1. Ticket
#1613.

• Clarified existing use of automatic inner declarations, section 5.4 and section 18.7. Ticket #1551
and #1749.

• Removed restriction on array size for modifiers, section 6.3. Ticket #1432.

• Clarified that 2/3 and 2ˆ(-3) are Real, section 6.6. Ticket #1647.

• Clarified that external declaration is inherited, section 7.1. Ticket #789.

• Further clarified order for multiple inheritance, section 5.6.1 and section 7.1. Ticket #2015.

• Clarified inheritance restrictions, section 7.1.3. Ticket #1451.

• Restricted merging of modifiers, section 7.2.3. Ticket #791.

• Clarified each especially for nested arrays, section 7.2.4 and section 7.2.5. Ticket #1596.

• Clarified replaceable with array sizes on types, section 7.3. Ticket #1251.

• Corrected and moved example, section 7.3 and section 7.3.2. Ticket #1034.

• Clarified ”redeclare class extends B”, section 7.3.1. Ticket #462 and #709.
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• Corrected example, section 7.3.2. Ticket #1725.

• Clarified description and annotation on constraining-clause, section 7.3.2.1. Ticket #512.

• Corrected typo, section 7.3.4. Ticket #1770.

• Clarified for-equation with types, section 8.3.2. Ticket #915.

• Clarified event generation, section 8.5. Ticket #2114.

• Further clarified initial() for when-clauses, section 8.6 – and indicated that this appendix is not
normative. Ticket #1852.

• Clarified using start-attribute for parameters, section 8.6. Ticket #2136.

• Clarified that states for first order ODE, section 8.6.1. Ticket #937.

• Clarified adding input/output prefix for expandable connector variables, section 9.1.3. Ticket #829.

• Clarified creating elements in expandable connectors, section 9.1.3. Ticket #428.

• Corrected expandable connector example, section 9.1.3. Ticket #1763.

• Clarified that stream-variables do not generate equations, section 9.2. Ticket #1584.

• Restrict that stream only connects to stream, section 9.3. Ticket #796.

• Clarified section heading, section 9.3.1. Ticket #727.

• Clarified vector arguments for operators in section 9.4.1. Ticket #1590.

• Corrected example, section 9.4.3.1. Ticket #2143.

• Clarified return type for reduction expressions, section 10.3.4. Ticket #981.

• Extended reduction expression sum to operator records, section 10.3.4. Ticket #1897.

• Clarified table in section 10.3.4.1. Ticket #1722.

• Match parenthesis, section 10.4.1.2. Ticket #1558.

• Recommend better alternative for generating vector, section 10.4.3. Ticket #1837.

• Defined unary operators, section 10.6.2. Ticket #2027.

• Allow missing trailing indices, sections section 10.5 and section 10.6.9. Ticket #1603.

• Clarified that element-wise division gives real result, section 10.6.6. Ticket #1119.

• Removed misleading comment, section 11.1.2. Ticket #938.

• Clarified how assignment works for multi-returning functions, section 11.2.1.1. Ticket #1921.

• Clarified no equations and initial algorithms in functions, section 12.2. Ticket #2160.

• Clarified assigning to record variables with bindings in functions, section 12.2. Ticket #2016.

• Clarified initialization of variables in functions, section 12.4.4. Ticket #1708.

• Standarize current practice of using = instead of := for bindings in functions, section 12.2. Ticket
#1595.

• Clarified function partial evaluation, section 12.4.2.1. Ticket #647.

• Clarified initialization of record components in functions, section 12.4.4. Ticket #1230.

• Clarified flexible array sizes, section 12.4.5. Ticket #2158.

• Clarified name of output for record constructor in section 12.6. Ticket #366.

• Clarified derivatives for functions in several ways, section 12.7.1. Ticket #985, #1543, #1544,
#1545, #1547, #1548, #1788, #1972, #1987.

• Clarified that using C89 and added possibility for C89, C99, and C11 , section 12.9. Ticket #1088.

• Clarified input/output to external functions, section 12.9. Ticket #775.
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• Clarified handling of Boolean variables for external C, section 12.9.1.1. Ticket #1846.

• Added that Strings can be sent to FORTRAN 77, section 12.9.1.1. Ticket #1971.

• Allow multiple include directories, section 12.9.4. Ticket #2103.

• Allow specific libraries for different compiler versions, section 12.9.4. Ticket #1316.

• Added external warning functions, section 12.9.6. Ticker #1967.

• Clarified that pointers are only valid during each call, section 12.9.7. Ticket #1611.

• Clarified constructor and destructor, section 12.9.7. Ticket #1907.

• Clarified ’structured entity’ to be ’directory’, section 13.2.2. Ticket #922.

• Clarified handling of incorrect package.order, section 13.2.2.1. Ticket #1858.

• Restricted use of files with multiple classes, section 13.2.2.2. Ticket #1854.

• Clarified storing resources in a file-system, section 13.2.3. Ticket #685, #1623.

• Used correct font, section 13.2.3. Ticket #2061.

• Clarified that inStream optimizations are allowed, section 15.2. Ticket #1766.

• Corrected actualStream example in section 15.3. Ticket #1652.

• Corrected non-periodic rational clocks, section 16.3. Ticket #2022.

• Clarified initialization of clocked discretized continuous-time partitions, section 16.8.2. Ticket
#1528.

• Defined rendering order, section 18.6. Ticket #1750.

• Clarified rotation direction, section 18.6.1. Ticket #1830.

• Clarified coordinate system definition, section 18.6.1.1. Ticket #1831.

• Defined coordinate system inheritance to be less suprising, section 18.6.1.1 and section 18.6.3.
Ticket #1978.

• Clarified lineThickness and borderPattern, section 18.6.5 section 18.6.1.2. Ticket #1896.

• Corrected formatting, section 18.6.1.2. Ticket #1825.

• Made the different Text-annotations more similar, section 4.8.7.4. Ticket #1621.

• Clarified LinePatterns in section 18.6.5. Ticket #1483.

• Corrected flipping of components and bitmaps, and clarified various aspects of bitmaps, sec-
tion 18.6.2 and section 18.6.5.6. Ticket #1923.

• Clarified arrows, section 18.6.5.1. Ticket #1894.

• Clarified existing use of zero-width texts, section 18.6.5.5. Ticket #1636.

• Added specific fontnames, section 18.6.5.5. Ticket #1986.

• Added alternative for macro-expansion, section 18.6.5.5. Ticket #2148.

• Corrected example in section 18.6.7.1. Ticket #2111.

• Placed annotation last in classes, in particular section 18.7. Ticket #1009.

• Cleaned up code and formatting in section 18.7. Ticket #2041, #2042, and #2125.

• Added missing nano-prefix, section 19.1. Ticket #1261.

• Replaced the outdated contents of chapter 20 by a hyperlink. Ticket #2130.

• Added ModelicaServices to chapter 20. Ticket #2132.

• Restrict grammar to avoid modifiers with leading dot, section B.2. Ticket #1027.

• Restrict grammar for base-prefix, section B.2.2. Ticket #917.
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• Restrict grammar for arrays, section 3.1. Ticket #809.

• Restrict grammar for function arguments (replacing semantic restriction), section 3.1. Ticket
#1634.

• Corrected typo in section D.2. Ticket #1317.

E.1.2 Contributors to the Modelica Language 3.4

The members of the Modelica Association contributed to the Modelica 3.4 specification.

E.2 Modelica 3.3 Revision 1

Modelica 3.3 Revision 1 was released July 11, 2014. The Modelica 3.3 Revision 1 specification was edited
by Hans Olsson.

E.2.1 Main changes in Modelica 3.3 Revision 1

The changes made in Modelica 3.2 Revision 2 are included, and in addition the following improvements
were made:

• Clarified that String-operator cannot use positional arguments, section 3.7.1. Ticket #1468.

• Corrected size of enumeration, section 3.7.1 and section 4.8.5.2. Ticket #1369.

• Clarified spatialDistribution, section 3.7.1.2. Ticket #1510.

• Restricted cardinality to give a clear definition, section 3.7.2.3. Ticket #1409.

• Clarified which constants need a value, section 3.8.1. Ticket #1220.

• Clarified type prefixes rules, section 4.4.2.2. Tickets #1196, #1221, #1301.

• Added exception for cyclic parameter bindings (already used in MSL), section 4.4.3. Ticket #1320.

• Added example for use of conditional components, section 4.4.5. Ticket #1227.

• Corrected annotation-grammar, section 4.5. Ticket #1378.

• Corrected duplicated class-definition grammar, section 4.5. Ticket #1388.

• Clarified short class definition, section 4.5.1. Ticket #527.

• Removed unusable variant for operator and operator function, section 4.6. Ticket #1459, #1497.

• Added definition of AssertionLevel, section 4.8.7.3. ticket #962.

• Corrected typos at end of loops in examples,section 4.8.5 and section 8.3.2.1. Ticket #902

• Clarified temporary flattening, section 5.3.2. Ticket #1327.

• Added definition of modification equations, section 7.2. Ticket #959.

• Clarified modifiers for array elements, section 7.2.5. Ticket #1324.

• Corrected example for final element modification, section 7.2.6 Ticket #1326.

• Corrected duplicated class-definition grammar, section 7.3.1. Ticket #1388.

• Clarified modifiers on constraining type, section 7.3.2. Ticket #1033.

• Clarified when redeclare can be used with the same type and rules for redeclaring array types,
section 7.3.3. Tickets #1252, #1281.

• Clarified default for annotation choicesAllMatching, section 7.3.4. Ticket #1391.

• Forbid when-statements in initial equation/algorithm (they would in most cases not be active;
leading to confusion), section 8.3.5.2 and section 11.2.7.1. Ticket #1288.

• Clarified reinit during initialization, section 8.3.6 section 8.6. Ticket #1372.
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• Clarified using start-values as guess-values; section 8.6. Tickets #1133, #1246.

• Clarified allowed use of variables in expandable connectors; section 9.1.3. Ticket #1279.

• Clarified causality for expandable connectors; section 9.1.3. Ticket #1305.

• Clarified expandable connectors in general; section 9.1.3. Ticket #1330.

• Clarified connection matching, section 9.3. Ticket #884.

• Added quantity checks for connectors (MSL already relies on this check); section 9.3. Ticket #1284.

• Clarified arrays with non-Integer dimensions, section 10.1. Ticket #1501.

• Clarified that ndims is allow for a scalar, section 10.3.1. Ticket #1303.

• Clarified number of arguments for zeros, ones, fill, section 10.3.3. Ticket #1351.

• Clarified min/max, section 10.3.4. Ticket #1036.

• Clarified array expressions using iterations allow non-simple types, section 10.4.1. Ticket #1521.

• Clarified arrays with non-Integer dimensions, section 10.5.1. Ticket #1463.

• Clarified calling function as specialized class, section 12.2. Ticket #1362.

• Clarified default values in functions depending on other inputs, section 12.4.1. Ticket #1346.

• Corrected syntax error in example, section 12.4.2.1. Ticket #1338.

• Clarified annotations on external functions, section 12.9. Ticket #660.

• Add possibility for sending arrays in records to external functions, section 12.9. Ticket #351.

• Corrected spelling to FORTRAN 77, section 12.9.3. Ticket #1278.

• Clarified default directories, section 12.9.4. Ticket #1456.

• Clarified constructing/destructing external objects, section 12.9.7. Ticket #1518.

• Clarified encapsulation requirement for operator record, chapter 14. Ticket #1254.

• Clarified operator record: arrays, priority, and zero result, section 14.4. Tickets #1469, #1476,
#1481.

• Added element wise operations for operator record, section 14.4. Ticket #1455.

• Improved formulation, section 16.3. Ticket #1362.

• Clarified why noClock exists; section 16.5.2. Ticket #1094.

• Added initial conditions to solver methods for clocked discretized continuous-time partitions; sec-
tion 16.8.2. Ticket #1379.

• Added requirement that priorities must be unique for statechart transitions (the restriction was
present in original description and is necessary to ensure deterministic behavior), section 17.3.
Ticket #853.

• Corrected syntax in Line definition, section 18.6.5.1. Ticket #1464.

• Corrected connectorSizing description, section 18.7. Ticket #1441.

• Corrected license example, section 18.9.2. Ticket #1127.

• Clarified names of productions in grammar and changed to use hyphen, section B.1. Tickets #713
and #1033.

• Modified grammar use consistent style for import-list, section B.2.2. Ticket #1374.
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E.2.2 Contributors to the Modelica Language, Version 3.3 Revision 1

The following members of the Modelica Association contributed to the Modelica 3.3 Revision 1 and/or
Modelica 3.2 Revision 2 specification (alphabetical list):

Peter Aronsson, MathCore AB, Linköping, Sweden
Peter Fritzson, PELAB, Linköping University, Linköping, Sweden
Hilding Elmqvist, Dassault Systèmes, Lund, Sweden
Christoph Höger, Technical University of Berlin, Berlin, Germany
Gerd Kurzbach, ITI GmbH, Dresden, Germany
Jesper Mattsson, Modelon AB, Lund, Sweden
Hans Olsson, Dassault Systèmes, Lund, Sweden
Martin Otter, DLR, Oberpfaffenhofen, Germany
Adrian Pop, Linköping University, Linköping, Sweden
Elena Shmoylova, Maplesoft, Waterloo, Canada
Martin Sjölund, PELAB, Linköping University, Linköping, Sweden
Stefan Vorkoetter, Maplesoft, Waterloo, Canada

E.3 Modelica 3.3

Modelica 3.3 was released on May 9, 2012. The Modelica 3.3 specification was edited by Hans Olsson,
Hilding Elmqvist and Martin Otter.

E.3.1 Main changes in Modelica 3.3

The following backward compatible extensions have been introduced with Modelica 3.3:

• Language elements for describing synchronous behavior suited for implementation of control sys-
tems, chapter 16.

• Language elements to define synchronous state machines, chapter 17.

• The spatialDistribution function for special one-dimensional flow problems, section 3.7.2.2.

• The getInstanceName function for diagnostic messages, section 3.7.2.6.

• Possible to call a function through an instance name, section 5.3.2.

• Can use the start-value for a parameter to give a non-zero default that should be changed, sec-
tion 8.6.

• A recommened procedure for priority between initial values have been added, section 8.6.2.

• Functions can be defined without algorithm-section, section 12.2.

• Functions can be marked as pure or impure with specified semantics, section 12.3.

• The rules for ExternalObject have been clarified, section 12.9.7 and chapter 6.

• Multiple definition import, section 13.2.1.

• Additional annotations allowing:

– Functions to generate events, section 18.3.

– Experiments to specify a time-resolution of simulation result, section 18.4.

– Single instance of class, section 18.5.

– Text in the diagram layer can use a macro syntax, section 18.6.5.5.

– Color selection dialog for parameters, section 18.7.

– Conversion to specify a set of versions to convert with one script, section 18.8.2.

– Licensed libraries to define the set of allowed operations (including binary/source export),
section 18.9.2.
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The following changes in Modelica 3.3 are not backwards compatible:

• chapter 16 “Mapping of Models to Execution Environments” from Modelica 3.2 has been removed
(a more powerful functionality is instead provided with the new chapter 16 and chapter 17). Since,
no released tools has yet supported the previous chapter 16, this not backwards compatible change
is uncritical.

• The new spatialDistribution and getInstanceName functions could cause problems if another
function with that name was already used.

• Conditional physical connectors must be connected if enabled, section 4.4.5 and section 9.3. In
almost all cases they have to be connected to generate correct result, and it is not possible to check
that they are connected in the models

E.3.2 Contributors to Modelica 3.3

The language elements for describing synchronous behavior, chapter 16, was mainly developed by Hilding
Elmqvist, Martin Otter, and Sven Erik Mattsson. Hilding Elmqvist wrote a detailed tutorial. Sven Erik
Mattsson developed a test implementation of the language elements and the needed new algorithms.
Based on the prototype, tests and feedback have been provided by Martin Otter and Bernhard Thiele.

The language elements to define synchronous state machines, chapter 17, was mainly developed by Hild-
ing Elmqvist with contributions from Francois Dupont, Sven Erik Mattsson and Fabien Gaucher. Hilding
Elmqvist wrote a tutorial. Sven Erik Mattsson and Carl-Fredrik Abelson developed a test implemen-
tation. Based on the prototype, tests and feedback have been provided by Alain Thura, Emmanuel
Ledinot, Claire Campan, and Martin Malmheden.

The spatialDistribution operator was initiated by Hubertus Tummescheit, based on an operator of Dy-
mola, and with contributions from Hans Olsson.

The improved definition of pure and impure functions and the enhanced import statement was proposed
by Peter Fritzson.

The various smaller language improvements based on submitted tickets have been developed by a group
headed by Hans Olsson and with group members Peter Fritzson, Christoph Höger, Gerd Kurzbach,
Jesper Mattsson, Martin Sjölund, and Stefan Vorkoetter.

The following members of the Modelica Association participated at design meetings and contributed to
the Modelica 3.3 specification:

Johan Åkesson, Lund University and Modelon AB, Lund, Sweden
Peter Aronsson, MathCore AB, Linköping, Sweden
Ingrid Bausch-Gall, BAUSCH-GALL GmbH, Munich, Germany
Volker Beuter, Kämmerer AG, Germany
Torsten Blochwitz, ITI GmbH, Dresden, Germany
David Broman, PELAB, Linköping University, Sweden
Dag Brück, Dassault Systèmes, Lund, Sweden
Francesco Casella, Politecnico di Milano, Milano, Italy
Christoph Clauss, Fraunhofer, Dresden, Germany
Mike Dempsey, Claytex Services Limited, Leamington Spa, U.K.
Karin Dietl, TU Hamburg-Harburg, Germany
Francois Dupont, Dassault Systèmes, Brest, France
Jonas Eborn, Modelon, Lund, Sweden
Hilding Elmqvist, Dassault Systèmes, Lund, Sweden
Guilioano Fontanella, AIT, Vienna, Austria
Rüdiger Franke, ABB Power Generation, Mannheim, Germany
Peter Fritzson, PELAB, Linköping University, Sweden
Sébastien Furic, LMS International, Roanne. France
Leo Gall, BAUSCH-GALL Gmbh, Munich, Germany
Peter Harman, deltatheta uk limited, U.K.
Anton Haumer, AIT, Vienna, Austria
Dan Henriksson, Dassault Systèmes, Lund, Sweden
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Christoph Höger, TU Berlin, Berlin, Germany
Christian Kral, AIT, Vienna, Austria
Gerd Kurzbach, ITI GmbH, Dresden, Germany
Kilian Link, Siemens AB, Erlangen, Germany
Krisitin Majetta, Fraunhofer, Dresden, Germany
Martin Malmheden, Dassault Systèmes, Velicy, France
Jesper Mattsson, Modelon, Lund, Sweden
Sven Erik Mattsson, Dassault Systèmes, Lund, Sweden
Eric Neuber, ITI GmbH, Dresden, Germany
Ramine Nikoukhah, Altair, France
Hans Olsson, Dassault Systèmes, Lund, Sweden
Martin Otter, DLR-RM (German Aerospace Center), Oberpfaffenhofen,Germany
Peter Pepper, Fraunhofer FIRST, Berlin, Germany
Adrian Pop, Linköping University, Linköping, Sweden
Olena Rogovchenko, PELAB, Linköping, Sweden
Stefan-Alexander Schneider, BMW, Munich, Germany
Michael Sielemann, German Aerospace Center, Oberpfaffenhofen, Germany
Martin Sjölund, PELAB; Linköping, Sweden
Kristian Stav̊aker, PELAB, Linköping, Sweden
Bernhard Thiele, DLR-RM (German Aerospace Center), Oberpfaffenhofen,Germany
Eric Thomas, Dassault Aviation, Paris, France
Michael Tiller, Dassault Systèmes, Velicy, France
Hubertus Tummescheit, Modelon AB, Lund, Sweden
Andreas Uhlig, ITI, Dresden Germany
Vladimir Vukovic, AIT, Vienna, Germany
Stefan Vorkoetter, Maplesoft, Waterloo, Canada
Daniel Weil, Dassault Systèmes, Grenoble, France
Hans-Jürg Wiesmann, ABB Switzerland, Corporate Research, Baden,Switzerland
Dietmar Winkler, Telemark University College, Porsgrunn, Norway
Stefan Wischhusen, XRG Simulation, Hamburg, Germany
Dirk Zimmer, DLR-RM (German Aerospace Center), Oberpfaffenhofen, Germany

E.3.3 Acknowledgments

For the design of the synchronous language elements (chapter 16) and synchronous state machines
(chapter 17), and for the understanding of fine details of synchronous languages, especially from Lucid
Synchrone, very helpful discussions with

Albert Benveniste, IRISA/INRIA, Rennes, France
Marc Pouzet, Laboratoire d’Informatique de l’ENS, Paris
Benoit Caillaud, IRISA, Rennes, France
Timothy Bourke, INRIA, Rennes, France

are appreciated.

E.4 Modelica 3.2 Revision 2

Modelica 3.2 Revision 2 was released 2013. The Modelica 3.2 Revision 2 specification was edited by Hans
Olsson and Martin Otter.

E.4.1 Main changes in Modelica 3.2 Revision 2

The Modelica language was slightly adapted (in a backwards compatible way – except as listed below) in
order that the Modelica Standard Library (MSL) version 3.2.1 is fully compliant to Modelica Language
3.2 Revision 2. This required the following improvements compared to 3.2 Revision 1:

• Possible to call a function through an instance name, section 5.3.2
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(used in MSL 3.2 to compute the gravity acceleration in Modelica.Mechanics.MultiBody.World;
this feature was also introduced in Modelica Language version 3.3 in May 2012).

• New built-in operator Connections.rooted(A.R) to inquire whether an overdetermined type or
record instance A.R in a call to Connections.branch(A.R,B.R) is closer to the root of the spanning
tree than B.R, section 9.4.1 (used in MSL 3.2 to avoid algebraic loops in several components such
as in Modelica.Mechanics.MultiBody.Joints.Revolute).

• Several new annotations where vendor-specific variants were used in MSL 3.2; section 7.3.4, sec-
tion 18.2, section 18.3, section 18.4, section 4.8.7.4, and section 18.7.

• Specified that Evaluate can also occur in types, since this is used in MSL and important for
performance; section 18.3. Ticket #925.

• Macros in graphical text items, section 18.6.5.5. Ticket #659. (This feature was also introduced
in Modelica Language version 3.3.)

• Initial equations are discrete – used in MSL for initialization of pre-variables, section 3.8.3. Ticket
#853.

• Updated noDerivative to be consistent with MSL, section 12.7.1. This is an incompatibility – but
the other variant was not used. Ticket #1035.

• Clarified handling of component with missingInnerMessage; section 18.7. Ticket #891.

• Clarified definition of protected; section 4.1. Ticket #975, #1123.

In addition several issues with the specification text were corrected:

• Clarified an unclear sequence regarding functions as input arguments in section 4.4.2.2. Ticket
#1182.

• Clarified allowed binding equations for redeclarations, section 4.7. Ticket #1111.

• Unspecified enumerations now have defined semantics, section 4.8.5.4. Ticket #834.

• Transitively non-Replaceable, section 6.2.1. Ticket #854.

• Modification text improved to not refer to inherited class, section 7.2. Ticket #1042.

• Precedence for modifiers on constraining-clause clarified, section 7.3.2. Ticket #1128.

• Clarified arrays for constraining type, section 7.3.2. Ticket #1148.

• Avoid all forms of connections depending on connections, section 8.3.3. Ticket #828.

• Clarified equation count for if-equations, section 8.3.4. Ticket #888.

• Complete definition of reinit, section 8.3.6. Ticket #578. This forbids reinit in algorithms – but it
was previously not well-defined.

• Clarified initializaton of pre(vc) for a non-discrete (that is continuous-time) Real variable vc, sec-
tion 8.6. Ticket #1195.

• Only one way of handling arrays of connectors is now defined, chapter 9. Ticket #757.

• Example now use correct sine-source, section 9.1. Ticket #750.

• Restricted parameters in connectors, section 9.3. Ticket #768.

• Clarified type restrictions for some operators, section 10.3.4, section 10.3.5. Ticket #622.

• Clarified that if at least one array element is used on the left hand side of the assignment operator
in an algorithm section, then the complete array is initialized in this section, section 11.1.2. Ticket
#1190.

• Record constructor corrected to not refer to keywords that should not occur, section 12.6. Ticket
#907.

• External storage of classes, section 13.2.2.2, section 13.2.2.3 and section 18.8.3. Tickets #1019,
#892, #887.
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• Added example and explanation for inheritance restriction on operator record; section 14.6. Ticket
#1065.

• Chapter “Mapping of Models to Execution Environments” was removed; this change was already
decided for Modelica 3.3 and no tool had released an implementation of this feature. Ticket #1015.

• Corrected license-example in section 18.9.2. Ticket #1127.

• Grammar was internally restructured for short-class-definition, section 4.5, section B.2.2. Ticket
#1140.

E.4.2 Contributors to the Modelica Language, Version 3.2 Revision 2

The following members of the Modelica Association contributed to the Modelica 3.2 Revision 2 specifi-
cation (alphabetical list):

Peter Aronsson, MathCore AB, Linköping, Sweden

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden

Hilding Elmqvist, Dassault Systèmes, Lund, Sweden

Christoph Höger, Technical University of Berlin, Berlin, Germany

Gerd Kurzbach, ITI GmbH, Dresden, Germany

Jesper Mattsson, Modelon AB, Lund, Sweden

Hans Olsson, Dassault Systèmes, Lund, Sweden

Martin Otter, DLR, Oberpfaffenhofen, Germany

Adrian Pop, Linköping University, Linköping, Sweden

Elena Shmoylova, Maplesoft, Waterloo, Canada

Martin Sjölund, PELAB, Linköping University, Linköping, Sweden

Stefan Vorkoetter, Maplesoft, Waterloo, Canada

E.5 Modelica 3.2 Revision 1

Modelica 3.2 Revision 1 was released on Feb. 29, 2012. The Modelica 3.2 Revision 1 specification was
edited by Hans Olsson and Peter Fritzson.

E.5.1 Main changes in Modelica 3.2 Revision 1

The Modelica language was not changed with respect to the previous version 3.2. Only issues with the
specification text have been fixed. In particular:

• Corrected typos and improved formatting.

• section 2.2 Comments:
There are 2 and not 3 kinds of comments and comments are treated as white space character.
Added definition of white space character.

• section 2.3.1 Identifiers:
The single quotes are part of the identifier, e.g., ’x’.

• section 3.6.7 Built-in Variable time:
Variable ”time” is only available in models and blocks and not in the other classes.

• section 3.7.1.2 Built-in Mathematical Functions
Definition of ”atan2” corrected.

• section 3.7.2 Special Purpose Operators
Included definition of inStream and actualStream operators from chapter 15.
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• section 3.7.3 Event-Related Operators
Clarified, that the first argument of ”smooth” is a scalar.
Improved the definition of ”reinit”.

• section 3.8.3 Discrete-Time Expressions
Improved definition of ordered relations (>,<,>=,<=).

• section 4.4.5 Conditional Component Declaration
Clarified redeclaration of a component.

• section 4.6 Specialized Classes
Clarified that ”stream” cannot be used in a record.
Clarified restrictions on elements in a ”connector”.
Errors in example of operator record Complex corrected.

• section 4.8.5 Enumeration Types
Error in example corrected.

• section 5.5 Simulataneous Inner/Outer Declarations
Clarified inner/outer declarations.

• section 7.1 Inheritance
Clarified that the elements of a flattened base class are added at the place of the extends clause.
Equations of the flattened base class that are syntactically equivalent to equations in the flattened
enclosing class are deprecated.

• section 7.2 Modifications
Element modifiers are no longer part of language, reference grammar instead of duplicating it.

• section 7.3 Redeclaration
Improved redeclarations definition and moved an example from section 7.3.1 at the right place.

• section 8.3.6 reinit
Improved reinit definition.

• section 8.6 Initialization
Clarified that only when-clauses with restricted form of initial() as condition will be active during
initialization.

• section 10.3.4.1 Reduction Expressions
Improved definition

• section 11.2.2.2 Types as iteration ranges
Newly introduced section to improve the definition of iteration ranges

• section 12.2 Function
Added missing restrictions that model, block, inner, outer cannot be used in a function.

• section 12.4.1 Positional or Named Input Arguments of Functions
Corrected formal syntax of a function call

• section 12.4.4 Initialization and Declaration Assignments of Components in Functions
Added the restriction of acylic bindings.

• section 12.9.1.3 Records
Mapping of arrays in records to C-structs is removed.

• section 18.6.5.6 Bitmap
Defined flipping more precisely.

• section B.1 Lexical conventions
More precisely defined whitespace and comments.

• section B.2 Grammar
Improved/corrected grammar definition
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E.5.2 Contributors to the Modelica Language, Version 3.2 Revision 1

The following members of the Modelica Association contributed to the Modelica 3.2 Revision 1 specifi-
cation (alphabetical list):

Peter Aronsson, MathCore AB, Linköping, Sweden

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden

Christoph Höger, Technical University of Berlin, Berlin, Germany

Gerd Kurzbach, ITI GmbH, Dresden, Germany

Jesper Mattsson, Modelon AB, Lund, Sweden

Hans Olsson, Dassault Systèmes, Lund, Sweden

Adrian Pop, Linköping University, Linköping, Sweden

Martin Sjölund, PELAB, Linköping University, Linköping, Sweden

Stefan Vorkoetter, Maplesoft, Waterloo, Canada

E.6 Modelica 3.2

Modelica 3.2 was released on March 24, 2010. The Modelica 3.2 specification was edited by Hans Olsson,
Martin Otter and others.

E.6.1 Main changes in Modelica 3.2

The following backward compatible extensions have been introduced with Modelica 3.2:

• Homotopy function for making it easier to solve initialization problems (see section 3.7.2).

• Functions as formal inputs to functions (see new section 12.4.2).

• Overloaded operators have been refined (see chapter 14):

– A new specialized class “operator record” is introduced – with specialized typing rules (the
type is identified by the class name; all other Modelica classes have a structural type system
where the type is only defined by the public elements). Overloaded operators can only be
defined inside an “operator record”. This change fixes a flaw in Modelica 3.1, since the
look-up of overloaded operators is performed by the record class name.

– Inheritance of an “operator record” is allowed if defined via a short class definition. This
removes a restriction of operator overloading in Modelica 3.1, e.g., to define derived classes
with units for the record elements, like deriving ComplexVoltage from Complex.

– New overloaded element ‘0’ in order that operator record classes can be used as flow variables
in connectors.

• Unicode support in description strings, strings in annotations and in comments in order to improve
Modelica, e.g., for Arabian, Asian or Indian users (see grammar changes in section B.1). Modelica
files are UTF-8 encoded, and can start with the UTF-8 encoded byte order mark (0xef 0xbb 0xbf)
to indicate that it may contain UTF-8 characters; this is treated as white-space in the grammar
(see section 13.2.2.2).

• Constants can once again be modified unless declared final – as this is already used in packages.
(see section 3.8.1).

• Global name lookup has been introduced (e.g. “.Modelica.Constants.pi”), see section 5.3.3.

• New C-functions ModelicaVFormatMessage and ModelicaVFormatError, to simplify message for-
matting in external functions (see section 12.9.6)

• Additional annotations allowing:
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– Inclusion of C-header and object library files in packages and referencing them with URIs.
(new annotations IncludeDirectory, LibraryDirectory, and standardized platform names
like win32; see section 12.9.4; resolves ticket #297).

– Images in parameter dialogs (new annotation groupImage; see section 18.7).

– Start and fixed attributes for variables in parameter dialogs
(new annotation showStartAttribute; see section 18.7).

– Access control for packages to protect intelectual property.
(new annotations Protection, and License; see new section 18.9).

The following changes in Modelica 3.2 are not backwards compatible:

• The new built-in operator name “homotopy”. In rare cases this might give name clashes in existing
models.

• Records with overloaded operations must be declared as “operator record” instead of as “record
”. This is uncritical because tools that already support operator overloading will support the
Modelica 3.1 form still for some time.

E.6.2 Contributors to the Modelica Language, Version 3.2

The initial version of “functions as formal inputs to functions” was proposed by Peter Fritzson.

The definition of header-files and object-libraries with the “IncludeDirectory” and “LibraryDirectory”
annotations was mainly developed by Hans Olsson.

The Protection annotation used for access control is an improved version of existing annotations from
Dymola. The License annotation was mainly developed by Dag Brück with improvements from Magnus
Gäfvert.

The flaw in the operator overloading concept was detected by Sébastien Furic. He also proposed the
basic fix, by using a nominal type system for records with overloaded operations.

The global name lookup was proposed by Stefan Vorkoetter.

The support for Unicode was initiated by Rui Gao and Hoyoun Kim.
The ”homotopy” operator was proposed by Martin Otter, Michael Sielemann and Francesco Casella.
Michael Sielemann demonstrated with benchmark problems that non-linear solvers are not able to solve
reliably initialization problems and that the homotopy operator is therefore needed. He provided a
prototype implementation of the homotopy-operator and demonstrated its use on a vehicle dynamics
example. Utilizing the prototype implementation, Francesco Casella demonstrated with a model of a
thermal power plant with 390 iteration variables of the initialization problem, that an appropriate usage
of the homotopy operator allows to reliably initialize the system without providing guess values for
the iteration variables. This was a strong indication that the homotopy operator will indeed improve
initialization in Modelica significantly.

The following members of the Modelica Association participated at design meetings and contributed to
the Modelica 3.2 specification:

Johan Åkesson, Lund University and Modelon AB, Lund, Sweden

Peter Aronsson, MathCore AB, Linköping, Sweden

Bernhard Bachmann, University of Applied Sciences, Bielefeld, Germany

Jonathan Beck, Dassault Systèmes, Paris, France

Torsten Blochwitz, ITI GmbH, Dresden, Germany

David Broman, PELAB, Linköping University, Sweden

Dag Brück, Dassault Systèmes, Lund, Sweden

Francesco Casella, Politecnico di Milano, Milano, Italy

Mike Dempsey, Claytex Services Limited, Leamington Spa, U.K.
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Karin Dietl, TU Hamburg-Harburg, Germany

Filippo Donida, Politecnico di Milano, Milano, Italy

Hilding Elmqvist, Dassault Systèmes, Lund, Sweden

Peter Fritzson, PELAB, Linköping University, Sweden

Sébastien Furic, LMS International, Roanne. France

Manuel Gräber, TU Braunschweig, Germany

Peter Harman, deltatheta uk limited, U.K.

Anton Haumer, AIT, Vienna, Austria

Carsten Heinrich, Institut für Luft- und Kältetechnik, Dresden, Germany

Dan Henriksson, Dassault Systèmes, Lund, Sweden

Fredrik Karlsson, PELAB, Linköping University, Sweden

Christian Kral, AIT, Vienna, Austria

Imke Krüger, TU Hamburg-Harburg, Hamburg, Germany

Gerd Kurzbach, ITI GmbH, Dresden, Germany

Kilian Link, Siemens AB, Erlangen, Germany

Sven Erik Mattsson, Dassault Systèmes, Lund, Sweden

Eric Neuber, ITI GmbH, Dresden, Germany

Hans Olsson, Dassault Systèmes, Lund, Sweden

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany

Adrian Pop, Linköping University, Linköping, Sweden

Katrin Prölß, Modelon AB, Lund, Sweden

Michael Sielemann, German Aerospace Center, Oberpfaffenhofen, Germany

Bernhard Thiele, German Aerospace Center, Oberpfaffenhofen, Germany

Thorben Vahlenkamp, XRG Simulation, Hamburg, Germany

Eric Thomas, Dassault Aviation, Paris, France

Michael Tiller, Emmeskay, Plymouth, MI, U.S.A

Hubertus Tummescheit, Modelon AB, Lund, Sweden

Stefan Vorkoetter, Maplesoft, Waterloo, Canada

Hans-Jürg Wiesmann, ABB Switzerland, Corporate Research, Baden, Switzerland

Dietmar Winkler, Telemark University College, Porsgrunn, Norway
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• The Swedish funding agency VINNOVA has partially funded Linköping University (PELAB) within
the ITEA2 project OPENPROD (http://www.openprod.org).

• The Swedish Research Council has partially funded Linköping University (PELAB) within the
project “High-Level Debugging of Equation-Based System Modeling & Simulation Languages”.

• The German Ministry BMBF has partially funded FH Bielefeld (BMBF Förderkennzeichen: 01IS09029C)
within the ITEA2 project OPENPROD (http://www.openprod.org).

E.7 Modelica 3.1

Modelica 3.1 was released on May 27, 2009. The Modelica 3.1 specification was edited by Francesco
Casella, Rüdiger Franke, Hans Olsson, Martin Otter, and Michael Sielemann.

E.7.1 Main changes in Modelica 3.1

The following backward compatible extensions have been introduced with Modelica 3.1:

• Overloading of operators like ‘+’ or ‘*’ to allow convenient usage of user-defined data structures
like complex numbers, polynomials, transfer functions. Usually, only scalar operations for one data
type need to be overloaded. All other needed operations, like operations between different data
types or on arrays of the new data type, can be automatically constructed by the tool.

• Stream connector concept to ensure efficient and reliable simulation of fluid systems.

• Partitioning models in parts and mapping these parts to execution environments. This allows con-
venient definition of, e.g., Model-in-the-Loop, Software-in-the-Loop, Hardware-in-the-Loop Simula-
tion, from the same “logical” system, by inheriting from the logical system and setting configuration
options.

• Arrays in buses (expandable connector) are much better supported. Furthermore, variables de-
clared in an expandable connector need not to be referenced in the model and are then not available
in the simulation model.

• The order of classes stored in separate files can be given.

• A restriction of balanced models was removed, so that modifiers to connector and record instances
can be used and are considered for the equation count. This allows, e.g., a much easier implemen-
tation of the support connector of the Modelica.Mechanics.Rotational/Translational libraries.

• A tool that uses missingInnerMessage to give information may also automatically use the corre-
sponding inner-component.

• URIs can be used for links in html-documentation and for the Bitmap annotation (such as: “mod-
elica://Modelica.Mechanics/C.jpg” for image “C.jpg” that is stored in the directory of package
Modelica.Mechanics). This allows to store resources in a package on persistent storage and to
reference resources via package and resource names.

• Annotation “connectorSizing” to automatically enlarge a vector of connectors and connect to a free
element of this vector when a connection line is drawn. This allows to improve the user convenience,
especially for state machine and fluid models.

• Annotation “inverse” to define inverses of functions. This allows a tool to solve non-linear algebraic
loops by using the user-provided inverse function.

• Annotations “versionDate”, “versionBuild”, “dateModified”, “revisionId” to improve version han-
dling. For example, this allows handling of maintenance (bug-fix) releases and gives a library
developer the possibility to state that a particular “build” is needed for a used library.

The following defects have been fixed in the Modelica specification:

• Modifier with subscripts were previously allowed, but not clearly defined, not implemented in many
tools, and not used in libraries. They were thus removed.

• Modelica keywords (section 2.3.3) updated.
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• Clarification: Exponentiation and array range operator are non-associative
(xˆyˆz or a:b:c:d:e:f are not allowed; parentheses are required)

• Clarification: Restrictions on combining base classes (section 4.5.2).

• Clarification: Execution of an algorithm (new section 11.1.2).

• The default type for arrays sent to external functions has been clarified.

• The “iconTransformation” defaults to the (diagram) “transformation”, as was originally the inten-
tion.

• The Connection set section was rewritten:

– Connection set is clearly defined including examples.

– The handling of connections involving outer components was rewritten to ensure that models
that seem to have the same connection structure generate the same equations from the connect
equations. Previously a connection between an outer component and an outside connector
would move the connection upwards. The implication of this movement was unclear: if it
turned the connector into an inside connector (as was likely the intention) it would prohibit
default-connection of this normal connector leading to counter-intuitive results; and otherwise
it would have no impact.

• Example of using fields was corrected.

• Example with MatrixGain was corrected.

• Ambiguous annotations after external-declarations were corrected (as already used).

• The reinit-operator can be used multiple times in one algorithm, and the semantics clarified.

• Made clearer that acyclic parameters also hold for one parameter equation.

• Changed in the text “attributes” to “prefix”, if a prefix is meant.

The following changes in Modelica 3.1 are not backwards compatible:

• A class-level annotation can only be placed before the end-statement. This is uncritical because
tools can easily fix incorrect models (ignore this new rule when reading a model and use this rule
when storing the model).

• New Modelica keywords “stream” and “operator”, a new built-in package “Subtask” and new-
built-in operators “inStream” and “actualStream” have been introduced. In rare cases this might
give name clashes in existing models.

• Modifiers on declared variables in expandable connectors are no longer allowed. This should be
uncritical, because expandable connectors are usually used for signal buses where the signal is
communicated to the bus from a block with a connect equation.

E.7.2 Contributors to the Modelica Language, Version 3.1

The concept of operator overloading was developed by Hans Olsson, based on work of Dag Brück, Peter
Fritzson, and Martin Otter.

The streams concept was developed by Rüdiger Franke based on work from Francesco Casella and with
contributions especially from Hilding Elmqvist, Sven Erik Mattson, Hans Olsson, Martin Otter and
Michael Sielemann.

The concept to map models to execution environments was developed by Hilding Elmqvist, Dan Hen-
riksson, Martin Otter, Bernhard Thiele and Sven Erik Mattson.

The following members of the Modelica Association participated at design meetings and contributed to
the Modelica 3.1 specification:

Johan Akesson, Lund University and Modelon AB, Lund, Sweden

Johan Andreasson, Modelon AB, Lund, Sweden

Peter Aronsson, MathCore AB, Linköping, Sweden

304
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Torsten Blochwitz, ITI GmbH, Dresden, Germany
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Francesco Casella, Politecnico di Milano, Milano, Italy

Christoph Clauß, Fraunhofer Institute for Integrated Circuits, Dresden, Germany

Karin Dietl, TU Hamburg-Harburg, Germany

Filippo Donida, Politecnico di Milano, Milano, Italy

Thomas Doumenc, Dassault Systèmes, Paris, France

Jonas Eborn, Modelon AB, Lund, Sweden

Hilding Elmqvist, Dynasim, Lund, Sweden

Rüdiger Franke, ABB Power Generation, Mannheim, Germany

Peter Fritzson, Linköping University, Sweden

Magnus Gäfvert, Modelon AB, Lund, Sweden

Manuel Gräber, TU Braunschweig, Germany

Anton Haumer, Technical Consulting & Electrical Engineering, St.Andrae-Woerdern, Austria

Carsten Heinrich, Institut für Luft- und Kältetechnik, Dresden, Germany

Dan Henriksson, Dynasim, Lund, Sweden

Roland Kossel, TLK Thermo GmbH, Braunschweig, Germany

Christian Kral, arsenal research, Vienna, Austria

Gerd Kurzbach, ITI GmbH, Dresden, Germany

Kilian Link, Siemens AB, Erlangen, Germany

Sven Erik Mattsson, Dynasim, Lund, Sweden

Ramine Nikoukhah, INRIA, Paris, France

Hans Olsson, Dynasim, Lund, Sweden

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany

Adrian Pop, Linköping University, Linköping, Sweden

Katrin Prölß, Technical University Hamburg-Harburg, Germany

Christoph Richter, TU Braunschweig, Germany

Michael Sielemann, German Aerospace Center, Oberpfaffenhofen, Germany

Bernhard Thiele, German Aerospace Center, Oberpfaffenhofen, Germany

Michael Tiller, Ford Motor Company/Emmeskay, Dearborn/Plymouth, MI, U.S.A

Hubertus Tummescheit, Modelon AB, Lund, Sweden

Stefan Vorkoetter, Maplesoft, Waterloo, Canada

Hans-Jürg Wiesmann, ABB Switzerland, Corporate Research, Baden, Switzerland

Dietmar Winkler, TU Berlin, Germany
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E.8 Modelica 3.0

Modelica 3.0 was released Sept. 5, 2007. The Modelica 3.0 specification was edited by Peter Fritzson,
Hans Olsson, and Martin Otter.

E.8.1 Contributors to the Modelica Language, Version 3.0

The Modelica 3.0 specification was newly structured and written by Peter Fritzson using text from the
previous specification and also adding new explanatory text. This draft specification was afterwards
improved by members of the Modelica Association.

The concept of “balanced models” (which is the major change of the language) was developed by Hans
Olsson with contributions from Martin Otter, Hilding Elmqvist, and Sven Erik Mattsson. The original
inspiration was from Mike Tiller.

This goes together with making the type interface and sub-typing cleaner and stricter (the new chapter 6).
This concept fixes flaws of the language that have been pointed out by Sébastien Furic.

The graphical annotations have been redesigned and improved by Daniel Hedberg, Erik Areskog, Dag
Brück, and Hilding Elmqvist with contributions from Peter Aronsson and Gerd Kurzbach.

The following members of the Modelica Association participated at design meetings and contributed to
the Modelica 3.0 specification:

Peter Aronsson, MathCore AB, Linköping, Sweden

Bernhard Bachmann , University of Applied Sciences, Bielefeld, Germany

John Batteh, Ford Motor Company, Dearborn, MI, U.S.A.

David Broman, Linköping University, Linköping, Sweden

Peter Bunus, Linköping University, Linköping, Sweden

Dag Brück, Dynasim, Lund, Sweden

Francesco Casella, Politecnico di Milano, Milano, Italy

Christoph Clauß, Fraunhofer Institute for Integrated Circuits, Dresden, Germany

Thomas Doumenc, Dassault Systèmes, Paris, France

Jonas Eborn, Modelon AB, Lund, Sweden

Hilding Elmqvist, Dynasim, Lund, Sweden

Rüdiger Franke, ABB Corporate Research, Ladenburg, Germany

Peter Fritzson, Linköping University, Sweden
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Sebastien Furic, Imagine, Roanne, France

Anton Haumer, Technical Consulting & Electrical Engineering, St.Andrae-Woerdern, Austria

Daniel Hedberg, MathCore AB, Linköping, Sweden

Carsten Heinrich, Institut für Luft- und Kältetechnik gGmbH, Dresden, Germany

Olof Johansson, Linköping University, Linköping, Sweden

Christian Kral, arsenal research, Vienna, Austria

Roland Kossel, TLK Thermo GmbH, Braunschweig, Germany

Gerd Kurzbach, ITI GmbH, Dresden, Germany

Christian Kral, arsenal research, Vienna, Austria

Kilian Link, Siemens AB, Erlangen, Germany

José Diaz Lopez, Dynasim AB, Lund, Sweden

Karin Lund, Fachhochschule Ulm, Germany

H̊akan Lundvall, Linköping University, Linköping, Sweden

Ludwig Marvan, VA TECH ELIN EBG Elektronik GmbH & Co, Vienna, Austria

Sven Erik Mattsson, Dynasim, Lund, Sweden

Jakob Mauss, Qtronic GmbH, Berlin, Germany

Chuck Newman, Ford Motor Company, Dearborn, MI, U.S.A.
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Hubertus Tummescheit, Modelon AB, Lund, Sweden

Hans-Jürg Wiesmann, ABB Switzerland Ltd.,Corporate Research, Baden, Switzerland

E.8.2 Main Changes in Modelica 3.0

Modelica 3.0 is a “clean-up” version of the Modelica language. For example, the specification is newly
written to define the language in a better way, errors in the language are fixed, unclear or undefined
items are more precisely described, and mild restrictions are introduced into the language in order that a
Modelica translator can much earlier and more precisely detect modeling errors. Automated conversion
of models to Modelica 3.0 is possible. Furthermore, a tool can potentially handle much larger models.

This Modelica version is for the first time (slightly) not backward compatible to previous versions (all
previous versions have been backward compatible with exception of tiny issues as newly introduced
keywords). As a result, e.g., “unsafe” models of previous Modelica versions are no longer valid. It is
expected that Modelica tool vendors provide (semi-) automatic mechanisms for conversion of models and
libraries.

The following main changes in Modelica 3.0 are not backwards compatible:
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• Restrictions to connectors (see section 9.3): For each non-partial connector class the number of
flow variables shall be equal to the number of variables that are neither parameter, constant, input,
output, nor flow. For example, the following connector is illegal in Modelica 3:

connector notValid // i l l e g a l c o n n e c t o r
Real r1;

Real r2;

flow Real r3;

end notValid;

• In a non-partial model or block, all non-connector inputs of model or block components must have
binding equations.

• A component declared with the inner or outer prefix shall not be of a class having top-level public
connectors containing inputs.

• Modifiers for components shall only contain redeclarations of replaceable elements and binding
equations for parameters, constants, inputs and variables having a default binding equation.

• All non-partial model and block classes must be locally balanced (see section 4.7). This means that
the local number of unknowns equals the local equation size. Together with other restrictions, this
leads to the strong property that a simulation model is always globally balanced (i.e., the number
of unknowns is equal to the number of equations).

• Prefixes input, output, inner, outer, flow are not allowed in a record

• The built-in operators “abs(...)” and “sign(...)” do no longer generate events but are implicitly
defined with a noEvent(...) operator.

• The constraining clause of a replaceable class or component is changed from keyword extends to
the new keyword constrainedby (since the extends keyword could lead to the wrong impression
that the redeclared model must inherit from the constraining class, but this is not the case).

• The isPresent(...) construct, which was not implemented in tools, was removed.

The following changes in the Modelica 3.0 graphical annotations are also not backwards compatible:

• Changed the definition of icon placement (record Transformation), so that the actual coordinates
of the icon of a model instance are defined in the class where the instance is defined and no longer
in the class where the icon is defined (this was a flaw in the Modelica 2.0 graphical annotations).

• Improved the definition of the rotation of a graphical primitive.

• Change fontSize unit from DrawingUnit to pt (since this is the usual unit for fonts).

The following main changes in Modelica 3.0 are backwards compatible:

• New element-wise operators: .+, .-, .*, ./, .^.

• A third argument AssertionLevel to built-in function assert(...) in order that warnings can
optionally be defined.

• New annotations section 18.1 “Vendor-Specific Annotations”:
In this section it is precisely defined how vendor-specific annotations should be marked. Any
tool shall save files with all standard annotations (defined in chapter 18) and all vendor-specific
annotations intact. The advantage is that a typo in non-vendor annotations can now be detected
and marked as an error, whereas in previous versions this had to be ignored.

• New annotation in section 18.2 “Annotations for Documentation”:
preferredView = info, diagram or text

• New annotations section 18.3 “Annotations for Code Generation”:
Evaluate, HideResult, Inline, LateInline, smoothOrder

• New annotation section 18.4 “Annotations for Simulation Experiments”:
StartTime, StopTime, Tolerance to define important parameters of an experiment setup.
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• New annotations for graphical annotations in section 18.6:
New attribute Smooth = enumeration(None, Bezier) for graphical objects and connection lines
(Bezier defines a Bezier spline).
New attribute visible in record Placement allows to make a graphical annotation invisible (e.g.
after inheritance).
New attributes startAngle, endAngle in record ellipse to define part of an ellipse.
New layer specific annotations IconMap and DiagramMap for extends.
New attribute horizontalAlignment to the Text record to define the horizontal alignment of
text.

• New annotations for schematic animation and interactive user input in section 18.6:
DynamicSelect(..) to modify annotation literals by the actual values of variables.
OnMouseDownSetBoolean, OnMouseUpSetBoolean, OnMouseMoveXSetReal, OnMouseMoveYSetReal
, OnMouseDownEditReal, OnMouseDownEditString to interactively set the variable of a class during
simulation.

The following errors have been fixed in the Modelica specification:

• Syntax rule for a function call (e.g., according to the grammar in Modelica 2.2 a function call
of the form Modelica.Math.Matrices.eig(...) was invalid because the function name could not
have “.”. However, all Modelica tools supported the desired “full Modelica name” also for function
calls).

E.9 Modelica 2.2

Modelica 2.2 was released February 2, 2005. The Modelica 2.2 specification was edited by Hans Olsson,
Michael Tiller and Martin Otter.

E.9.1 Contributors to the Modelica Language, Version 2.2

Bernhard Bachmann , University of Applied Sciences, Bielefeld, Germany

John Batteh, Ford Motor Company, Dearborn, MI, U.S.A.

Dag Brück, Dynasim, Lund, Sweden

Francesco Casella, Politecnico di Milano, Milano, Italy

Christoph Clauß, Fraunhofer Institute for Integrated Circuits, Dresden, Germany

Jonas Eborn, Modelon AB, Lund, Sweden

Hilding Elmqvist, Dynasim, Lund, Sweden

Rüdiger Franke, ABB Corporate Research, Ladenburg, Germany

Peter Fritzson, Linköping University, Sweden

Anton Haumer, Technical Consulting & Electrical Engineering, St.Andrae-Woerdern, Austria

Christian Kral, arsenal research, Vienna, Austria

Sven Erik Mattsson, Dynasim, Lund, Sweden

Chuck Newman, Ford Motor Company, Dearborn, MI, U.S.A.

Hans Olsson, Dynasim, Lund, Sweden

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany

Markus Plainer, Arsenal Research, Vienna, Austria

Adrian Pop, Linköping University, Sweden

Katrin Prölß, Technical University Hamburg-Harburg, Germany

André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany

Christian Schweiger, German Aerospace Center, Oberpfaffenhofen, Germany
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Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.

Hubertus Tummescheit, Modelon AB, Lund, Sweden

Hans-Jürg Wiesmann, ABB Switzerland Ltd.,Corporate Research, Baden, Switzerland

E.9.2 Main Changes in Modelica 2.2

The main changes in Modelica 2.2 are:

• Conditional component declarations to ignore component declarations depending on a parameter
expression. Connection equations that reference a component that is no longer present, are ignored.

• In redeclarations some parts of the original declaration are automatically inherited by the new
declaration. This is intended to make it easier to write declarations by not having to repeat common
parts of the declarations, and does in particular apply to attributes that must be identical.

• Recursive inner/outer definitions to define hierarchically structured inner/outer declarations
that can communicate with each other: An element declared with both the prefixes inner and
outer conceptually introduces two declarations with the same name, one that follows the rules for
inner and another that follows the rules for outer.

• A non-input array component declared in a function with a dimension size specified by colon(:)
and no declaration assignment, can change size in the function in a simple and convenient way.

• A new type of connector, called “expandable connector” was introduced. This connector has less
strict requirements about name matching of connected connectors and can be used conveniently
in situations that required replaceable connectors previously. One main application area is to
construct signal buses of complex systems.

• The derivative operator der(expr) may have an expression as argument and not only a variable
name as previously, e.g., der(m*h) is interpreted as der(m)*h + m*der(h).

• A function can be defined as partial derivative of another function, e.g.:

• ”function Gibbs_T = der(Gibbs,T)” is a function that computes the partial derivative of func-
tion Gibbs with respect to its input argument T.

• External functions may have the new attribute "builtin", additionally to “C” or ”FORTRAN 77”.
The "builtin" specification is only used for functions that are defined to be built-in in the Mod-
elica language. The external-function call mechanism for "builtin" functions is implementation-
defined.

The language changes are backward compatible.

E.10 Modelica 2.1

Modelica 2.1 was released January 30, 2004. The Modelica 2.1 specification was edited by Hans Olsson
and Martin Otter.

E.10.1 Contributors to the Modelica Language, Version 2.1

Mikael Adlers, MathCore, Linköping, Sweden

Peter Aronsson, Linköping University, Sweden

Bernhard Bachmann , University of Applied Sciences, Bielefeld, Germany

Peter Bunus, Linköping University, Sweden

Jonas Eborn, United Technologies Research Center, Hartford, U.S.A.

Hilding Elmqvist, Dynasim, Lund, Sweden

Rüdiger Franke, ABB Corporate Research, Ladenburg, Germany

Peter Fritzson, Linköping University, Sweden
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Anton Haumer, Technical Consulting & Electrical Engineering, St.Andrae-Woerdern, Austria

Olof Johansson, Linköping University, Sweden

Karin Lunde, R.O.S.E. Informatik GmbH, Heidenheim, Germany

Sven Erik Mattsson, Dynasim, Lund, Sweden

Hans Olsson, Dynasim, Lund, Sweden

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany

Levon Saldamli, Linköping University, Sweden

Christian Schweiger, German Aerospace Center, Oberpfaffenhofen, Germany

Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.

Hubertus Tummescheit, United Technologies Research Center, Hartford, U.S.A.

Hans-Jürg Wiesmann, ABB Switzerland Ltd.,Corporate Research, Baden, Switzerland

E.10.2 Main Changes in Modelica 2.1

The main changes in Modelica 2.1 are:

• Arrays and array indices of Enumerations (needed, e.g., in the Electrical.Digital library cur-
rently under development).

• Connections into hierarchical connectors (needed, e.g., for convenient implementation of buses).

• Optional output arguments of Modelica functions. The presence of actual input and/or output
arguments can be inquired with the new built-in function isPresent(..). The previous built-in
function and attribute enable was removed.

• Making the default constraining type more useful by inheriting the base constraining type auto-
matically to modifications.

• Enhanced redeclaration as needed, e.g., in the Modelica.Media library under development (e.g.
“redeclare model name” or “model extends name (<modifications>)”).

• Handling of overdetermined connectors (needed, e.g., for multi-body systems and electrical power
systems) including the new built-in package Connections with operators Connections.branch,
Connections.root, Connections.potentialRoot, Connections.isRoot.

• Statement break in the while loop of an algorithm section.

• Statement return in a Modelica function.

• Built-in function String(..) to provide a string representation of Boolean, Integer, Real and
Enumeration types.

• Built-in function Integer(..) to provide the Integer representation of an Enumeration type.

• Built-in function semiLinear(..) to define a characteristics with two slopes and a set of rules for
symbolic transformations, especially when the function becomes underdetermined (this function is
used in the Modelica Fluid library under development to define reversing flow in a mathematically
clean way).

• More general identifiers by having any character in single quotes, e.g. ’+’ or ’123.456#1’ are valid
identifiers. ’x’ and x are different identifiers. This is useful for a direct mapping of product identi-
fiers to model names and for having the usual symbols for digital electrical signals as enumerations
(such as ’+’, ’-’, ’0’, ’1’).

• New annotations:

– For version handling of libraries and models (version, uses, conversion),

– for revision logging (revisions),

– for using a Modelica name as link in a HTML documentation text,
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– for convenient “inner” declaration in a GUI (defaultComponentName, defaultComponentPrefixes
),

– for parameter menu structuring (Dialog, enable, tab, group), and

– for library specific error messages (missingInnerMessage, unassignedMessage).

Fixing some minor errors in the grammar and semantic specification.

The language changes are backward compatible, except for the introduction of the new keywords break
and return, the new built-in package Connections and the removing of built-in function and attribute
enable.

E.11 Modelica 2.0

Modelica 2.0 was released January, 30 2002, and the draft was released on December 18 in 2001. The
Modelica 2.0 specification was edited by Hans Olsson. Modelica is a registered trademark owned by the
Modelica Association since November 2001.

E.11.1 Contributors to the Modelica Language, Version 2.0

Peter Aronsson, Linköping University, Sweden

Bernhard Bachmann , University of Applied Sciences, Bielefeld

Peter Beater, University of Paderborn, Germany

Dag Brück, Dynasim, Lund, Sweden

Peter Bunus, Linköping University, Sweden

Hilding Elmqvist, Dynasim, Lund, Sweden

Vadim Engelson, Linköping University, Sweden

Peter Fritzson, Linköping University, Sweden

Rüdiger Franke, ABB Corporate Research, Ladenburg

Pavel Grozman, Equa, Stockholm, Sweden

Johan Gunnarsson, MathCore, Linköping

Mats Jirstrand, MathCore, Linköping

Sven Erik Mattsson, Dynasim, Lund, Sweden

Hans Olsson, Dynasim, Lund, Sweden

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany

Levon Saldamli, Linköping University, Sweden

Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.

Hubertus Tummescheit, Lund Institute of Technology, Sweden

Hans-Jürg Wiesmann, ABB Switzerland Ltd.,Corporate Research, Baden, Switzerland

E.11.2 Main Changes in Modelica 2.0

A detailed description of the enhancements introduced by Modelica 2.0 is given in the papers

• M. Otter, H. Olsson: New Features in Modelica 2.0. 2nd International Modelica Conference, March
18-19, DLR Oberpfaffenhofen, Proceedings, pp. 7.1 - 7.12, 2002. This paper can be downloaded
from http://www.Modelica.org/Conference2002/papers/p01_Otter.pdf
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• Mattsson S. E., Elmqvist H., Otter M., and Olsson H.: Initialization of Hybrid Differential-
Algebraic Equations in Modelica 2.0. 2nd International Modelica Conference, March 18-19, DLR
Oberpfaffenhofen, Proceedings, pp. 9 - 15, 2002. This paper can be downloaded from http:

//www.Modelica.org/Conference2002/papers/p02_Mattsson.pdf

The main changes in Modelica 2.0 are:

• Full specification of initialization in order to compute consistent initial values of all variables ap-
pearing in a model before performing an operation, such as simulation or linearization.

• Specified the graphical appearance of Modelica object diagrams, thereby ensuring portability of
model topology information and improving the previous informal graphical description, e.g., with
separate icon and diagram positions.

• Enumeration types to allow the definition of options and properties in an understandable, safe and
efficient way.

• Support for (optional) explicit preference in state-selection in order that a modeler can incorporate
application specific knowledge to guide the solution process, e.g., for real-time simulation.

• Iterators in array constructors and reduction operators, to support more powerful expressions,
especially in declarations, in order to avoid inconvenient and less efficient local function definitions.

• Support for generic formulation of blocks applicable to both scalar and vector connectors, con-
nection of (automatically) vectorized blocks, and simpler input/output connectors. This allows
significant simplifications of the input/output block library of Modelica, e.g., since only scalar ver-
sions of all blocks have to be provided. Furthermore, new library components can be incorporated
more easily.

• Record constructor to allow, e.g., the construction of data sheet libraries.

• Functions with mixed positional and named arguments. Optional results and default arguments
make the same function fit for beginners and expert users.

• Additional utilities for external C-functions that are interfaced to Modelica models, especially
supporting external functions returning strings and external functions with internal memory (e.g.,
to interface user-defined tables, property databases, sparse matrix handling, hardware interfaces).

• Added an index, and specification of some basic constructs that had previously not formally be
defined, such as while-clauses, if-clauses.

The language changes are backward compatible, except for the introduction of the new keyword enu-
meration and the removal of the operator analysisType(). The library change of the block library which
will become available soon requires changes in user-models.

E.12 Modelica 1.4

Modelica 1.4 was released December 15, 2000. The Modelica Association was formed in Feb. 5, 2000 and
is now responsible for the design of the Modelica language. The Modelica 1.4 specification was edited
by Hans Olsson and Dag Brück.

E.12.1 Contributors to the Modelica Language, Version 1.4

Bernhard Bachmann, Fachhochschule Bielefeld, Germany

Peter Bunus, MathCore, Linköping, Sweden

Dag Brück, Dynasim, Lund, Sweden

Hilding Elmqvist, Dynasim, Lund, Sweden

Vadim Engelson, Linköping University, Sweden

Jorge Ferreira, University of Aveiro, Portugal

Peter Fritzson, Linköping University, Linköping, Sweden
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Pavel Grozman, Equa, Stockholm, Sweden

Johan Gunnarsson, MathCore, Linköping, Sweden

Mats Jirstrand, MathCore, Linköping, Sweden

Clemens Klein-Robbenhaar, Germany

Pontus Lidman, MathCore, Linköping, Sweden

Sven Erik Mattsson, Dynasim, Lund, Sweden

Hans Olsson, Dynasim, Lund, Sweden

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany

Tommy Persson, Linköping University, Sweden

Levon Saldamli, Linköping University, Sweden

André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany

Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.

Hubertus Tummescheit, Lund Institute of Technology, Sweden

Hans-Jürg Wiesmann, ABB Corporate Research Ltd., Baden, Switzerland

E.12.2 Contributors to the Modelica Standard Library

Peter Beater, University of Paderborn, Germany

Christoph Clauß, Fraunhofer Institute for Integrated Circuits, Dresden, Germany

Martin Otter, German Aerospace Center, Oberpfaffenhofen, Germany

André Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany

Hubertus Tummescheit, Lund Institute of Technology, Sweden

E.12.3 Main Changes in Modelica 1.4

• Removed declare-before-use rule. This simplifies graphical user environments, because there exists
no order of declarations when components are graphically composed together.

• Refined package concept by introducing encapsulated classes and import mechanism. Encapsulated
classes can be seen as ”self-contained units”: When copying or moving an encapsulated class, at
most the import statements in this class have to be changed.

• Refined when-clause: The nondiscrete keyword is removed, equations in when-clauses must have a
unique variable name on left hand side variable and the exact mapping of when-clauses to equations
is defined. As a result, when-clauses are now precisely defined without referring to a sorting
algorithm and it is possible to handle algebraic loops between when-clauses with different conditions
and between when-clauses and the continuous-time part of a model. The discrete keyword is now
optional, simplifying the library development because only one type of connector is needed and
not several types which do contain or do not contain the discrete prefix on variables. Additionally,
when-clauses in algorithm sections may have elsewhen-clauses which simplifies the definition of
priorities between when-clauses.

• For replaceable declarations: allowed constraining clauses, and annotations listing suitable redec-
larations. This allows a graphical user environment to automatically build menus with meaningful
choices.

• Functions can specify their derivative. This allows, e.g., the application of the Pantelides algorithm
to reduce the index of a DAE also for external functions.

• New built-in operator ”rem” (remainder) and the built-in operators div, mod, ceil, floor, integer,
previously only allowed to be used in when-clauses can now be used everywhere, because state events
are automatically generated when the result value of one of these operator changes discontinuously.
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• Quantity attribute also for base types Boolean, Integer, String (and not only for Real), in order
to allow abstracted variables to refer to physical quantities (e.g. Boolean i(quantity=”Current”)
is true if current is flowing and is false if no current is flowing).

• final keyword also allowed in declaration, to prevent modification. Example:

model A

Real x[:];

final Integer n=size(x,1);

end A;

• Several minor enhancements, such as usage of dot-notation in modifications
(e.g.: ”A x(B.C=1,B.D=2)” is the same as ”A x(B(C=1,D=2));”).

• Internally restructured specification.

Modelica 1.4 is backwards compatible with Modelica 1.3, with the exception of (1) some exotic cases where
different results are achieved with the removed ”declare-before-use-rule” and the previous declaration
order, (2) when-clauses in equations sections, which use the general form ”expr1 = expr2” (now only
”v=expr” is allowed + some special cases for functions), (3) some exotic cases where a when-clause may
be no longer evaluated at the initial time, because the initialization of the when-condition is now defined
in a more meaningful way (before Modelica 1.4, every condition in a when-clause has a ”previous” value
of false), and (4) models containing the nondiscrete keyword which was removed.

E.13 Modelica 1.3 and Older Versions.

Modelica 1.3 was released December 15, 1999.

E.13.1 Contributors up to Modelica 1.3

The following list contributors and their affiliations at the time when Modelica 1.3 was released.

Hilding Elmqvist, Dynasim AB, Lund, Sweden

Bernhard Bachmann, ABB Corporate Research Center Heidelberg

Francois Boudaud, Gaz de France, Paris, France

Jan Broenink, University of Twente, Enschede, Netherlands

Dag Brück, Dynasim AB, Lund, Sweden

Thilo Ernst, GMD FIRST, Berlin, Germany

Ruediger Franke, ABB Network Partner Ltd. Baden, Switzerland

Peter Fritzson, Linköping University, Sweden

Alexandre Jeandel, Gaz de France, Paris, France

Pavel Grozman, Bris Data AB, Stockholm, Sweden

Kaj Juslin, VTT, Espoo, Finland

David K̊agedal, Linköping University, Sweden

Mattias Klose, Technical University of Berlin, Germany

Nathalie Loubere, Gaz de France, Paris, France

Sven-Erik Mattsson, Dynasim AB, Lund, Sweden

Peter J. Mosterman, DLR Oberpfaffenhofen, Germany

Henrik Nilsson, Linköping University, Sweden

Hans Olsson, , Dynasim AB, Lund, Sweden
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Martin Otter, DLR Oberpfaffenhofen, Germany

Per Sahlin, Bris Data AB, Stockholm, Sweden

Andrée Schneider, Fraunhofer Institute for Integrated Circuits, Dresden, Germany

Michael Tiller, Ford Motor Company, Dearborn, MI, U.S.A.

Hubertus Tummescheit, Lund Institute of Technology, Sweden

Hans Vangheluwe, University of Gent, Belgium

E.13.2 Main Changes in Modelica 1.3

Modelica 1.3 was released December 15, 1999.

• Defined connection semantics for inner/outer connectors.

• Defined semantics for protected element.

• Defined that least variable variability prefix wins.

• Improved semantic definition of array expressions.

• Defined scope of for-loop variables.

E.13.3 Main Changes in Modelica 1.2

Modelica 1.2 was released June 15, 1999.

• Changed the external function interface to give greater flexibility.

• Introduced inner/outer for dynamic types.

• Redefined final keyword to only restrict further modification.

• Restricted redeclaration to replaceable elements.

• Defined semantics for if-clauses.

• Defined allowed code optimizations.

• Refined the semantics of event-handling.

• Introduced fixed and nominal attributes.

• Introduced terminate and analysisType.

E.13.4 Main Changes in Modelica 1.1

Modelica 1.1 was released in December 1998.

Major changes:

• Specification as a separate document from the rationale.

• Introduced prefixes discrete and nondiscrete.

• Introduced pre and when.

• Defined semantics for array expressions.

• Introduced built-in functions and operators (only connect was present in Modelica 1.0).

E.13.5 Modelica 1.0

Modelica 1, the first version of Modelica, was released in September 1997, and had the language specifi-
cation as a short appendix to the rationale.
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